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Abstract

We present PLATO (Perturbative Lattice Analysis and Tracking tOols), a program

library for analysing four-dimensional betatronic motion in circular particle accel-

erators. The 136 included routines provide both the resonant and the non-resonant

perturbative series that approximate nonlinear motion (normal forms); standard

numerical tools such as the Lyapunov exponent, frequency analysis and evaluation

of the dynamic aperture are also available. The aim of the library is to apply these

techniques, originally developed for the analysis of nonlinear dynamic systems, to

realistic models of particle accelerators. To ensure the highest exibility, the code is

fully compatible with standard tracking programs commonly used in the accelerator

physics community.
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1 INTRODUCTION

The search for con�rmations of the Standard Model relies heavily on the new gen-

eration of hadron colliders, such as the planned LHC [1]. Higher and higher energy beams

are required to produce the particles predicted by the theories of fundamental interactions,

and a very intense bending magnetic �eld is necessary to con�ne these high-energy beams

in a circular machine. The only way to produce strong �elds is to use superconducting

magnets. Unfortunately this technology has one main drawback (apart from the com-

plex cryogenics needed): it is not possible to design a superconducting magnet producing

a high-quality �eld. This means, for instance, that a dipole generates a magnetic �eld

which, on top of the required uniform �eld, includes nonlinear multipolar components.

The particles circulating in superconducting accelerators experience nonlinear forces which

produce strong instabilities and losses. These e�ects prevent safe operation of the machine

for two main reasons. Firstly, the superconducting magnets are damaged by the energy

deposited by the particles hitting the beam pipe and may quench. Secondly, the luminosity

of the machine, which is proportional to the intensity of the circulating beam, decreases,

thus reducing the rate of production of events.

A theory of nonlinear betatron motion has been developed since the �fties within the

framework of the perturbative Hamiltonian theory used originally in celestial mechanics

[2, 3], and a �rst-order analysis has been conducted at CERN [3, 4]. During the last ten

years, there have been new developments. On the theoretical side, a perturbative approach

for the one-turn maps, based on expansions in powers of the amplitude instead of the �eld

gradients, has been developed [5{8]. This perturbative parameter �ts more naturally to

the features of the problem. On the computational side, e�cient arbitrary-order codes

have been written to automatically evaluate the coe�cients of the one-turn map [7] and

the perturbative series for generic maps, both in the non-resonant [7, 9] and resonant [9]

cases.

Moreover, sophisticated numerical tools borrowed from celestial mechanics have proved

to be useful indicators of the nonlinear motion: computation of the Lyapunov expo-

nent [10, 11], frequency analysis [12{15], evaluation of the global dynamics through tune

footprints [14, 16], and so on.

In this paper we outline the main features of the PLATO (Perturbative Lattice Analy-

sis and Tracking tOols) program library, which contains several analytical and numerical

tools which have been applied to the analysis of nonlinear beam dynamics [8, 15{19]. The

main goal of PLATO is to allow the user to apply these approaches to generic accelerator

lattices. The code is fully compatible with standard tracking programs commonly used in

the accelerator physics community.

The paper is organized as follows. In Section 2 we describe the structure of the program

library with special emphasis on the implementation. In Section 3 we discuss the structure

of the input �les and the interface with standard accelerator codes. Section 4 deals with

the analysis of the tracking data using numerical tools, and in Section 5 the perturbative

tools implemented in the program library are presented. Finally some conclusions are

drawn in Section 6.

2 GENERAL FEATURES

2.1 Main aims

The routines in the program library can be grouped into three categories.

� Interface with certain tracking codes used in the accelerator physics community

(MAD [4] and SIXTRACK [20]). A key feature of the library is the ability to analyse
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an arbitrary accelerator structure described using the MAD input language, and to

provide the capability of using data produced by other tracking codes.

� Analysis of tracking data. The routines enable �ne analysis of the results of numer-

ical simulations (element-by-element tracking) to be performed. In particular, the

dynamic aperture, the nonlinear tunes, and the maximal Lyapunov exponent can be

evaluated. The tracking itself can be performed by routines included in our library.

� Normal forms analysis and related perturbative tools (non-resonant and resonant

normal forms, quality factors and resonance analysis). The purpose of these mod-

ules is to extract information on particle dynamics from the truncated one-turn

map without performing any tracking. Perturbative techniques can be used to ob-

tain analytical expressions for the nonlinear invariants, the tune shifts, the main

parameters of the resonances, and so on.

2.2 Structure of the code

The code is written in standard FORTRAN 77, any machine-dependent implemen-

tation having been avoided in order to improve portability. The code has been successfully

tested on many di�erent CERN platforms (ALPHAVAX, VM, Unix machines). The code

is structured as a program library of 136 modules (118 subroutines and 18 functions).

Since this library is continually growing, we use the PATCHY [21] format to maintain

the source code, which enables us easily and e�ciently to keep di�erent versions of the

library (e.g. a parallel version of the standard code, which is currently under test).

The user can select from the di�erent subprograms. In the present version two main

programs are available. The �rst allows tracking simulations to be performed using so-

phisticated numerical tools for post-processing. The second carries out the perturbative

computations on the truncated one-turn map. Help �les should allow the user to eventu-

ally modify his version of the code to �t his needs and to design his own personal version

of the main program.

2.3 Help

The program library and the related main codes are not intended for interactive

use (even though this is not excluded); therefore there is no online help available. On the

other hand, each routine has comments inserted within the code, enabling the user to

understand each module and to use it in the correct way. In addition, a long write-up is

available in the form of an ASCII �le containing a description of the aims of the various

routines, a parameter list, and a parameter description. A list of the di�erent common

blocks shared by the modules is also included.

3 LATTICE INPUT

The �rst stage in the analysis of particle motion in an accelerator is a description of

the magnetic lattice of the machine. An accelerator is made up of a sequence of magnets.

In principle, one record should be su�cient to describe the physical properties (length,

magnetic �eld, etc.) of each component. A simple sequence of such records should be

enough to describe a machine but, in practice, the assembling of such a �le for a complex

machine such as the Large Electron Positron collider (LEP) or the planned Large Hadron

Collider (LHC) is tedious and ine�cient.

The MAD program [4] contains a simple and powerful language which allows complex

operations to be performed on a set of magnetic elements. Therefore, the fundamental

elements of a machine (usually a fairly small number) can be de�ned, and then the whole
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accelerator can be described using a structured input language with a relatively small

number of instructions. In addition, MAD is used to o�cially maintain the lattices of

LEP and LHC, and has become a standard not only at CERN but in a large part of the

accelerator physics community. For these reasons we have decided to use the MAD input

data in de�ning the lattice parameters.

3.1 Interface with MAD

The MAD program allows a lattice structure | in the form of a simple sequence of

records describing the elements of the machine | to be dumped to a disk �le. Therefore,

starting from a MAD input �le, a second �le with the sequential structure of the accelera-

tor can be produced. This output �le is the input that provides the lattice to the library:

one of the modules reads and decodes it, generating the transfer matrices of the linear

elements and the transfer maps of the nonlinear elements. In the latter case, each thick

element is replaced by a sequence of a drift, a kick and a second drift without changing

the total length. This approach represents the most e�cient way to determine the transfer

map of a nonlinear element without violating the Hamiltonian structure of the equations

of motion. Once the data have been read, they are kept in arrays to be used by the other

modules of the library.

3.2 Interface with SIXTRACK

Since a translation program is available to convert a MAD to a SIXTRACK in-

put �le, we decided not to develop any routine which uses the SIXTRACK input �les.

A relevant feature of this program is the capability of computing arbitrary-order trun-

cated transfer maps for an accelerator structure. This option is implemented through the

Di�erential Algebra package [7]. Interface routines that read the maps produced by SIX-

TRACK in order to analyse them within the library modules are available. Tracking-data

�les generated by SIXTRACK can be read as well, thus allowing SIXTRACK to be used

for the numerical simulations, followed by application of the post-processing techniques

implemented in the library.

4 TRACKING ANALYSIS

One of the main aims of the library is to carry out element-by-element tracking of

an accelerator structure and to perform a sophisticated analysis of the tracking data. For

this purpose, several routines have been grouped in a well-structured main program that

performs the following operations.

� Dynamic aperture evaluation. One of the main sources of concern in beam dynamics

is the dynamic aperture, i.e. the volume of the domain around the closed orbit where

the particles remain con�ned in the vacuum pipe for the whole storage time. The

numerical computation of the dynamic aperture is very CPU-time consuming, as

one should scan along the four phase-space variables (x; px; y; px) to determine the

stability domain.

In [17] we reviewed the de�nition of dynamic aperture and proposed new methods

for calculating it, by scanning the two spatial variables x; y only. The proposed

techniques allow the information on the conjugate momenta to be taken into account

by using an averaging process or normal forms. Several algorithms for estimating

the dynamic aperture are included in the library.

� Tune evaluation. The tune is the ratio of the betatron to the revolution frequencies.

It is a crucial parameter since it can drive resonances that endanger the beam stabil-
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ity. The standard way to measure the tune of an orbit is based on the FFT algorithm,

which allows the frequency corresponding to the maximum in the power spectrum to

be determined; unfortunately, however, the accuracy in tune determination is rather

poor. Other algorithms are based on the Average Phase Advance [8]. During the

last decade, more e�cient methods have been proposed [12{14], based either on an

interpolation of the FFT results or on the use of harmonic analysis. In [15] a careful

analysis of the intrinsic precision of the di�erent algorithms is carried out. Several

algorithms are implemented in the library: the most e�ective are the search for the

maximum of the Fourier Transform and the interpolation of the FFT [13{15]. The

indicator of `chaoticity', based on the variation of the instantaneous tune over the

orbit [13, 18, 22], is also directly implemented in the library.

� Tune footprints. The tune footprints [14, 16] of a magnetic lattice at a given working

point can be generated by starting with a large set of initial conditions distributed

in the phase space, determining their nonlinear tunes with a high precision (at

least 10�4), and plotting the result in the tune plane. In this way one has a clear

picture of the areas in the tune space that are populated by stable particles, and

a vivid picture of the resonance net which governs the stability of the system.

Figure 1 shows a tune footprint, generated by the library, relating to a simple LHC

model [16]. The clusters of points along straight lines reveal the phase locking due

to stable resonances, while the depletion of some regions in the frequency space is

the sign of hyperbolic structures.

[width=11cm]library1.eps

Figure 1: Tune footprint and resonance lines up to order 7 for the LHC-like cell lattice

with random errors.

� Lyapunov evaluation. The Lyapunov exponent is a measure of the rate of divergence

of nearby orbits, thus giving an indication of the local `chaoticity' of a dynamic sys-

tem [10, 11, 18, 23]. The computation of the Lyapunov exponent is a rather delicate

issue and, when using the method of nearby particles, the distance of the two parti-

cles must be renormalized to avoid severe underestimates [11]. The evaluation of the

maximal Lyapunov exponent through the nearby particles method and the renor-

malization technique is implemented in the program library.

As an application of these techniques, we show in Fig. 2 the distribution of the

Lyapunov exponent for a set of 1000 initial conditions of the Super Proton Syn-

chrotron lattice used for experiments. This quantity is evaluated at four increasing

numbers of turns. Using the tracking module of the code, we have also evaluated

the stability of the same initial conditions over 106 turns. The unstable particles are

represented by the shaded area on the histogram of the Lyapunov. It can be seen

that there is a very strong correlation between the 1000 turns Lyapunov estimate

and the long-term stability. This technique has recently been used [18] to obtain

automated procedures for detecting long-term particle losses.
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[width=12cm]library2.eps

Figure 2: Distribution of the Lyapunov exponent (calculated for di�erent numbers

of iterates) for a set of initial conditions of the SPS lattice at �1 = 26:832, �2 =

26:799. Shaded parts of the histograms represent initial conditions which are lost before

106 turns.

5 NORMAL FORM ANALYSIS

The library can also carry out arbitrary-order perturbative calculations on compli-

cated accelerator lattices. A wide set of routines is dedicated to the computation of non-

resonant and resonant normal forms [9] and other related quantities [5, 6, 8, 16, 19]. As for

the tracking analysis, these routines have been included in a main program. The starting

point of the perturbative analysis is the one-turn map of the lattice. The complex coor-

dinates which diagonalize the linear part of the motion are denoted by z = (z1; z
�
1
; z2; z

�
2
),

where z1 = x̂+ ip̂x, z2 = ŷ+ ip̂y, and the � indicates the complex conjugation. The motion

of a single particle is represented by the one-turn map F, which propagates the position z

of a particle at a given section of the machine to the position z0 at the same section after

one turn [8]:

z0
1
= F1(z) = ei!1z1 +

X

n�2

X

j1+j2+j3+j4=n

F1;j1;j2;j3;j4 z
j1
1 z

�j2
1 zj32 z

�j4
2

z0
2
= F2(z) = ei!2z2 +

X

n�2

X

j1+j2+j3+j4=n

F2;j1;j2;j3;j4 z
j1
1 z

�j2
1 z

j3
2 z

�j4
2 : (1)

Here !1 and !2 are the linear tunes. Below we will describe the most important quantities

that can be computed for a generic complicated lattice.

� Truncated one-turn map. The complex coe�cients Fi;j1;j2;j3;j4 of the one-turn map

can be calculated inside the library given the lattice input �le; the truncation order

j1+j2+j3+j4 � N depends on the number of nonlinear elements, on the maximum

available memory, and on the speed of the platform used. The coe�cients of the

truncated one-turn map can also be externally generated and read by a �le.

� Non-resonant normal forms. Once the map coe�cients are stored, the conjugating

function � that transforms the one-turn map into its normal form U [5{8] can be

calculated. The normal form is a map that has more symmetries with respect to

the original map, and exhibits explicit invariants (with the exception of the double-

resonance normal form). It can be expressed as the Lie series of the interpolating

Hamiltonian h. One can build either non-resonant or resonant perturbative expan-

sions. In the �rst case the Hamiltonian is a function of the amplitudes (�1; �2) in

the normalized space; the normal form is the direct product of rotations in the two

phase planes, whose nonlinear frequencies depend on the distance from the origin

within these planes. The two components of the inverse conjugating function, 	1

and 	2, give the approximated nonlinear invariants �1 and �2. Moreover, an analytic

expression for the nonlinear tunes is given by the derivative of the Hamiltonian with

respect to the amplitudes:

�x(�1; �2) =
@

@�1
h(�1; �2)

�y(�1; �2) =
@

@�2
h(�1; �2) : (2)
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� Single-resonance normal forms. In this case one selects a single resonance (q�x + p�y)

with q 2 N and p integer. In the following we will use the notation [q; p] to indicate

a resonance. The normal form is the Lie series of an interpolating Hamiltonian that

is a function of the amplitudes and of one linear combination of angles:

h(�1; �2; �1; �2) =
X

k1;k2;l

hk1;k2;l �
k1+lq=2
1

�
k2+ljpj=2
2

cos [l(q�1+ p�2) + 'k1;k2;l] : (3)

The coe�cients of these Hamiltonians give important information about which res-

onances are relevant for the lattice and which are not. Moreover, the position of

the resonance line in the space of invariants can be calculated, and the width of

the resonance and the eigenvalues of the �xed lines can be determined. In Fig. 3

the average position and the width of the resonance [3;�6] in the space of the in-

variants are given for a lattice with a single sextupole (H�enon map) in the one-kick

approximation at !1=2� = 0:28, !2=2� = 0:31. The agreement with the tracking

results of the initial conditions that are locked on the resonance (dots) is fairly good,

even though the resonance starts from high amplitudes and extends to the dynamic

aperture.

[width=8cm]library3.eps

Figure 3: Initial conditions that are locked on the resonance [3;�6] for the H�enon map at

!1=2� = 0:28, !2=2� = 0:31. Numerical results (dots) are compared with the analytical

estimate of the resonance width (solid lines) obtained using resonant normal forms at

order 10. Horizontal and vertical nonlinear invariants are plotted in the x and y axes,

respectively.

� Double-resonance normal forms. In this case one selects two resonances (q1�x + p1�y)

and (p2�x + q2�y): the normal form is the Lie series of an interpolating Hamiltonian

that is a function of the amplitudes and of two linear combinations of angles. This

Hamiltonian is not integrable, but can be used to work out the position and the

stability of the �xed points that arise when the two single resonances are crossing

[19, 24].

� Quality factors. In many optimization problems it is necessary to analyse di�erent

versions of a lattice in order to select the one with the highest dynamic aperture.

This process is usually very CPU-time consuming. A solution is to �nd a quality

factor (QF), i.e. a quantity having a good correlation with the dynamic aperture,

which can be calculated in a short time. The QF can then be used to rate the

performance of a lattice [16]. Three QFs based on nonlinear maps and normal forms

are directly implemented in the library:

{ the norm of the nonlinear part of the map evaluated at the amplitude A;

{ the average tuneshift at amplitude A evaluated through non-resonant normal

forms;

{ the norm of the resonant part of the interpolating Hamiltonian of the single-

resonance normal form evaluated at the amplitude A;

A detailed description of the de�nition of the quality factors can be found in [16].

Figure 4 shows the correlation between the dynamic aperture and the three quality

factors for a simpli�ed version of the LHC lattice, including only random sextupolar

errors. We used 100 seeds to generate 100 di�erent error distributions, and for each
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machine both the dynamic aperture and the quality factor were evaluated. It can

be seen that some QFs show a fairly good correlation with the dynamic aperture,

and therefore can be used to distinguish between good and bad machines. These

techniques have been used to propose a sorting method for the LHC [16].

[width=12cm]library4.eps

Figure 4: (a) Distribution of the dynamic apertures for an LHC-like cell lattice with

random errors (100 seeds). Correlation of the quality factors (b) Q1, (c) Q2, and (d)

Q3[3; 0] with the dynamic aperture for the LHC model with random errors (100 seeds).

6 FUTURE DEVELOPMENTS

Further modules will be added to this program library shortly. We should implement

algorithms to extract useful information from noisy data. These techniques are necessary

when analysing real measurements; for instance, to obtain the value of the tune from the

knowledge of a turn-by-turn set of data. Furthermore, a tool to analyse non-stationary

signals using the wavelet transform is under development. Moreover, the possibility of

parallelizing the structure of the routines involved in the tracking part of the library is

under study. The preliminary results are quite encouraging.
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