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Abstract

The principal difficulty in deducing weak interaction properties from experi-
mental measurements of B-decays lies in controlling the strong interaction effects.
In this talk I review the status of theoretical calculations of the amplitudes for ex-
clusive leptonic and semileptonic decays, in the latter case with special emphasis
on the extraction of the Vcb and Vub matrix elements.
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1 Introduction

In this lecture I will review the status of theoretical calculations of exclusive B-
decays. It is intended that this talk should complement those presented at this
conference by N. Uraltsev [1] (theory of heavy quark physics), A. Ali [2] (rare
B-decays) and M. Gronau [3] (CP -violation). The two main topics which will be
discussed here are:

i) Leptonic Decays in which the B-meson decays into leptons, e.g. B →
τντ . These are the simplest to consider theoretically (see sec. 2). Their
observation at future b-factories would have a significant impact on the
phenomenology of beauty decays.

ii) Semileptonic Decays in which the b-quark decays into a lighter quark +
leptons. Examples of such decays include B → (D or D∗) + lνl and B →
(π or ρ) + lνl, which are being used to determine the Vcb and Vub matrix
elements of the CKM-matrix (see sec. 3). Many of the theoretical issues
concerning these decays are relevant also for rare decays, such as B → K∗γ.

Non-Leptonic Decays in which the B-meson decays into two or more hadrons,
such as B̄0 → π−D+, are considerably more complicated to treat theoretically,
and with our current level of understanding require model assumptions. I will
not discuss them further in this talk (see however the talk by Gronau [3]).

In studying the decays of B-mesons, we are largely interested in extracting
information about the properties and parameters of the weak interactions, and
in looking for possible signatures of physics beyond the standard model. The
most important theoretical problem in interpreting the experimental results, is
to control the strong interaction effects which are present in these decays. This
is a non-perturbative (and hence very difficult) problem, and is the main subject
of this talk. The main theoretical tools that are used to quantify the effects
are lattice simulations and QCD sum rules, combined with the formalism of the
heavy quark effective theory (HQET) where appropriate.

As with any problem in non-perturbative quantum field theory, the exploita-
tion of all available symmetries is very important. For the case of heavy quark
physics, the use of the spin-flavour symmetries that are present when the masses
of the heavy quarks are ≫ ΛQCD, leads to considerable simplifications (see refs. [1]
and [4, 5] for recent reviews and references to the original literature). In partic-
ular, as will be seen in the following sections, the use of heavy quark symmetries
and the HQET is particularly helpful for B-decays.

It is not appropriate in this lecture to present a detailed critical review of the
systematic errors present in lattice simulations (see ref. [6] for a recent review).
Since many of the results below are based on lattice simulations, it is, however,
necessary to mention at least the main source of uncertainty present in the calcu-
lations of quantities in B-physics. The number of space time points on a lattice is
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Figure 1: Diagram representing the leptonic decay of the B-meson.

limited by the available computing resources. One therefore has to compromise
between two competing requirements: (i) that the lattice be sufficiently large
in physical units to contain the particle(s) whose properties are being studied,
i.e. the length of the lattice in each direction should be ≫ 1 fm, and (ii) that
the spacing between neighbouring lattice points, a, be sufficiently small to avoid
errors due to the granularity of the lattice (called “lattice artefacts” or “dis-
cretization errors” in the literature), i.e. a−1 ≫ ΛQCD. Much effort is currently
being devoted to reducing the discretization effects by constructing “improved”
(or even “perfect” [7]) lattice actions and operators following the approach of
Symanzik [8]. Typical values of a−1 in current simulations are about 2–3 GeV,
i.e. the lattice spacings are larger than the Compton wavelength of the b-quark,
and the propagation of a b-quark on such lattices cannot be studied directly. The
results presented below are obtained by extrapolating those computed directly
for lighter quarks (with masses typically around that of the charm quark). In
addition, calculations can be performed in the HQET and the results obtained
in the infinite mass limit can then be used to guide this extrapolation. I should
also add that, except where explicitly stated to the contrary, the results below
have been obtained in the quenched approximation, in which sea-quark loops
are neglected. This approximation is very gradually being relaxed, as computing
resources and techniques are improved.

The second non-perturbative method which is used extensively to compute
amplitudes for B-decays is QCD sum rules [9]. In this approach, correlation
functions are calculated at intermediate distances, keeping a few terms in the
Operator Product Expansion (OPE), and by using dispersion relations are related
to spectral densities. The evaluation of the systematic uncertainties, such as those
due to the truncation of the perturbation series and OPE or to the specific models
that are used for the continuum contribution to the spectral densities, is a very
complicated issue; see refs. [4, 5] and the papers cited below for any discussion
of this important question.

I now review the status of leptonic and semileptonic decays of B-mesons in
turn.
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2 Leptonic Decays

Leptonic decays of B-mesons, see fig. 1, are particularly simple to treat theoreti-
cally 2. The strong interaction effects are contained in a single unknown number,
called the decay constant fB. Parity symmetry implies that only the axial com-
ponent of the V –A weak current contributes to the decay, and Lorentz invariance
that the matrix element of the axial current is proportional to the momentum of
the B-meson (with the constant of proportionality defined to be fB):

〈0 |Aµ(0) |B(p)〉 = i fB pµ . (1)

Knowledge of fB would allow us to predict the rates for the corresponding decays:

Γ(B → lνl + lνl γ) =
G2

F V 2
ub

8π
f 2

Bm2

l mB

(

1 − m2
l

m2
B

)2

(1 + O(α)) , (2)

where the O(α) corrections are also known.
In addition to leptonic decays, it is expected that the knowledge of fB would

also be useful for our understanding of other processes in B-physics, particularly
for those for which “factorization” might be thought to be a useful approximation.
For example, in B–B mixing, the strong interaction effects are contained in the
matrix element of the ∆B =2 operator:

M = 〈B0 | b̄γµ(1 − γ5)q b̄γµ(1 − γ5)q |B0〉 . (3)

It is conventional to introduce the BB-parameter through the definition

M =
8

3
f 2

BM2

BBB . (4)

In the vacuum saturation approximation (whose precision is difficult to assess a
priori) BB = 1. It appears that BB is considerably easier to evaluate than fB,
e.g. recent lattice results (for the matrix element M of the operator renormalized
at the scale mB in the MS scheme) include B(mb) = 0.90(5) and 0.84(6) [10]
and 0.90(3) [11]. Thus it is likely that the uncertainty in the value of the matrix
element M in eq. (3) is dominated by our ignorance of fB.

fDs
: Since experimental results are beginning to become available for fDs

, I
will start with a brief review of the decay constants of charmed mesons. Many
lattice computations of fD have been performed during the last ten years, and
my summary of the results is [12] 3

fD = 200 ± 30 MeV , (5)
2For simplicity the presentation here is for the pseudoscalar B-meson. A parallel discussion

holds also for the vector meson B∗.
3 The rapporteur at the 1995 Lattice conference summarized the results for the decay con-

stants as fD ≃ fB ≃ 200 GeV± 20% [13].
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using a normalization in which fπ+ ≃ 131 MeV. The value of the decay con-
stant is found to decrease as the mass of the light valence quark is decreased
(as expected), so that fDs

is 7–15% larger than fD, fDs
= 220 ± 35 MeV. As

an example of the many lattice results which have been published for fDs
, I give

here the two new ones presented at this year’s international symposium on lattice
field theory. The MILC collaboration found fDs

= 211± 7± 25± 11 MeV, where
the first error is statistical, the second an estimate of the systematic uncertainties
within the quenched approximation, and the third an estimate of the quenching
errors [14]. The JLQCD collaboration found fDs

= 216 ± 6 +22

−15
MeV, where the

second error is systematic (within the quenched approximation) [15]. These re-
sults illustrate the fact that the errors are dominated by systematic uncertainties,
and the main efforts of the lattice community are being devoted to controlling
these uncertainties.

It is very interesting to compare the lattice prediction of 220 ± 35 MeV with
experimental measurements for fDs

. The 1996 Particle Data book [16] quotes the
results fD+ < 310 MeV and

fD+
s

= 232 ± 45 ± 20 ± 48 MeV WA75 (6)

fD+
s

= 344 ± 37 ± 52 ± 42 MeV CLEO (7)

fD+
s

= 430 +150

−130
± 40 MeV BES . (8)

More recently the CLEO result has been updated [17] (fD+
s

= 284 ± 30 ± 30 ±
16 MeV) and the E653 collaboration has found [18] fD+

s

= 194±35±20±14 MeV.
Combining the four measurements of fDs

from Ds → µν decays, the rapporteur
at this year’s ICHEP conference found [19]

fDs
= 241 ± 21 ± 30 MeV . (9)

In spite of the sizeable errors, the agreement with the lattice prediction is very
pleasing and gives us further confidence in the predictions for fB and related
quatnities.

fB: For sufficiently large masses of the heavy quark, the decay constant of a
heavy–light pseudoscalar meson (P ) scales with its mass (MP ) as follows:

fP =
A√
MP

[

αs(MP )−2/β0 {1 + O(αs(MP ) ) } + O
(

1

MP

) ]

, (10)

where A is independent of MP . Using the scaling law (10), a value of about
200 MeV for fD would correspond to fB ≃ 120 MeV. Results from lattice com-
putations, however, indicate that fB is significantly larger than this and that
the O(1/MP ) corrections on the right-hand side of eq. (10) are considerable. My
summary of the lattice results is [12] (see also footnote 3):

fB = 180 ± 40 MeV . (11)
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B D, D∗, π, ρ

b c, u

q̄

V –A

Figure 2: Diagram representing the semileptonic decay of the B-meson. q̄ repre-
sents the light valence antiquark, and the black circle represents the insertion of
the V –A current with the appropriate flavour quantum numbers.

The coefficient of the O(1/MP ) corrections is found to be typically between 0.5
and 1 GeV.

Present lattice studies of heavy–light decay constants are concentrating on
relaxing the quenched approximation, on calculating the O(1/MP ) corrections in
eq. (10) explicitly, and on reducing the discretization errors through the use of
improved actions and operators. The results obtained using QCD sum rules are
in very good agreement with those from lattice simulations (see, for instance,
ref. [4] and references therein, and ref. [20]).

3 Semileptonic Decays

For the remainder of this talk I will discuss semileptonic decays of B-mesons,
considering in turn the two cases in which the b-quark decays semileptonically
into a c-quark or a u-quark, see fig. 2. In both cases it is convenient to use space-
time symmetries to express the matrix elements in terms of invariant form factors
(I use the helicity basis for these as defined below). When the final state is a
pseudoscalar meson P = D or π, parity implies that only the vector component
of the V –A weak current contributes to the decay, and there are two independent
form factors, f+ and f 0, defined by

〈P (pP )|V µ|B(pB)〉 = f+(q2)

[

(pB + pP )µ − M2
B − M2

P

q2
qµ

]

+ f 0(q2)
M2

B − M2
P

q2
qµ , (12)

where q is the momentum transfer, q = pB − pP . When the final-state hadron is
a vector meson V = D∗ or ρ, there are four independent form factors:

〈V (pV )|V µ|B(pB)〉 =
2V (q2)

MB + MV

ǫµγδβε∗βpB γpV δ (13)

〈V (pV )|Aµ|B(pB)〉 = i(MB + MV )A1(q
2)ε∗µ −

5



i
A2(q

2)

MB + MV
ε∗·pB(pB + pV )µ + i

A(q2)

q2
2MV ε∗·pBqµ , (14)

where ε is the polarization vector of the final-state meson, and q = pB − pV .
Below we shall also discuss the form factor A0, which is given in terms of those
defined above by A0 = A + A3, with

A3 =
MB + MD∗

2MD∗

A1 −
MB − MD∗

2MD∗

A2 . (15)

3.1 Semileptonic B → D and B → D∗ Decays

B → D∗ and, more recently, B → D decays are used to determine the Vcb element
of the CKM matrix. Theoretically they are relatively simple to consider, since
the heavy quark symmetry implies that the six form factors are related, and that
there is only one independent form factor ξ(ω), specifically:

f+(q2) = V (q2) = A0(q
2) = A2(q

2)

=

[

1 − q2

(MB + MD)2

]

−1

A1(q
2) =

MB + MD

2
√

MBMD

ξ(ω) , (16)

where ω = vB ·vD. Here the label D represents the D- or D∗-meson as appropriate.
In this leading approximation the pseudoscalar and vector mesons are degenerate.
The unique form factor ξ(ω), which contains all the non-perturbative QCD effects,
is called the Isgur–Wise (IW) function. Vector current conservation implies that
the IW-function is normalized at zero recoil, i.e. that ξ(1) = 1. This property is
particularly important in the extraction of the Vcb matrix element.

The relations in eq. (16) are valid up to perturbative and power corrections.
The theoretical difficulty in making predictions for the form factors lies in calcu-
lating these corrections with sufficient precision.

The decay distribution for B → D∗ decays can be written as:

dΓ

dω
=

G2
F

48π3
(MB − MD∗)2M3

D∗

√
ω2 − 1 (ω + 1)2 ·

[

1 +
4ω

ω + 1

M2
B − 2ωMBMD∗ + M2

D∗

(MB − MD∗)2

]

|Vcb|2 F2(ω) , (17)

where F(ω) is the IW-function combined with perturbative and power correc-
tions. It is convenient theoretically to consider this distribution near ω = 1. In
this case ξ(1) = 1, and there are no O(1/mQ) corrections (where Q = b or c) by
virtue of Luke’s theorem [21], so that the expansion of F(1) begins like:

F(1) = ηA

(

1 + 0
ΛQCD

mQ
+ c2

Λ2
QCD

m2
Q

+ · · ·
)

, (18)
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where ηA represents the perturbative corrections. The one-loop contribution to
ηA has been known for some time now, whereas the two-loop contribution was
evaluated this year, with the result [22]:

ηA = 0.960 ± 0.007 , (19)

where we have taken the value of the two loop contribution as an estimate of the
error.

The power corrections are much more difficult to estimate reliably. Neubert
has recently combined the results of refs. [23]–[25] to estimate that the O(1/m2

Q)
terms in the parentheses in eq. (18) are about −0.055 ± 0.025 and that

F(1) = 0.91(3) . (20)

In considering eq. (20), the fundamental question that has to be asked is
whether the power corrections are sufficiently under control. There are differing,
passionately held views on this subject. The opinion of G. Martinelli and myself
is that the uncertainty in eq. (20) is underestimated [26]. The power corrections
are proportional to matrix elements of higher-dimensional operators. These have
either to be evaluated non-perturbatively or to be determined from some other
physical process. In either case, before the matrix element can be determined
a subtraction of large terms is required (since higher-dimensional operators in
general contribute to non-leading terms). The “large” terms are usually only
known in perturbation theory at tree level, one-loop level or exceptionally at two-
loop level. Therefore the precision of such a subtraction is limited. Moreover the
definition of the higher-dimensional operators, and hence the value of their matrix
elements, depend significantly on the treatment of the higher-order terms of the
perturbation series for the coefficient function of the leading twist operator (this
series not only diverges, but is not summable by any standard technique). These
arguments are expanded, with simple examples and references to the original
literature, in ref. [26]. Considerable effort is being devoted at present to improving
the theoretical control over power corrections.

Bearing in mind the caveat of the previous paragraph, the procedure for
extracting the Vcb matrix element is to extrapolate the experimental results for
dΓ/dω to ω = 1 and to use eq. (17) with the theoretical value of F(1). See for
example the results presented by Artuso at this conference [27].

Having discussed the theoretical status of the normalization F(1), let us now
consider the shape of the function F(ω), near ω = 1. A theoretical understanding
of the shape would be useful to guide the extrapolation of the experimental data,
and also as a test of our understanding of the QCD effects. We expand F as a
power series in ω − 1:

F(ω) = F(1)
[

1 − ρ̂2 (ω − 1) + ĉ (ω − 1)2 + · · ·
]

, (21)

7



where [28]
ρ̂2 = ρ2 + (0.16 ± 0.02) + power corrections , (22)

and ρ2 is the slope of the IW-function. What is known theoretically about the
parameters in eqs. (21) and (22)? Bjorken [29] and Voloshin [30] have derived
lower and upper bounds, respectively, for the ρ2:

1

4
< ρ2 <

1

4
+

Λ

2Emin

, (23)

where Λ is the binding energy of the b-quark in the B-meson, and Emin is the
difference in masses between the ground state and the first excited state. There
are perturbative corrections to the bounds in eq. (23) [31], on the basis of which
Korchemsky and Neubert [32] conclude that

0.5 < ρ2 < 0.8 . (24)

Values of ρ2 obtained using QCD sum rules and lattice simulations are presented
in table 1. The theoretical results are broadly in agreement with the experimental
measurements, e.g. in fig. 3 we show the comparison of the lattice results from
ref. [37] with the data from the CLEO collaboration [38].

ρ2 Method
0.84 ± 0.02 QCD sum rules [33]
0.7 ± 0.1 QCD sum rules [34]

0.70 ± 0.25 QCD sum rules [35]
1.00 ± 0.02 QCD sum rules [36]

0.9 +0.2

−0.3

+0.4

−0.2
Lattice QCD [37]

Table 1: Values of the Slope of the IW–function of a heavy meson, obtained using
QCD sum rules or Lattice QCD.

Recently, using analyticity and unitarity properties of the amplitudes, as well
as the heavy quark symmetry, Caprini and Neubert have derived an intriguing
result for the curvature parameter ĉ [39]:

ĉ ≃ 0.66 ρ̂2 − 0.11 . (25)

This result implies that one of the two parameters in (21) can essentially be
eliminated, simplifying considerably the extrapolation to ω = 1. Earlier attempts
to exploit similar methods gave weaker bounds on the parameters.

Finally in this section I consider B → D semileptonic decays, which are
beginning to be measured experimentally [27] with good precision. Theoretically
the first complication is that the 1/mQ corrections do not vanish at ω = 1.
However, as pointed out by Shifman and Voloshin [40], these corrections would

8



Figure 3: Fit of the UKQCD lattice results for |Vcb|F(ω) [37] to the experimental
data from the CLEO collaboration [38].

vanish in the limit in which the b- and c-quarks are degenerate. This leads to a
suppression factor

S =
(

MB − MD

MB + MD

)2

≃ 0.23 (26)

in the 1/mQ corrections, which reduces their size considerably. Ligeti, Nir, and
Neubert estimate the 1/mQ corrections to be between approximately −1.5% to
+7.5% [41]. The 1/m2

Q corrections for this decay have not yet been studied
systematically.

3.2 Semileptonic B → ρ and B → π Decays

In this subsection I consider the semileptonic decays B → ρ and B → π. They
decays are currently being studied experimentally, with the goal of extracting the
Vub matrix element.

Heavy quark symmetry is less predictive for heavy→light decays than it is for
heavy→heavy ones. In particular, as we have seen in the preceding subsection,
the normalization condition ξ(1) = 1 was particularly useful in the extraction of
Vcb. There is no corresponding normalization condition for heavy→light decays.
Heavy quark symmetry does, however, give useful scaling laws for the behaviour
of the form factors with the mass of the heavy quark at fixed ω:

V, A2, A0, f
+ ∼ M

1

2 ; A1, f
0 ∼ M−

1

2 ; A3 ∼ M
3

2 . (27)

Each of the scaling laws in eq. (27) is valid up to calculable logarithmic correc-
tions.
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Figure 4: The form factor A1(q
2) for the decay B̄0 → ρ+l−ν̄l. Squares are

measured lattice data, extrapolated to the B scale at fixed ω. The three curves
and points at q2 = 0 have been obtained by fitting the squared using the three
procedures described in the text: constant (dashed line and octagon), pole (solid
line and diamond) and dipole (dotted line and cross).

Several groups have tried to evaluate the form factors using lattice simula-
tions [42]–[44] (for a review see ref. [45]). The results that I will use for illustration
are taken from the UKQCD collaboration, who have attempted to study the q2

dependence of the form factors.
From lattice simulations we can only obtain the form factors for part of the

physical phase space. In order to keep the discretization errors small, we require
that the three-momenta of the B, π and ρ mesons be small in lattice units. This
implies that we can only determine the form factors at large values of momentum
transfer q2 = (pB − pπ,ρ)

2. Fortunately, as we will see below, for B → ρ decays,
this region of momentum space is appropriate for the extraction of Vub.

As an example, I show in fig. 4 the values of the A1 form factor from ref. [44].
These authors evaluate the form factors for four different values of the mass of
the heavy quark (in the region of that of the charm quark), and then extrapolate
them, using the scaling laws in eq. (27), to the b-quark. The squares in fig. 4
represent the extrapolated values, and as expected they are clustered at large
values of q2. In order to estimate them over the full kinematical range some
assumption about the q2 behaviour is required. Fig. 4 also contains three such
extrapolations in q2, performed assuming that:

i) A1 is independent of q2 (dashed line). The extrapolated value of A1(0) is
denoted by an octagon, and the χ2/dof is poor for this fit.

10



ii) The behaviour of A1(q
2) satisfies pole dominance, i.e. that A1 is given by

A1(q
2) =

A1(0)

(1 − q2/Mn)n
, (28)

with n = 1 (solid line). A1(0) and M1 are parameters of the fit, but the value
of M1 is in the range expected for the 1+ bū resonance. The extrapolated
value of A1(0) is denoted by the diamond.

iii) The behaviour of A1(q
2) takes the dipole form (28) with n = 2 (dotted

line). This is almost indistinguishable from the pole fit. The extrapolated
value of A1(0) is now denoted by a cross.

The χ2/dof for the pole and dipole fits are both very good.
The UKQCD collaboration [44] comment that for b → ρ decays in particular,

the fact that the lattice results are obtained at large values of q2 is not a serious
handicap to the extraction of the Vub matrix element. Indeed they advocate using
the experimental data at large values of q2 (as this becomes available during the
next few years) to extract Vub. To get some idea of the precision that might be
reached they parametrize the distribution by:

dΓ(B̄0 → ρ+l−ν̄)

dq2
= 10−12

G2
F |Vub|2

192π3M3
B

q2 λ
1

2 (q2) a2
(

1 + b(q2 − q2

max)
)

, (29)

where a and b are parameters to be determined from lattice computations, and
the phase-space factor λ is given by λ(q2) = (M2

B +M2
ρ −q2)2−4m2

BM2
ρ . Already

from their current simulation the UKQCD collaboration are able to obtain a2

with good precision [44]
a2 = 21 ± 3 GeV2 . (30)

Although b is obtained with less precision,

b = (−8 +4

−6
) 10−2 GeV−2 , (31)

the fits are less sensitive to this parameter at large q2. The prediction for the
distribution based on these numbers is presented in fig. 5, and the UKQCD
collaboration estimate that they will be able to determine Vub with a precision of
about 10% or better.

Although, in this case, the difficulty of extrapolating lattice results from large
values of q2 to smaller ones may not have significant implications for extracting
physical information, this is not always the case. Already for B → π decays, using
results at large values of q2 restricts the precision with which Vub can be extracted.
This problem is even more severe for the penguin-mediated rare decay B → K∗γ,
where the physical process occurs at q2 = 0. Much effort is being devoted to this
extrapolation, trying to include the maximum number of constraints from heavy
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Figure 5: Differential decay rate as a function of q2 for the semileptonic decay
B̄0 → ρ+l−ν̄l. Squares are measured lattice data, solid curve is fit from eq. (29)
with parameters given in eqs. (30) and (31). The vertical dotted line marks the
charm threshold.

quark symmetry (as discussed above) and elsewhere [46]. A simple example of
such a constraint for B → π semileptonic decays is that at q2 = 0, the two form
factors f+ and f 0 must be equal. Similar constraints exist for other processes.

An interesting approach to the problem of the extrapolation to low values
of q2 has been suggested by Lellouch [47]. By combining lattice results at large
values of q2 with kinematical constraints and general properties of field theory,
such as unitarity, analyticity and crossing, he is able to tighten the bounds on
form factors at all values of q2. This technique can, in principle, be used with
other approaches, such as sum rules, quark models, or even in direct comparisons
with experimental data, to check for compatibility with QCD and to extend the
range of results.

Ball and Braun have recently re-examined B → ρ decays using light-cone sum
rules [48], extending the earlier analysis of ref. [49]. Consider, for example, the
graph of fig. 6, which represents a contribution to the decay amplitude. For large
heavy-quark masses and small q2 there are two competing contributions of the
same order (e.g. O(m

−3/2

Q ) for the form factor A1). The first one comes from the
region of phase space in which the momentum of the gluon (g) is of the order of
√

mbΛQCD, so that this contribution corresponds to small transverse separations

and can be treated in perturbation theory (the non-perturbative effects are con-
tained in the wave functions at the origin, i.e. in the decay constants). This is
similar to the treatment of hard exclusive processes, such as the form factors of
the pion and the proton at large momentum transfers. However, there is a second

12
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b u
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g

Figure 6: Representation of a contribution to the semileptonic B → ρ decay.

contribution in which the ρ-meson is produced in a very asymmetric configuration
with most of the momentum carried by one of the quarks. In this case there are no
hard propagators. For most other hard exclusive processes the “end-point” con-
tribution is suppressed by a power of the large momentum transfer. Although, in
principle, for mQ very large, the end-point is suppressed by Sudakov factors [50],
this suppression is not significant for the b-quark. The end-point contribution
has to be included and treated non-perturbatively, since it comes from the region
of large transverse separations. This is the motivation for introducing light-cone
sum rules [49], based on an expansion of operators of increasing twist (rather
than dimension). The non-perturbative effects are contained in the light-cone
wave function of the ρ-meson, and the leading twist contribution to this wave
function was recently re-examined in ref. [51].

An interesting consequence of the analysis of the previous paragraph is a set
of scaling laws for the behaviour of the form factors with the mass of the heavy
quark at fixed (low) q2, rather than at fixed ω as in eq. (27). An example of fixed
q2 scaling laws is:

A1(0) Θ M
3/2

P = const(1 + γ/MP + δ/M2

P + · · ·) , (32)

where MP is the mass of the heavy pseudoscalar meson. The factor Θ contains
the perturbative logarithmic corrections.

Some of the results of Ball and Braun are presented in fig. 7, where the form
factors A1, A2 and V are plotted as functions of q2. The results are in remarkable
agreement with those from the UKQCD collaboration, in the large q2 region
where they can be compared.

4 Conclusions

The principal difficulty in deducing weak interaction properties from experimental
measurements of B-decays lies in controlling the strong interaction effects. These
are being studied using non-perturbative methods such as lattice simulations or
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Figure 7: Results for the form factors A1(q
2), A2(q

2) and V (q2) for B → ρ
semileptonic decays as a function of t = q2 [48]. The curves correspond to the
results obtained with light-cone sum rules by Ball and Braun [48], and the points
to the results from the UKQCD collaboration [44].
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QCD sum rules. Considerable effort and progress is being made in reducing the
systematic uncertainties present in lattice computations.

Although both the theoretical and experimental errors on the value of fDs

are still sizeable, it is nevertheless very pleasing that they are in agreement. It
is also satisfying that the values of Vcb extracted from exclusive and inclusive
measurements are in good agreement. The theoretical uncertainties for the two
processes are different, and the agreement is evidence that they are not signifi-
cantly underestimated.

It has been argued that B → ρ decays at large q2, where the evaluation of
the relevant form factors using lattice simulations is reliable, will soon provide a
determination of Vub at the 10% level or better [44]. It will also be interesting to
observe developments of the light-cone approach to these decays.

Many lattice computations of fB have been performed using static heavy
quarks (mQ = ∞), and serve as a very valuable check of the consistency of the
extrapolation of the results obtained with finite heavy-quark masses. Such checks
have not been performed yet for many other quantities in B-physics; this is an
important omission, which should be put right.

This talk has been about the decays of B-mesons. Detailed experimental and
theoretical studies are also beginning for the Λb-baryon. For example, the first
lattice results for the Isgur–Wise function of the Λb has been presented in ref. [52].
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