
Particle Accelerators, 1996, Vol. 55, pp. [345-351] /99-105

Reprints available directly from the publisher

Photocopying permitted by license only

© 1996 OPA (Overseas Publishers Association)

Amsterdam B.Y. Published in The Netherlands under
license by Gordon and Breach Science Publishers SA

Printed in Malaysia

THE CLASSIC PROJECT

F. CHRISTOPH ISELIN

CERN Division SL, 1211 Geneva 23, Switzerland

(Received 22 January 1996; infinalform 22 January 1996)

The CLASSIC project was started with the aim of providing a uniform interface to accelerator
codes, including input language, data structures, and interface to control systems. This should
allow data and algorithms to be interchanged easily between programs. It should also allow the
use of the same algorithms to talk to a simulation model or the real machine.

Keywords: Lattices; maps.

1 INTRODUCTION

The complete solution of accelerator physics problems usually requires
several programs to be run. Exchange ofdata and algorithms among programs
is still very difficult due to unnecessary differences in input format and
internal data structure. To alleviate the problems the development of a
C++ class library called CLASSIC (Class Library for Accelerator System
Simulation and Control) has been started by John Irwin at SLAC. This library
shall provide services for building portable accelerator structures and doing
analysis on these structures.

Section 2 summarises the historical background which lead to this project,
and Section 3 outlines its goals and anticipated time schedule.

2 HISTORY

2.1 Input Language

In order to solve all aspects of a problem in accelerator physics it is usually
required to run several computer programs. Different programs use a wide
variety of input formats to describe an accelerator lattice. Some well known
examples are:

[345]/99



[346]1100 ECh. ISELIN

TRANSPORT: l In the original version both element definitions and
commands occur in-line within a list of the structure. Element and command
codes are numeric. Newer versions also understand mnemonic codes and
allow more flexibility in command placement.

PETROS:2 The fixed-format input first defines all different elements, and
then lists their names in the order of their occurrence in the machine.

SYNCH:3 Uses a fixed input format and mnemonic command codes.
Commands and definitions can be intermixed freely.

Many other formats have been used, all of which have their own weakness
and/or strength. This makes it difficult to exchange input data between
programs, as the risk is important that the data used for different programs
are not consistent.

These problem led to the definition of a format-free "standard input
language" with mnemonic type codes for elements during a workshop at
SLAC.7 However, the standard language lacks definitions for command
codes. The language has been implemented in many programs, e.g. in
MARYLIE,4 MAD,S TRANSPORTl and DIMAD.6

2.2 Machine Structure in Storage

Like the input language, the data structure describing the accelerator in
computer memory differs widely from one program to the other. The
first-generation ofprograms used a static structure based on fixed FORTRAN
arrays (example: SYNCH3).

The second-generation of programs have implemented some more or less
sophisticated memory management in FORTRAN (examples: MARYLIE,4
MADS). Very sophisticated systems for general memory management exist,
like the CERN-written package called ZEBRA.8 The use of this package in
MAD reduced the memory overhead significantly, but made it difficult to a
non-initiated programmer to add new features.

In third-generation of programs the trend goes to object-oriented tech
niques with true dynamic memory allocation. The most promising language
to do this is C++. The first attempt at such a program is BEAMLINE.9 More
recently, a new version of MAD, MAD++, has been started at CERN.

The differences in internal formats make it impossible to exchange program
code between different programs. Therefore, when switching from one
program to the other, users have no choice except translating the data files,



THE CLASSIC PROJECT [347]/101

with the obvious riskoferrors described in the previous subsection. A portable
data structure for general use in optics programs would be ofinestimable help.

2.3 Map Representation and Dynamic Analysis

Many different methods have been used to represent transfer maps and for
analysis of optical behaviour of the machine. Most first-generation programs
used "TRANSPORT maps", i.e. transfer matrices, possibly augmented
with second-order, sometimes third-order terms (example: TRANSPORT1).
The main problem with these maps is that truncation makes the maps
non-symplectic. Some programs even ignored linear coupling completely.

Some second-generation and third-generation programs use Lie-algebraic
maps (examples: MARYLIE,4 MADS). Coupling is fully handled in these
programs, and map analysis uses normal forms in N dimensions. Other
programs use Taylor maps (examples: TEAPOT,lO TRACYIDESPOT,ll
Turchetti's program12). These programs expand the transfer maps into a
Taylor series and apply normal form algorithms to the result. Treatment of
single resonances is also feasible with both methods. However, more than
2degrees offreedom are difficult to handle without Lie algebra. Both methods
can be based on maps for finite-length elements (examples: MARYLIE,4
MADS), or on thin lens approximations (example: TEAPOT10).

Linear normal form analysis gives the linear lattice functions. 13 Their
original form ignores coupling, and they are only applicable for nearly
linear lattices. Later coupled lattice functions were introduced.14 The transfer
matrices are first decoupled by a similarity transformation, and the resulting
block diagonal matrices are analysed. Again, this method is hardly applicable
to strongly non-linear machines.

An uniform portable representation of maps would facilitate the transfer
of maps from one program to another. One program might then be optimised
for map generation and the other for map analysis. Whatever transfer map
representation is chosen, it should allow a complete analysis of the motion.
It should enable a large range of analysis methods to be applied. The most
flexible representation seems to be based on polynomial ("Taylor") maps.
Early approaches include the packages MXYZPTLK16 and ZLIB.17 A good
polynomial algebra package will allow analysis·by Lie algebra, by truncated
power series, by generating functions, and by many other algorithms. Of
course all the linear analysis methods are also available.



[348]/102 ECh. ISELIN

Some problems, like dispersion and some non-linear problems, could be
tackled by synchrotron integrals. These are mainly useful for quasi-linear
lattices with very weak coupling. It turns out that it is sometimes very
cumbersome to evaluate such integrals correctly, especially for fringe field
effects. 15 Note that synchrotron integrals are not readily available from
transfer maps; but their values can be deduced in some cases via normal
form analysis.

2.4 Interaction of Optics Programs and Control Systems

Often optics programs run in control computers so as to permit studies
on machine parameter variation without disturbing machine operation. The
machine parameters are fetched from the machine and/or from a data base,
and the results mayor may not be fed back to the control system. A flexible
interface is required to connect the optics program with the machine. Ad hoc
methods have been developed, (example: ImI8 ), but a lot remains to be done
for a portable interface.

A reasonably accepted interface seems to be CDEV. 19 This package defines
a standard interface for control systems. If optics programs could interface
to CDEV or to a similar system, they could be written in a portable way and
could easily exchange data with the control system.

3 PLANS FOR CLASSIC

3.1 Goals

The following goals have been defined in a workshop, held in August 1995
atSLAC:

• Provide a C++ class library for accelerator design, simulation, and
operation.

• Provide a mechanism for C++ code sharing in the accelerator community.
• Provide a platform to exchange new ideas in code development.

A long-term goal would be to allow interfacing with control systems.
Optimised routines will be written to manipulate truncated power series.20

The algorithms will also include methods for evaluating Poisson brackets
and operations on truncate power series maps.



THE CLASSIC PROJECT

3.2 Possible Uses of the CLASSIC Library

[349]1103

Using the CLASSIC library, the data structure within a program can be built
in at least three ways.

1. The program user can provide a program module which generates the
accelerator structure by using a set C++ constructor calls.

2. The CLASSIC library is embedded in a complete program like MAD++.
The accelerator structure is generated from an input file read ~ith a
standard language parser.

3. The machine structure is extracted from a data base in the form of a C++
module.

The analysis part can be pre-written and linked with the data structure, or it
may be provided by the user. For flexibility the class library should have the
following features:

• Different language decoders can be plugged in easily.

• New algorithms for map generation and analysis can be added without
problems.

• Integration methods can be replaced at execution time.

3.3 Organisation of the CLASSIC Project

The CLASSIC library provides an open development environment. The code
is stored in a repository residing in the cvs repository

/afs/slac.stanford.edu/g/atsp/classic/prototype

at SLAC. Users having an a f s account at SLAC can access it using the
UNIX "cvs" program. A WWW home page is planned, and two mailing lists
exist:

classic general A list ofpeople who want to be informed about the CLASSIC
project.

classic workers A list of potential contributors to the CLASSIC project. At
the time of writing the following are known:



[350]/104

John Irwin, SLAC
Scott Berg, SLAC
Yunhai Cai, SLAC

Tong Chen, SLAC
Alex Dragt, Univ. Maryland
James Holt, FNAL
Chris Iselin, CERN
Roger Jones, SLAC
Hamid Shoaee, CEBAF
Kathy Thompson, SLAC
Weishi Wan, Univ. Colorado
Chip Watson, CEBAF
Yiton Yan, SLAC

3.4 Time Table

ECh. ISELIN

Chairman
System manager
Technical coordinator

Beam-beam
TPSA algorithms
aUI, correction schemes
Beam-line and Element classes
Matrix and Vector classes
Controls interface
Linac and wake-fields
Integrators
CDEV interface
Map analysis

A tentative structure was defined during the first CLASSIC workshop at
SLAC in August 1995. This structure will probably be revised in a second
workshop on CLASSIC in early 1996. Implementation has been postponed
until after that workshop. The time estimate to implement a prototype is of
the order of some months, once a suitable design has been decided.

References

[1] K.L. Brown, D.C. Carey, ECh. Iselin and E Rothacker, TRANSPORT, A Computer
Program for Designing Charged Particle Beam Transport Systems. Simultaneously
published as CERN 80-4, FNAL-91, SLAC-91.

[2] H. Wiedemann, User Guidefor the Computer Code PETROS. PEP-PTM-146, 1978.
[3] A.A. Garren et aI., SYNCH, A Program for Design and Analysis of Synchrotrons and

Beamlines: User's Guide. SSCL-MAN 0030 rev, LBL 34668, BNL 49925, FNAL-PUB
94-013,1994.

[4] D.R. Douglas and A. Dragt, MARYLIE: The Maryland Lie Algebraic Transport and
Tracking Code. IEEE Trans. Nucl. Sci., 30 (1983) 2442-2444.

[5] H. Grote and E Ch. Iselin, The MAD Program (Methodical Accelerator Design), User's
Reference Manual. CERN/SL/90-13 (AP) (Rev. 4). Also available under the URL
''http://hpariel. cern. ch/fci/mad/mad. html".

[6] R. Servranckx, User's Guide to the Program DIMAD. SLAC Report 270 UC-28, 1984.
[7] D.C. Carey and ECh. Iselin, A Standard Input LanguageforParticle Beam andAccelerator

Computer Programs. CERN LEP-TH/84-10 (1984). Proc.



THE CLASSIC PROJECT [351]1105

[8] R. Brun and J. Zoll, ZEBRA Data Structure Management System. CERN Program library
code QI00.

[9] L. Micelotti, C++ Objects for Beam Physics. Proc. IEEE, 1991.
[10] L. Schachinger, TEAPOT: A Thin Element Accelerator Programfor Optics and Tracking.

SSC 52, 1985.
[11] H. Nishimura, TRACY: A Tool for Accelerator Design and Analysis. Proc. EPAC, Rome

1988, p. 803.
[12] A. Bazzani, E. Todesco, G. Turchetti and G. Servizi, A Normal Form Approach to the

Theory ofNonlinear Betatronic Motion. CERN 94-2,1994.
[13] E.D. Courant and H.S. Snyder, Theory of the Alternating Gradient Synchrotron. Annals

of Physics, 3, 1-48, 1958.
[14] D.A. Edwards and L.C. Teng, Parameterisation of Linear Coupled Motion in Periodic

Systems. IEEE Trans. on Nucl. Sci., 20, 885, 1973.
L. C. Teng Concerning n-Dimensional Coupled Motion. FN 229, FNAL, 1971.

[15] J. Jager and D. Mohl, Comparison of Methods to Evaluate the Chromaticity in LEAR.
CERN PS/DL/LEAR/
Note 81-7.

[16] L. Michelotti, MXYZPTLK Version 3.1 User's Guide: A C++ library for Automatic
Differentiation and Differential Algebra. FERMILAB-FN-535 Revised, 1995.

[17] M. Malitsky, A. Reshetov and Y. Yan, ZLIB++: Object-Oriented Numerical Library for
Differential Algebra. SSCL-659, 1994.

[18] ECh. Iselin, The LEP Model Interfacefor MAD. Proc. ICALEPCS, KEK, Tsukuba, Japan,
1991, p. 546.

[19] Documentation available via the URL ''http://www . cebaf . gov/ cdev".
[20] AJ. Dragt and M. Venturini, Design ofOptimal Truncated Power Series Algebra Routines.

Parts I and II, to be published.




