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Abstract

We study the impact of present and future (g − 2)µ measurements on supersymmetric mod-
els. The corrections to (g − 2)µ become particularly relevant in the presence of light sleptons,
charginos and neutralinos, especially in the large tanβ regime. For moderate or large values
of tan β, it is possible to rule out scenarios in which charginos and sneutrinos are both light,
but nevertheless escape detection at the LEP2 collider. Furthermore, models in which super-
symmetry breaking is transferred to the observable sector through gauge interactions can be
efficiently constrained by the (g − 2)µ measurement.

CERN-TH/96-271
DESY 96-211
October 1996

1On leave of absence from INFN, Sezione di Padova, Padua, Italy.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25202559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/hep-ph/9610233v1


1 Constraints from aµ

The measurement of the anomalous magnetic moment of the muon [1]

aµ ≡ gµ − 2

2
≡ µµ

(eh̄/2mµ)
− 1 = (11 659 230 ± 84) × 10−10 (1)

has provided an extremely precise test to QED (for a review, see [2] and references therein). The
theoretical prediction for aµ in the context of the Standard Model has different contributions
which are usually divided into

aµ = aQED
µ + aEW

µ + ahad
µ (vac pol) + ahad

µ (γ × γ) . (2)

aQED
µ contains the pure QED contribution which is known to order α5 [2]. Extracting the

value of α from ge − 2 [3], one obtains

aQED
µ = (11 658 470.6 ± 0.2) × 10−10 . (3)

aEW
µ contains the electroweak corrections which are now fully known up to two loops [4]

aEW
µ = (15.1 ± 0.4) × 10−10 . (4)

The largest source of uncertainty comes from the hadronic contributions, which cannot be
computed by perturbation theory alone. ahad

µ (vac pol) includes hadron vacuum polarization
corrections which enter at order α2. These corrections can be extracted from e+e− → hadrons
data by use of dispertion relations. A recent calculation gives [5]

ahad
µ (vac pol) = (702 ± 15) × 10−10 , (5)

in agreement with other modern evaluations (see ref. [5] for a comparison of different estimates
presented in the literature). Future measurements of the cross sections for e+e− → hadrons
at BEPC in Beijing, at DAΦNE in Frascati, and at VEPP-2M in Novosibirsk are expected to
reduce the error in ahad

µ (vac pol) to about 7 × 10−10 [6].

The hadronic light by light amplitudes cannot be related to observables and ahad
µ (γ × γ)

must be estimated theoretically. Hayakawa et al. [7] give

ahad
µ (γ × γ) = (−5.2 ± 1.8) × 10−10 , (6)

while Bijnens et al. [8] give

ahad
µ (γ × γ) = (−12.4 ± 5.0) × 10−10 . (7)

Summing the different contributions and combining errors in quadratures, we obtain two the-
oretical estimates for aµ

aµ = (11 659 183 ± 15) × 10−10 (8)
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aµ = (11 659 175 ± 16) × 10−10 , (9)

depending on which of the two values of ahad
µ (γ × γ) in eqs. (6)-(7) we use.

The experimental precision in the measurement of aµ, presently at the level of 84× 10−10 is
expected to be improved by the E821 experiment at Brookhaven National Laboratory to the
level of 4×10−10, and possibly to 1–2×10−10 if large statistics is accumulated [9]. If theoretical
errors in ahad

µ are reduced, the E821 result will allow a direct test of the electroweak corrections
and therefore will also be sensitive to new physics effects. Indeed already the present sensitivity
can constrain some new physics contributions, as it was shown in the case of supersymmetry
[10, 11], light-gravitino interactions [12], compositeness [13], lepto-quarks [14], and light non-
minimal Higgs bosons [15].

Constraints on new physics can be obtained by requiring that the new contribution δaµ lies
within the difference between experimental result and theoretical prediction. From eqs. (1) and
(8)–(9), combining the theoretical and experimental errors in quadratures, we find at 90% C.L.

− 90 × 10−10 < δaµ < 190 × 10−10 (10)

On the other hand, after the E821 experiment it will be possible to test the value of aµ at the
level of 4 × 10−10.

In this paper we want to apply these constraints on δaµ to specific cases of interest, in the
context of supersymmetric models. We will first show how, in a fairly model-independent way,
δaµ can rule out regions of parameters with light charginos and sneutrinos which cannot be
covered by direct LEP2 searches. Then we will show how, in models with gauge-mediated su-
persymmetry breaking, the bounds from δaµ translate into strong bounds on all supersymmetric
particle masses.

2 Chargino mass limits from LEP1.5 and LEP2

The negative searches in the LEP runs at 130 and 136 GeV have allowed to set a lower bound
on the chargino mass of 67.8 GeV [16], if the chargino is gaugino-like and the sneutrino is heavy.
This bound can be relaxed in two cases we want to consider here. If the sneutrino is light and
its mass is chosen appropriately, the chargino production cross section suffers from a destructive
interference and it can be considerably smaller than in the case of heavy sneutrino. The LEP1.5
limit on the chargino mass is then reduced, especially if tanβ, the ratio of the two Higgs vacuum
expectation values, is large [16]. The second case occurs when mχ± > mν̃

>∼ mχ± − 3 GeV [17].
The chargino decay is then dominated by the two-body decay χ± → ℓ±ν̃, but the final-state
charged lepton is too soft to be efficiently detected. In this case the LEP1.5 bound is completely
lost, and the chargino could still be as light as mZ/2. This can happen in regions of parameters
which cannot be excluded by independent searches for neutralinos. Notice that this problem
will also remain in the LEP2 analyses at higher

√
s. It is therefore important to understand

if this region of parameters, difficult for LEP searches, can be excluded by other experiments.
Recently the authors of ref. [18] have argued that this region of parameters can lead to an
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appropriate amount of cold dark matter but cannot be excluded by cosmological constraints.
Here we want to study whether both regions where the LEP chargino limit is reduced can be
excluded by the experimental data on aµ.

As emphasized in ref. [11] the supersymmetric contributions to aµ coming from smuon-
neutralino and sneutrino-chargino loops are significant and the present experimental bound
already sets important constraints on the parameters, especially if tanβ is large. For tanβ ≫ 1,
the supersymmetric contribution is approximately given by

δaµ ≃ α

8π sin2 θW

m2
µ

m̃2
tan β ≃ 15 × 10−10

(
100 GeV

m̃

)2

tan β , (11)

where m̃ represents the typical mass scale of weakly-interacting supersymmetric particles. It
is evident from eq. (11) that, if tan β ≫ 1, the experimental constraint on δaµ can set bounds
on the supersymmetric particle masses which are competitive with the direct collider limits.
Indeed, the case tanβ ≃ mt/mb ≫ 1 has some special theoretical appeal. First of all, it allows
the unification of the bottom and tau Yukawa couplings at the same energy scale at which gauge
couplings unify, consistently with the prediction of the minimal SU(5) GUT model. Also it
allows a dynamical explanation for the top-to-bottom mass ratio, with approximately equal top
and bottom Yukawa couplings at the GUT scale, consistently with the minimal SO(10) GUT
[19].

The supersymmetric contribution to aµ is

δaχ0

µ =
mµ

16π2

∑

mi



−

mµ

6m2
µ̃m

(1 − xmi)
4

(
NL

miN
L
mi + NR

miN
R
mi

)

×
(
1 − 6xmi + 3x2

mi + 2x3
mi − 6x2

mi ln xmi

)

−
mχ0

i

m2
µ̃m

(1 − xmi)3
NL

miN
R
mi(1 − x2

mi + 2xmi ln xmi)

}
(12)

δaχ+

µ =
mµ

16π2

∑

k

{
mµ

3m2
ν̃ (1 − xk)

4

(
CL

k CL
k + CR

k CR
k

)

×
(
1 + 1.5xk + 0.5x3

k − 3x2
k + 3xk ln xk

)

−
3mχ±

k

m2
ν̃ (1 − xk)

3 CL
k CR

k

(
1 − 4xk

3
+

x2
k

3
+

2

3
ln xk

)}
(13)

where xmi = m2
χ0

i
/m2

µ̃m
, xk = m2

χ±

k

/m2
ν̃ ,

NL
mi = −mµ

v1

UN
3i U

µ̃
Lm +

√
2g1U

N
1i U

µ̃
Rm

NR
mi = −mµ

v1
UN

3i U
µ̃
Rm − g2√

2
UN

2i U
µ̃
Lm − g1√

2
UN

1i U
µ̃
Lm

CL
k =

mµ

v1
Uk2

CR
k = −g2Vk1 (14)
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Here UN
ij , U µ̃

(R,L)m, Ukl and Vkl are the neutralino, smuon and chargino mixing matrices, i, j =
1, 4; k, l = 1, 2 and m = 1, 2; mχ0

i
, mµ̃m

, mν̃ and mχ±

k
are the neutralino, smuon, sneutrino and

chargino mass eigenstates, mµ is the muon mass and gi are the electroweak gauge couplings.

The value of δaµ depends on M , µ and tanβ in the chargino and neutralino sectors (we are
assuming unification of gaugino masses), and on the parameters m̃LL

, m̃ER
, A, which determine

the smuon mass matrix

m2
µ̃ =

(
m̃2

LL
+ m2

µ + (−1
2

+ sin2 θW ) cos 2βM2
Z mµ(A − µ tanβ)

mµ(A − µ tanβ) m̃2
ER

+ m2
µ − sin2 θW cos 2βM2

Z

)
(15)

The parameter A appears only in the left-right smuon mixing, which is dominated by the µ
term in the large tanβ region. As we will mainly focus to this case, we can safely set A = 0.
Moreover the total result is usually dominated by the sneutrino-chargino contribution, which
is independent of A. Finally the sneutrino mass square is given by

m2
ν̃ = m̃2

LL
+

1

2
cos 2βM2

Z (16)

As δaµ is sensitive only to the mass of the muon sneutrino, while the LEP1.5 bound is
affected by any sneutrino, in order to proceed we have to assume universality of sneutrino
masses, mν̃e

= mν̃µ
= mν̃τ

. This hypothesis is usually invoked to avoid unwanted lepton flavor
violations (as in µ → eγ) and it is satisfied by the minimal supersymmetric model. It should
be noticed however that this assumption is not a necessary requirement for the suppression of
flavor-changing neutral current processes, as this can also be guaranteed by additional global
symmetries [20] or by a dynamical principle [21], even in presence of large mass splittings among
squarks and sleptons with different flavours.

Figure 1 shows the present experimental limit on the chargino mass, as a function of the
sneutrino mass [17] in the large tan β region. A value of tanβ = 20 has been chosen in the
figure, but the mass bounds are stable under changes of tan β, for tanβ ≥ 10. For large values
of the sneutrino mass mν̃ ≫ MZ , the chargino mass bound is close to the kinematical limit
and it is insensitive to the sneutrino mass. However, for lighter sneutrinos, the destructive
interference in the chargino production cross section causes a reduction of the chargino mass
bound. The results for two different values of µ are displayed, µ = −100 GeV (shaded area)
and µ = −500 GeV (dark shaded area). In the case µ = −100 GeV the chargino mass limit is
reduced by more than 5 GeV, as the sneutrino destructive interference effects are maximal for
µ ≃ −O(M2).

For mν̃ < mχ± , the two-body decay channel χ± → l+ν̃ is kinematically accessible and its
branching ratio becomes of order one. However for small values of mχ± − mν̃ , the charged
leptons are too soft to be detectable. This is the origin of the gap in the chargino bound shown
in fig. 1. One might expect this gap to be covered by neutralino searches, especially in the
higgsino region, where the neutralino production cross section is sizable. Instead, the light
sneutrino insures that the next-to-lightest neutralino predominantly decays into invisible final
states, χ0

2 → χ0
1νν̄. As an extreme case, three sneutrinos, two neutralinos, and one chargino

could be just above the LEP1 threshold, but escape searches at LEP2.
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For a given set of chargino parameters and sneutrino mass, we have chosen the value of
m̃ER

which minimizes the effect on δaµ, in order to obtain the most conservative bound. This
bound is shown in fig. 1 and superimposed to the experimental limit. The present constraint on
δaµ already closes the “hole” left by LEP1.5, if tanβ is large enough. Indeed, for |µ| = O(100
GeV), the hole, which would survive after the final LEP2 run if no chargino is found, can be
closed through the δaµ constraints for tan β ≥ 10 (20) for negative (positive) values of µ. For
|µ| = O(500 GeV), for which the lightest chargino and neutralino are mostly gauginos, |δaµ|
is slightly suppressed, leading to somewhat weaker bounds. In this case, the hole is closed for
tan β ≥ 20 (40) for negative (positive) values of µ. Indeed, these bounds may be inferred from
fig. 1, by taking into account the approximate linear dependence of δaµ with tan β in the large
tan β regime and the fact that the sign of δaµ is given by the sign of the µ parameter. The
bounds become also somewhat weaker deep into the Higgsino region (M1/2 ≫ MZ). The lightest
neutralino becomes almost degenerate in mass with the lightest chargino in this region, and,
indepedently on the sneutrino mass, no experimental limit may be set if their mass difference
is below 5 GeV [23].

In the above we have minimized δaµ by scanning over the right handed smuon mass, up to
values of order 1 TeV. If, instead, the value of the right handed smuon is restricted to be of
order of the left handed one, for instance below 200 GeV, the above results will be modified,
depending on the gaugino and Higgsino components of the light chargino and neutralinos. The
dependence on the maximum right-handed smuon mass is significant when µ is large. Indeed,
in this case, the chargino diagram contributions are suppressed and bino-exchange diagram
provides the dominant contribution. The contribution of this diagram is minimized for large
values of the right handed smuon mass. Hence, more stringent bounds than the ones obtained
in the case of very heavy smuons appear in this case. Numerically, the minimal value of tanβ
for which the hole can be closed for µ ≃ −500 GeV changes from 20 to 14. In the case of small
µ, |µ| = O(100 GeV), both the chargino and neutralino contributions are relevant and a partial
cancellation takes place between them. In this case, the minimal value of δaµ is obtained for
low values of the right handed smuon mass and hence no variations in the previous bounds are
obtained by restricting the value of the right-handed smuon mass.

We also want to point out that a similar analysis can help in closing “holes” in the LEP2
search for charged sleptons. In particular the selectron production cross section can vary by
more than one order of magnitude because of interference among the different contributions
[22]. This makes the search harder, as the production rate can become very small. Future LEP2
analyses can benefit from the δaµ bound, as this narrows considerably the allowed variation of
the relevant parameters.

3 Gauge-mediated supersymmetry breaking

Theories with gauge-mediated supersymmetry breaking [24] have recently received renewed at-
tention [25]–[31], because of their property of naturally suppressing flavour violations. These
theories have also the attractive feature of predicting the supersymmetric mass spectrum in
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terms of few parameters. Assuming that the messenger particle which communicate supersym-
metry breaking belong to complete GUT multiplets, the gaugino and squark or slepton masses
are respectively

mλj
= kj

αj

4π
ΛG

[
1 + O(F 2/M4)

]
(17)

m̃2 = 2
3∑

j=1

Cjkj

(
αj

4π

)2

Λ2
S

[
1 + O(F 2/M4)

]
, (18)

where k1 = 5/3, k2 = k3 = 1, and C3 = 4/3 for colour triplets, C2 = 3/4 for weak doublets
(and equal to zero otherwise), C1 = Y 2 (Y = Q − T3). In the simplest models with minimal
messenger structure, the gaugino and scalar scales ΛG and ΛS are related by

ΛG =
√

nΛS = n
F

M
. (19)

Here M is the messenger mass scale and
√

F is the original supersymmetry-breaking scale; n
is the effective number of messenger fields. Perturbativity of gauge coupling constants up to
the GUT scale requires that the integer number n satisfies n ≤ 4. The masses in eqs. (17)–(18)
are defined at the messenger mass scale M , and we have rescaled them to the physical mass
value using the one-loop renormalization group equations. We have chosen the messenger mass
scale M = 100 TeV, but our results depend only mildly on this choice, because of the slow
logarithmic dependence. It is just the ratio F/M which really sets the supersymmetric particle
masses, and it will be taken as a free parameter in our analysis. For a generic messenger
sector, the energy scales ΛG and ΛS are independent and hypercharge D-term contributions
can significantly affect the mass of the right-handed smuon [29]. For simplicity we will restrict
our consideration to the minimal case in which eq. (19) holds.

Besides the parameters F/M and n which describe the gaugino and scalar spectrum, we also
need to introduce the parameters µ and tanβ which define the higgsino mass and mixings as in
the ordinary supersymmetric model considered in sect. 2. In gauge-mediated supersymmetric
theories, µ originates from new interactions beyond the usual gauge forces [27], and its relation
with F/M depends on unknown constants.

We present our results of δaµ as a function of µ and the weak gaugino mass M2 (which
determines F/M), for fixed values of n and tanβ. As discussed previously, the stronger limits
from δaµ come in the region tan β ≫ 1. In this region, an important constraint comes from the
requirement that the determinant of the stau square mass matrix is positive. In gauge-mediated
supersymmetric theories, the trilinear term A vanishes at the messenger mass scale. Therefore
the slepton left-right mixing is dominated by the µ term, which can become dangerously large
if tan β ≫ 1.

Figure 2 and 3 show the bounds which may be obtained in these models in the M2 − µ
plane for two different values of tan β and for n = 1, 3, respectively. Large values of |µ| are
restricted by the lower bound on the stau mass, while low values of M2 lead to unacceptable
values of δaµ. The bounds on M2 become particularly strong when tanβ is close to its extreme
value tanβ ≃ mt(mt)/mb(mt) ≃ 60. Notice that the limits become more stringent as n is
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increased. Indeed, as apparent from eq. (19), for a given value of the gaugino mass, larger
n correspond to lighter sleptons, thus to larger contributions to δaµ. Because of the mass
relations in eqs. (17)–(18), a bound on M2 can be easily translated into bounds on the various
supersymmetric particle masses. For instance, the gluino mass is Mg̃ ≃ (2.9.– 2.5) M2, where
the variation in the ratio Mg̃/M2 comes from the scale dependence of the gaugino masses.
Analogously, the right-handed squark mass is mq̃ ≃ (4.1–3.5) M2/

√
n.

Future limits on δaµ will put very strong constraints on models of gauge mediated super-
symmetry breaking. Indeed, the forseen experimental sensitivity is of the order of the effects
which are obtained for values of the gluino mass Mg̃ as high as 1.4 TeV (3 TeV) for n= 1 and
tan β = 10 (60) respectively. For n =3, the experimental sensitivity is of the order of the effects
obtained for Mg̃ ≃ 2 TeV (4 TeV) respectively. Figure 4 shows the values of the gluino and
right-handed squark masses which can be tested assuming the bound |δaµ| < 4×10−10. This is
just the future sensitivity of the E821 experiment. Of course the actual bounds will depend on
how much the theoretical error can be reduced, and on the central values of the experimental
measurement and the theoretical prediction. The limits on the sparticle masses corresponding
to a bound on δaµ different from 4× 10−10 can be obtained from fig. 4 by noticing that, in the
large tanβ regime, the supersymmetric contribution to δaµ is proportional to tanβ. The limits
are obtained by minimizing the effect on δaµ as a function of µ, for fixed values of M2 and tanβ.
As seen in the figure even for values of tanβ as low as one, values of the gluino masses of order
450, 600 GeV may be tested for gauge mediated supersymmetry breaking models with n = 1, 3
respectively. Hence, δaµ will represent a crucial test of these models, even for moderate values
of tan β.

Recently it has been argued [30] that, in theories with gauge-mediated supersymmetry
breaking, large tan β could be a natural option. This is because the different Higgs mass
parameter may arise at different order in perturbation theory, allowing therefore a natural
hierarchy which leads to large values of tanβ. We have found here that constraints from δaµ

strongly bound the large tanβ region in these theories, and future measurements of aµ will give
a definite test of the proposal in ref. [30]. On the other hand, it should be mentioned that the
motivation for large tanβ coming from b–τ unification is weakened in these theories. As shown
in ref. [31], the messenger particles slow down the running of αs as the energy scale is increased.
This has the effect of enhancing the ratio mb/mτ at low energies, and therefore b–τ unification
can be achieved only at the price of a low αs(MZ). This effect becomes more important as
n increases. Present LEP determinations of αs(MZ) are already cornering b–τ unification in
gauge-mediated scenarios [31].

In gauge-mediated theories the original scale of supersymmetry breaking can be rather low,
of the order of 100 TeV. If this is the case, the gravitino is very light, of the order of the eV.
The Goldstino component of the gravitino has couplings much stronger than gravitational ones.
The contribution to δaµ from gravitino-smuon loops is [12]

δaµ =
GN

36π

m2
µ

m2
3/2

Trm2
µ̃ , (20)

where GN is the Newton constant, m3/2 is the gravitino mass, and the trace is taken over
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the 2 × 2 smuon square mass matrix. Relating the gravitino mass to the original scale of

supersymmetry breaking, m3/2 = F
√

(4π/3)GN , and using the expression of the smuon mass

in eq. (18), we can write eq. (20) in terms of the messenger mass scale M :

δaµ =
n

2

(
αmµ

2π2 sin 2θW M

)2

∼ n
(

100 TeV

M

)2

× 10−19 . (21)

This contribution is too small to give a significant constraint to the model.

In conclusion, we have studied how the measurement of the muon anomalous magnetic
moment constrains supersymmetric models in two different scenarios. We have first discussed
the case in which a light chargino evades detection at LEP2 because of the presence of a
light sneutrino. Present bounds on aµ can rule out this scenario if tan β is sufficiently large
and therefore provide an important tool complementary to direct collider searches. Then we
have considered the case of theories with gauge-mediated supersymmetry breaking. Because of
the mass relations among sleptons, charginos, and neutralinos, the bound on δaµ gives a very
definite constraint on the whole supersymmetric mass spectrum. Future measurements on aµ

can conclusively test these models, particularly in the moderate and large tan β regions.

We thank M. Schmitt and S. Dimopoulos for useful discussions. We would also like to thank
the Aspen Center for Physics, where part of this work has been done, for its hospitality.
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Figure 1: Present experimental limit on the lightest chargino mass as a function of the sneutrino
mass mν̃ for tan β = 20, and two values of µ, µ = −500 GeV (dark shaded region) and µ = −100
GeV (light shaded region). Also displayed in the figure are the present limits coming from
constraints on δaµ for tanβ = 20 and for µ = −500 GeV and µ = 100 GeV, respectively.
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Figure 2: Present limits on the gaugino mass parameter M2 as a function of the Higgsino mass
parameter µ, in gauge mediated supersymmetry breaking models with n = 1. The upper curve
represents the limit for tan β = 60, while the lower curve is the result for tanβ = 10.
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Figure 3: The same as fig. 2, but for n = 3.
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Figure 4: Limits on the gluino and right-handed squark masses as a function of tanβ for
gauge-mediated supersymmetry-breaking models with n = 1 (solid and dotted lines) and n = 3
(dashed and dot-dashed lines), assuming that the future experimental sensitivity and the future
theoretical estimates will allow to constraints new physics effects at the level |δaµ| < 4 × 10−4.
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