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Abstract

New and surprising singularities are found in the forward scattering
amplitude for non-relativistic potential scattering with coupled chan-
nels. In the simplest case of two coupled channels, these singularities
appear when the energy difference between the two channels is larger
than the inverse range of the potential. They are similar to singularities
recently discovered by one of us for potential scattering on R3 ⊗ S1.
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I. Introduction

In this paper we will demonstrate that, in coupled-channel non-relativistic potential

scattering, new and surprising singularities (even simple poles) can appear in the forward

amplitude. It has been generally believed that in such cases, as well as in quantum field

theory, a common feature is the absence of singularities in the forward amplitudes on the

physical sheet (except possibly for bound state poles).

Most of this paper deals with the case of two coupled channels where Tnm(~k, ~k′) is a

2x2 matrix, and the potential Vmn has Yukawa off-diagonal entries. We explicitly calculate

T11(k) and T22(k) for the forward case in second order perturbation theory and show that,

while T
(2)
11 (k) is analytic on the physical sheet as expected, T

(2)
22 (k) has a pole at k =

i(a2 + µ2)/2µ, where a2 is the energy difference between the two channels, E2 − E1 = a2,

and µ−1 is the Yukawa range with a2 > µ2.

The pole in T
(2)
22 (k) on the physical sheet is unexpected. It definitely is not a bound

state since it appears in perturbation theory. It is interesting to have a better understanding

of these singularities and to look for physical systems where their presence may lead to

detectable effects.

Our main task is to understand this new singularity better. It would be helpful to know

if it appears in the full amplitude. This so far we have not achieved. The next best thing is

to look at higher orders. It turns out that the next order where this same singularity could

appear is the fourth order in perturbation. This is already a complicated problem, and we
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tackle it in an accompanying paper. It is found that the singularity appears there too and

at the same point, k = +i(a2 + µ2)/2µ.

A historical remark is now in order, namely what motivated us to consider this problem.

The path, as is often the case in physics, is quite indirect. More than two years ago, one of

us studied the problem of non-relativistic potential scattering on a space with an additional

internal compact dimension1, more specifically R3 ⊗ S1. The motivation for examining

such a problem arose in the context of whether the proposed existence 2 of a new compact

internal dimension, with radius, R, and R−1 = O(1TeV ). The question is whether such a

new compact dimension would lead to a violation of the forward dispersion relations, and

hence could be detected experimentally. This led one of us to look at a simple well defined

model, non-relativistic quantum mechanics on R3 ⊗ S1. The results were surprising. The

analyticity properties3,4,5 which are true for R3 do not hold in R3 ⊗ S1. Indeed new poles

appeared on the physical sheet in second order perturbation theory whenever R−1 > µ,

where µ−1 is the range of the potential.

In section II, we give a brief review of this R3 ⊗ S1 case. In the following section we

show that the same result occurs when S1 is replaced by N discrete equally spaced points

on a circle of radius R, i.e. R3 ⊗ ZN . The new poles are there for all N > 1, including

N = 2, which is just a two coupled channel problem. The only requirement being again

that 1/R > µ.

In section IV we define a simple two-channel problem, and proceed to calculate the
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second order forward scattering amplitude. We show that, under similar conditions, the

same pole appears in the forward amplitude.

II. The R3 ⊗ S1 Case

We sketch in this section the main result of ref. 1.

The Schrodinger equation on R3 ⊗ S1, written in dimensionless form is

[ ~∇2 +
1

R2

∂2

∂φ2
+K2 − V (r; φ)]Ψ(~r; φ) = 0, (2.1)

where ~rεR3, R is the fixed radius of S1, and φ is the angle on S1. The potential, V (r, φ),

is taken to be periodic in φ,, V (r, φ) = V (r, φ+ 2π). One also assumes from the beginning

that there are two scales, 1
R > µ, where µ−1 is the range of the force in R3. The normalized

free solutions of (2.1) are

ψo(~x, φ) =
1

(2π)2
ei
~k.~xeinφ, n = 0,±1,±2, ..., (2.2)

and the total energy is K2 = k2 + n2/R2.

The free Green’s function is given by

Go(K; ~x, φ; ~x′, φ′) = −
1

(2π)4

+∞∑
n=−∞

∫
d3p

ei~p.(~x−
~x′)ein(φ−φ′)

p2 + n2/R2 −K2 − iε
, (2.3)

The main surprising result of reference 1 is the appearance of a pole in the second order

calculation of T
(2)
nn (K), the forward scattering amplitude for n ≥ 1. It suffices to consider

the simple potential
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V (r, φ) = 2
e−µr

r
cosφ. (2.4)

A straightforward calculation then gives us

T (2)
nn (K) = −

1

2π2
F1(k; a2) |a2=2n−1

R2
−

1

2π2
F2(k; a2) |a2=2n+1

R2
, (2.5)

where F1 and F2 are given by

F1(k, a2) =
∫
d3p

1

[(~p− ~k)2 + µ2]2[p2 − (k2 + a2)− iε]
,

F2(k, a2) =

∫
d3p

1

[(~p− ~k)2 + µ2]2[p2 − (k2 − a2)− iε]
. (2.6)

The above integrations were performed in ref. 1, see Eqs. (4.10) and (4.11). In particular

we have

F1(k, a2) =
π2i

4kµ2
[

√
k2 + a2 + k − iµ

k − i (a2+µ2)
2µ

+

√
k2 + a2 − k − iµ

k + i (a2+µ2)
2µ

] (2.7)

Continuing the above expression into the region Imk ≥ 0, there is a pole at

k = +i
a2 + µ2

2µ
. (2.8)

The residue, (
√
k2 + a2 + k − iµ), does not vanish at this pole. In addition to the above

pole, F1(k, a2) has a branch points at k = ±ia. The branch cut is taken to join these two

points since we know that T
(2)
nn (K) is analytic for large enough | k |, Imk > 0. Also, with

1/R > µ, a > µ, and hence (a2 + µ2)/2µ > µ, and the pole lies above the branch point.

Finally, both F2 and T
(2)
oo have no unusual singularities.
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III. The Case R3 ⊗ ZN

In order to shed more light on the origin of the unusual pole found in ref. 1, and reviewed

in the preceding section, we consider a discrete version of the previous model. Physically,

such a discrete model is also of more relevance to atomic and nuclear systems. Instead of

S1 we take a set of N discrete points on a circle of radius R, i.e. R3 ⊗ ZN .

There are N discrete internal states n = 0, 1, ..., N−1. The previous model corresponds

to N →∞. Thus we have φ→ φj, j = 0, ..., N− 1; φj = 2πj
N . If we define the shift operator

D : j → j + 1, then we replace ∂2

∂φ2 by

∂2

∂φ2
→ (

N

2π
)2(D− 2 +D−1) (3.1)

The Schrodinger equation, after making the above replacement, becomes

[∇2 +
1

R2
(
N

2π
)2(D − 2 +D−1) +K2 − V (r, j)]Ψ(r, j) = 0. (3.2)

More explicitly, we have

[∇2 −
2

R2
(
N

2π
)2 +K2 − V (r, j)]Ψ(r, j) +

1

R2
(
N

2π
)2[Ψ(r, j+ 1) + Ψ(r, j− 1)] = 0. (3.3)

The free solution is now

ψo(~x, φj) = (
1

2π
)2ei

~k.~xeinφj ; φj =
2πj

N
, (3.4)

The total energy of this state is

K2 = k2 −
1

R2
(
N

2π
)2[ein

2π
N − 2 + e−in frac2πN ] = k2 +

1

R2
(
N

π
)2sin2nπ

N
. (3.5)
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Thus the replacement is n2

R2 →
1
R2 (Nπ )2sin2 nπ

N . The Green’s function now is

Go(K; ~x, j; ~x′, j ′) = −
1

(2π)4

N−1∑
n=0

∫
d3p

ei~p.(~x−
~x′)ein(j−j′)

p2 + 1
R2 (Nπ )2sin2 nπ

N −K
2 − iε

. (3.6)

From this point onwards the calculation of T
(2)
nn is very similar to the preceding case. In F1,

a2 is now given through the replacement n
2

R2 →
1
R2 (Nπ )2sin2 nπ

N , and since

a2 =
2n− 1

R2
≡
n2

R2
−

(n− 1)2

R2
, (3.7)

the new a2 for F1 is

a2 =
1

R2
(
N

π
)2[sin2πn

N
− sin2 (n− 1)π

N
] =

1

R2
(
N

π
)2sin

π

N
sin

(2n− 1)π

N
. (3.8)

The final result for n ≥ 1 is

T (2)
nn (K) = −

1

2π2
F1(k; a2) |

a2= 1
R2 (N

π
)2sin π

N
sin

(2n−1)π
N

−
1

2π2
F2(k; a2) |

a2= 1
R2 (N

π
)2sin π

N
sin

(2n+1)π
N

. (3.9)

Here, F1 and F2 are given by (2.6) and the result for F1 explicitly given by (2.7). Again we

have a pole in T
(2)
nn , n ≥ 1, at

k = +i
a2 + µ2

2µ
, (3.10)

but with a2 given in (3.8).

The only condition we need to satisfy is:

1

R2
(
π

N
)2sin

π

N
sin

(2n− 1)π

N
> µ2. (3.11)
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Next we expand the wave functions Ψ(~r, j) in terms of the internal eigenstates of the

internal momentum operator, 1
i∂/∂φj, which are given by 1√

N
exp( i2πnjN ), for internal state,

n. We define Φn(~r) by

Ψ(~r; j) =
1
√
N

N−1∑
n=0

Φn(~r)e
i2πjn
N , (3.12)

where now Φn(~r) represents a wave function in a specific internal eigenstate, n. Inverting

the sum in (3.12) we get

Φn(~r) =
1
√
N

N−1∑
j=0

Ψ(~r; j)e
−i2πjn
N . (3.13)

Multiplying the Eq. (3.3) by 1√
N
e
i2πjn
N and summing over j, we get

[∇2 +K2 −
1

R2
(
N

π
)2 sin2 πn

N
]Φn(~r)−

N−1∑
n′=0

U(r, n− n′)Φn′(~r) = 0, (3.14)

where

U(r, n)≡
1

N

N−1∑
j−0

V (r, j)e
i2πjn
N , (3.15)

and

U(r, n) = U(r, n+N ). (3.16)

Finally, in ref. 1 we used the explicit example where

V (r, φ) = 2
e−µr

r
cosφ (3.17)

We can replace this by

V (r, j) = 2
e−µr

r
cos

2πj

N
(3.18)
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Using Eq. (3.16) this gives

U(r, n) =
e−µr

r
(δn,1 + δn,−1). (3.19)

The phenomenon of reference 1 is already present for N = 2, and the Schrodinger

equation in that case is

(
∇2 +K2 −e−µr

r

−e
−µr

r ∇2 +K2 − 1
R2 ( 2

π )2

)(
Φ1(r)
Φ2(r)

)
= 0. (3.20)

This is just a 2×2 coupled channel problem with E1 = K2, E2 = k2, and K2 = k2 + a2,

and in this case a2 = 1
R2 ( 2

π )2.

IV The Two Channel Problem

We consider the following two channel Hamiltonian,

H =

(
−∇2 V (r)
V (r) −∇2 + a2

)
(4.1)

where a is real and fixed. The free eigenstates of H and the internal state, with momentum,

~k, are

φ1 =

(
ei
~k·~x

0

)
; φ2 =

(
0

ei
~k·~x

)
; (4.2)

with energies E1 = k2, and E2 = K2 = k2 + a2. The fact that no potential terms appear

along the diagonal in Eq. (4.1) is not relevant to the rest of this paper. One could easily

add U11(r) and U22(r) without affecting the main result.
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For this problem there are two forward scattering amplitudes, T11(K) and T22(K), with

√
E = K.

To demonstrate that the phenomenon of ref. 1 already exists in this simple problem, we

will calculate explicitly T
(2)
22 (K) in second order perturbation theory for the case

V (r) = e−µr/r. (4.3)

We will find later that T11(K) has no unusual singularities for ImK > 0. The free Green’s

function associated with H defined in Eq. (4.1) is, for energy E = K2,

G(K) =

(
Go(K) 0

0 Go(k),

)
(4.4)

where (H −K2)G(K; ~x− ~y) = δ3(~x− ~y), and Go(q) = − 1
4π e

iq|~x−~y|/| ~x− ~y |.

For forward scattering from an initial state
(

0
ei~k·~x

)
to the same outgoing state we have

T
(2)
22 (K) =

1

π

∫
d3x

∫
d3x′e−i

~k.~xV (x)Go(K; | ~x− ~x′ |)V (x′)ei
~k.~x′ . (4.5)

The off diagonal nature of V makes Go(K) = G11 appear in T
(2)
22 and not Go(k) = G22.

This is the main feature leading to the new singularity.

Going to momentum space. we obtain

T
(2)
22 =

−1

2π2
F (K), (4.6)

where F (K) are given by

F (K) =

∫
d3p

1

(p2 + µ)2[(~p+ ~k)2 −K2 − iε]
. (4.7)
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This is represented by figure 1. With a change of variables, this is identical to the expression

for F1 in Eq. (2.6), with K2 = k2 + a2. For k and a real, this integral was calculated in

reference 1, and is the same as Eq. (2.7), i.e.

F (K) =
π2i

4kµ2
[

√
k2 + a2 + k − iµ

k − i(a2 + µ2)/2µ
+

√
k2 + a2 − k − iµ

k + i(a2 + µ2)/2µ
]. (4.8)

With a2 > µ2 we can now continue F into the region Imk > 0. There is again the pole

at k = +i[(a2 + µ2)/2µ]. The residue of this pole does not vanish, since

√
k2 + a2 |pole=

√
−

(a2 + µ2)

4µ2
+ a2 = i

(a2 − µ2)

2µ
. (4.9)

and,

[
√
k2 + a2 + k − iµ]pole = i(

a2

µ
− µ) 6= 0. (4.10)

F has also two branch points at k = ±ia. These must be joined by a branch cut, since

we know a priori that F is analytic for large | k |, Imk > 0. Finally, with a2 > µ2,

a2 + µ2

2µ
> a, (4.11)

and the pole is above the branch point at k = +ia. Using the variable, K, E = K2, we get

Kpole
2 = −

(a2 + µ2)2

4µ2
+ a2 =

−(a2 − µ2)2

4µ2
(4.12)

and

Kpole = +i
(a2 − µ2)

2µ
(4.13)
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For a2 > µ2; the r.h.s. of (4.13) is positive and the pole is on the physical energy sheet.

The calculation of T
(2)
11 is straightforward and leads to

T
(2)
11 =

−π2

4kµ
[1 +

−iµ

k + iµ2
] (4.14)

The only pole is at k = −iµ/2, on the unphysical sheet.

Finally, we should stress the obvious fact that only for a pure Yukawa,V (r), do we get

a simple pole. If we choose V (r) =
∫∞
µo
C(µ)e−µrdµ, i.e. a superposition of Yukawa, then

the pole becomes a branch cut but still on the physical sheet.

V Remarks

The results of this paper present us with two problems, one mathematical and the other

physical.

The mathematical question concerns this new singularity and whether it appears in the

full amplitude, not just in second order. This has not yet been accomplished. However, in

the accompanying paper we study the fourth order two channel problem. We find that a

singularity appears at the same point k = +i(a2 + µ2)/2µ, and its strength is the same as

a pole. The position of the singularity remains unchanged in fourth-order. This suggests

strongly that the full forward amplitude indeed has a singularity located at k = +i(a2 +

µ2)/2µ.

The second question relates to the relevance of our result to physics. Is it just a math-
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ematical oddity, or does there exist real physical models where our result manifests itself?

The nuclear physicists deal normally with the situation where a2 < µ2 not a2 > µ2. In other

words, they deal with coupled channels whose energy difference is small compared to the

mass of the pion. The splitting of the levels is produced by the same forces and cannot be

too large. A more promising approach is to look for a coupled channel problem where the

channel splitting is generated by an external factor. For example, in atomic physics, one

could look for a situation where the splitting is enhanced by a strong magnetic field while

the potentials are essentially unchanged by the field. There also could be such examples in

condensed matter physics. At present we have no concrete examples, but we are continuing

our search.

Acknowledgements

We thank Torleif Ericsson and Andre Martin for helpful discussions. We would also like

to thank the Theory Division at CERN for its kind hospitality.

This work was supported in part by the U.S. Department of Energy under Grant DE-

FG02-91ER40651, Task B and Grant no. DE-FG02-84ER40158.

References

1. N.N. Khuri, ”Annals of Physics”242, 332 (1995).

2. I. Antoniadis, Physics Letters B246, 377(l990); also I. Antoniadis

12



C. Munoz and M. Quiros, Nucl. Physics. B397, 515 (l993).

3. N.N. Khuri, Phys. Rev. 107, 1148 (l957).

4. A. Grossmann and T.T. Wu, Journal of Math. Phys. 2, 710 (l961).

5. W. Hunziker, Helv. Phys. Acta 34, 593 (1961).

13



pp

k k

µ2

K

µ2

− 2

Figure 1: Feynman diagram for the second order amplitude. The propagator
for the horizontal internal line has imaginary mass = −iK = −i

√
k2 + a2.
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