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Abstract

The supermembrane theory on R10 × S1 is investigated, for membranes that wrap
once around the compact dimension. The Hamiltonian can be organized as describing Ns
interacting strings, the exact supermembrane corresponding to Ns → ∞. The zero-mode
part of Ns − 1 strings turn out to be precisely the modes which are responsible of insta-
bilities. For sufficiently large compactification radius R0, interactions are negligible and
the lowest-energy excitations are described by a set of harmonic oscillators. We compute
the physical spectrum to leading order, which becomes exact in the limit g2 → ∞, where
g2 ≡ 4π2T3R

3
0 and T3 is the membrane tension. As the radius is decreased, more strings

become strongly interacting and their oscillation modes get frozen. In the zero-radius limit,
the spectrum is constituted of the type IIA superstring spectrum, plus an infinite number
of extra states associated with flat directions of the quartic potential.
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1. Introduction

It is expected that supermembrane theories [1] will play a central role in a new formu-

lation of string theory that should incorporate features of the strong coupling dynamics,

which is now referred to as M-theory [2]. In the eleven-dimensional supermembrane theory,

the existence of a supersymmetric ground state, together with the assumption of an energy

gap to the first excited state, would be sufficient to guarantee that the low-energy limit of

the theory will indeed be given by 11D supergravity, believed to govern the strong coupling

limit of type IIA superstring theory [3,4]. Moreover, supermembrane theory is known to be

related to type IIA superstring theory by means of a procedure called double-dimensional

reduction [5]. The idea is to consider the target space R10 × S1, fix a gauge where the

compact coordinate is proportional to one of the world-volume coordinates, say ρ, and

–in the spirit of Kaluza-Klein reduction– assume that for small radius R0 the relevant

modes of the non-compact coordinates will be those independent of ρ. In this work we will

incorporate the dynamics of other modes in a systematic way.

Strictly speaking, the statement that type IIA superstring theory is obtained from

the supermembrane at small radius still remains to be proved. The actual statement of

ref. [5] is that type IIA superstring theory is obtained under the ad hoc assumption that

the non-compact coordinates are ρ-independent. As we will see, the problem is that there

are extra states, associated with the instabilities of the quantum supermembrane on R11,

which do not decouple as R0 → 0. This will be clear in the present formulation, where

the supermembrane will be organized as a system of interacting strings. In this language,

the extra states include the states associated with instabilities on R10 × S1, which are

constructed by using the zero-mode part of Ns − 1 strings. In order for standard super-

membrane theory to have a discrete mass spectrum, these zero modes have to be removed

by hand from the original Hamiltonian. Since the action of [1] is not renormalizable, it is

conceivable that in a correct description, appropriate to R0 less than the Planck length,

the unwanted states could decouple. Here we will keep all the modes of supermembrane

theory, except at the end of sect. 6, where we will consider the truncated Hamiltonian with

the zero modes of Ns − 1 strings removed. It describes a stable system, with a calculable

discrete spectrum at large radius.

Another possibility [6,7] is that quantum effects could modify the asymptotic zero-

point energy in certain directions, in such a way that all modes remain confined, and as
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a result the Hamiltonian spectrum would be discrete. The problem is how to do this

maintaining supersymmetry. The mechanism explored in ref. [7] uses a target-space with

a boundary, where the membrane wave function is required to vanish. This requirement

indeed removes the instabilities, but, on the face of it, it seems to also preclude the existence

of massless states in the spectrum. Unfortunately, the general ground-state wave-functional

is unknown, so it is not clear whether there could remain some eigenstate of zero energy

satisfying the boundary condition.

In standard Kaluza-Klein theory, the extra dimension emerges in scattering processes

involving energies greater than the inverse compactification radius, 1/R0, i.e. when Kaluza-

Klein modes can be excited. Processes involving energies which are much smaller than

1/R0, can be effectively described in terms of a D − 1 dimensional theory. In the present

case, one would like to see whether for energies much lower than 1/R0 the theory can be

effectively described in terms of a string theory, i.e. whether the only states that can be

excited at E ≪ 1/R0 correspond to oscillation modes of a string. In what follows, when

discussing the regime R2
0 ≪ α′, by “low-energy” we mean E2 ≤ O(1/α′) ≪ 1/R2

0. This is

the regime where we would expect to have a string theory description, with all the extra

quantum states of the supermembrane frozen.

The dynamics dictated by the membrane Hamiltonian will be investigated in sects. 4

and 5. Although the full Hamiltonian is highly non-linear, the qualitative behavior of the

system can be followed for all radii and, remarkably, exact statements about the relevant

excitations of the system can be done in the extreme limits R0 = ∞ and R0 = 0; from

the ten-dimensional viewpoint, these correspond respectively to infinite and zero string

coupling g2 ≡ 4π2T3R
3
0. In the R0 = ∞ limit, with T ≡ 2πR0T3 fixed, the Hamiltonian

describes a system of decoupled harmonic oscillators. For finite but large R0, quantum

states with α′M2 ≪ O(g2) will describe harmonic motion, while those with α′M2 > O(g2)

will be affected by the full non-linearities of the supermembrane theory. In the limit

R0 → 0, the quantum states with non-trivial oscillator content in the compact direction

will have M2 ∼ 1/R2
0, and they get frozen: it takes an infinite energy to excite them.
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2. Supermembrane Hamiltonian and instabilities

2.1. Generalities

We will consider membranes of toroidal topologies. A complete set of functions on

the torus is given by

Yn(σ, ρ) = ein1σ+in2ρ , n = (n1, n2) , σ, ρ ∈ [0, 2π) . (2.1)

The Lie bracket of Yn(σ) corresponds to the structure constants of the area-preserving

diffeomorphisms of the torus,

{Yn, Yn′} = fnn′mY
m = −(n × n′)Yn+n′ , (2.2)

where

{X, Y } = ∂σX∂ρY − ∂ρX∂σY , n× n′ = n1n
′
2 − n2n

′
1 .

There is a truncated version of this infinite dimensional algebra, which approximates

eq. (2.2) in the limit N → ∞:

[Jn, Jn′ ] = gnn′mJ
m = −N

2π
sin

2π

N
(n× n′)Jn+n′ . (2.3)

One can restrict to a fundamental lattice defined by n1, n2 = 0, ..., N−1, with the exception

of the origin n1 = n2 = 0, which label N2 − 1 generators; these can be shown to span the

algebra of SU(N) [8]. Note that the Cartan subalgebra can be taken to be generated by

Jn, with n1 = 0, n2 = 1, ..., N − 1.

Taking X9 as one of the light-cone variables, X± = X0±X9

√
2

, the light-cone Hamilto-

nian of the supermembrane is given by [9,10]

H = HB +HF ,

HB = 2π2

∫

dσdρ

[

P 2
a +

T 2
3

2
({Xa, Xb})2

]

, (2.4)

HF = −T3p
+
0

∫

dσdρ θ̄Γa{Xa, θ} , a = 1, 2, ..., 8, 10 . (2.5)

Here θ are real SO(9) spinors θα, α = 1, ..., 16. The mass square operator M2 = 2p+
0 p

−
0 −

(pa
0)

2 is given by M2 = 2H − (pa
0)

2. T3 is the membrane tension, [T3] = cm−3.

The Hamiltonian has a residual gauge invariance, corresponding to the symmetry (2.2)

of area-preserving diffeomorphisms of the torus. Let us choose Y(0,n2) as the generators of

the Cartan subalgebra K. We expand

Xa(σ, ρ) =
∑

n

Xa
n
Yn(σ, ρ) = Xa

K(σ, ρ) + X̃a(σ, ρ) , (2.6)

Xa
K(σ, ρ) =

∑

n∈K

Xa
n
Yn(σ, ρ) , X̃a(σ, ρ) =

∑

n,n1 6=0

Xa
n
Yn(σ, ρ) .

The area-preserving gauge symmetry can be fixed by setting X̃10(σ, ρ) = 0 [6].
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2.2. Instabilities in the presence of compact dimensions

Consider the target space R9 × S1 × S1, and expand the single-valued membrane

coordinates

Xa(σ, ρ) =
∑

n

Xa
n
Yn(σ, ρ) , a = 1, ..., 8 . (2.7)

Let the coordinates X9, X10 have periods 2πR9 and 2πR10, respectively. Now we perform a

semiclassical expansion around a classical configuration with non-trivial winding numbers,

X9(σ, ρ) = w1R9σ + w2R9ρ+
∑

n

X9
n
Yn(σ, ρ) , (2.8)

X10(σ, ρ) = v1R10σ + v2R10ρ+
∑

n

X10
n
Yn(σ, ρ) . (2.9)

The small-oscillation spectrum in the case w2 = v1 = 0 was derived in ref. [11]. As

in sect. 2.1, the light-cone gauge can be used to remove the single-valued part of X9,

and the residual symmetry of area-preserving diffeomorphisms can be fixed as before by

constraining X10 to live in the Cartan subspace of the algebra (2.2), that is

X9(σ, ρ) = w1R9σ + w2R9ρ+X9
(0,0) , (2.10)

X10(σ, ρ) = v1R10σ + v2R10ρ+X10
K (σ, ρ) , X10

K (σ, ρ) =
∑

n∈K

X10
n
Yn(σ, ρ) . (2.11)

The winding number that counts how many times the toroidal membrane is wrapped

around the target-space torus is given by

w0 =
1

4π2R9R10

∫

dσdρ {X9, X10} = w1v2 − w2v1 . (2.12)

For w0 6= 0 the membrane is expected to be stable for topological reasons. Let us see

how this works using the Hamiltonian formulation. Because of the winding contributions,

there will now be new terms in the Hamiltonian, which will in turn be responsible for the

confinement of all membrane modes. In particular, the bosonic interaction term is now

given by

π2T 2
3

∫

dσdρ({Xµ, Xν})2 = π2T 2
3

∫

dσdρ({Xa, Xb})2 (2.13)

+4π2T 2
3R10

∫

dσdρ {X10, X i}(v2∂σX
i − v1∂ρX

i)
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+ 8π4T 2
3

(

∑

n

[

R2
9(w × n)2Xa

n
Xa

−n
+R2

10(v × n)2Xa
n
Xa

−n

]

+R2
9R

2
10(w × v)2

)

.

Here µ, ν = 1, ..., 10 and a, b = 1, ..., 8, 10, where the replacement X10 → X10
K is understood

on the right-hand side. Let us choose Yv as one of the Cartan generators. Instabilities

due to flat directions in the full Hamiltonian can only occur along the Cartan directions

[6]; for all n ∈ K we will have v × n = 0 . Let us take for example v1 = 0, v2 = 1, so

that the Cartan subalgebra will be generated by Y(0,n2). Provided we choose w outside the

Cartan subspace, that is w×v = w1 6= 0, then the term in eq. (2.13) containing (w×n)2

will be non-zero for all Cartan directions n = (0, n2) and, as a result, all modes will be

confined. Thus, as expected, the Hamiltonian will have a discrete spectrum precisely when

the membrane is topologically protected, i.e. w0 = w × v 6= 0. Note that this is true in

the large radius regime where the semiclassical approximation is justified (for small radius,

world-volume instanton effects may lead to instabilities).

If the target space is given by R10×S1, then the stability of the membrane cannot be

topologically protected. It is clear from the above analysis that there will be flat directions:

there is only one term 1
2R

2
10(v × n)2Xa

n
Xa

−n
, which vanishes for certain n. In particular,

taking v = (0, 1), wave packets of the form χ(X(0,n2) − V t), with χ of compact support,

can escape to infinity.

3. Hamiltonian for multiple strings

3.1. Strings from membranes

Let the target space be given by R10 × S1, with X10 representing the compact

dimension, and take X9 as one of the light-cone variables,

X± =
X0 ±X9

√
2

.

Consider a configuration that wraps once around S1, and fix the symmetry of area-

preserving diffeomorphisms by setting

X10 = R0ρ+X10
K (ρ) , (3.1)
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where X10
K (ρ) is a single-valued function that lives in the Cartan subspace generated by

Y(0,m),

X10
K (ρ) =

∑

m

X10
(0,m)e

imρ .

Let us write P 10(σ, ρ) = P 10
K +P̃ 10, where P 10

K lives in the Cartan subspace, and P̃ 10 in the

complement. As usual, the constraints associated with the gauge symmetry can be either

imposed on the quantum states or they can be solved at the classical level to eliminate

one of the variables as an independent degree of freedom to be quantized. A description

of the local and global constraints in the light-cone gauge can be found in the appendix.

The local constraints can be solved for P̃ 10 in terms of X10
K and the transverse coordinates

and momenta X i, P i, i = 1, ..., 8 (see eqs. (A.6), (A.8)).

In the following, we will concentrate on the bosonic part. The incorporation of

fermions is straightforward and will be discussed in sect. 6. Using eq. (3.1), the Hamilto-

nian takes the form (f ′(σ) ≡ ∂σf(σ) throughout)

HB = H0 +H1 , (3.2)

H0 = 2π2

∫

dσdρ
[

P 2
a + T 2

3R
2
0(X

′
i)

2
]

, (3.3)

H1 = π2T 2
3

∫

dσdρ
[

({Xa, Xb})2 + 4R0∂ρX
10(X ′

i)
2
]

, (3.4)

a, b = 1, ..., 8, 10 , i, j = 1, ..., 8 ,

understanding X10 → X10
K (ρ), P 10 → P 10

K (ρ) + P̃ 10, where P̃ 10 is given by eq. (A.6).

Let us now expand the transverse bosons in a complete basis of functions on S1:

X i(σ, ρ, τ) =
∑

m

X i
m(σ, τ)eimρ , P i(σ, ρ, τ) =

1

2π

∑

m

P i
m(σ, τ)eimρ (3.5)

[X i
m(σ), P j

n(σ′)] = iδm+nδ
ijδ(σ − σ′) , X†

m = X−m , P †
m = P−m .

Hermitian variables Y
(1,2)
m can be introduced through X±m = Y

(1)
m ± iY

(2)
m , m = 1, 2, ...,

and similarly for Pm.

Inserting the expansions (3.5), the Hamiltonian (3.2) reduces to the following expres-

sions:

H0 = πT 2

∫

dσ
∑

m

[

T−2P a
mP

a
−m +Xa′

mX
a′
−m

]

, T ≡ 2πR0T3 , (3.6)
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H1 =
πT 2

R2
0

∫

dσ
∑

m,n,p

[

mp(Xa′
n X

a
p )(Xb′

−m−n−pX
b
m)− (3.7)

np(Xa
nX

a
p )(Xb′

−m−n−pX
b′
m)

]

+
2πiT 2

R0

∫

dσ
∑

m,n

mX10
(0,m)X

i′
nX

i′
−n−m

In this context, the usual double-dimensional reduction procedure [5] corresponds to

dropping all modes Xa
m(σ) with m 6= 0, and setting the Kaluza-Klein momentum

p10 =
∫

dρP 10(ρ) to zero, so what remains is

α′Hred
B =

T

2

∫

dσ
[

T−2P i
0P

i
0 +X i

0

′
X i

0

′]
, α′ ≡ (2πT )−1 . (3.8)

Upon the identification of T with the standard string tension, this is exactly the string

theory Hamiltonian.

World-volume time translations are generated by H̃ = α′(H0 +H1). From the Hamil-

ton equations, one obtains

P i
m = T∂τX

i
m .

Regarding H1 as a perturbation, the equations of motion of the unperturbed Hamiltonian

H0 give

∂2
σX

i
m = ∂2

τX
i
m . (3.9)

The solution satisfying the periodicity condition Xa(σ + 2π) = Xa(σ) is given by

X i
m(σ, τ) = xi

m + α′pi
mτ + i

√

α′

2

∑

k 6=0

1

k

(

αi
(k,m)e

−ik(τ−σ) + α̃i
(k,m)e

−ik(τ+σ)

)

, (3.10)

[αi
(k,m), α

j
(l,n)] = kδk+lδm+nδ

ij , (3.11)

α†
(k,m) = α(−k,−m) , x†m = x−m , p†m = p−m .

Throughout, indices m,n are used for Fourier modes in ρ, whereas k, l are associated with

Fourier modes in σ.

The wave function of the unperturbed HamiltonianH0 is just the product of an infinite

set of harmonic oscillator wave functions. The picture of multiple weakly interacting strings

is a convenient description only in the large radius regime. In sect. 5 we will examine under

which conditions can H1 be treated as a perturbation, and what are the relevant degrees

of freedom as the radius is gradually changed.
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3.2. Instability modes

Taking Y(0,1) as a Cartan generator, it follows from the discussion of sect. 2 that our

system will have potential valleys along Xa
(0,n), corresponding to the constant modes in

the coordinate σ. This holds for any value of the radius R0 (see also sects. 4 and 5). Let

us see what this implies for the solution (3.10), valid for large R0. Inserting (3.10) into

eq. (3.5), we find

Xa(σ, ρ, τ) = xa
0 + α′pa

0τ + xa(ρ) + 2πα′pa(ρ)τ (3.12)

+ i

√

α′

2

∑

k 6=0

1

k

(

αa
k(ρ)e−ik(τ−σ) + α̃a

k(ρ)e−ik(τ+σ)

)

,

where

xa(ρ) =
∑

m 6=0

xa
me

imρ , pa(ρ) =
1

2π

∑

m 6=0

pa
me

imρ ,

αi
k(ρ) =

∑

m

αi
(k,m)e

imρ , α̃i
k(ρ) =

∑

m

α̃i
(k,m)e

imρ , α10
k = α̃10

k = 0 .

We have separated xa
0 and pa

0 , representing the center-of-mass coordinate and momentum

of the membrane,

xa
0 + α′pa

0τ =
1

4π2

∫

dσdρXa(σ, ρ) , pa
0 =

∫

dσdρP a(σ, ρ) .

Since the Cartan subspace is generated by Y(0,m) = eimρ, the modes that will cause the

instabilities of the supermembrane are xa(ρ), pa(ρ), i.e. there are flat directions along all

xa
m with m 6= 0. [By virtue of translational invariance, the zero-mode of Xa

0 (σ, τ) does not

appear in the Hamiltonian; the center-of-mass momentum
∫

dσP a
0 is exactly conserved,

and (pa
0)

2 will later be absorbed into the Lorentz-invariant mass-squared operator.] It is

important that the xa
m do not appear in H0. These are indeed the only directions that

are not stabilized by the winding contributions. It may be less obvious that the potential

valleys remain in spite of their presence in H1, but this can be understood by closer

inspection of the potential (3.7) (see sect. 5).
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4. A simple model

There are two questions that we would now like to address. The first one concerns

the regime of applicability of perturbation theory. The second, in a sense, complementary

question is what modes can be safely dropped for a given radius R0. Obviously, the modes

xa
m cannot be dropped at any radius, since they can be excited by an arbitrarily small

energy ǫ. The essential features can be illustrated by the following Hamiltonian:

H = H0 + H1 , (4.1)

H0 =
1

2T 2

(

p2
x1

+ p2
x2

+ p2
y

)

+ 1
2
x2

1 + 1
2
x2

2 , (4.2)

H1 =
λ

R2
0

(

x2
1y

2 + x2
2y

2 + x2
1x

2
2

)

, λ > 0 . (4.3)

The coordinate y is the analogue of the xa
m, corresponding to the Cartan generators

Y(0,m) = eimρ. Classically, a mode can leak out to infinity along the direction y, with

x1 = x2 = 0. In the quantum theory, the purely bosonic system is stabilized thanks to

a zero-point energy contribution from transverse fluctuations in the x1, x2 directions. In

the supersymmetric system, this zero-point energy cancels out; as a result, a wave packet

can move off to y = ∞, and the spectrum is continuous. Since these excitations can be

produced by an infinitesimal energy, the y direction does not get frozen at any radius

R0. The Hamiltonian (4.1) (more precisely, its supersymmetric version) will thus have a

continuum spectrum of eigenvalues.

Now consider the truncated version H = H0 + H1, with (T = 1)

H0 = 1
2(p2

x1
+ p2

x2
+ x2

1 + x2
2) , H1 =

λ

R2
0

x2
1x

2
2 . (4.4)

In terms of standard creation and annihilation operators,

H0 = 1
2(a†1a1 + a1a

†
1 + a†2a2 + a2a

†
2) , (4.5)

H1 =
λ

4R2
0

(a1 + a†1)
2(a2 + a†2)

2 . (4.6)

Let us treat H1 as a perturbation, and write the eigenvalues of H as E = E(0) +E(1) + ...,

with E(0) = n1 +n2 +1. Since H0 has degenerate eigenvalues, to find E(1) we need to solve
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the secular equation. Denote by m1, m2 the positive integers satisfying m1 + m2 + 1 =

E(0) = fixed. Then the E(1) are obtained from the equation

|〈m1, m2|H1|m′
1, m

′
2〉 − E(1)δm1m′

1
δm2m′

2
| = 0 , (4.7)

where

〈m1, m2|H1|m′
1, m

′
2〉 =

λ

4R2
0

[

(2m1 + 1)δm1m′

1
+

√

(m1 + 1)(m1 + 2)δm′

1
,m1+2+ (4.8)

√

m1(m1 − 1)δm′

1
,m1−2

][

1 ↔ 2
]

.

Perturbation theory is applicable provided E(0) ≫ E(1) (more precisely, ψ(0) ≫ ψ(1)). For

low E(0), all m1 and m2 are small, and the solutions to (4.7) will be E(1) = O(λ/R2
0). Thus

for those states perturbation theory can be applied provided λ/R2
0 ≪ 1. For high E(0),

there will be matrix elements in (4.8) where both m1, m2 ≫ 1, so that the eigenvalues

E(1) can be as high as O(m1m2λ/R
2
0), with a maximum for m1

∼= m2. Since E(0) ∼= 2m1,

the use of perturbation theory is therefore justified only for m1 ≪ R2
0/λ. The oscillation

amplitude for states with m1, m2 ≫ R2
0/λ is large and their motion is controlled by H1.

As the radius is decreased, the number of modes subject to harmonic motion will

diminish. For λ/R2
0 > 1, even the zero-point mode n1 = n2 = 0 will be influenced by H1.

The general behavior of the system can be understood by drawing equipotential lines and

varying λ/R2
0. For a given energy E, the classically accessible region is delimited by the

curve
1
2 (x2

1 + x2
2) +

λ

R2
0

x2
1x

2
2 = E .

At E ≪ R2
0/λ, this line is essentially a circle; the motion is harmonic, with an oscillation

amplitude given by 〈x2
1〉, 〈x2

2〉 ∼= E. As λ/R2
0 is increased, the circles are deformed, with a

maximum decrease of the diameters on the axes x1 = ±x2. For λ/R2
0 → ∞, the figure is

extremely narrow, and the motion will be frozen, except along the axes x1 = 0, x2 = 0. It

is easy to see that the only possible finite energy excitations will then be those in which

the motion takes place only in one coordinate, x1 or x2, that is with 〈x2
1x

2
2〉 ∼= 0. Indeed,

a wave function ψ where 〈ψ|x2
1x

2
2|ψ〉 is non-vanishing will have an infinite energy, since

E = 〈ψ|H|ψ〉 > λ

R2
0

〈ψ|x2
1x

2
2|ψ〉 → ∞ as

λ

R2
0

→ ∞ .

Thus at very small radius the system reduces to a one-dimensional harmonic oscillator. The

only states relevant to low-energy (E = O(1)) physics have the form |ψ〉 = δ(x1)|ψ(0)(x2)〉
or |ψ〉 = δ(x2)|ψ(0)(x1)〉.
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5. Membrane dynamics at different compactification radii

The previous discussion can be generalized to our system, with H0 and H1 given

by (3.6), (3.7). As discussed in sect. 3, the Hamiltonian has a continuum spectrum of

eigenvalues due to the zero modes of the strings with m 6= 0. The constant parts of the

Xa
m(σ) play the same role as the coordinate y of the model (4.1): they only appear in H1,

but their appearance is not sufficient to remove flat directions.

Let us expand Xa
m(σ), P a

m(σ) in terms of adimensional mode operators

Xa
m(σ) =

√
α′

∑

k

Xa
(k,m)e

ikσ , P a
m(σ) =

1

2π
√
α′

∑

k 6=0

P a
(k,m)e

ikσ , (5.1)

X10
(k,m) = P 10

(k,m) = 0 if k 6= 0 ,

[Xa
(k,m), P

b
(k′,m′)] = iδm+m′δk+k′δab ,

where α′ has been introduced in eq. (3.8), and it is related to the membrane tension

by α′ = (4π2R0T3)
−1. In the free case, these mode operators will be given as linear

combinations of α(k,m), α̃(k,m) operators, with simple exponential time dependence, as in

eq. (3.10). By inserting the expansions (5.1) in eqs. (3.6) and (3.7) we obtain

α′H0 = 1
2

∑

n

[

P a
n
P a
−n

+ k2X i
n
X i

−n

]

, n ≡ (k,m) , (5.2)

α′H1 =
1

4g2

∑

n1,n2,n3

(n1 × n2)(n3 × n4)X
a
n1
Xb

n2
Xa

n3
Xb

n4
(5.3)

+
i

g

∑

k,m,n

mk2X10
(0,m)X

i
(k,n)X

i
(−k,−m−n) ,

g2 ≡ R2
0

α′ = 4π2R3
0T3 , n4 = −n1 − n2 − n3 .

In the infinite radius limit, g2 → ∞, and the Hamiltonian becomes that of an infinite set of

harmonic oscillators labelled by (k,m). It is naturally organized as an infinite sum of free

string theory Hamiltonians labelled by m, which is already manifiest in eq. (3.6). Strings

with m 6= 0 are the analogue of Kaluza-Klein modes, which decouple from low-energy

physics at small compactification radius.

Now the Hamiltonian is more complicated than that of the simplified model (4.1),

since it contains an infinite number of terms and the structure (dictated by the group

11



of area-preserving diffeomorphisms) is somewhat intricate. Nevertheless, it is possible to

determine under what conditions a generic quantum state will be weakly coupled for a

given (large) g2. In terms of creation/annihilation operators, H0, H1 contain terms of the

form

α′H0 = kN(k,m) + ... , α′H1 =
1

4g2

(nl −mk)2

kl
N(k,n)N(l,m) + ... , (5.4)

where N(k,m) = a†(k,m) · a(k,m) is the occupation number of the oscillator (k,m), and we

are considering particular terms in H1 with l′ = −k and p = −n. Let us take

n = m0n̄ , m = m0m̄ , N(k,n) = N0N̄(k,n) , N(l,m) = N0N̄(l,m) ,

where n̄, m̄, N̄(k,n), N̄(l,m) are O(1) and m0 ≫ 1, N0 ≫ 1. Let us also consider l ∼ k ≫ 1

and g2 ≫ 1. Such a quantum state is weakly coupled provided H1 ≪ H0, or

1

g2
m2

0N0 ≪ k . (5.5)

It is interesting to note that, for a given string m0 and a given occupation number N0,

quantum states made of oscillators with higher frequency k will describe a more harmonic

motion. This is not a surprise, since the oscillation amplitudes go like 〈X2
(k,m)〉 ∼ N0/k, so

the region of non-linearities is not reached for high enough k. States with low occupation

number made of a†(k,m), with m = O(1), will be governed by the harmonic oscillator

Hamiltonian for all k provided g2 ≫ 1. From eq. (5.5) one also sees that for any given

state |ψ〉, there exists a sufficiently large coupling g2 so that 〈ψ|H1|ψ〉 can be neglected as

compared to 〈ψ|H0|ψ〉.
It is also possible to estimate the number of strings that are weakly coupled up to

a given string level Nm =
∑

k kN(k,m). For this it is sufficient to look at states with

k = 1, which have the strongest coupling for fixed m (i.e. if the condition (5.5) is satisfied

for states made with oscillators of frequency k = 1, then it will be satisfied for all other

states). Then Nm = N(1,m) = N0N̄(1,m), so that eq. (5.5) becomes m2N0 ≪ g2. Thus the

number of strings Ns whose excitations below a given level are weakly coupled is given by

Ns = O(g/
√
N0). Similarly, for a given string m, all quantum string states with

α′M2 ∼= Nm ≪ O

(

g2

m2

)

,

12



will be weakly coupled. States with α′M2 > O
(

g2/m2
)

and k = O(1) will not be subject

to harmonic motion, since the motion will be mostly governed by H1.

Let us now see what states survive in the limit g2 → 0. By construction, H1 is a

sum of positive-definite terms; any state |Ψ〉 with 〈Ψ|H1|Ψ〉 6= 0 will have infinite mass

in the zero-coupling limit. In the limit g2 = 0 = R2
0, with T3 → ∞ so that T = 2πR0T3

remains fixed, the only states which survive are those containing excitations in a Cartan

subspace of the area-preserving diffeomorphism algebra, so that (n1 × n2)(n3 × n4) = 0

and H1 gives no contribution. The X(k,0) generates a Cartan subspace, implying that the

type IIA superstring survives. In addition, just as in the toy model, there are excitations

in other directions (having 〈Ψ|H1|Ψ〉 = 0) which also remain. They include, in particular,

the states constructed with the Xa
(0,m) modes, the constant parts of the Xa

m(σ) strings,

which are responsible of the instability of the supermembrane.

6. Membrane spectrum at infinite radius

The eigenvalues of the mass operator are given by

M2 = 2p+
0 p

−
0 − (pa

0)
2 = 2H0 + 2H1 − (pa

0)
2 .

As is usual in Kaluza-Klein theories, p10
0 has discrete eigenvalues p10

0 = Q/R0, Q ∈ Z,

which from the ten-dimensional viewpoint are seen as Ramond-Ramond charges. The

ten-dimensional mass operator is

M2
10D = 2p+

0 p
−
0 − (pi

0)
2 = M2 + (p10

0 )2 . (6.1)

Let us now take the limit R0 → ∞, T3 → 0, with T = 2πR0T3 fixed. In this limit,

g2 → ∞, so the term H1 can be dropped, and the fields can be expanded as in eq. (3.10).

The (bosonic part of the) mass spectrum takes the form

1
2α

′M2 = 1
2α

′
∑

m 6=0

pa
mp

a
−m +

∞
∑

m=−∞

∞
∑

k=1

[

αi
(−k,−m)α

i
(k,m) + α̃i

(−k,−m)α̃
i
(k,m)

]

. (6.2)

In this limit, the fact that the standard membrane spectrum is continuous is simply un-

derstood: the pi
m =

∫

dσP i
m(σ) (center-of-mass momenta of m 6= 0 “strings”) take contin-

uous values, since they are governed by the free particle Hamiltonian Hfree = 1
2
pi

mp
i
−m =

1
2

(

p
(1)
m

)2
+ 1

2

(

p
(2)
m

)2
, where p±m = p

(1)
m ± ip

(1)
m .
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It is interesting to discuss the spectrum of a truncated Hamiltonian, defined by

(3.6), (3.7) by setting the constant parts in σ of the fields Xa
m(σ), P a

m(σ) to zero. Now

no flat direction remains in the potential, and the motion of all modes is bounded. The

mass spectrum is discrete for all radii and, in the infinite radius limit, takes the simple

form

1
2α

′M2 = N + Ñ , (6.3)

where the bosonic part of N, Ñ can be read from eq. (6.2).

Let us now restore the fermion contributions in the formulas. Inserting the expansion

√

p+
0 θ

α(σ, ρ) =
∑

m

Sα
m(σ)eimρ , (6.4)

in HF, we get (see eq. (2.5))

HF = T

∫

dσ

[

∑

m

S̄−mΓ10∂σSm −
∑

m,n

i

R0
S̄−m−nΓa

(

n∂σX
a
mSn −mXa

m∂σSn

)

]

. (6.5)

As R0 → ∞, the second term disappears and the Hamitonian reduces to that of a free

system. The ten-dimensional chiralities of the fermions are those of type IIA superstring

theory. The complete mass formula is thus given by eq. (6.3), with N, Ñ containing

the standard Green-Schwarz fermion-mode operators Sr
(k,m), S̃

r
(k,m), r = 1, ..., 8, for the

different strings parametrized by m, that is

N =

∞
∑

m=−∞

∞
∑

k=1

[

αi
(−k,−m)α

i
(k,m) + kSr

(−k,−m)S
r
(k,m)

]

, (6.6)

{Sr
(k,m), S

s
(k′,m′)} = δm+m′δk+k′δrs ,

and a similar expression for Ñ. The zero-point energy cancels out as in the usual Green-

Schwarz light-cone formalism of the superstring.

The physical Hilbert space is spanned by states made of the transverse excitations

αi
(−k,m), α̃

i
(−k,m) and Sr

(−k,m), S̃
i
(−k,m), with k > 0 and m ∈ Z. In addition, physical

states must obey the level matching conditions:

N = Ñ , N+ − N− = Q . (6.7)

The definition of the operators N+,N− is given in the appendix, where the derivation of

conditions (6.7) is given. The first of these conditions plays the same role as the standard
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Virasoro level-matching condition of superstring theory. The second condition is new and

it has no analogue in superstring theory. It is associated with translational invariance in

the ρ direction. Note that physical states with Ramond-Ramond charge Q 6= 0 necessarily

involve excitations in the ρ direction, i.e. they have N+ 6= 0 or N− 6= 0.

It may seem surprising that in the infinite radius limit the membrane spectrum takes

the simple form (6.3), with the constraints (6.7). However, it should be stressed that this

is the spectrum for a membrane that wraps around the compact dimension, in the specific

limit T3 → 0, R0 → ∞, with R0T3 fixed. In this limit the quartic terms in the potential are

negligible in relation to the quadratic terms. For a membrane that does not wrap around

S1, there is no quadratic term and at any radius the dynamics is governed by the quartic

terms. Note also that this membrane configuration does not give extra contributions to

the energy. For a target space R9 × S1 × S1, it is possible to have the topologically non-

trivial membrane winding number (2.12), which gives a contribution to the mass squared

proportional to T 2
3w

2
0R

2
9R

2
10, as in eq. (2.13). It is of interest to study the spectrum in the

case R9 ×S1 ×S1, since it will allow a comparison between the BPS excitation spectrum

of type IIB superstring theory on R9×S1 and the M-theory counterpart, given in terms of

wrapped 2-branes.1 The correspondence between Kaluza-Klein modes and winding states

of type IIB and M-theory was investigated by Schwarz (see [2] and additional references

there).

7. Consequences for M-theory

What has been done in the previous sections may also be interpreted as follows.

Suppose we start from type IIA superstring theory, imagining that this should arise as

the zero-radius limit of some eleven-dimensional theory on R10 × S1. We then turn

on a small radius R0 = ǫ, and inquire what kind of new degrees of freedom could be

consistently added. The double-dimensional reduction concretely indicates that we should

consider a 2-brane with one leg wrapped around the compact direction. However, we have

seen that there are states made of mode operators associated with Cartan directions (for

which 〈Ψ|H1|Ψ〉 = 0, see eq. (5.3)), which can never emerge at R0 = ǫ if they were not

1 This calculation has been recently carried out in [12], and an exact matching of the corre-

sponding BPS spectra was found.
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already present at R0 = 0. In particular, wave packets constructed with the zero modes

X i
(0,m), P

i
(0,m). These zero modes are part of the fundamental scalar fields of the (2+1)-

dimensional theory, and they cannot be excluded from the Hamiltonian, unless there is a

kinematical or dynamical reason for this.2

It may be worth emphasizing that, unlike the spectrum of superstring theory, the spec-

trum (6.3) contains the infinite tower of Kaluza-Klein quantum states carrying Ramond-

Ramond charges. For small radius, the ten-dimensional mass operator (6.1) will be of the

form

1
2α

′M2
10D =

Q2

2g2
+ N + Ñ + α′H1 , g2 = R2

0/α
′ , (7.1)

where the m 6= 0 part of N, Ñ will be expressed in terms of X i
(k,m), P

a
(k,m), as in eq. (5.2).

Quantum states with Q = 0 containing excitations of a†(k,m) with m 6= 0 will have a mass of

order 1/g, originating from contributions of H1. In addition, there are Kaluza-Klein states

with Q 6= 0, which have
√
α′M10D = O(1/g). Note that they must contain excitations with

m 6= 0 in order to satisfy the second constraint in eq. (6.7). These states are presumably

candidates for D0-branes and 1-branes of the type IIA superstring theory.

It would also be interesting to investigate the zero-mode problem in terms of dual

actions. In particular, the duality between D2-brane action and the supermembrane action

suggests that a more adequate description for the small radius limit could be in terms of

a Born-Infeld type action, where the variables include world-volume vectors [14]. In this

small g2 limit, one could alternatively consider the 5-brane action. Another possibility is

that the extra modes are just confined (with energy gapsM of order 1/g) thanks to σ-model

quantum corrections, which should be important for R0 < (T3)
−1/3. Unfortunately, little

is known about higher-derivative (κ-invariant) extensions of the supermembrane action,

but it would certainly be useful to have a tractable example.

2 Interestingly, in open string theory, there is a consistent way to quantize strings in which

the center-of-mass remains fixed. This is done by imposing Dirichlet boundary conditions at the

endpoints [13]. As a result, the center of mass, x = 1

π

∫

dσX(σ, τ) is τ independent. Some sort of

closed string analogue (e.g. where the pa

m
=

∫

dσP a

m
(σ) are forced to be zero) may be of relevance

to the present case.
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Appendix A. Global constraints and the physical Hilbert space

In the light-cone gauge, the coordinate X+ is set to X+ = p+
0 τ , and X− is determined

from the constraints in terms of the other cordinates (see e.g. [9-11]):

∂āX
− =

1

p+
0

∂āX
aẊa , ā = σ, ρ . (A.1)

By taking the curl, one gets the condition

{Xa, Ẋa} = ∂σX
a∂ρẊ

a − ∂ρX
a∂σẊ

a ≡ 0 , (A.2)

or, in phase-space variables,

{Xa, P a} ≡ 0 . (A.3)

The Fourier components

Ln =
1

4π2

∫

dσdρ Y n{Xa, P a} (A.4)

are generators of the algebra of area-preserving diffeomorphisms (2.2). By a gauge trans-

formation we can always rotate one of the coordinates, say X10, into the Cartan subspace,

as in eq. (3.1). Then eq. (A.3) takes the form

LT
m

= −
∑

n′

∑

n∈K

X10
n
P 10

n′ fnn′m , LT
m

≡ 1

4π2

∫

dσdρ Ym{X i, P i} . (A.5)

We note that the P 10
n′ , n′ ∈ K, are absent from this formula. The constraint (A.5) de-

termines P̃ 10(σ, ρ) ≡
∑

n6∈K P 10
n
Yn(σ, ρ) in terms of the X i, P i and X10

K . By formally

inverting eq. (A.5), one gets

P̃ 10
n

= {F−1}mnL
T
m
, Fnm = −

∑

n′∈K

X10
n′ fn′nm . (A.6)

The determinant of F vanishes when some of the eigenvalues of X10
n′ coincide, i.e. at

the boundary of the Weyl chamber [6]. In the present case of a membrane wrapped on

R10 × S1,

X10 = R0ρ+ X̃10(ρ) ,

and for small oscillation amplitudes, 〈|∂ρX̃
10|〉 ≪ R0, the relation (A.5) is always invertible,

and a simple solution of the constraint eq. (A.2) can be found. Equation (A.2) becomes

{X i, P i} =
(

R0 + ∂ρX̃
10

)

∂σP̃
10 (A.7)
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In the R0 → ∞ limit (with fixed winding around the compact direction), this reduces to

{X i, P i} ∼= R0∂σP̃
10 , (A.8)

which determines P̃ 10 in terms of transverse coordinates. In the opposite limit R0 → 0,

there are singular boundary points which need to be treated with care. The discussion of

instability modes is nevertheless not affected, since one can always choose suitable wave

packets with support in the interior of the Weyl chamber [6].

Since X− is single-valued, eq. (A.1) also implies the global constraints

P(σ) =
1

2πα′

∫ 2π

0

dσ ∂σX
aẊa ≡ 0 , (A.9)

P(ρ) =
1

2πα′

∫ 2π

0

dρ ∂ρX
aẊa ≡ 0 . (A.10)

The operators P(σ), P(ρ) generate translations in σ and ρ, respectively. By virtue of eq.

(A.2), the integrals in (A.9), (A.10) are independent of the contours. In particular, one

readily checks that

∂ρP
(σ) = 0 , ∂σP

(ρ) = 0 . (A.11)

Let us now compute P(σ) and P(ρ) to leading order in the large-radius limit. By making

use of the properties (A.11), we can write P(σ), P(ρ) in the more convenient form:

P(σ) =
1

4π2α′

∫ 2π

0

dρ

∫ 2π

0

dσ ∂σX
aẊa , (A.12)

P(ρ) =
1

4π2α′

∫ 2π

0

dσ

∫ 2π

0

dρ ∂ρX
aẊa . (A.13)

Inserting eqs. (3.5), (3.10) in eqs. (A.12) and (A.13), after some straightforward algebra,

we find the following expressions:

P(σ) = −
∞
∑

m=−∞

∞
∑

k=1

[

αi
(−k,−m)α

i
(k,m) − α̃i

(−k,−m)α̃
i
(k,m)

]

, (A.14)

P(ρ) = Q+ i

∞
∑

m=1

m
(

xi
mp

i
−m − xi

−mp
i
m

)

−
∞
∑

m,k=1

m

k

[

αi
(−k,−m)α

i
(k,m) (A.15)

+α̃i
(−k,−m)α̃

i
(k,m) − αi

(−k,m)α
i
(k,−m) − α̃i

(−k,m)α̃
i
(k,−m)

]

,
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where we have used

X10 = R0ρ+
∑

m

(

x10
m + α′p10

m τ
)

eimρ , p10
0 = Q/R0 .

It is convenient to introduce mode operators

βi
(k,m) =

1
√

|k|
αi

(k,m) , β̃i
(k,m) =

1
√

|k|
α̃i

(k,m) ,

so that the commutators (3.11) and eqs. (A.14), (A.15) take a more symmetrical form

under k ↔ m. Restoring the fermion contributions, the constraints (A.9), (A.10) become

N = Ñ , (A.16)

N+ − N− = Q , (A.17)

where

N =

∞
∑

m=−∞

∞
∑

k=1

k
[

βi
(−k,−m)β

i
(k,m) + Sr

(−k,−m)S
r
(k,m)

]

, (A.18)

Ñ =

∞
∑

m=−∞

∞
∑

k=1

k
[

β̃i
(−k,−m)β̃

i
(k,m) + S̃r

(−k,−m)S̃
r
(k,m)

]

, (A.19)

N+ = N0 +

∞
∑

m=1

∞
∑

k=1

m
[

βi
(−k,−m)β

i
(k,m) + Sr

(−k,−m)S
r
(k,m) (A.20)

+β̃i
(−k,−m)β̃

i
(k,m) + S̃r

(−k,−m)S̃
r
(k,m)

]

,

N− = −N0 +

∞
∑

m=1

∞
∑

k=1

m
[

βi
(−k,m)β

i
(k,−m) + Sr

(−k,m)S
r
(k,−m) (A.21)

+β̃i
(−k,m)β̃

i
(k,−m) + S̃r

(−k,m)S̃
r
(k,−m)

]

,

N0 =
1

2

∞
∑

m=1

m

[

i
(

xa
−mp

a
m − xa

mp
a
−m

)

+
[

Sr
(0,m), S

r
(0,−m)

]

+
[

S̃r
(0,m), S̃

r
(0,−m)

]

]

.

In the truncated theory, zero modes of m 6= 0 strings are dropped and one can set N0 = 0.

The vacuum Fock state is defined by

αi
(k,m)|0〉 = α̃i

(k,m)|0〉 = 0 , k > 0 , (A.22)

Sr
(k,m)|0〉 = S̃r

(k,m)|0〉 = 0 , k > 0 , (A.23)

pa
m|0〉 = 0 ,

for all m. The Fock space is generated by the states made by successive applications of

the αi
(−k,m), S

r
(−k,m), α̃

i
(−k,m), S̃

r
(−k,m), k > 0 on the vacuum Fock state. Thus, in the

R0 → ∞ limit, we find that the Hilbert physical space is constituted of all states in the

Fock space obeying the conditions (A.16) and (A.17).
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