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In an electron storage ring the emittance, the polarization time and the betatron and energy damping times are strongly
dependent on the energy. In electron-proton (e-p) rings where bunched electrons collide with coasting proton beams, the
emittance variation is of secondary importance, while considerable emphasis is placed on polarization phenomena.

A general theory of wiggler magnets designed to control the polarization time at low energies is developed with all the
parameters normalized to the standard lattice. The equations are of general validity and are applied to the e-p option of
the CERN LSR (Large Storage Rings) project, as an example. It is demonstrated that the polarization vector may be
reversed over a considerable range of energies being limited only by the available rf voltage. An exact formula for the
emittance is given taking into account the variation of the dispersion function in the wiggler magnets. By judicious placing
of the wiggler in the ring and a suitable choice of the wiggler magnet length, the emittance and polarization time may
both be maintained approximately constant over a wide energy range while the increase in damping times at low energy
is reduced but cannot be maintained constant. .

PART 1 NORMAL POLARIZATION

1.1 Introduction

In an electron storage ring, the emission of syn­
chrotron radiation produces three main effects:
it defines the beam emittance, it produces vertical
polarization of the electrons and it provides
damping of betatron and energy oscillations (or
more precisely, the rf power supplied to compen­
sate the synchrotron radiation loss, provides the
damping). 1 In electron-positron storage rings where
both beams are bunched the first effect is critical
and control of the beam size at all energies is the
major function of the wiggler magnets used in
these machines.? In electron-proton (e- p) rings,
where bunched electrons collide with coasting
protons, the electron beam size does not enter
directly into the luminosity equation. However,
considerable emphasis is attached to the provision
of longitudinal electron polarization at the inter­
section region." As is well known, the polarization
rate is proportional to the fifth power of the energy
and at lower energies becomes very small in the
normal lattice of the storage ring. Thus, wiggler
magnets would be required in this case primarily
for reducing the polarization time. In this paper,
the design of a wiggler is given which maintains
the polarization time constant over a wide range of
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energies. It will be shown that the beam emittance
can also be controlled at low energy but while the
damping rates are improved they will still decrease
with decreasing energy. It is assumed that the
wiggler produces no net bending.

1.2 Definition of wiggler length

The polarization rate is given by4

where

Sfi hc2r
e 1 - 1 - 5 2

Cp = -8- (m
ec

2)6 = 98 s GeV ill.

The denominator of this equation is simply L,
the circumference of the ring. The numerator must
be evaluated over the lattice bending magnets of
radius of curvature Po and total length L o = 2npo,
over the positive bends of the wiggler of radius of
curvature P1 and total length L 1, and over the
reverse bends of the wiggler of radius of curvature P2

and total length L 2 • It will be assumed that at
maximum energy Eo the wiggler is switched off
(P1 = P2 = (0) and the polarization rate is apOI '
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(8)

and

The minimum length wiggler is given when r == !
and so the wiggler is now completely determined
as a function of Bland ~ 1

L w = _4_ (1 _ t5)
Lo Bi~i S1

Then at any lower energy E, where the wiggler
magnets are excited

Clp o l (E )5[Lo L 1 L2J/Lo
apo1 = Eo p~ + pf + p~ p~ .

If we define the following dimensionless param­
eters

and

and defining L; as the total length of the wiggler
we have

(9)

(10)

L _ 2L w
2 - 3 .

L - L;
1- 3 '

where U is the synchrotron radiation loss per turn,
fo is the revolution frequency and J the damping
partition coefficient. (For the separated function,
isomagnetic case J x ~ 1, J z ~ 1 and J s ~ 2.) The
synchrotron radiation loss per turn is given by

E4 i 1
U = C, 2n j p2 ds,

c, J 3 ~ 1
O(damp = 2n "2 fo E j p2 ds.

Using the definitions in Eqs. (1)-(4) and defining
ad am p as the damping rate at Eo when the wiggler

4n re 885 10- 5mGeV- 3
C; = - ( 2)3 =. x3 m.c

so

so

In the following sections the detailed properties
of a wiggler as defined by Eq. (8) will be considered.

1.4 Field requiredfor constant polarization rate as
afunction of energy

From Eq. (7) putting r = 1- and Clp ol = apOI

1= ~5[1 + Lw!?lJ
L o 4~3

where

1.5 Damping rates as afunction of energy

The damping rates for the betatron (x, z) and energy
(G) oscillations are given by'

1 J U
cxdamp = -- = -2 E fo

'[damp

(6)

(5)

(1)

(4)

P1--=r
P2

Po = h 1 and Po
PI ~ P2

~=~
Eo

b = bending field in wiggler positive bend (2)
1 bending field in lattice bends at Eo

_ rb = bending field in wiggler reverse bend (3)
1 bending field in lattice bends at Eo

1
L 2 = -1-- i.;

+r

so from Eq. (5)

~POI = ~5[1 + L w b! r(1 - r)J. (7)
cxp o l t.; ~

It will be assumed that we require a constant
polarization time over the range ~ = 1 to ~ = ~ 1

and that at ~ 1, b 1 = B 1 the maximum allowable
value. Then it is possible to express L; as a func­
tion of r, B I and ~ 1

t.; (1 - ~i) 1
L o Bt~i r(1 - r) .

r
L 1 = -1-- Lw

+r

so finally

Clp o l = ~5[1 + L 1 bf _ L 2 r
3

bfJ
ap o1 t.; ~3 t.; ~3

and the requirement of no net bending gives the
relation

then
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Case 2 No aperture limitation in the wiggler.
The magnetic field in the wiggler is equal to B 1

and substituting in Eq. (11) gives

~damp = ~~[1 + ~Lw B!J. (14)
C(damp 2 L o ~ 2

1.7 Synchrotron radiation loss in the wiggler

The function of the wiggler is to produce synchro­
tron radiation but it is obvious that the energy
produced must be dissipated in some fashion. In
fact, this is no small problem and it is likely that the
value of B 1 will be determined more by the allow-

(15)

(19)

(17)(
u ) (2L )1/

3~ =07~
Uo max . La

(18)

able power dissipation in the wiggler than by
saturation of the magnet yokes. The radiation loss
in the wiggler is closely connected to the damping
rates as was seen above. If we define the radiation
loss in the wiggler as Uwand the energy loss at
maximum energy due to the lattice bends as U0'

we have from Eq. (10)

Uw _ e L w b2
Uo - 2 L o 1

and substituting for. hI from Eq. (9)

Uw = (2Lw)1/3(~ _ ~6)2j3. (16)
Uo Lo

It is useful to notice that this expression has a
maximum value at ~ = (1/6)1 /5 = 0.7 when

1.8 Beam size control

The equation for the emittance of the electron beam
is given by '

where

55 hc -6-2
Cq = ;; ( 2)3 = 1.47 x 10 m (GeV)

32v 3 moc

and W is the Courant and Snyder "Invariant"
(also denoted by Yf in the literature) defined as

C(2 + 12

W=----=P:....-...---
f3x

The problem of dissipation of the synchrotron
radiation is most serious in the positive bend of the
wiggler where it is 4 times that of the reverse bend.
The maximum synchrotron radiation power loss
per unitlength of the positive bend is given by

(P ) = (U 11) =2Uw1= (Lo)2/3UoI
1 max L L . 2.8 2L .

1 max w w L o

with

(11)

(12)

is switched off we obtain

~damp = ~3[1 + ~ L w b~J
C(damp 2 Lo ~

and substituting Eq. (9) gives

~damp = ~3[1 + (2Lw)1/3(~)2/3J.
C(damp c; ~

1.6 Dampinq rates at injection energy

So far we have only considered the energy range
over which we require constant polarization time,
i.e. the energy range over which the experiments will
be carried out. However, it is most likely that
injection will take place at an even lower energy
and the damping rate at injection is an important
parameter. Two cases will be considered. If the
aperture is limited in the wiggler, then we can
assume that at lower energies we maintain the
minimum radius of curvature and reduce the
magnetic field from B l' Alternatively, if there is no
aperture limitation we can keep B 1 constant at
lower energies and this mode provides more
damping. The choice between these two modes
will be decided by the particular injection scheme
selected. Define the injection energy as ~ 2 •

Case 1 Aperture limitation in the wiggler.
The magnetic field in the wiggler varies linearly

with energy so

b1 = B1 ~:-
Substituting this value in Eq. (11) gives

~damp = ~~[1 +!Lw B!J. (13)
C(damp 2 t.; ~ 1
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Equation (19) may be expressed in dimensionless
form by defining Bx as the emittance at maximum
energy with the wiggler not excited

(20)

where <Wo>is the average value of W over the
lattice bends, <Wt >is the average value of W over
the positive wiggler magnets and <W2> is the
average value of W over the reverse wiggler
magnets. Note that if <Wt >== <W2>this expression

.reduces to that in Ref. 2.
Substituting for L 1,L2 , e..P2 from Eqs. (1),(2),(3),

(4), (8) and (9) we obtain

(21)

bending angle and divided by the total bending
angle. Thus

<W) = 1 fOB W* dO
(}n - ()A (JA

<W) = Ww + 1(OB + OA) + 13; (O~ + 0AOB + O~).

(22)

The assumption will be made that the wiggler
magnets are all grouped in blocks of three identical
magnets, the centre magnet powered positively
and the two outer magnets powered in the reverse
direction and with half the field-i.e. the bending
angle of the reverse magnets (}2 is equal to - ()1/2
where ()1 is the bending angle of the centre magnet.
So, using Eq. (22) for the central magnet, we obtain
by integrating from - ()1/2 to +()1/2

T (()1 ()1)<H'1 >== Ww + J 2: - 2:

+ f3x (Oi _ Oi + Oi)
344 4

or simply

Thus we obtain the simple result that <W1>== <W2>
and f3x takes the meaning of the average horizontal
f3 function over all the wiggler magnets in the ring.
()is related to the length of the wiggler magnets and
is conveniently expressed in terms of N, the number
of wiggler blocks in the ring (i.e. there are a total
of 3N wiggler magnets). Then, if the wiggler

For the outer magnets the average value of W is
given by the arithmetic mean of the two magnets,
i.e. the mean of the integral from 0 to - ()1/2 and the
integral from ()1/2 to 0

1 {T ((}1 )<W2 >== 2 H'w + I - 2 + 0

{Jx ((}I ) (()1)+ 3 4 + O· + 0 + Ww + I 0 + 2

+13;(o+o+~)}
or simply

(23)

(24)f3 (}2

<H'T> == W + _x_l
2 w 12·

It is now necessary to consider the detailed
characteristics of the Courant and Snyder "In­
variant" W In actual fact W is only invariant in
regions with no bending, i.e. drift spaces or
focussing elements, and changes in bending mag­
nets. We thus have the situation where <W1>and
<W2>are not constants in Eq. (21) but depend on
the field in the magnets. This effect mayor may not
be small depending on the lengths of the magnets
(or more precisely the total bending angle per
magnet) and the values of the betatron functions
at the wiggler magnets. A simple derivation of the
size of the effect is given here, where the magnet
lengths are assumed to be sufficiently short to be
treated in a "thin magnet" approximation (i.e.
magnet lengths are short enough so that the change
in the f3x value over the three wiggler magnets may
be ignored). An exact derivation is given in the
Appendix.

The value of H'T(W*) after a bending angle ()
is given by '

If we require an average value of It: then this
expression may be integrated with respect to the
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(25)

and

(30)

(ccdmax = 1.324( Lo )1/3.
(31)

~ 2L w

The critical energy will therefore be different in
the positive and negative bends denoted by suffixes
1 and 2 respectively. Be is the critical energy of
synchrotron radiation in the lattice at Eo. From
Eqs. (4) and (9)

_ (~)1/3(_~5)1/3
P1 - Po 4L

o
1 _ ~5

so

Both Ce1 and Ce2 have maxima at ~ == (4/9)1/5 =
0.85 so

(J
_ Lm _ tt 2L w b 1

1------·
P1 3N t.; ~

Substituting Eqs. (23) and (24) into Eq. (21) gives

1 + ~ 1 - ~5 «Ww>+ f3x Gi )
Cx _ ;:2 3 ~5 <Wo> 12<Wo>
Bx - S 1 + (~wyl3C~5~5Y13 (26)

and substituting Eqs. (25) and (9)gives finally

magnet length is L m , we have

(27)

== 0.13 T

= 20 GeV
= 3236 m

== 27.5 MeV
== 0.25 A

Example for the LSR e-p options
The following parameters have been adopted

for the LSR e-p option 7

The spectrum of the synchrotron radiation is
easily calculated from the tables given in Ref. 6.

Maximum energy Eo
Total bending length- t.;
Lattice bending field

at Eo
Maximum energy loss

per turn
Beam current
Polarization rate

at Eo apOI

Betatron damp rate at
at Eo (adamp)x = 33 s - 1

Energy damp rate
at Eo

t The CERN LSR (Large Storage Rings) project involves two
intersecting storage rings for 400-GeV coasting protons and a
third ring for 20-GeV bunched electrons colliding with one of
the proton rings.

In the definition of the wiggler characteristics
only six free parameters are involved and the

We can distinguish two extreme cases; the first
when (J1 is small and Ww large so the second term
may be ignored; the second case, where the wiggler
blocks are in dispersion-free zones where Ww is
zero and the (J term predominates.

To get some idea of the relative importance of
the two terms we can take the values of Ref. 2 at
the lowest energy. Then at 5Ge V,strong field = 2 T,
magnet length == 1.5 m we obtain (J1 = 0.18 and
taking [3 as 17.7 we have [3(Ji/12 = 0.048 while
<lto) = 0.059. Thus the "self produced" W is
about 80 % of the input value and ignoring this
effect leads to an over estimate of the field required
for constant emittance and hence an over estimate
of the improvement in polarization and damping
times.

1.9 Critical energy of the synchrotron radiation

The critical energy of the synchrotron radiation
Cc is an important parameter since it is a measure
of the hardness of the radiation. It will therefore
determine the thickness of the shielding required
to stop synchrotron radiation. The critical energy
is a function of the bending field and the beam
energy and is given by"

3 he E 3 E 3

CC = -2 ( 2)3 - = 2218 - ill GeV- 3 eV. (28)
m;c P P
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TABLE I

Wiggler characteristics as a function of energy

Energy E 20 18 16 14 12 10 GeV

Positive bending field b; 0.66 0.84 0.99 1.13 1.30 tesla
Reverse bending field b2 -0.33 -0.42 -0.49 -0.57 -0.65 tesla

Damp rate ratio ~damp 1.0 0.91 0.77 0.66 0.57 0.51
(Xdamp

Radiation loss in wiggler Uw 4.44 5.71 6.02 5.82 5.33 MeV/turn
Total radiation loss u.; 27.5 22.48 16.98 12.63 9.39 7.05 MeV/turn
Power in positive bend P1 44.28 56.97 60.06 58.05 53.12 kW/m
Power in reverse bend P2 11.07 14.24 15.02 14.51 13.28 kW/m
Critical energy pos. bend Gel 141.5 142.7 128.2 108.0 86.1 keY
Critical energy rev. bend Ge2 70.8 71.4 64.1 54.0 43.1 keY

following values are assumed TABLE II

The beam size will be tabulated for several values
of <fl'~> and N while f3x will be taken as 60 m.

The detailed characteristics are shown in Tables I
and II. The emittance ratio is given by the sum of the
two relevant lines. Note that in the present example
N = 8 implies Lm ~ 2 m; N = 16, Lm ~ 1 m.

33.44 m
6.9 s- 1 no aperture

limit (14)
2.12 S-1 aperture limit

at 10 GeV (13)

6.05 MeV/turn (17)
60.3 kW/m constant

current 0~25 A (18)

Maximum field in wiggler
positive bends 1.3 T

Experimental energy range is
10 - 20 Gev

Injection energy is 5 GeV 0.0 1.0 0.65 0.43 0.26 0.14 0.06
0.1 1.0 0.72 0.57 0.47 0.41 0.38
0.2 1.0 0.80 0.72 0.68 0.68 0.69
0.3 1.0 0.87 0.86 0.89 0.95 1.01
0.4 1.0 0.95 1.01 1.10 1.22 1.32
0.5 1.0 1.02 1.15 1.31 1.49 1.64
0.6 1.0 1.10 1.30 1.52 1.76 1.95
0.7 1.0 1.18 1.45 1.73 2.03 2.26
0.8 1.0 1.25 1.59 1.94 2.30 2.58
0.9 1.0 1.33 1.74 2.15 2.57 2.89
1.0 1.0 1.40 1.88 2.36 2.84 3.21

b) Additional emittance ratio due to .... self-produced" W

Energy E 20 18 16 14 12 10 GeV

Energy E 20 18 16 14 12 10 GeV

{

8 0.0 0.03 0.13 0.33 0.76 1.67
N 10 0.0 0.02 0.08 0.21 0.48 1.07

({3 = 60) 12 0.0 0.01 0.06 0.15 0.34 0.74
14 0.0 0.01 0.04 0.11 0.25 0.55
16 0.0 0.01 0.03 0.08 0.19 0.42

PART 2 REVERSE POLARIZATION

2.1 Introduction

At low energies almost all of the polarization is
produced in the wiggler, the contribution of the
lattice bending being very small. It is thus natural
to consider the effect of reversing the polarity
of the wiggler magnets. It IS not immediately
obvious that the wiggler is capable of achieving
a complete reversal of the polarization but it will

Emittance ratio as a function of energy

a) Emittance ratio with <Ww>treated as a constant

(9)
(8)

(31)

i.e B 1 = 10

i.e. ~1 = 0.5
i.e. ~2 = 0.25

1.3 T

0.65 T
50.16 m

16.72 m

145.3 keV

Maximum positive
bending field B 1

Maximum reverse
bending field B 2

Total wiggler length i.;
Length of positive

bends. L 1

Length of reverse
bends L 2

Betatron damping rate
at injection

Betatron damping rate
at injection

Maximum energy loss
in the wiggler Uw

Maximum linear power
loss (P l)max

Maximum critical
energy (C;cl)max

Wiggler characteristics
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(33)

~ == ~4.
V w

The maximum permissible energy denoted by ~ 3

is then given by the equation

Ct
o

wY/3(~3 + ~~)2/3 = 1 - ~~. (37)

In Figure 1, ~3 is plotted as a function of Lw/Lo.
It can be seen that ~3 is a very insensitive function
of L; but with a shorter wiggler magnet the maxi­
mum energy increases. The maximum energy loss
in the wiggler is therefore given by Eqs. (36) and (37)

2.4 Synchrotron radiation loss for reversed
polarization

The synchrotron radiation loss per turn In the
wiggler is given by Eqs. (15) and (33)

V~ == (2Lw )1/3(~ + ~6)2/3 (36)
u; t;

which, in the range of interest, is a monotonically
increasing function of energy. It may be assumed
that the upper limit of validity of Eq. (33) will be
when the total synchrotron radiation loss V~ + V
is equal to V 0, where V is the radiation loss per
turn at energy ~ in the lattice bends and is given
by Eq. (10) as

(34)

The maximum synchrotron radiation power loss
per unit length of the reverse (stronger) bend is then
given by

2.5 Reverse polarization stability limit

If the total rf power supplied is kept constant
above ~3' then b', must be reduced accordingly
and a~OI will be reduced. The stability limit is given
when a~OI == O. The significance of this number is
as follows. If it proves possible to accelerate
electrons in the storage ring without depolarizing
them (a big if, since depolarizing effects are still
not well understood) then they can be maintained
in the reversed polarization state only up to the
stability limit ¢4 given by setting a~OI == 0 in
Eq. (32). By an identical process to that carried out

be shown that this is in fact possible over a large
range, the limiting factor being the total rf power
available. This feature is of great interest when
taken in context with the proposal for rotating
the polarization vector into the longitudinal plane
in the intersection region." If the polarization
'vector is reversed in the wiggler, then the longi­
tudinal polarization will be reversed in the inter­
section region, a feature that otherwise would
require a second rotation channel. The major
problem with this proposal is the greatly increased
synchrotron radiation dissipation in the wiggler
requiring additional cooling.

In the following sections a prime will denote
values appertaining to the reversed polarization
case.

2.2 Field required for constant polarization rate
(reversed) as afunction of energy

The formula for the reversed polarization rate is
given by reversing the signs in Eq. (7) giving

O(~OI = ~5[1 _L w
I b~ 1

3J (32)
apOI 4Lo ~3

with the sign convention that a~OI is negative for
reverse polarization. If we require a~OI to be
numerically equal to apol then

I
b' 13 == 4Lo 1 + ~5

1 L
w

~2 •

The maximum value of b', is B', required at the
lowest energy ~ I where

I B~ 1 == (1 + ~i)I/3
B I 1 - ¢i .

This ratio is in general very close to unity and
while it has been assumed that B I is the maximum
allowable value, the difference between B I and B~

is usually sufficiently small to be acceptable.

2.3 Damping rates as afunction ofenergy for
reversed polarization

The damping rates are affected by the reversal of
the wiggler magnets only because of the increased
synchrotron radiation loss produced. Thus from
Eqs. (11) and (33) we have

~~amp = ~3[1 + (2Lw)I/3(~+5 ~5)2/3J. (35)
ad am p L o ¢

( U~) == 1 _ ~j.
U o max

( ') _(2V~I) _2(1 - ¢j)
P l max - 3L - L Vol.

I max w

(38)

(39)
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to obtain Eq. (37) we obtain an expression for ¢4'
the stability limit.

This expression is also plotted in Figure 1 and is
always greater than ¢3. For the sake of complete­
ness the formulae for the various parameters are
given here for the zero polarization rate case, the
derivation is completely straightforward, the values
are denoted by a double prime

_ [ (2L w)1/3J-1/4¢4 - 1 + - .
Lo

(40)

C'x

(44)

(41) 2.7 Critical energy of synchrotron radiation for
reversed polarization

2.6 Beam size control for reversed polarization

This is simply obtained by substituting Eq. (33)
into Eq. (20) giving (46)

(45)

This is also simply obtained by using Eqs. (4), (9),
(28) and (33) and the same procedure employed in
the derivation of Eq. (29)

, (L )1 /3
C~1. == 2 _0 (¢4 + ¢9)1 /3.
e, 2L w

The maximum value will be at the maximum
permissible energy ¢3. For the case of zero polariza­
tion rate a similar procedure gives

" (L )1 /3
Ce.1 == 2 _0_ ¢3.
CeO 2L w

(43)

(42)

V"
~ == 1 - ~1.
V o

.95

.925

~

~ .90

~
~

6J .875
~
-.......J

~
ct
0 .85:<

.825

LIMITING ENERGIES S3 AND S4 AS A FUNCTION OF

WIGGLER LENGTH

0.07 0.02 0.03 0.04 0.05

Lw
[Q

FIGURE 1 Limiting energies as a function of wiggler length. ~ 3 is maximum normalized energy at which it is possible
to reverse the polarization. ¢4 is the stability limit at which there is no net polarization.
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TABLE III

Wiggler characteristics as a function of energy for reversed polarization

Energy E 10 12 14 16 17.70 18.68a GeV

Reverse bending field b'1 -1.33 -1.19 -1.11 -1.06 -1.04 -0.77 tesla
Positive bending field b~ 0.66 0.60 0.55 0.53 0.52 0.39 tesla

Damp rate ratio ~~amp 0.53 0.61 0.74 0.92 1.13 1.07
(Xdamp

Polarization rate ratio (X~OI -1.0 -1.0 -1.0 -1.0 -1.0 0.0
ctpo1

Radiation loss in wiggler U'; 5.55 6.46 7.55 8.99 10.63 6.57 MeV/turn
Total radiation loss U;ot 7.27 10.02 14.16 20.26 27.50 27.50 MeVjturn
Power in reverse bend Pl1 55.39 64.41 75.31 89.67 105.99 65.53 kW/m
Power in positive bend P~ 13.85 16.10 18.33 22.42 26.50 16.38 kW/m
Critical energy rev. bend £~1 87.94 113.8 143.6 179.0 215.3 178.7 keY
Critical energy pos. bend £~2 43.97 56.9 71.8 89.5 107.7 89.3 keY

a For the case of 18.68 Ge V the values refer to the zero polarization rate case.
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TABLE IV Maximum reverse

Emittance ratio as a function of energy for bending field B', 1.327 T (34)
reversed polarization Maximum positive

a) Emittance ratio with <Ww ) treated as a constant
bending field B~ 0.664 T

Maximum energy for
Energy E 10 12 14 16 17.70 18.683 GeV constant polarization

rate ¢3 17.70 GeV (37)
0.0 0.6 0.13 0.23 0.36 0.48 0.70 Maximum energy for
0.1 0.38 0.42 0.49 0.60 0.71 0.81
0.2 0.71 0.72 0.76 0.84 0.94 0.93 zero polarization rate ~4 18.68 GeV (40)
0.3 1.03 1.02 1.02 1.08 1.16 1.05 Maximum energy loss in

<ww )
0.4 1.36 1.31 1.29 1.32 1.39 1.16 the wiggler (U~)max 10.63 MeV/turn (38)

<wo)
0.5 1.68 1.61 1.55 1.56 1.62 1.28 Maximum linear power
0.6 2.01 1.90 1.82 1.80 1.85 1.40 loss (P'l)max, constant0.7 2.33 2.20 2.08 2.04 2.07 1.51
0.8 2.66 2.49 2.35 2.28 2.30 1.63 current 105.96 kW/m (39)
0.9 2.98 2.79 2.61 2.52 2.53 1.75 Maximum critical
1.0 3.31 3.09 2.88 2.76 2.76 1.86 energy (e~)max 215.4 keV (45)

The detailed characteristics are shown in Tables III

b) Additional emittance ratio due to "self-produced" W
and IV. Notice that the linear power loss is over
50 %greater than in the normal polarization case.

Energy E 10 12 14 16 17.70 18.683 GeV The problem of dissipating the heat produced by
the synchrotron radiation will, however, be helped

{ 8

1.80 0.92 0.52 0.33 0.25 0.06 by the higher critical energy.
N 10 1.15 0.59 0.33 0.21 0.16 0.04 The emittance ratio is given by the sum of the

12 0.80 0.41 0.23 0.15 0.11 0.03 two relevant lines in Table IV.(f3 = 60) 14 0.59 0.30 0.17 0.11 0.08 0.02
16 0.45 0.23 0.13 0.08 0.06 0.02

PART 3 SUMMARY OF USEFUL
a For the case of 18.68 GeV the values refer to the FORMULAE

zero polarization rate case.
The equations derived can be put into a unified
form for the three cases considered and these

Example of reversed polarization
equations also have a more general validity.

The same basic characteristics of the wiggler 2¢k1 /3
(S1)defined in the example above will be maintained. Strong magnetic field ratio == b1 == ---pT3
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~kl/3

Weak magnetic field ratio = b2 = - [2rJ [113

(S2)

Polarization rate ratio == Cl
pol

apol

== ~5(1 + k[4r(1 - r)J)

(S3)

Damping rate ratio == ~damp
Cldamp

S h diati 1 . U';ync rotron ra iauon ass rauo == -
Vo

= [1/3k 2/ 3¢4[2rJ

(S5)

. P . k2 / 3 ¢4
Power loss per metre ratio == ---.! = 4~

Po /

constant current (S6)

. . . Gel 2IkI 1
/
3

¢ 3
Critical energy rauo == - == /1/3 (S7)

Gc

• • Gx
Emittance rauo == -

Ex

== ¢2 ~~~_-_-

In this study the last variable k has been defined
via Eq. (S3)

and imposing the constraint that Clpol == apol ,

Clpol == - apol or Clpol = 0 respectively for the three
cases considered. This is not the only way of
defining k, however. If it is defined via Eq. (S1) then
the equations give all the relevant parameters for
an arbitrary field and energy. It is also possible that
once the wiggler has been defined as in the first
section, we may require that the emittance be a
given function of energy (constant for example)
and k will then be defined via Eq. (S8), allowing
the polarization rate to vary slightly with energy,
which is not unreasonable if the depolarization
effects are always small over the whole range.

There will be three constraints on the value of k.
Firstly, the field limitation that b1 should not be
greater than the allowable maximum determined
by saturation effects. Secondly, the rf limit, that the
total synchrotron radiation loss in the ring be
less than the rf voltage available for acceleration.
Thirdly, the power loss limit which depends on the
exact geometry of the wiggler and the allowable
surface temperature, the total heat that may be
dissipated, the outgassing from the surface, etc.

PART 4 PHYSICAL DISPOSITION OF
THE WIGGLER IN THE RING

(S8)

where r = ~ ~2 the magnetic field ratio. (The
1 factors in square brackets are

unity for r == !.)

~=~
Eo

1= 2L w

- Lo

<Ww)
<Wo)

f3x

N

the beam energy ratio

twice the wiggler length ratio

the Courant and Snyder "in­
variant" ratio

the average value of f3x over the
wiggler magnets

the number of wiggler "blocks" in
the ring.

4.1 Aperture Requirement

The equations so far derived are primarily con­
cerned with the total length of wiggler magnets
except for Eqs, (27) and (44) where N, the number
of wiggler blocks, enter explicitly into the equations
for the emittance. A further consideration is the
aperture requirement at the centre of the strong
magnet. Thus, if all the magnets are of length Lm

and separated by a distance Ld then the orbit
displacement at the centre of the stronger magnet, Q,

is given by"
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and substituting for Pi and P2 from Eq. (4) gives

a ~ L~ ~(~ + L d
) . (48)

2po ~ 4 Lm

This function is plotted in Figure 2 for the
maximum values of the example calculated above
as a function of L m for values of L d equal to 0.2 m
and 0.4 m. Note that a is inversely proportional to ~

so that if we require a large damping rate at the
injection energy, achieved by keeping hI at the
maximum value, then the orbit displacement is
doubled. In practice it is probable that at injection
b, will be determined by Eq. (48) giving damping
times somewhere between those quoted in Eqs. (13)
and (14).

4.2 Position of wiggler

It is clear from Tables I and II that the average value
of W over the wiggler magnets must be less than the
average value of l/liT over the lattice and so it cannot
all be placed in the normal unperturbed lattice.
Also, unless the individual magnets are long, it
cannot all be put in a dispersion-free zone. The
most elegant solution appears to be to use a
missing magnet dispersion suppressor. As is well
known, this configuration has the advantage of
leaving the quadrupole strengths unaltered so that

the a, f3 functions are undisturbed. The places left
vacant by the removal of magnets from the normal
structure, can then be used for siting the wiggler
magnets. The various gaps will not have equal
values of Ww and by judicious placing of the magnet
blocks almost any required value of <l/li~> may be
obtained. The dispersion suppressors next to the
interaction regions are clearly unsuited to this
purpose because of the high synchrotron radiation
background produced by the wiggler. However,
the rf system in an electron ring must also be in a
dispersion-free section and the dispersion suppres­
sors required for this purpose would be well
adapted for wiggler magnets.

4.3 Synchrotron radiation height

The synchrotron radiation has a "natural" opening
angle given by Ref. 6. In addition there is a com­
ponent due to the fact that the electrons themselves
have an angular distribution given by

1 + a2

Yv=~

where f,v is the vertical emittance of the beam,
«; and f3v the vertical betatron functions. Yv is an
invariant in drift spaces and pure bending magnets
and changes in focussing elements. Therefore, in a
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FIGURE 2 Orbit displacement as a function of wiggler length.
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separated function lattice the opening angle is
independent of the position of the wiggler in the
cell. The vertical height of the electron beam is
given by

Thus the height is largest close to horizontally
defocussing (0) quadrupoles. In view of the large
amounts of synchrotron radiation being produced,
it is clearly beneficial to have the vertical height of
the synchrotron radiation as large as possible
reducing the power per unit area incident on the
surfaces being irradiated. Therefore the wigglers
will be sited next to 0 quadrupoles.

This implies a small value of Ph and decreases the
importance of the "self-induced" Jt' [see Eqs. (27)
and (44)J.

4.4 Choice of magnet length

In the example L; was defined as 50.16 m, but it is
clear that for constructional purposes, the wiggler
magnets should be a length that is a round number.
Reasonable choices are as follows

N 8 10 12 14 16

t.; 2.0 1.6 1.4 1.2 1.0 metres

L; 48.0 48.0 50.4 50.4 48.0 metres

It will be assumed that two missing magnet dis­
persion suppressors will be used having 4, 5, 6, 7 or
8 blocks disposed in each. They may be placed
either side of 0 quadrupoles in pairs and it would
be preferable if the blocks were as close together
as possible to reduce the length of special vacuum
chamber that will be required with special cooling
facilities. The final choice is more or less a trial-and­
error process of matching a dispersion suppressor
with suitable spaces next to the 0 quadrupoles,
calculating the Jt' values at the spaces and examin­
ing the emittance characteristics of the different
length magnets placed in these sites from Tables II
and IV. To minimize the complexity of the wigglers,
N was chosen to be 8 and a low Jt~ value chosen.
The dispersion suppressor was matched into one
of the lattices at present under consideration for
the LSR e-p option and is shown in Figure 3.

4.5 Limiting values

The field limit will be set mainly by saturation in
the core of the stronger wiggler magnet. It is assumed
that the two weaker magnets in a block are in
parallel and the stronger magnet is in series with
them. Thus the main excitation of the wiggler re­
quires only one bus-bar. However, some correction
windings will be required for the central magnet
since the field is not absolutely proportional to the
current at higher field strengths. For the present
study a value of 1.4 tesla is assumed.

The aperture limit will be important at low
energies. In Figure 4 the orbit displacement at
10 GeV, 1.4 T is shown. If two small kickers are
placed either side of the wiggler so that a bump can
be put into the closed orbit, then half the total
aperture is required or conversely, with the same
aperture a lower energy can be accepted with the
maximum field. This is also shown in Figure 4
indicating an off-centred orbit at injection energy
5 GeV and 1.4 T.

The rf limit has been set at U0, the value at the
nominal maximum energy. Some increase may be
obtained at the expense of reduced luminosity but
the cavities are usually designed such that this
increase is marginal.

The power limit has been arbitrarily set at the
value required at the maximum energy at which it is
possible to reverse the polarization without ex­
ceeding the rf limit (~3) i.e. 110 kW/m. At present
this value may be looked upon as a design goal
rather than the maximum value shown to be pos­
sible. It is assumed that the beam current is con­
stant .with energy which may not be the case in
reality.

4.6 Program "WIGGLE"

The equations in the summary have been incor­
porated in a program "WIGGLE" written by
M. Hanney. The various limits described above are
included as are the exact betatron functions from
Figure 3. The program finds the fields required to
obtain any given value of one of the parameters at a
given energy, or the nearest value possible without
exceeding one of the limits. The program uses the
exact formulation for the average of W over the
wiggler magnets developed in the Appendix. This
program was used to find the range of variation of
the field in the stronger magnet, the polarization
rate ratio and the emittance ratio as shown in
Figures 5, 6 and 7 respectively.
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FIGURE 5 Magnetic field in stronger wiggler magnet as a
function of energy. Boundary conditions are: field limit ± 1.4 T,
rf limit 27.5 MeV and power limit 110 kW/m, Magnet length =

2 m. Also shown are the fields required to keep 'pol = T pol'

T p o l = - T p ol and Gx = ~.
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Figures 5 and 6 are self-explanatory but Figure 7
requires some comment. At all energies, the emit­
tance first decreases with field in the wiggler
magnets and then increases. The lower curve shows
the minimum value obtainable. Above about
19 GeV the largest value of emittance is obtained
with the wiggler switched off which at first sight
appears strange. However, it is a simple outcome
of the fact that the emittance obtained is a balance
between the quantum excitation produced by the
synchrotron radiation and the damping produced
by the rf. In this region the damping increases
faster than the excitation and therefore the wiggler
causes the beam to shrink. Using the accurate
formula for the average value of W gives a slight
difference between normal and reverse polarization
cases. In Figure 7 only the normal polarization case
is plotted.

FIGURE 6 Polarization rate ratio as a function of energy.
Boundary conditions are: field limit ± 1.4 T, rf limit 27.5 MeV,
and power limit 110 kW/m. Magnet length = 2 m. Also shown
is the polarization rate obtained when the emittance is kept
constant.

Since the wiggler blocks are either in a zero­
dispersion zone or a dispersive zone, it is clear that
if the power supplies were separate for these two
zones, then a much greater variation of Ex would be
possible. It remains to be seen whether this is a
sufficiently desirable feature to warrant the in­
creased complexity and extra bus-bars.

CONCLUSION

The simultaneous control of the polarization time
and the emittance at low energies and the additional
feature of reverse polarization have been clearly
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demonstrated. The length of wiggler magnets is
relatively modest and the advantages far outweigh
one's natural reluctance to increase the complexity
of the ring.
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Appendix

Average value of W over wiggler maqnets-r-exact
formulation

Jt~ut = ~n + 8(21in - LmKin)

+ OZ(f3in - i; lJ(in + L; Yin)

8( 3Lm L;)
lout = lin - LmKin + Po - 2 ~in + 2 Yin

Knut = Kin + o(lJ(in - ~m Yin)

Yout = Yin

Bending magnet

~
magnet_~ J-magnet 1

---~l

I

WW

--I magnet 2 IL... . _

--Lm--....Ld~ --1;n--. "'Lci~--Lm--

A wiggler block is made up of three magnets of
length L m separated by a distance L d • The central
magnet produces a total bend 81 where

8 _ L m _ L w 2n b 1 _ tt 2Lw b 1

1 - p; - 3N L oT - 3N L o T'
where N is the number of wiggler blocks in the ring.
The two outer magnets produce a total bend of
-82 where

8 _ n 2Lw b i

- 2 - 3N Lo 2~·

We require the average W over the central magnet
and over the two outer magnets in terms of the
betatron functions at the entrance of the first
magnet. For convenience we define the following
functions

1 + fJ.2
Y=--

P
I = fJ.fJ. p + PfJ.~

K = YfJ. p + fJ.fJ.~

fJ.2 + 12

W=-p--
P

Average JtT over a bending magnet
Denoting by JtT* the value of W after a distance

m in the magnet and defining tjJ the bending angle
per unit length

we obtain

W* = ~n + mtjJ(2lin - mKin )

( 2 )22 m
+ m tjJ Pin - ma.; + 4 Yin

or

and fJ. o, Po, Yo, 1o, K o and Ww denote the values at
the entrance to the first magnet. Jt:vis also the value
of W over the whole wiggler block when the wiggler
magnets are not excited. The changes in these
quantities in a drift space and a long magnet have
been given" and are rewritten in the present
notation.

Drift space

The average value of W is then given by

1 JL rn

<W)=-. W*dm
Lm °

Jt~ut = Jt~n

lout = lin - LdKin

K out = Kin
Pout = Pin - 2Ld fJ. in + L~Yin

fJ.out = fJ.in - LdYin

Yout = Yin

and substituting we obtain a simple expression
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Average W over the wiggler magnets
We now require the average value of W over each

of the three magnets in the wiggler block as a func­
tion of the parameters at the entrance to the block.
This requires defining ~n, lin, Kin, 13in, (;(in and
Yin in terms of Ww , 1o, K o, 13o, (;(0 and Yo for each
magnet using the relationships for drift spaces and
magnets quoted above. This conceptually simple
but exceedingly tedious series of substitutions was
carried out using SCHOONSCHIP,9 the computer
program which performs algebraic manipulations
of this type. The answers are as follows

First magnet

<W~) = Ww + el { - ~ + Ko~m}

And finally the weighted sum required in the emit­
tance calculation

If the magnet length and drift spaces are small, we
have approximately that

<WI) ~ <Wz) ~ Ww + fJ~~i

which was the expression derived in the text by
simpler means.

It should be noted that ~ut for the third magnet
is exactly equal to Ww ' In general, however, there
will be a slight difference due to edge focussing of
the wiggler magnets and this will necessitate some
compensation.

In Figure 8, the variation of W through the
wiggler magnets is shown for one of the wiggler
blocks used in the example. The curve was cal­
culated numerically while the mean values are
those obtained from the formula above. The agree­
ment is excellent.

Average W overfour equal field wiggler magnets
For the sake of completeness the same process is

carried out for the case of equal field wiggler magnets
of bending angle - (}1' (}b (}b - (}1 respectively.



194 A. HUTTON

Third magnet

<W3> = Ww + B1{Io+ KoC=. 13~m - 4Ld) }

+ Bi{~o - ~oC~~m + 7~d)

(
313L; 19LmLd 13L~)}

+ 'Yo --w + 2 + -3-'

And the average value over all the wiggler magnets
is

<W) == Ww - 2Koe1(Lm + L d)

2{PO (4Lm )+ e1 3 - lio -3- + Ld

(
37L; 103LmLd 23L~)}

+ 'Yo 15 + 24 +12

If the magnet length and drift spaces are small, we
have approximately that

pei
W ~ Ww + -3-

Note added in proof:

A. N. Skrinsky (private communication, August
1976) has indicated that the presence of reverse
bending in the ring affects the asymptotic limit
of the degree of polarization which is given by
the expression

8 fH 3
dB

sj3 fl H 31 dB .

For the present study this would imply a steady
reduction in the degree of polarization from 92%
at 20 GeV (wiggler not excited) to 72%at 10 GeV
for the normal polarization case and an approxi­
mately constant value of 72% over the entire
accessible energy range for the reversed, polariza­
tion case.




