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Abstract

This text represents an attempt to give a comprehensive introduction to the dy-

namics of charged particles in accelerator and beam transport lattices. The �rst

part treats the basic principles of linear single particle dynamics in the transverse

phase plane. The general equations of motion of a charged particle in magnetic

�elds are derived. Next, the linearized equations of motion in the presence of bend-

ing and focusing �elds only are solved. This yields the optical parameters of the

lattice, useful in strong focusing machines, from which the oscillatory motion |

the betatron oscillation | and also the transfer matrices of the lattice elements are

expressed. The second part deals with some of the ideas connected with nonlinear-

ities and resonances in accelerator physics. The equations of motion are revisited,

considering the inuence of nonlinear magnetic �elds as pure multipole magnet

�elds. A presentation of basic transverse resonance phenomena caused by multi-

pole perturbation terms is given, followed by a semi-quantitative discussion of the

third-integer resonance. Finally, chromatic e�ects in circular accelerators are de-

scribed and a simple chromaticity correction scheme is given. The beam dynamics

is presented on an introductory level, within the framework of di�erential equations

and using only straightforward perturbation methods, discarding the formulation

in terms of Hamiltonian formalism.
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1 PARTICLE MOTION IN MAGNETIC FIELDS

1.1 Coordinate system

The motion of a charged particle in a beam transport channel or in a circular
accelerator is governed by the Lorentz force equation

F = e(E + v �B) ; (1.1)

where E and B are the electric and magnetic �elds, v is the particle velocity, and e is
the electric charge of the particle. The Lorentz forces are applied as bending forces to
guide the particles along a prede�ned ideal path, the design orbit, on which|ideally|all
particles should move, and as focusing forces to con�ne the particles in the vicinity of the
ideal path, from which most particles will unavoidably deviate. The motion of particle
beams under the inuence of these Lorentz forces is called beam optics.

The design orbit can be described using a �xed, right-handed Cartesian reference
system. However, using such a reference system it is di�cult to express deviations of
individual particle trajectories from the design orbit. Instead, we will use a right-handed
orthogonal system (n; b; t) that follows an ideal particle traveling along the design
orbit. The variables s and � describe the ideal beam path and an individual particle
trajectory. We have chosen the convention that n is directed outward if the motion lies
in the horizontal plane, and upwards if it lies in the vertical plane.

Let �r(s) be the deviation of the particle trajectory r(s) from the design orbit
r0(s). Assume that the design orbit is made of piecewise at curves, which can be either
in the horizontal or vertical plane so that it has no torsion. Hence, from the Frenet{Serret
formulae we �nd

dr0

ds
= t

dt

ds
= �k(s)n db

ds
= 0

dn

ds
= k(s)t ; (1.2)

where k(s) is the curvature, t is the target unit vector, n the normal unit vector and b

the binomial vector: b = t� n.

individual particle trajectory

   design orbit

motion in horizontal plane

n

b

s

σ

δr t

r (s)

r0 (s)

Figure 1: Coordinate system (n; b; t).
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Unfortunately, n charges discontinuously if the design orbit jumps from the horizontal to
the vertical plane, and vice versa. Therefore, we instead introduce the new right-handed
coordinate system (ex; ey; t):

ex =

(
n if the orbit lies in the horizontal plane
�b if the orbit lies in the vertical plane

ey =

(
b if the orbit lies in the horizontal plane
n if the orbit lies in the vertical plane:

Thus:
dex

ds
= kx t

dey

ds
= kyt

dt

ds
= �kxex � kyey : (1.3)

The last equation stands, provided we assume

kx(s)ky(s) = 0 ; (1.4)

where kx; ky are the curvatures in the x-direction and the y-direction. Hence the individual
particle trajectory reads:

r(x; y; s) = r0(s) + xex(s) + y ey(s) ; (1.5)

where (x; y; s) are the particle coordinates in the new reference system.


  design orbit

ex

s

x

y

σ

t

r (s)

r0 (s)

ey



Figure 2: Coordinate system (ex; ey ; t).

Consider the length s of the ideal beam path as the independent variable, instead of the
time variable t, to express the Lorentz equation (1.1). Now, from

d

dt
=
d�

dt

d

d�
= v

ds

d�

d

ds
=

v

�0
d

ds
;
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where v = d�=dt is the particle velocity and a prime denotes the derivative with respect
to s, it follows that

dr

dt
=

v

�0
dr

ds
=

v

�0
r0 � v

d2r

dt2
=

d

dt

 
dr

dt

!
=

v

�0
d

ds

 
v
r0

�0

!
=
v2

�02
r00 � v2

�0
r0
�00

�02

=
v2

�02

 
r00 � 1

2

r0

�02
d

ds
(�02)

!
=
v2

�02

 
r00 � �00

�0
r0
!
:

Now, from (1.3) and (1.5),

r0(s) = r00(s) + x0ex + y0ey + xe0x + y e0y
= t+ x0ex + y0ey + x kxt+ y kyt

= (1 + kxx+ kyy)t+ x0ex + y0ey :

Similarly, we compute the second derivative:

r00(s) = (kxx
0 + k0xx+ kyY

0 + k0yy)t+ x00ex + y00ey + x0e0x + y0e0y
+(1 + kxx+ kyy)t

0

= (kxx
0 + k0xx+ kyy

0 + k0yy)t+ x00ex + y00ey + x0kxt+ y0kyt
+(1 + kxx+ kyy)(�kxex � kyey)

Then,

r00(s) = (k0xx+ k0yy + 2kxx
0 + 2kyy

0)t
+[x00� kx(1 + kxx)]ex + [y00� ky(1 + kyy)]ey :

The Lorentz force F may be expressed by the change in the particle momentum p as

F =
dp

dt
= e(E + v �B) ; (1.6)

with
p = mv ; (1.7)

where m is the particle rest mass and  the ratio of the particle energy to its rest energy.
Assuming that  and v are constants (no particle acceleration), the left-hand side

of (1.6) can be written as

F = m
dv

dt
= m

d2r

dt2
= m

v2

�02

 
r00 � �00

�0
r0
!

= m
v2

�02

(
(k0xx+ k0yy + 2kxx

0 + 2kyy
0)t+ [x00 � kx(1 + kxx)]ex

+[y00� ky(1 + kyy)]ey �
�00

�0
[(1 + kxx+ kyy)t+ x0ex + y0ey]

)

= m
v2

�02

 
k0xx+ k0yy + 2kxx

0 + 2kyy
0 � �00

�0
(1 + kxx+ kyy)

!
t

+

 
x00 � kx(1 + kxx)�

�00

�0
x0
!
ex +

 
y00 � ky(1 + kyy)�

�00

�0
y0
!
ey :
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The magnetic �eld may be expressed in the (x; y; s) reference system

B(x; y; s) = Bt(x; y; s)t+Bx(x; y; s)ex +By(x; y; s)ey : (1.8)

In the absence of an electric �eld the Lorentz force equation (1.1) becomes

F = e(v �B) =
ev

�0
(r0 �B) : (1.9)

Using the above results and de�ning the variable

h = 1 + kxx+ kyy ; (1.10)

the vector product may be written as

r0 �B = (ht+ x0ex + y0ey)� (Btt+Bxex +Byey)
= (y0Bt � hBy)ex � (xBt � hBx)ey + (x0By � y0Bx)t :

Finally, equating the expression for the rate of change in the particle momentum, the
left-hand side of (1.6) with (1.9) and with (1.4) gives

(k0xx+ k0yy + 2kxx
0 + 2kyy

0 � �00

�0
h)t+

 
x00 � kxh �

�00

�0
x0
!
ex

+

 
y00 � kyh� �00

�0
y0
!
ey

=
e

p
�0[(x0By � y0Bx)t� (hBy � y0Bt)ex + (hBx � x0Bt)ey] ;

since
kx(1 + kxx) = kxh and ky(1 + kyy) = kyh :

Identifying the terms in ex; ey, and t leads to the equations of motion

x00 � �00

�0
x0 = kxh�

e

p
�0(hBy � y0Bt);

y00 � �00

�0
y0 = kyh+

e

p
�0(hBx � x0Bt);

�00

�0
=

1

h
(k0xx+ k0yy + 2kxx

0 + 2kyy
0)� e

hp
�0(x0By � y0Bx) : (1.11)

The last equation may be used to eliminate the term �00=�0 in the other two.
Expanding the particle momentum in the vicinity of the ideal momentum p0, cor-

responding to a particle travelling on the design orbit, yields

1

p
=

1

p0(1 + �)
;
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where

� =
p � p0

p0
� �p

p0
(1.12)

is the relative momentum deviation. Hence, the above general equations of motion for a
charged particle in a magnetic �eld B may be rewritten as:

x00 � �00

�0
x0 = kxh � (1 + �)�1

e

p0
�0(hBy � y0Bt) ;

y00 � �00

�0
y0 = kyh+ (1 + �)�1

e

p0
�0(hBx � x0Bt)

�00

�0
=

1

h
(k0xx+ k0yy + 2kxx

0 + 2kyy
0) � (1 + �)�1

e

hp0
�0(x0By � y0Bx) : (1.13)

Using

v =
v

�0
r0 ;

it follows that
jvj = v =

v

�0
jr0j = v

�0
p
r0 � r0 ;

then
�0 = jr0j =

q
h2 + x02 + y02 : (1.14)

On the design orbit (equilibrium orbit) we get

x = x0 = 0
y = y0 = 0
� = 0 :

Consequently h = 1; �0 = 1; �00=�0 = 0, and using (1.13) we �nd

kx =
e

p0
By(0; 0; s) �

e

p0
By0 ;

ky = � e

p0
Bx(0; 0; s) � � e

p0
Bx0 : (1.15)

Equivalently, introducing the local bending radii �x and �y,

�x;y(s) =
1

kx;y(s)
; (1.16)

we get the bending �eld for the design momentum p0

1

�x
=

e

p0
By0

1

�y
= � e

p0
Bx0 : (1.17)

We adopt the following sign convention: an observer looking in the positive s-direction
sees a positive charge travelling along the positive s-direction deected to the right (resp.
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upwards) by a positive vertical magnetic �eld By > 0 (resp. by a positive horizontal
magnetic �eld Bx > 0).


  design orbit

s

ρ(s)

v

F

B

bend magnet

Figure 3: Lorentz force (for a positive charged particle).

The term jB0�j is the beam rigidity (B0 and � stand for Bx0 and �x or By0 and �y). In
more practical units the beam rigidity reads:

B0�(tesla �m) = 3:3356 p (GeV=c) = 3:3356 �E (GeV) ;

where E is the particle total energy, p the particle momentum, and � = v=c.

1.2 Linearized equations of motion

From the general equations of motion (1.13) we retain only linear terms in x; x0; y; y0

and �. Starting with (1.14) we get

�0 = h

s
1 +

x02

h2
+
y02

h2
� h = 1 + kxx+ kyy

�00 � h0 = k0xx+ kxx
0 + k0yy + kyy

0 :

Hence:
�00

�0
� h0

With this approximation and with the �rst-order series expansion (1 + �)�1 � 1 � �, the
equations of motion (1.13) in the horizontal and vertical planes become, in the absence
of a tangential magnetic �eld (no solenoid �eld),

x00 = kxh � (1 � �)h2
e

p0
By(x; y; s) ;

y00 = kyh+ (1 � �)h2
e

p0
Bx(x; y; s) : (1.18)
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For x and y, small deviations from the design orbit, the �eld components may be expanded
in series to the �rst order:

Bx(x; y; s) = Bx0 +
@Bx

@x
x+

@Bx

@y
y ;

By(x; y; s) = By0 +
@By

@x
x+

@By

@y
y : (1.19)

The magnetic �eld satis�es the Maxwell equations

r �B = 0 r�B = 0 ;

from which we get, using (1.8),

@Bx

@x
= �@By

@y

@By

@x
=
@Bx

@y
: (1.20)

Thus, introducing the normalized gradient K0, and the skew normalized gradient K0

de�ned as

K0 =
e

p0

 
@By

@x

!
x=y=0

K0 =
e

p0

 
@Bx

@x

!
x=y=0

; (1.21)

the �eld components may be written with (1.15)

e

p0
Bx(x; y; s) = �ky +K0x+K0y ;

e

p0
By(x; y; s) = kx +K0x�K0y : (1.22)

Hence, the transverse equations of motion become

x00 = kxh� (1� �)h2(kx +K0x�K0y) ;

y00 = kyh � (1 � �)h2(ky �K0x�K0y) : (1.23)

From (1.4) and (1.10) we compute to the �rst order in x; y; �,

h2 � 1 + 2kxx+ 2kyy

kuh = ku + k2uu

(1 � �)h2ku � ku + 2k2uu� ku�

(1 � �)h2K0u � K0u and (1� �)h2K0u � K0u ;

where u stands for x or y. Substituting these approximations into (1.23) and using the
radius �x;y instead of the curvature kx;y we obtain the linearized equations of motion

x00 +

 
K0 +

1

�2x

!
x�K0y =

�

�x
;
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y00 �
 
K0 �

1

�2y

!
y �K0x =

�

�y
: (1.24)

The term K0 introduces a linear coupling into the equations of motion. If we restrict this
to magnetic �elds which does not introduce any coupling, we have to set K0 = 0 (no skew
linear magnets). Then the equations of motion read:

x00 +

 
K0 +

1

�2x

!
x =

�

�x
;

y00 �
 
K0 �

1

�2y

!
y =

�

�y
: (1.25)

The terms K0 and ��2x;y in the above expressions represent the gradient focusing
and weak sector magnet focusing, respectively. When the deection occurs only in the
horizontal plane, which is the usual case for synchrotrons, the equation of motion in the
vertical plane simpli�es to

y00 �K0y = 0 : (1.26)

The magnet parameters �x;y; K0 and K0 are functions of the s-coordinate. In practice,
they have zero values in magnet-free sections and assume constant values within the mag-
nets. The arrangement of magnets in a beam transport channel or in a circular accelerator
is called a lattice.

1.3 Weak and strong focusing

Consider the simple case at a circular accelerator with a bending magnet which
deects only in the horizontal plane and whose �eld does not change azimuthally

@Bx

@s
=
@By

@s
= 0 :

The design orbit is then a circle of constant radius �x, with the constant magnetic �eld
By0 on this circle evaluated for the design momentum

p0 = eBy0 �x : (1.27)


 design orbit (circle)

= constant  

s

ρx

ρx

v

By0

ey
ex

positive particle
with momentum p0

Figure 4: Circular design orbit in the horizontal plane.
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For a particle with the design momentum the equations of motion read:

x00 +

 
K0 +

1

�2x

!
x = 0 ;

y00 �K0y = 0 ; (1.28)

whereK0 is the constant normalized gradient (1.21). The stability in the horizontal motion
is achieved if the solution is oscillatory, that is:

K0 +
1

�2x
> 0 :

Vertically, the stability is achieved if

K0 < 0 :

Hence, the stability is achieved in both planes provided

0 < �K0 <
1

�2x
: (1.29)

Using (1.17) and (1.21) the latter inequalities write:

0 < � 1

By0

 
@By

@x

!
x=y=0

<
1

�x
: (1.30)

This condition is called weak- or constant-gradient focusing. It allows stable motion in
both planes.

The oscillatory solution of (1.28), called betatron oscillations, is

u(s) = a cos (
p
Ks� ') ; (1.31)

where u stands for x or y; K = ��2x +K0 or K = �K0, and where a and ' are integration
constants. The wavelength � of the betatron oscillation is

� =
2�p
K
: (1.32)

The number of betatron oscillations performed by particles around a machine circumfer-
ence C is called the tune Q of the circular accelerator (Q stands for Qx or Qy):

Q =
C

�
= �x

p
K : (1.33)

The weak focusing condition (1.29) show that K < ��2x , that is:

Q < 1 :
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The betatron oscillation wavelength is larger than the machine circumference. This
means that the amplitude of the oscillations may become very large as the size �x of the
machine increases and hence the magnet aperture may also be very big. This yields a
practical limit on the size of weak focusing accelerators. Historically, the �eld index n was
introduced instead of the normalized gradient K0 for the weak focusing accelerators

n = � �x

By0

 
@By

@x

!
x=y=0

: (1.34)

The weak focusing condition (1.30) is then expressed as

0 < n < 1 : (1.35)

Using (1.33) and (1.34) the machine tune may be written as

Qx =
p
1� n Qy =

p
n : (1.36)

The combination of bending and focusing forces required for weak focusing accelerators
may be obtained by the magnetic �eld shape called synchrotron magnet or combined
dipole-quadrupole magnet.


 design
 orbit

ring centre

ρx

B

y

x

Bx

Bx
N-pole

S-pole

By

By

Fx

Fx

Fy

Fy

I
I
I
I
I
IIIIIIIIIIIIIIII

I

I
I
I
I
I
IIIIIII

IIII
III

II
I

Figure 5: Synchrotron magnet (positive particles approach the reader).

The limitations at weak focusing accelerators have been overcome by the invention
at the strong- or alternating-gradient focusing principle. This method amounts to splitting
up the machine into an alternate sequence of strongly horizontally focusing (n � �1 or
K0 � ��2x ) and strongly horizontally defocusing (n � 1 or K0 � ���2x ) magnets. By
(1.36) this implies that the tunes Qx and Qy may become arbitrarily large. This means
that the betatron amplitudes can be kept small for a given angular deection as the size
�x increases, and the magnet aperture may be reduced.
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 design orbit for p0


 n>>1


s


 n>>1


 n<<–1


 n<<–1

ex

Figure 6: Strong focusing machine.

The bending and focusing forces for strong focusing accelerators may be achieved
either within synchrotron magnets or in a separate bending magnet, called a dipole, and
a focusing magnet, called a quadrupole.

The quadrupole magnet provides focusing forces through its normalized gradient,
given by (1.21) and (1.22):

e

p0
Bx = K0y

e

p0
By = K0x : (1.37)

B

y

x

N-pole

N-pole S-pole

S-pole

Fx Fx

Fy

Fy

I
I
I
I
I
I
I

I I I I I I

I
I
I
I
I
I
I
IIIIII

I
I
I
I
I
I
I
I I

I I
I I

I
I
I
I
I
I
I

II
II

II

Figure 7: Horizontally focusing, F -type quadrupole magnet (positive particles approach the

reader).

A quadrupole that focuses in one plane defocuses in the other plane. The horizontally
defocusing, D-type quadrupole is obtained by permuting the N - and S-poles of an F -
quadrupole.
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In geometrical optics the focal length f of a lens is related to the angle of deection
� of the lens by

tan � = �x
f
:

θ < 0

s

x

f

focal point

Figure 8: Principle of focusing for light.

It is known that a pair of glass lenses, one focusing with focal length fF > 0, and
the other defocusing with focal length fD < 0, separated by a distance d, yields a total
focal length f given by

1

f
=

1

fF
+

1

fD
� d

fF fD
: (1.38)

This lens doublet is focusing if fD = �fF . Hence,
1

f
=

d

f2F
: (1.39)

The strong focusing scheme is based upon the quadrupole doublet arrangement, which
becomes a system focusing in both planes.

s

d

focal point

focal length f

principal plane

fF>0 fD<0

Figure 9: Principle of strong focusing for light.

The linear equations of motion (1.25) for strong focusing lattices (where the bending
and focusing forces depend on s) may be written as

u00 +K(s)u = 0 ; (1.40)
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where u stands for either the horizontal x or the vertical y coordinates, and where the
bending and focusing functions are combined in one function (plus sign for x, minus sign
for y):

K(s) = �K0(s) +
1

�2x;y(s)
: (1.41)

For synchrotron magnets both terms in K(s) are non-zero, while for separated function
magnets (separate dipoles and quadrupoles) either K0(s) or �x;y(s) is set to zero.

Integrating (1.40) over a short distance, `, where K(s) � constant) we �nd in the
paraxial approximation, where the defection angle � is equal to the slope of the particle
trajectory, Z `

0
u00ds = u0(`)� u0(0) = tan �

and Z `

0
K(s)uds � Ku` :

Therefore by (1.40)

tan � � �K`u :
By analogy with the expression at the focal length of a glass lens, we de�ned the focal
length of a quadrupole as

tan � = �u
f
: (1.42)

Hence we get for a thin quadrupole of length ` [for K(s) = K0 > 0]

1

f
= �K0` : (1.43)

with f positive in the focusing plane and negative in the defocusing plane.

2 LINEAR BEAM OPTICS

2.1 Betatron functions for periodic closed lattices

In the case where the bending magnets of a circular accelerator deect only in the
horizontal plane, the linear unperturbed equations of motion for a particle having the
design momentum p0 (i.e. � = 0) are, according to (1.25),

x00 +

 
K0 +

1

�2x

!
x = 0

y00 �K0y = 0 ; (2.1)

where K0(s) and �x(s) are periodic functions of the s-coordinate due to the orbit being
a closed curve. The period L may be the accelerator circumference C or the length of a

13



\cell" repeated N times around the circumference: C = NL. Both the above equations
may be cast in the form

u00 +K(s)u = 0 ; (2.2)

with

K(s+ L) = K(s) ; (2.3)

where u stands for x or y and where K(s) = K0(s) + ��2x (s) or K(s) = �K0(s).
Equation (2.2) with periodic coe�cient K(s) is called Hill's equation. It has a pair

of independent stable solutions of the form (see appendix A1)

u1(s) = w1(s)e
i�(s) ;

u2(s) = w2(s)e
�i�(s) ; (2.4)

such that w1(s) and w2(s) are periodic with period L,

wi(s+ L) = wi(s) i = 1; 2 ; (2.5)

and �(s) is a function such that

�(s+ L)� �(s) = � ; (2.6)

where � is called the characteristic exponent of Hill's equation de�ned by

cos � =
1

2
Tr [M(s+ L=s)] ; (2.7)

and is independent of the length s. The matrix M(s+ L=s) is called the transfer matrix
over one period L [shortly written as M(s) de�ned by (see A.9)]

M(s) �M(s+ L=s) =M(s + L=s0)M(s=s0)
�1 ;

in whichM(s=s0) is called the transfer matrix between the reference point s0 and s, given
by (see A.6)

M(s=s0) =
�
C(s) S(s)
C 0(s) S0(s)

�
;

where C(s) and S(s) are two independent solutions of Hill's equation called cosine-like
and sine-line solutions, which satisfy the particular initial conditions (see A.4)

C(s0) = 1 C 0(s0) = 0 S(s0) = 0 S0(s0) = 1 :

As the functions ei�(s) and e�i�(s) are already linearly independent, we can arbitrarily
make w1(s) identical to w2(s) so that the pair at independent stable solutions (2.4) now
read:

u1;2(s) = w(s)e�i�(s) ; (2.8)
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where w(s) is periodic with period L. Di�erentiating the latter equation twice,

u01;2(s) = w0(s)ei�(s) � i�0(s)w(s)ei�(s)

u001;2(s) = [w00(s)� i�0(s)w0(s)� i�00(s)w(s)� �0(s)2w(s)� i�0(s)w0(s)]ei�(s)

= [w00(s)� 2i�0(s)w0(s)� �0(s)2w(s)� i�00(s)w(s)]ei�(s) ;

we obtain by substitution into Hill's equation and cancelling ei�(s)

w00 � �02w +K(s)w � i(2�0w0 + �00w) = 0 :

Equating real and imaginary parts to zero yields

w00 � �02w +K(s)w = 0 (2.9)

and

2�0w0 + �00w = 0 ;

or equivalently
2w0

w
+
�00

�0
= 0 : (2.10)

The last equation may be rewritten as

[ln w(s)2]0 + [ln �0(s)]0 = 0 ;

which can be integrated to give

ln �0(s) = ln

 
1

w(s)2

!
+ ln c :

Hence, choosing the integration constant c equal to unity

�0(s) =
1

w(s)2
; (2.11)

which yields on integration

�(s) =
Z s

s0

dt

w(t)2
: (2.12)

Substituting (2.11) into (2.9) gives a new di�erential equation for w(s):

w00 � 1

w3
+K(s)w = 0 : (2.13)

De�ning the so-called betatron function �(s) as

�(s) = w2(s) ; (2.14)
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equations (2.12) and (2.13) transform into

�(s) =
Z s

s0

dt

�(t)
(2.15)

and
�1=2

00

+K(s)�1=2� ��3=2 = 0 : (2.16)

The latter expression may be further transformed to give

1

2
��00� 1

4
�02 +K(s)�2 = 1 ; (2.17)

since

�3=2�1=200 =
1

2
��00� 1

4
�02 :

The function �(s) given by (2.15) is called the phase function. Then, the two independent
solutions of Hill's equations become

u1;2(s) =
q
�(s)e�i�(s) : (2.18)

Every solution of Hill's equation is a linear combination of these two solutions:

u(s) = c1

q
�(s)ei�(s) + c2

q
�(s)e�i�(s) ;

where c1 and c2 are constants, or equivalently

u(s) = a
q
�(s) cos [�(s)� '] ; (2.19)

with

a = 2
p
c1c2 tan ' = i

�
c1 � c2

c1 + c2

�
:

Any solution �(s) that satis�es (2.17) together with the phase function �(s), whose deriva-
tive is �(s)�1, can be used to make (2.19) a real solution of Hill's equation. Such a solution
is a pseudo-harmonic oscillation with varying amplitude and frequency, called betatron
oscillation.

From (2.15) we compute:

�(s+ L)� �(s) =
Z s+L

s

dt

�(t)
;

and using (2.6) we �nd:

� =
Z s+L

s

dt

�(t)
: (2.20)

Thus the characteristic exponent � may be identi�ed with the phase advance per period
or cell (of length L).
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The oscillation's local frequency f(s) and wavelength �(s) can be related to the
phase function by

�0(s) = 2�f(s) =
2�

�(s)
: (2.21)

Thus, the betatron function may be interpreted as the local wavelength divided by 2�
since �0(s) = �(s)�1:

�(s) = 2��(s) : (2.22)

Let the tune Q of a circular accelerator be de�ned as the number of betatron oscillations
executed by particles travelling once around the machine circumference C. Since the local
frequency f(s) denotes the number of oscillations per unit of length, the tune reads:

Q =
Z s+C

s
f(t)dt : (2.23)

If the accelerator has N cells of period L (i.e., C = NL), then using (2.20) to (2.23), Q
is given by

Q =
N�

2�
=

1

2�

Z s+C

s

dt

�(t)
; (2.24)

since �(s) is a periodic function of period L.
Any solution of Hill's equation can be described in terms of the betatron oscillation

(2.19). In particular, the cosine-like solution C(s) and the sine-like solution S(s) may be
represented by (2.19);

C(s) = a
q
�(s) cos [�(s)� '] ; (2.25)

where a and ' are constants which depend upon the initial conditions at the reference
point s0. Setting �(s0) = �0 and since �(s0) = 0, C(s0) = 1, C 0(s0) = 0 and

C 0(s) =
aq
�(s)

 
�0(s)
2

cos [�(s)� ']� sin [�(s)� ']

!
; (2.26)

we get

a
q
�0 cos' = 1 ;

aq
�)

 
�00
2

cos'+ sin'

!
= 0 ;

from which we obtain

a cos' =
1p
�0

;

a sin' = � �00
2
p
�0

: (2.27)
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Substituting these two expressions into C(s) and C 0(s) we �nd:

C(s) =

s
�(s)

�0

 
cos�(s) � �00

2
sin �(s)

!

C 0(s) =
1q

�(s)�0

(
�0(s)
2

 
cos �(s)� �00

2
sin �(s)

!
�
 
sin �(s) +

�00
2
cos�(s)

!)

=
�0(s)� �00
2
q
�(s)�0

cos�(s) � 1 + [�0(s)�0=4]q
�(s)�0

sin �(s) :

De�ning the new variables

�(s) = ��
0(s)
2

(2.28)

and ��(s) = �(s)� �(s0) � �(s), we get

C(s) =

s
�(s)

�0
(cos ��(s) + �0 sin ��(s)) ; (2.29)

C 0(s) =
1q

�(s)�0
f[�(s)� �0] cos ��(s)� [1 + �(s)�0] sin ��(s)g : (2.30)

The sine-like solutions S(s) and S0(s) can be computed similarly. Hence, the transfer
matrix (A.6) between s0 and s reads:

M(s=s0) =
�
C(s) S(s)
C 0(s) S0(s)

�
(2.31)

=

0
BBBB@

s
�(s)

�0
(cos��(s) + �0 sin ��(s))

q
�(s)�0 sin��(s)

�0 � �(s)q
�(s)�0

cos��(s)� 1 + �(s)�0q
�(s)�0

sin ��(s)

s
�0
�(s)

(cos��(s)� �(s) sin ��(s))

1
CCCCA :

From this and using (A.19) the transfer matrix M(s) over one period L may be written
as

M(s) =

0
B@ C(s+ L) S(s+ L)

C 0(s+ L) S0(s+ L)

1
CA
0
B@ S0(s) �S(s)

�C 0(s) C(s)

1
CA ;

because the determinant of any transfer matrix is equal to unity. Performing the above
matrix multiplication yields

M(s) =

0
BBB@

cos � + �(s) sin � �(s) sin �

�1 + �(s)2

�(s)
sin � cos �� �(s) sin �

1
CCCA ; (2.32)
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since �(s + L) = �(s), �(s + L) = �(s) and �(s + L) = �(s) + �. Introducing the new
variable

(s) =
1 + �(s)2

�(s)
; (2.33)

the transfer matrix reads:

M(s) =

0
B@

cos � + �(s) sin � �(s) sin �

�(s) sin � cos �� �(s) sin �

1
CA : (2.34)

We check immediately that the determinant of the transfer matrix for one period
is equal to unity and its trace is equal to 2 cos � as expected. The transfer matrix M(s)
is called the Twiss matrix and the periodic functions �(s); �(s); (s) are called Twiss
parameters. In summary, the solution of Hill's equation and the transfer matrices may
be expressed in terms of the single function �(s), determined by searching the periodic
solutions of

1

2
��00� 1

4
�02 +K(s)�2 = 1 :

2.2 Hill's equation with piecewise periodic constant coe�cients

The nonlinear di�erential equation

1

2
��00� 1

4
�02 +K(s)�2 = 1 (2.35)

is completely speci�ed by the linear optical properties of the lattice (focusing magnets)
and the condition of periodicity. Unfortunately it is not any easier to solve than the
original Hill's equation

u00 +K(s)u = 0 : (2.36)

However, when K(s) is a piecewise constant periodic function, explicit determina-
tion of the betatron function �(s) may be found. Assume K(s) to be a constant K over a
distance ` between the azimuthal locations s0 and s1. There are three cases: K is positive,
K is negative, and K is equal to zero. For the �rst two cases, Hill's equation reduces to
the simple harmonic oscillator equation. The solutions may be expressed in terms of the
functions C(s) and S(s)|(see A.6)|satisfying the initial conditions (A.4) at s0. In terms
of transfer matrices we get:

1) For K > 0

M(s1=s0) =

0
BB@

cos
p
K` 1p

K
sin
p
K`

�
p
K sin

p
K` cos

p
K`

1
CCA ; (2.37)

since between s0 and s1

C(s) = cos
p
K(s� s0) and S(s) =

1p
K

sin
p
K(s� s0) ;
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2) For K < 0

M(s1=s0) =

0
BBB@

cosh
q
jKj` 1p

jKj sinh
q
jKj`

q
jKj sinh

q
jKj` cosh

q
jKj`

1
CCCA ; (2.38)

3) For K = 0

M(s1=s2) =
�
1 `

0 1

�
; (2.39)

since C(s) = 1 and S(s) = s� s0 between s0 and s1.
The transfer matrix M(s) over one cell (of length L) is then the product of the

individual matrices composing the cell. If the cell is made of N elements having transfer
matrices M1; M2; ::: MN [with Mk =M(sk=sk�1) for short], we get

M(s0) �M(s0 + L=s0) =MN ::: M2M1 : (2.40)

Let mij(s0) the components ofM(s0) obtained by (2.40). Equating the two versions (2.34)
and (2.40) of M(s0) gives the Twiss parameters at the reference point s0. We �nd:

�(s0) =
m12(s0)

sin �
;

(s0) = �m21(s0)

sin �
;

�(s0) =
m11(s0)�m22(s0)

2 sin �
;

cos� =
1

2
[m11(s0) +m22(s0)] : (2.41)

Consequently, once the Twiss matrix has been derived by multiplication of the individual
transfer matrices in the cell, the Twiss parameters are obtained by (2.41) at any reference
point s.

The principle of strong focusing is based on the quadrupole doublet system com-
posed of one focusing quadrupole and one defocusing quadrupole separated by a straight
section of length d.

s

d
fF fD

Figure 10: Quadrupole doublet.
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Consider the thin lens approximation which assumes that
p
K0` � 1 with K0 > 0

and `! 0 as K0` remains constant, where ` is quadrupole length and K0 the normalized
gradient. In that approximation, the transfer matrix (2.37) or (2.38) of a thin quadrupole
reduces to

M(`=0) =

 
1 0
�K0` 1

!
=

 
1 0
� 1
f

1

!
; (2.42)

with f�1 = K0` and where the minus sign corresponds to a horizontally focusing quadrupole
and the plus sign to a horizontally defocusing quadrupole.

The transfer matrix Mdb(d=0) of the doublet with focal lengths fF > 0 and fD < 0
is thus

Mdb(d=0) =

 
1 0
� 1
fD

1

!�
1 d

0 1

� 
1 0
� 1
fF

1

!
=

 
1� d

fF
d

� 1
f

1 � d
fD

!
; (2.43)

with
1

f
=

1

fF
+

1

fD
� d

fFfD
=

d

f2F
> 0 ; (2.44)

when fD = �fF , with f�1F = K0`.
As another example, consider a symmetric thin-lens FODO cell composed of a hori-

zontally focusing quadrupole (F ) of focal length fF = f > 0, followed by a drift space (O)
of length L, then a horizontally defocusing quadrupole (D) of focal length fD = �jf j < 0
and a drift space (O) of length L. The transfer matrix through the FODO cell of total
length 2L is then, by (2.39) and (2.42)

MFODO(2L=0) =
�
1 L

0 1

� 
1 0
1
f

1

!�
1 L

0 1

� 
1 0
� 1
f

1

!
=

 
1� L

f
� L2

f2
2L + L2

f

� L
f2

1 + L
f

!

where f�1 = K0`;K0 and ` being the quadrupole strength and length.

2.3 Emittance and beam envelope

An invariant can be found from the solution of Hill's equation:

u(s) = a
q
�(s) cos [�(s)� '] : (2.45)

Computing the derivative

u0(s) = � aq
�(s)

 
�(s) cos [�(s)� '] + sin [�(s)� ']

!
=

��(s)
�(s)

u(s)� aq
�(s)

sin [�(s)� '] ;

or equivalently,

�(s)u(s) + �(s)u0(s) = a
q
�(s) sin [�(s)� ']
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Squaring and summing the above equations using (2.33) gives

(s)u(s)2 + 2�(s)u(s)u0(s) + �(s)u0(s)2 = a2 : (2.46)

This is a constant of motion, called the Courant{Snyder invariant. It represents the equa-
tion of an ellipse in the plane (u; u0), with the area �a2.


 particle with
"amplitude" a


 particle with
"amplitude" b < a

α(s)

a

γ(s)



u'(s)

u(s)

–a

α(s)
β(s)

–a

  
β(s)

a
  

γ (s)

γ(s)
a

β(s)
a

Figure 11: Phase plane ellipses for particles with di�erent amplitudes.

It is customary to surround a given fraction at the beam in the (u; u0) plane, say
95%, at a certain point s (for example, the injection point) by a phase ellipse described
by

(s)u(s)2 + 2�(s)u(s)u0(s) + �(s)u0(s)2 = � ; (2.47)

where the parameter � is called the beam emittance:

Z Z
ellipse

dudu0 = �� : (2.48)

All particles inside the phase ellipse will evolve a homothetic invariant ellipse with param-
eters a � � dictated by the optical properties of the lattice (Courant{Snyder invariant).
Thus the phase ellipse will contain the same fraction at the beam on successive machine
turns: the beam emittance is conserved (in the absence of acceleration, radiation, and
some collective e�ects).

The betatron oscillation for a particle on the phase ellipse reads:

u(s) =
q
�(s)� cos [�(s)� ']; (2.49)

where ' is an arbitrary phase constant. The envelope of the beam containing the speci�ed
fraction of particles is de�ned by

E(s) =
q
�(s)� (2.50)
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and the beam divergence is de�ned by

A(s) =
q
(s)� : (2.51)

The Twiss parameters �(s); �(s); (s) determine the shape and orientation of the ellipse
at azimuthal location s along the lattice. As the particle trajectory u(s) evolves along
the ring, the ellipse continuously changes its form and orientation but not its area. Every
time the trajectory covers one cell of length L along s the ellipse is the same, since the
Twiss parameters are periodic with period L. Consequently, on every machine revolution
the particle coordinates (u; u0) will appear on the same ellipse;

u(s+ kC) = a
q
�(s)fcos [�(s)� '] cos 2�kQ� sin [�(s)� '] sin 2�kQg ;

since �(s+ kC)� �(s) = 2�kQ. Thus the particle will appear cyclically at only n points
on the ellipse if the tune is a rational number Q = m=n and the particle trajectory will
cover the ellipse densely if the tune is an irrational number.

u'(s)

u(s)

turn 2 turn 1 = turn 8
turn 3

turn 4

turn 5
turn 6

turn 7

Figure 12: Phase plane motion for one particle after many turns.

This representation of the motion where the trajectory coordinates u and u0 are
picked up at �xed azimuthal location s on successive tunes is called `stroboscopic' repre-
sentation in phase plane (u; u0) or Poincar�e mapping: the series of ui; u0i(i = 1; 2:::) dots
is a mapping of the (u; u0) plane onto itself.

The Courant{Snyder invariant enables us to determine how the Twiss parameters
transform through the lattice. Consider the reference point s0 where the initial conditions
of the cosine- and sine-like solutions are given. Setting �(s0) = �0, �(s0) = �0, (s0) = 0,
and u(s0) = u0, u0(s0) = u00 for short, we get

0u
2
0 + 2�0u0u

0
0 + �0u

02
0 = a2 :

Furthermore, by de�nition of a transfer matrix from s0 to s,�
u(s)
u0(s)

�
=
�
C(s) S(s)
C 0(s) S0(s)

��
u0
u00

�
;
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or equivalently by matrix inversion,

�
u0
u00

�
=
�
S0(s) �S(s)
�C 0(s) C(s)

��
u(s)
u0(s)

�
;

the Courant{Snyder invariant reads as

0(S
0u� Su0)2 + 2�0(S

0u� Su0)(�C 0u+ Cu0) + �0(�C 0u+ Cu0)2

= (S020 � 2S0C 0�0 + C 02�0)u
2+

+2(�SS00 + (S0C + SC 0)�0 �C 0C�0)uu
0+

+(S20 � 2SC�0 + C2�0)u
02 = a2 ;

which is the expression of the Courant{Snyder invariant at s;

(s)u2 + 2�(s)uu0 + �(s)u02 = a2 ;

where we have set u(s) = u, u0(s) = u0 and S(s) = S, C(s) = C.
Identifying the coe�cients of the latter two invariants gives

�(s) = C2�0 � 2SC�0 + S20

�(s) = �CC 0�0 + (S0C + SC 0)�0 � SS00

(s) = C 02�0 � 2S0C 0�0 + S020 ;

or in matrix formulation,

0
B@ �(s)�(s)
(s)

1
CA =

0
B@ C2 �2SC S2

�CC 0 S0C + SC 0 �SS0
C 02 �2S0C 0 S02

1
CA
0
B@ �0�0
0

1
CA : (2.52)

This expression is the transformation rule for phase ellipses through the lattice.

2.4 Betatron functions for beam transport lattices

The linear unperturbed equation of motion for a particle through an arbitrary beam
transport lattice (non-periodic) has a form similar to equation (2.2):

u00 +K(s)u = 0 ; (2.53)

where K(s) is an arbitrary function of s. By analogy with the solution (2.19) of Hill's
equation (2.2) we try a solution of the form

u(s) = a
q
��(s) cos [��(s)� '] ; (2.54)
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in which a and ' are integration constants, ��(s) and ��(s) are functions of s to be
determined. Di�erentiating this expression twice|writing for short �� = ��(s) and �� =
��(s)|

u0 = a
��0

2
p
�

cos [�� � ']� a
q
����0 sin [�� � '] ;

u00 =
a

4

 
2����00� ��02

��3=2

!
cos [�� � ']� a

��0q
��
��0 sin [�� � ']

�a
q
����00 sin (�� � ')� a

q
����02 cos [�� � '] ;

and inserting into (2.53) yields

a

��3=2

 
����00

2
� ��02

4
� ��2��02 + ��2K(s)

!
cos [�� � ']

� ap
��

(��0��0 + ����00) sin (�� � ') = 0 :

Since the cosine and sine terms must cancel separately to make (2.54) true for all ��(s),
we obtain

����00

2
� ��02

4
� ��2��02 + ��2K(s) = 0 ; (2.55)

and
��0��0 + � � ��00 = (����0)0 = 0 :

The latter equation gives on integration

��(s)��0(s) = c :

Then, choosing the integration constant c equal to unity, we get

��0(s) =
1

��(s)
; (2.56)

which after integration gives

��(s) =
Z s

s0

dt

��(t)
: (2.57)

Hence, inserting (2.56) into (2.55) we obtain

1

2
����00� 1

4
��02 +K(s)��2 = 1 : (2.58)

The last two equations are identical to (2.15) and (2.17), derived from Hill's equa-
tion. Therefore, ��(s) and ��(s) are also called phase and betatron functions. However,
unlike that of a periodic lattice, the betatron function of a non-periodic lattice is not
uniquely determined by the periodicity condition on the cells, but depends on the initial
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conditions at the entrance of the lattice. Similarly to the periodic lattice case, we can
de�ne the parameters

��(s) = ��
�0(s)
2

;

�(s) =
1 + ��(s)2

��(s)
; (2.59)

and the Courant{Snyder invariant may be derived in the same way:

�(s)u(s)2 + 2��(s)u(s)u0(s) + ��(s)u0(s)2 = a2 (2.60)

Since the parameters ��(s), ��(s), �(s) of the non-periodic case, and �(s); �(s), (s)
of the periodic case are of similar nature, the star above the letters ��, ��, � will be
removed. The derivation of the formulae (2.31) for the general transformation matrix and
(2.52) for the transformation of Twiss parameters proceed in the same way as in the
periodic lattice case.

Designing a beam transport lattice, the Twiss parameters �(s0), �(s0), (s0) at its
entrance s0 may be chosen such that the phase ellipse

(s0)u(s0)
2 + 2�(s0)u(s0)u

0(s0) + �(s0)u
0(s0)

2 = �

closely surrounds a given fraction at the incoming particle beam distribution in the (u; u0)
phase plane. The parameter � is the beam emittance. The description of the distribution
of particles within the beam is thus reduced to that of a particle travelling along the phase
space ellipse

u(s) =
q
�(s)� cos [�(s)� '] :

u'(s0)

u(s0)

  
β(s0)ε = E(s)

  ε
  

γ(s0)ε = A(s)

particle with
"amplitude"

particle distribution

Figure 13: Particle distribution in phase plane, beam envelope and divergence.

The Twiss parameters at the entrance of a transport lattice may also be chosen as those
coming from a join circular machine (at ejection point).
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Another beam emittance de�nition frequently used is

� =
�u(s)2

�(s)
;

where �u(s) is the standard deviation of the projected beam distribution onto the u-axis
(beam pro�le).

2.5 Dispersive periodic closed lattices

Particle beams have a �nite dispersion of momenta about the ideal momentum p0.
A particle with �p = p � p0 will perform betatron oscillations about a di�erent closed
orbit from that of the reference particle. For small deviations in momentum the equation
of motion is, according to (1.25)

u00 +K(s)u =
�

�(s)
; (2.61)

with

� =
p� p0

p0
=

�p

p0
; (2.62)

where �(s) stands for the local bend radii �x(s) or �y(s).
The individual particle deviation from the design orbit can be regarded as being

the sum of two parts:
u(s) = u�(s) + u�(s) ; (2.63)

where u�(s) is the displacement at the closed orbit for the o�-momentum particle from
that of the reference particle (with � = 0); and u�(s) is the betatron oscillation around
this o�-momentum orbit. The particular solution u�(s) of the inhomogeneous equation
(2.61) is generally re-expressed as

u�(s) = D(s)� ; (2.64)

where D(s) is called the dispersion function, which evidently satis�es the equation

D00 +K(s)D =
1

�(s)
: (2.65)

A particular solution of this equation is

Dp(s) = S(s)
Z s

s0

C(t)

�(t)
dt �C(s)

Z s

s0

S(t)

�(t)
dt ; (2.66)

where C(s) and S(s) are the cosine- and sine-like solutions of the homogeneous Hill's
equation (2.61) (with � = 0). The substitution of (2.66) into (2.65) veri�es that this is a
valid solution. We compute �rst
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D0
p(s) = S0(s)

Z s

s0

C(t)

�(t)
dt+ S(s)

C(s)

�(s)
� C 0(s)

Z s

s0

S(t)

�(t)
dt� C(s)

S(s)

�(s)

= S0(s)
Z s

s0

C(t)

�(t)
dt� C 0(s)

Z s

s0

S(t)

�(t)
dt

and

D00
p (s) = S00(s)

Z s

s0

C(t)

�(t)
dt+ S0(s)

C(s)

�(s)
� C 00(s)

Z s

s0

S(t)

�(t)
dt� C 0(s)

S(s)

�(s)

=
1

�(s)
+ S00(s)

Z s

s0

C(t)

�(t)
dt� C 00(s)

Z s

s0

S(t)

�(t)
dt ;

since the Wronskian is equal to unity (A.7). Hence (2.65) for Dp reads

[S00+K(s)S]
Z s

s0

C(t)

�(t)
dt� [C 00+K(s)C]

Z s

s0

S(t)

�(t)
dt = 0 ;

where C(s) and S(s) satisfy the homogeneous Hill's equation

S00 +K(s)S = 0 and C 00 +K(s)C = 0 :

For a closed lattice we must �nd a dispersion function which leads to an o�-momentum
closed orbit, one for which

u�(s+ C) = u�(s) u0�(s+ C) = u0�(s) ; (2.67)

where we have considered the machine circumference C = NL as the period, instead of
the cell length L. Other possible solutions u�(s) are Dp(s)� plus a linear combination of
C(s) and S(s):

u�(s) = c1C(s) + c2S(s) +Dp(s)�

u0�(s) = c1C
0(s) + c2S

0(s) +D0
p(s)� ; (2.68)

where c1 and c2 are constants. The application of the boundary condition (2.67) to the
reference point s = s0, from which C(s) and S(s) are derived, yields

c1C(s0 + C) + c2S(s0 + C) +Dp(s0 + C)� = c1 ;

c1C
0(s0 + C) + c2S

0(s0 + C) +D0
p(s0 + C)� = c2 ; (2.69)

since
C(s0) = 1 C 0(s0) = 0 S(s0) = 0 S0(s0) = 1

and
Dp(s0) = 0 D0

p(s0) = 0 :
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In matrix form the system (2.69) reads: 
C(s0 + C)� 1 S(s0 + C)
C 0(s0 + C) S0(s0 + C)� 1

!�
c1
c2

�
= �

�
Dp(s0 + C)
D0
p(s0 + C)

�
� ;

its solution is

 
c1
c2

!
= �

 
S0(s0 + C)� 1 �S(s0 + C)
�C 0(s0 + C) C(s0 + C)� 1

! 
Dp(s0 + C)
D0
p(s0 + C)

!

[C(s0+ C)� 1][S0(s0 + C)� 1]�C 0(s0 + C)S(s0 + C)
� : (2.70)

The denominator of this expression may be written as

C(s0 + C)S0(s0 + C)� C 0(s0 + C)S(s0 + C)� [C(s0 + C) + S0(s0 + C)] + 1
= jM(s0)j � Tr [M(s0)] + 1 = 2(1 � cos 2�Q) = 4 sin2 �Q ;

since

M(s0) =

 
C(s0 + C) S(s0 + C)
C 0(s0 + C) S0(s0 + C)

!

is the transfer matrix for one machine revolution, whose determinant is equal to unity,
and the trace is

Tr [M(s0)] = 2 cos �(s0 + C) = 2 cos 2�Q ;

with

�(s0 + C) =
Z s0+C

s0

dt

�(t)
= 2�Q :

The solution for the constant c1 is then

c1 =
S(s0 + C)D0

p(s0 + C)� [S0(s0 + C)� 1]Dp(s0 + C)

4 sin 2�Q
� : (2.71)

The numerator may be expressed as

S(s0 + C)D0
p(s0 + C)� S0(s0 + C)Dp(s0 + C) +Dp(s0 + C)

= � [S(s0 + C)C 0(s0 + C)� S0(s0 + C)C(s0+ C)]
Z s0+C

s0

S(t)

�(t)
dt

+S(s0 + C)
Z s0+C

s0

C(t)

�(t)
dt� C(s0 + C)

Z s0+C

s0

S(t)

�(t)
dt

= [1� C(s0 + C)]
Z s0+C

s0

S(t)

�(t)
dt+ S(s0 + C)

Z s0+C

s0

C(t)

�(t)
dt

Furthermore the transfer matrix over a full turn also reads:

M(s0) =

 
cos 2�Q+ �(s0) sin 2�Q �(s0) sin 2�Q
�(s0) sin 2�Q cos 2�Q� �(s0) sin 2�Q

!
;
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so that

C(s0 + C) = cos 2�Q+ �(s0) sin 2�Q ;

S(s0 + C) = �(s0) sin 2�Q :

The expression (2.31) for the transfer matrix M(t=s0) yields

C(t) =

vuut �(t)

�(s0)
[cos ��(t) + �(s0) sin ��(t)]

S(t) =
q
�(t)�(s0) sin ��(t)

where ��(t) = �(t)� �(s0). Hence the constant c1 becomes

c1 =
�

4 sin 2�Q

 
[1� cos 2�Q� �(s0) sin 2�Q]

Z s0+C

s0

1

�(t)

q
�(s0)�(t) sin ��(t)dt

+�(s0) sin 2�Q
Z s0+C

s0

1

�(t)

vuut �(t)

�(s0)
[cos ��(t) + �(s0) sin ��(t)]dt

!

=

q
�(s0)�

4 sin 2�Q

Z s0+C

s0

1

�(t)

q
�(t) [(1� cos 2�Q) sin ��(t) + sin 2�Q cos ��(t)] dt

=

q
�(s0)�

2 sin �Q

Z s0+C

s0

q
�(t)

�(t)
[sin �Q sin ��(t) + cos �Q cos ��(t)] dt

=

q
�(s0)�

2 sin �Q

Z s0+C

s0

q
�(t)

�(t)
cos [��(t)� �Q]dt

At the reference point s0 from (2.64), (2.66) and (2.68) we get

c1 = u�(s0) = D(s0)� :

Since the origin s0 was chosen arbitrarily, it may be replaced by the general coordinate s,
and the dispersion function D(s) is found to be

D(s) =

q
�(s)

2 sin �Q

Z s+C

s

q
�(t)

�(t)
cos [�(t)� �(s)� �Q]dt : (2.72)

The periodic dispersion function D(s)|also written as �(s)|depends on all bending
magnets in the accelerator. Furthermore, to get stable o�-momentum orbits, the machine
tune Q must not be an integer, otherwise resonance e�ect will occur: u�(s) becomes
in�nite.

30



2.6 Dispersive beam transport lattices

The dispersion function D(s) in a beam transport line is the general solution of the
equation

D00 +K(s)D =
1

�(s)
; (2.73)

where K(s) and �(s) are arbitrary functions of s.
Already derived is the solution

D(s) = c1C(s) + c2S(s) + S(s)
Z s

s0

C(t)

�(t)
dt� C(s)

Z s

s0

S(t)

�(t)
dt (2.74)

where c1 and c2 are constants and remembering that C(s) and S(s) are solutions of the
equation

D00 +K(s)D = 0 :

From the initial conditions at s0 of the cosine- and sine-like solutions, we obtain

D(s) = C(s)D(s0) + S(s)D0(s0) + S(s)
Z s

s0

C(t)

�(t)
dt� C(s)

Z s

s0

S(t)

�(t)
dt ; (2.75)

or, in matrix formulation, di�erentiating (2.75),

0
B@ D(s)
D0(s)
1

1
CA =

0
BBBBBBB@

C(s) S(s) S(s)
Z s

s0

C(t)

�(t)
dt �C(s)

Z s

s0

S(t)

�(t)
dt

C 0(s) S0(s) S0(s)
Z s

s0

C(t)

�(t)
dt �C 0(s)

Z s

s0

S(t)

�(t)
dt

0 0 1

1
CCCCCCCA

0
B@ D(s0)
D0(s0)
1

1
CA : (2.76)

This 3� 3 matrix is the extended transfer matrix M(s=s0):

M(s=s0) =

0
BBBBBBB@

C(s) S(s) S(s)
R s
s0

C(t)

�(t)
dt� C(s)

Z s

s0

S(t)

�(t)
dt

C 0(s) S0(s) S0(s)
Z s

s0

C(t)

�(t)
dt�C 0(s)

Z s

s0

S(t)

�(t)
dt

0 0 1

1
CCCCCCCA
: (2.77)

The solution of the equation of motion with a momentum deviation may then be expressed
as 0

B@ u(s)
u0(s)
�

1
CA =M(s=s0)

0
B@ u(s0)
u0(s0)
�

1
CA : (2.78)

Indeed, using (2.63), (2.64), (2.76) and (A.5) we get
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u(s) = C(s)[u�(s0) + u�(s0)] + S(s)[u0�(s0) + u0�(s)]

+S(s)
Z s

s0

C(t)

�(t)
dt � � C(s)

Z s

s0

S(t)

�(t)
dt �

= C(s)u�(s0) + S(s)u0�(s0) + C(s)D(s0)� + S(s)D0(s0)�

+S(s)
Z s

s0

C(t)

�(t)
dt� � C(s)

Z s

s0

S(t)

�(t)
dt� = u�(s) +D(s)�

= u�(s) + u�(s) ;

and, similarly, we verify that

u0(s) = u0�(s) + u0�(s) :

The 3�3 extended transfer matrix (2.77) is easily computed when the strength K(s) and
the bending radius �(s) are constant functions through the magnet.

Consider a dipole sector magnet, which is a bending magnet with entry and exit
pole faces normal to the incoming and outgoing design orbit, respectively. For a sector
magnet: K(s) = 1=�20 (between s0 and s1 over a distance `). The cosine- and sine-like
solutions are

C(s) = cos

 
s� s0

�0

!
and S(s) = �0 sin

 
s� s0

�0

!
:

Hence

S(s)
Z s

s0

C(t)

�(t)
dt = sin

 
s� s0

�0

!Z s

s0

cos

 
t� s0

�0

!
dt = �0 sin

2

 
s� s0

�0

!2

C(s)
Z s

s0

S(t)

�(t)
dt = cos

 
s� s0

�0

!Z s

s0

sin

 
t� s0

�0

!
dt

= ��0 cos
 
s� s0

�0

! 
cos

 
s� s0

�0

!
� 1

!

and then

S(s)
Z s

s0

C(t)

�(t)
dt� C(s)

Z s

s0

S(t)

�(t)
dt = �0

 
1� cos

 
s� s0

�0

!!

By (2.77) the transfer matrix of a sector magnet in the deecting plane is

M(s1=s0) =

0
B@ cos � �0 sin � �0(1 � cos �)
� 1
�0
sin � cos � sin �
0 0 1

1
CA ; (2.79)

where � = `=�0 is the bending angle and ` the arc length of the magnet.
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design orbit (δ = 0)

π/2π/2

θ ρ0

arc length    = s1 – s0

s1s0

Figure 14: Dipole sector magnet.

The 3 � 3 transfer matrices for synchrotron magnets (combined dipole-quadrupole
magnets) may be derived similarly. For a strong focusing synchrotron sector magnet:
K(s) = K0 + 1=�20 > 0 (between s0 and s1 over a distance `). In analogy to the dipole
sector magnet case, replacing 1=�0 by

p
K in the above solutions C(s) and S(s), the

transfer matrix (2.77) reads, after computation of the matrix components m13 and m23

M(s1=s0) =

0
BBBBB@

cos � sin �p
K

1�cos �
�0K

�
p
K sin � cos � sin �

�0
p
K

0 0 1

1
CCCCCA (2.80)

with � =
p
K`, where K0 is the normalized gradient and ` the magnet length.

For a strong defocusing synchrotron sector magnet: K(s) = K0 + 1=�20 < 0. The
transfer matrix may be written as

M(s1=s0) =

0
BBBBB@

cosh � sinh�p
jKj

cosh ��1
�0jKj

�
q
jKj sinh � cosh � sinh �

�0
p
jKj

0 0 1

1
CCCCCA (2.81)

with � =
q
jKj`.

Consider again closed lattices. Like the method used for the betatron oscillations,
the periodic dispersion function may also be derived applying the matrix formalism rather
than using (2.72). For a ring of circumferenceC (or one periodic cell of length L) composed
of N elements having extended 3 � 3 transfer matrices M1; M2; � � � MN [with Mk =
M(sk=sk�1)], the total transfer matrix over the whole machine (or one machine period)
is then obtained by multiplying the various matrices, yielding

M(s0) �M(s0 + C=s0) =MN � � �M2M1 =

0
B@m11(s0) m12(s0) m13(s0)
m21(s0) m22(s0) m23(s0)

0 0 1

1
CA (2.82)

33



in which the 2�2 sub-matrix with components (mij(s0))i;j=1;2 is the usual transfer matrix
over one turn (or one period) for the betatron oscillations.

The functions D(s) and D0(s) being periodic with period C, we get from (2.64),
(2.78) in which s is replaced by s0 + C, and (2.82), the matrix equation

0
B@
D(s)
D0(s)
1

1
CA =

0
B@
m11(s0) m12(s0) m13(s0)
m21(s0) m22(s0) m23(s)

0 0 1

1
CA
0
B@
D(s)
D0(s)
1

1
CA : (2.83)

The solution of this equation yields the dispersion function and its derivative at the
starting point s0

D(s0) =
m13(s0)(1 �m22(s0)) +m12(s0)m23(s0)

2�m11(s0)�m22(s0)

D0(s0) =
m23(s0)(1 �m11(s0)) +m21(s0)m13(s0)

2�m11(s0)�m22(s0)
(2.84)

since
m11(s0)m22(s0)�m12(s0)m21(s0) = 1 :

The same calculations can be performed at any azimuthal location s along the machine
circumference, so that the dispersion function (2.84) can be obtained everywhere in the
lattice. The matrix approach is useful when the strength K(s) and the radius of curvature
�(s) are piecewise constant functions over the magnets, allowing an explicit determination
of the periodic dispersion.

As an example, consider a thin-lens FODO lattice with cell length 2L, in which
the drift spaces are replaced by dipole sector magnets of length L and bending radius
�0 (assuming that the bending angle of the dipole is small: L� �0). In accordance with
(2.42), (2.77) and (2.79) the 3 � 3 transfer matrices of the cell elements read

MQF;D =

0
BBBBB@

1 0 0

� 1
f

1 0

0 0 1

1
CCCCCA MO =

0
BBBBB@

1 L L2

2�0

0 1 L
�0

0 0 1

1
CCCCCA

where the dipole transfer matrix MO in the deecting plane has been simpli�ed by ex-
panding (2.79) to the �rst order in L=�0.

The extended 3�3 transfer matrix through a FODO cell is obtained from the latter
formulae with MFODO =MOMQDMOMQF

MFODO =

0
BBBBBB@

1 � L
f
� L2

f2
2L + L2

f
L2

2�0

�
4 + L

f

�

� L
f2

1 + L
f

L
2�0

�
4 + L

f

�

0 0 1

1
CCCCCCA
: (2.85)
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Hence, by (2.84) the periodic dispersion in the focusing or defocusing thin quadrupole is

DQF;D =
4f2

�0

 
1 � L

4f

!
: (2.86)

The dispersion in the defocusing quadrupole (minus sign in the formula) is derived by
replacing the focal length f by �f in (2.85) (i.e. considering a DOFO cell instead, with
MDOFO =MOMQFMOMQD).

3 MULTIPOLE FIELD EXPANSION

3.1 General multipole �eld components

Nonlinear magnetic �elds will be considered as pure multipole magnet components
to be used in the equations of motion of a charged particle in a transport channel or in a
circular accelerator. To go beyond the linear expression of the magnetic �eld B, we shall
use a multipole expansion of B in a �xed, right-handed, Cartesian coordinate system
(x; y; z), where the z-axis coincides with the s-axis of the coordinate system moving on
the design orbit. The e�ects of curvature will thus be neglected in the derivation of the
multipole �eld components in the magnets forming a lattice.

In a vacuum environment in the vicinity of the design orbit, the following Maxwell
equations hold:

r �B = 0 r�B = 0 (3.1)

because the current density is zero in the region of interest.
The latter equation permits the expression of the magnetic �eld as the gradient of

a magnetic scalar potential U(x; y; z)

B = �rU ; (3.2)

since for any scalar function U
r�rU = 0 :

This leads to the Laplace equation by the �rst equation (3.1)

r � rU � r2U = 0 : (3.3)

We assume that the �eld does not vary along the z-axis, as is the case for long mag-
nets far from the ends, and that there are only transverse �eld components (no solenoid
�eld). Then the Laplace equation reads in polar coordinates (r; ')

r
@

@r

 
r
@U

@r

!
+
@2U

@'2
= 0 : (3.4)

Writing the potential U(r; ') as the product of two functions f(r) and g(')

U(r; ') = f(r)g(') (3.5)
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the Laplace equation transforms into

g(')r
@

@r

 
r
@f

@r

!
+ f(r)

@2g

@'2
= 0 (3.6)

or equivalently
r

f(r)

d

dr

 
r
df

dr

!
= � 1

g(')

d2g

d'2
� n2 : (3.7)

Each side of this equation must be equal to a constant n2 since the left-hand side depends
only on r and the right-hand side on '. Hence, we get

r2
d2f

dr2
+ r

df

dr
� n2f = 0

(3.8)

d2g

d'2
+ n2g = 0 :

The solutions of these equations may be written as

f(r) = �p
e

rn

n!
g(') = An e

in' : (3.9)

The terms (�p=e) and n! have been added for convenience. The constant n is an integer
since the potential U(r; ') is a periodic function of ' with period 2� (and also the function
g(')). The constant An is assumed to be real. Hence, by (3.5) the magnetic scalar potential
is written

U(r; ') = �p
e

1X
n=1

1

n!
Anr

nein' : (3.10)

Values of n � 0 have been discarded to avoid �eld singularities for r ! 0, and because
n = 0 gives a constant potential term which does not contribute to the magnetic �eld. In
Cartesian coordinates the magnetic potential becomes

U(x; y) = �p
e

1X
n=1

1

n!
An(x+ iy)n : (3.11)

Thus, the magnetic potential may be decomposed into independent multipole terms

Un(x; y) = �p
e

An

n!
(x+ iy)n : (3.12)

The real and imaginary parts of equation (3.12) are two independent solutions of the
Laplace equation (3.3). From

(x+ iy)n =
nX
k=0

n!

k!(n� k)!
xn�k(iy)k
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and with for, k � 0,

i2k = (�1)k i2k+1 = (�1)ki
it follows that

Re ((x+ iy)n) =
n=2X
m=0

n!

(2m)!(n� 2m)!
xn�2my2m(�1)m

Im((x+ iy)n) =
(n�1)=2X
m=0

(�1)m n!

(2m+ 1)!(n� 2m� 1)!
xn�2m�1y2m+1

where the sums extend over the greatest integer less than or equal to n=2 and (n� 1)=2,
respectively.

Hence, assigning di�erent coe�cients An and An to the real and imaginary parts of
(3.12), the potential for the nth order multipole becomes

Re [Un(x; y)] = �p
e

n=2X
m=0

(�1)mAn
xn�2m

(n� 2m)!

y2m

(2m)!
(3.13)

Im [Un(x; y)] = �p
e

(n�1)=2X
m=0

(�1)mAn

xn�2m�1

(n� 2m� 1)!

y2m+1

(2m+ 1)!
: (3.14)

The real and the imaginary part di�erentiate between two classes of magnet orientation.
The imaginary part has the so-called midplane symmetry, that is

Im [Un(x; y)] = �Im [Un(x;�y)] : (3.15)

The magnetic �eld components for the nth order multipoles derived from the imaginary
solution (3.14) are, according to (3.2),

Bnx(x; y) = � @

@x
Im [Un(x; y)] =

=
p

e

(n�2)=2X
m=0

(�1)mAn

xn�2m�2

(n� 2m� 2)!

y2m+1

(2m+ 1)!
(3.16)

Bny(x; y) = � @

@y
Im [Un(x; y)] =

=
p

e

(n�1)=2X
m=0

(�1)mAn

xn�2m�1

(n� 2m� 1)!

y2m

(2m)!
(3.17)

since (@=@x)xn�2m�1 = 0 if m = (n� 1)=2. The midplane symmetry (3.15) yields

Bnx(x; y) = �Bnx(x;�y)
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and

Bny(x; y) = Bny(x;�y) :

Thus, in this symmetry there is no horizontal �eld in the midplane, Bnx(x; 0) = 0, and a
particle travelling in the horizontal midplane will remain in this plane.

The magnets derived from the imaginary solution of the potential are called upright
or regular magnets. Rewriting Eq. (3.17) as

Bny(x; y) =
p

e
An

xn�1

(n� 1)!
+
p

e
An

(n�1)=2X
m=1

(�1)m xn�2m�1

(n� 2m� 1)!

y2m

(2m)!

and di�erentiating this expression n � 1 times leads to

An =
e

p

@n�1Bny

@xn�1
= �e

p
(�1)n=2@

n�1Bnx

@yn�1
: (3.18)

The coe�cient An is called the multipole strength parameter.
The magnets derived from the real solution of the potential are called rotated or

skew magnets. The magnetic �eld components for the nth order skew multipole derived
from the real solution are

Bnx(x; y) = � @

@x
Re [Un(x; y)] =

=
p

e
An

(n�1)=2X
m=0

(�1)m xn�2m�1

(n� 2m� 1)!

y2m

(2m)!
(3.19)

Bny(x; y) = � @

@y
Re [Un(x; y)] =

=
p

e
An

n=2X
m=0

(�1)m xn�2m

(n � 2m)!

y2m�1

(2m� 1)!
(3.20)

since (@=@x)xn�2m = 0 if m = n=2.
The skew multipole strength parameters An are derived from (3.19)

An =
e

p

@n�1Bnx

@xn�1
=
e

p
(�1)n=2@

n�1Bny

@yn�1
: (3.21)

The skew magnets di�er from the regular magnets only by a rotation about the z-axis by
an angle �n = �=2n, where n is the order at the multipole.
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Magnetic multipole potentials

Dipole �e
p
U1(x; y) = � 1

�y
x+ i

1

�x
y

Quadrupole �e
p
U2(x; y) =

1

2
K(x2 � y2) + iKxy

Sextupole �e
p
U3(x; y) =

1

6
S(x3 � 3xy2) + i

1

6
S(3x2y � y3)

Octupole �e
p
U4(x; y) =

1

24
O(x4 � 6x2y2 + y4) + i

1

6
O(x3y � xy3)

Here we have used the notation: A2 = K; A3 = S; A4 = O, and A2 = K; A3 =
S; A4 = O. In particular the dipole strength parameters A1 and A1 are given by

A1 =
e

p
B1y = kx =

1

�x
A1 =

e

p
B1x = �ky = � 1

�y
:

Regular multipole �elds

Dipole
e

p
B1x = 0

e

p
B1y =

1

�x

Quadrupole
e

p
B2x = Ky

e

p
B2y = Kx

Sextupole
e

p
B3x = Sxy

e

p
= B3y =

1

2
S(x2 � y2)

Octupole
e

p
B4x =

1

6
O(3x2y � y3)

e

p
B4y =

1

6
O(x3 � 3xy2)
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Skew multipole �elds

Dipole
e

p
B1x = � 1

�y

e

p
B1y = 0

(� = 90�)

Quadrupole
e

p
B2x = Kx

e

p
B2y = �Ky

(� = 45�)

Sextupole
e

p
B3x =

1

2
S(x2 � y2)

e

p
B3y = �Sxy

(� = 30�)

Octupole
e

p
B4x =

1

6
O(x3 � 3xy2)

e

p
B4y = �1

6
O(3x2y � y3)

(� = 22:5�)

The general magnetic �eld expansion including the most commonly used regular
multipole elements reads

e

p
Bx(x; y) = Ky + Sxy +

1

6
O(3x2y � y3) + :::

e

p
By(x; y) =

1

�x
+Kx+

1

2
S(x2 � y2) +

1

6
O(x3 � 3xy2) + :::

3.2 Pole pro�le

Multipole �elds may be generated by iron magnets in which the metallic surfaces, in
the limit of in�nite magnetic permeability, are equipotential surfaces for magnetic �elds.
Ignoring the end �eld e�ects, the potential of a horizontally deecting dipole magnet is

e

p
U1(x; y) = � y

�x
: (3.22)

An equipotential iron surface is determined by

y

�x
= constant (3.23)

or y = constant since �x is constant inside the magnet.
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Figure 15: Dipole magnet pole shape.

For the midplane magnet to be at y = 0, two pole pro�les are needed at y = �g,
where 2g is the gap width.

Similarly, the equipotential iron-surface for a regular quadrupole magnet is

Kxy = constant : (3.24)

Let R be the inscribed radius at the iron-free region limited by the hyperbola. For x = y:
x = �R=

p
2. Then

K
1

2
R2 = constant :

Identifying this expression with (3.24) gives the pole pro�le equation

xy = �1

2
R2 : (3.25)

Similarly, the equipotential for a skew quadrupole magnet is

1

2
K(x2 � y2) = constant : (3.26)

For y = 0: x = �R. Then
1

2
KR2 = constant

The pole pro�le equation is therefore

x2 � y2 = �R2 : (3.27)

y
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S N

B
R
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x
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R

Figure 16: Regular and skew quadrupole magnet pole shapes.
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A regular quadrupole magnet focuses in one plane and defocuses in the other. The
�eld pattern is

e

p
B2x = Ky

e

p
B2y = Kx :

y  
B 2x

B 2y

x

Figure 17: Magnetic �led for an horizontally focusing quadrupole (positive particles approach

the reader).

The equipotential iron surface for a regular sextupole magnet is

S(3x2y � y3) = constant (3.28)

and for a skew sextupole magnet

S(x3 � 3xy2) = constant : (3.29)
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Figure 18: Regular and skew sextupole magnet pole shapes.

4 TRANSVERSE RESONANCES

4.1 Nonlinear equations of motion

In the absence of a tangential magnetic �eld (no solenoid �eld) the transverse equa-
tions of a motion (3.13) for a charged particle in a magnetic �eld read

x00 � �00

�0
x0 = kxh� (1 + �)�1

e

p0
�0hBy

y00 � �00

�0
y0 = kyh+ (1 + �)�1

e

p0
�0hBx (4.1)

where
h = 1 + kxx+ kyy

and
�0 =

q
h2 + x

02 + y
02 : (4.2)

The local curvatures of the design orbit are kx;y, the design momentum is p0, and � is the
relative momentum deviation of a particle: � = (p � p0)=p0.
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The equations of motion will be expanded to the second order in �; x; y, and their
derivatives. Di�erentiating Eq. (4.2) gives, dividing the result by �0,

�00

�0
=
hh0 + x0x00 + y0y00

�
02

which, after some sorting may be expressed as

�00

�0
� h0 � 1

2

d

ds
(k2xx

2 + k2yy
2 � x02 � y02) (4.3)

where we have assumed a piecewise at design orbit, so that

kx(s)ky(s) = 0 :

Then
�00

�0
x0 � kxx

02 + kyx
0y0 + k0xxx

0 + k0yyx
0 :

Furthermore it will be assumed that

u0 � 1 u� �u =
1

ku
; (4.4)

where u stands for x or y, so that u
02 and uu0=�2u may be neglected since

k0u = ��
0
u

�2u

where �u(s) is the local bending radius. Therefore, to the second order we �nd

�00

�0
x0 =

�00

�0
y0 � 0 :

Expressing the general magnetic �eld in terms of multipole components, the equations of
motion (4.1) become to the second-order expansion

x00 = kxh� (1 � � + �2)�0h

 
kx +K0x+

1

2
S0(x

2 � y2)�K0y � S0xy

!

y00 = kyh+ (1� � + �2)�0h

 
� ky +K0y + S0xy +K0x+

1

2
S0(x

2 � y2)

!
(4.5)

The index zero in K0; K0; S0 and S0 means that the quadrupole and sextupole strengths
are evaluated at the design momentum p0. We compute the following quantities to the
second order:

h2 = 1 + 2kxx+ 2kyy + k2xx
2 + k2yy

2
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�0h = h2

s
1 +

x
02

h2
+
y
02

h2
� h2

 
1 +

x
02

2
+
y
02

2

!
� h2 ;

since x
02 and y

02 are neglected due to (4.4). Furthermore

(1� � + �2)�0hkx � kx(1� � + �2) + (2k2x � 2k2x� + k3xx)x

Similarly

(1 � � + �2)�0hK0x � (1 + 2kxx+ 2kyy � �)K0x

(1 � � + �2)�0hK0y � (1 + 2kxx+ 2kyy � �)K0y

(1 � � + �2)�0h
1

2
S0(x

2 � y2) � 1

2
S0(x

2 � y2)

(1 � � + �2)S0xy � S0xy

Thus the equations of motion (4.5) become

x00 + (K0 + k2x)x�K0y = kx� � kx�
2 + (K0 + 2k2x)x��

� (2K0 + k2x)kxx
2 � 1

2
S0(x

2 � y2)� 2K0kyxy�

� K0y� + 2K0kyy
2 + (S0 + 2K0kx)xy (4.6)

and

y00 � (K0 � k2y)y �K0x = ky� � ky�
2 � (K0 � 2k2y)y�+

+ (2K0 � k2y)kyy
2 + (S0 + 2K0kx)xy�

� K0� + 2K0kxx
2 +K0kyxy +

1

2
S0(x

2 � y2) : (4.7)

We shall further assume that

K0 � �x;yS0 K0 � �x;yS0 ; (4.8)

which is generally valid in large synchrotrons. Hence, some terms in (4.6) and (4.7) may
be neglected since

K0kyxy� S0(x2 � y2) K0kyxy� S0(x
2 � y2)

K0kyxy� S0xy K0kxxy� S0xy

K0kuu
2 � K0u K0kuu

2 � K0u

k3uu
2 � k2uu

where u denotes x or y. Then the equations of motion reduce to the form

x00 +

 
K0 +

1

�2x

!
x = K0y +

�

�x
� �2

�x
+

 
K0 +

2

�2x

!
x��
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� 1

2
S0(x

2 � y2)�K0y� + S0xy (4.9)

y00 �
 
K0 �

1

�2y

!
y = K0x+

�

�y
� �2

�y
�
 
K0 �

2

�2y

!
y�+

+ S0xy �K0x� +
1

2
S0(x

2 � y2) : (4.10)

If we consider particles with the design momentum p0, the equations of motion expanded
up to sextupole terms read

x00 +

 
K0 +

1

�2x

!
x = K0y �

1

2
S0(x

2 � y2) + S0xy (4.11)

y00 �
 
K0 �

1

�2y

!
y = K0x+ S0xy +

1

2
S0(x

2 � y2) : (4.12)

When the design orbit lies only in the horizontal plane, the vertical equation of motion
simpli�es to

y00 �K0y = K0x+ S0xy +
1

2
S0(x

2 � y2) : (4.13)

Remember that the magnet parameters �x;y; K0; K0; S0 and S0 are generally
functions of the s-coordinate. In practice they are piecewise constant functions along the
lattice.

4.2 Description of motion in normalized coordinates

All terms on the right-hand sides of equations (4.9) and (4.10) will be treated as
small perturbations. The left-hand side of these equations yields the linear unperturbed
equations of motion
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x00 +

 
K0 +

1

�2x

!
x = 0

y00 �
 
K0 �

1

�2y

!
y = 0 : (4.14)

For closed lattices these equations are Hill's equations with periodic coe�cients. They can
be written in the compact form, writing u for either x or y,

u00 +K(s)u = 0 (4.15)

where K(s) is a periodic function with period L equal to the length of a machine cell

K(s+ L) = K(s) (4.16)

with

K(s) = �K0(s) +
1

�2x;y(s)
:

Perturbation terms in the equations of motion may lead to unstable beam motion,
called resonances, when the perturbating �eld acts in synchronism with the particle os-
cillations. A multipole of nth order is said to generate resonances of order n. Resonances
below the third order (i.e. due to dipole and quadrupole �eld errors for instance) are called
linear resonances. The nonlinear resonances are those of third order and above.

By an appropriate transformation of variables we can express the equations of
motions (4.9) and (4.10) in the form of a perturbed harmonic oscillator with constant
frequency. To this end we introduce the normalized coordinates (�; �), called Floquet's
coordinates, though the transformation (u; s)! (�; �)

� =
uq
�(s)

� =
1

Q

Z s

s0

dt

�(t)
(4.17)

where Q is the machine tune

Q =
1

2�

Z s+C

s

dt

�(t)
(4.18)

C is the ring circumference: C = NL, where N is the number of periodic cells.
Since u = u(�; �) we compute

u0 =
@u

@�
�0 +

@u

@�
�0 =

1

2�1=2
��0 + �1=2�0 :

Similarly, since u0 = u0(�; �0; �; �0) we �nd
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u00 =
@u0

@�
�0 +

@u0

@�0
�00 +

@u0

@�
�0 +

@u0

@�0
�00 =

=

 
� �0

4�3=2
� +

1

2�1=2
�0
!
�0 +

1

2�1=2
��00 +

�0

2�1=2
�0 + �1=2�00 =

= �1=2�00 +
�0

�1=2
�0 +

�

2

 
�00

�1=2
� 1

2

�
02

�3=2

!
:

Hence, with
d

ds
=
d�

ds

d

d�
=

1

�Q

d

d�

and

d2

ds2
=

d

ds

 
1

�Q

d

d�

!
= � �0

�2Q

d

d�
+

1

�Q

d

ds

 
d

d�

!
= � �0

�2Q

d

d�
+

1

�2Q2

d2

d�2
;

it follows that

u00 = �1=2
 
� �0

�2Q
_� +

1

�2Q2
��

!
+ ��1=2�0

 
1

�Q
_�

!
+
�

2

 
�00

�1=2
� 1

2

�
02

�3=2

!

in which a point denotes the derivative with respect to �. Inserting u00 into the Hill's
equation (4.15) yields the unperturbed equation of motion expressed in normalized coor-
dinates

1

Q2
��3=2�� +

1

2
�

�
��1=2�00 + 2K(s)�1=2 � 1

2
��3=2�

02

�
= 0 :

At this stage we introduce a general perturbation term p(x; y; s) in the right-hand
side of the latter equation [such a term may be the right-hand side of equation (4.9) or
(4.10)]. Multiplying the resulting equation by Q2�3=2 yields

�� +Q2�

�
1

2
��00� 1

4
�
02 +K(s)�2

�
= Q2�3=2p(x; y; s) : (4.19)

It is known that the betatron function �(s) satis�es the di�erential equation

1

2
��00� 1

4
�
02 +K(s)�2 = 1 : (4.20)

Consequently, the perturbed Hill's equation is transformed into

�� +Q2� = Q2�3=2p(�; �) (4.21)

assuming a perturbation of the form p(u; s) (one degree of freedom). When the perturba-
tion vanishes, equation (4.21) reduces to a harmonic oscillator with frequency Q, whose
solution is

�(�) = a cos (�(�)� ') (4.22)
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with

�(�) = Q� =
Z s

s0

dt

�(t)
: (4.23)

Di�erentiating (4.22) with respect to the variable � gives

d�

d�
= �a sin [�(�)� ']

and then

�2 +

 
d�

d�

!2

= a2 : (4.24)

The particle trajectory in the phase plane (�; �) is thus a circle of radius equal to the
amplitude a of the oscillation. The phase �(�) advances by 2� every betatron oscillation
(i.e. the trajectory describes one full phase circle) or by 2�Q every machine revolution.

dη
dµ

µ
a

η

Figure 19: Phase circle in normalized coordinates.

In terms of normalized coordinates, the equations of motion (4.11) and (4.12) for
an on-momentum particle (with � = 0) reads

�� +Q2
x� = �Q2

x

 
� �3=2x �1=2y K0� + �5=2x

S0

2
�2 � �3=2x �y

S0

2
�2 � �2x�

1=2
y S0��

!
(4.25)

�� +Q2
y� = Q2

y

 
�1=2x �3=2y K0� + �x�

3=2
y

1

2
S0�

2 � �5=2y

1

2
S0�

2 + �1=2x �2yS0��

!
(4.26)

in which � is the normalized coordinate for the vertical plane

� =
xq
�x(s)

� =
yq
�y(s)

(4.27)

where �x;y(s) is the horizontal or vertical betatron function, and since � is the independent
variable in the di�erential equations (4.25) and (4.26), it can be de�ned as
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� =
1

Qx;y

Z s

s0

dt

�x;y(t)
(4.28)

where Qx;y is the horizontal or vertical machine tune. The multipole strengths K0; K0;

S0; S0, and the betatron functions �x;y are periodic functions of � with period 2�.
Now we consider the case where the general perturbation term p(x; y; s) represents

the magnetic �eld error �Bx;y, that is the �eld not considered in setting up the design
orbit of the machine. Equivalently, �Bx;y is the �eld error with respect to the ideal lattice,
even if such a lattice includes nonlinear magnets like sextupoles. Expanding �Bx;y into
multipoles up to the third order, in which the strength parameters are replaced by their
variations: �Bx0;y0 for the dipole �eld error, �K and �K for the quadrupole gradient errors,
�S and �S for the sextupole errors, we obtain

e

p0
�Bx =

e

p0
�Bx0 + �K y + �K x+ �S xy +

1

2
�S(x2 � y2)

e

p0
�By =

e

p0
�By0 + �K x� �K y +

1

2
�S(x2 � y2)� �S xy :

Hence, using (4.21), (4.27) and (4.28) we get the equations of motion in normalized coor-
dinates

�� +Q2
x� = Q2

x

 
�3=2x

e

p0
�By0 + �2x�K � � �3=2x �1=2y �K � +

+ �5=2x

�S

2
�2 � �3=2x �y

�S

2
�2 � �2x�

1=2
y �S ��

!

�� +Q2
y� = Q2

y

 
�3=2y

e

p0
�Bx0 + �2y�K � � �1=2x �3=2y �K � +

+ �1=2x �2y�S �� + �x�
3=2
y

1

2
�S �2 � �5=2y

1

2
�S �2

!
: (4.29)

We can rewrite the last two equations considering only the nth order multipole term in
the horizontal plane and the nth order multipole term in the vertical plane. We get

�� +Q2
x� = pnrx(�)�

n�1�r�1

�� +Q2
y� = pnry(�)�

n�1�r�1 : (4.30)
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Perturbation terms

Order pnrx(�)�n�1�r�1 pnry(�)�n�1�n�1

n r

1 1 Q2
x�

3=2
x

e
p0
�By0 Q2

y�
3=2
y

e
p0
�Bx0

1 2 �Q2
x�

3=2
x �1=2y �K� Q2

y�
2
y�K�

2 1 Q2
x�

2
x�K� �Q2

y�
1=2
x �3=2y �K �

2 2 �Q2
x�

2
x�

1=2
y �S �� Q2

y�
1=2
x �2y�S ��

1 3 �Q2
x�

3=2
x �y

1
2
�S �2 �Q2

y�
5=2
y

1
2
�S �2

3 1 Q2
x�

5=2
x

1
2
�S �2 Q2

y�x�
3=2
y

1
2
�S �2

4.3 One-dimensional resonances

Considering only the nth order multipole horizontal perturbation term, the equation
of motion (4.30) in one dimension may be written [with r = 1 and Q stands for Qx and
pn(�) for pn1x(�)] as

�� +Q2� = pn(�)�
n�1 : (4.31)

Expanding the perturbation into Fourier series yields

pn(�) =
1X

m=�1
p̂n(m)eim� (4.32)

where p̂n(m) is the Fourier coe�cient of the expansion

p̂n(m) =
1

2�

Z 2�

0
pn(�)e

�im�d� : (4.33)

The unperturbed oscillation, solution of the inhomogeneous equation (4.31), may be writ-
ten as

�0(�) = a eiQ� + b e�iQ� (4.34)

where a and b are constants of integration.
Assuming the perturbation is small, we can insert �0(�) into the right-hand side of

the equation of motion (4.31). We �nd

�� +Q2� =
1X

m=�1
p̂n(m)eim�(a eiQ� + b e�iQ�)n�1 :

51



Using the binomial expansion, we get

�0(�)
n�1 = (a eiQ� + b e�iQ�)n�1 =

n�1X
k=0

(n� 1)!

k!(n� k � 1)!
an�k�1ei(n�k�1)Q�bke�ikQ�

=
n�1X
k=0

(n � 1)!

k!(n� k � 1)!
an�k�1bkei(n�2k�1)Q� :

Performing the change of variable p = 2k � n+1, the above expression may be rewritten
as

�0(�)
n�1 =

n�1X
p=�n+1

c(p)e�ipQ�

with

c(p) =
(n� 1)!�

n+p�1
2

�
!
�
n�p�1

2

�
!

1

2

h
1 + (�1)n+p�1

i
a
n�p�1

2 b
n+p�1

2 :

Hence (4.31) reads

�� +Q2� =
1X

m=�1

n�1X
p=�(n�1)

p̂n(m)c(p)ei(m�pQ)� : (4.35)

Whenever a term on the right-hand side of equation (4.35) has the same frequency as
the frequency Q of the harmonic oscillator, the motion gets in resonance. To see this, we
consider a single Fourier component of the perturbation

�� +Q2� = p̂n(m)c(p)ei(m�pQ)� : (4.36)

The solution of this equation is the sum of the solution of the homogeneous equation and
a particular solution of the form

�� = Aei(m�pQ)� : (4.37)

The constant A is determined by introducing (4.37) into (4.36)

h
�(m� pQ)2 +Q2

i
Aei(m�pQ)� = p̂n(m)c(p)ei(m�pQ)�

from which A is found and

��(�) = � p̂n(m)c(p)

[Q(p� 1) �m][Q(p+ 1) �m]
ei(m�pQ)� : (4.38)

Thus the motion becomes unstable when the tune satis�es the resonance conditions

m = (p � 1)Q with jpj � n� 1 (4.39)

or equivalently
jmj = (jpj � 1)Q (4.40)
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where jpj+1 is called the order of resonance and m the order of the perturbation Fourier
harmonic.

The resonance conditions apply only for index p such that the coe�cient c(p) is non-
zero. Thus for the third order resonance n = 3 driven by sextupole �elds, we compute for
p = �2; �1; 0; 1; 2:

c(�2) = a2 c(�1) = 0 c(0) = 2ab c(1) = 0 c(2) = b2 :

The resonance conditions are then m = �3Q: (third-order resonance) and m = �Q:
(integer resonance). Hence the Q values driving third integer resonances are

Q = k � 1

3
(4.41)

where k is any positive integer.

4.4 Coupling resonances

The two-dimensional equations of motion with only the nth order multipole hori-
zontal and rth order vertical multipole perturbation are given by (4.30)

�� +Q2
x� = pnrx(�)�

n�1�r�1

�� +Q2
y� = pnry(�)�

n�1�r�1 :

Again expanding the perturbation in Fourier series yields

pnrx(�) =
1X

m=�1
p̂nrx(m)eim�

pnry(�) =
1X

m=�1
p̂nry(m)eim� : (4.42)

Furthermore, the solutions of the unperturbed equations are

�0(�) = axe
iQx� + bxe

�iQy�

(4.43)

�0(�) = aye
iQy� + bye

�iQy�

in which ax;y and bx;y are constants at integration. Hence

�0(�)
n�1 =

n�1X
`=�n+1

cx(`)e
�i`Qx�

�0(�)
r�1 =

r�1X
p=�r+1

cy(p)e
�ipQy�
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with

cx(`) =
(n� 1)!�

n+`�1
2

�
!
�
n�`�1

2

�
!

1

2

h
1 + (�1)n�`�1

i
a
n�`�1

2
x b

n+`�1

2
x

cy(p) =
(r � 1)!�

r+p�1
2

�
!
�
r�p�1

2

�
!

1

2

h
1 + (�1)r�p�1

i
a
r�p�1

2
y b

r+`�1

2
y :

In the same way as in the uncoupled treatment of resonances, we obtain, after substitu-
tion of the unperturbed oscillations into the right-hand side of the perturbed di�erential
equations (4.30),

�� +Q2
x� =

X
m

X
`

X
p

p̂nrx(m)cx(`)cy(p)e
i(m�`Qx�pQy)�

�� +Q2
y� =

X
m

X
`

X
p

p̂nry(m)cx(`)cy(p)e
i(m�`Qx�pQy)� : (4.44)

Then considering a single component of the perturbation, particular solutions of
these equations may be derived. We obtain

��(�) = � p̂nrx(m)cx(`)cy(p)

[Qx(` � 1) + pQy �m] [Qx(` + 1) + pQy �m]
ei(m�`Qx�pQy)�

��(�) = � p̂nry(m)cx(k)cy(q)

[Qy(q � 1) + kQx �m][Qy(q + 1) + kQx �m]
ei(m�kQx�qQy)� :

(4.45)

The resonance conditions are then

m = (`� 1)Qx + pQy with j`j � n� 1 and jpj � r � 1 ;

m = (q � 1)Qy + kQx with jkj � n� 1 and jqj � r � 1 : (4.46)

For example, we consider the resonances driven by a regular sextupole for which the
equations of motion are

�� +Q2
x� = p31x(�)�

2 + p13x(�)�
2

�� +Q2
y� = p22y(�)�� : (4.47)

The resonance conditions are given in the following table.
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Order Horizontal motion Vertical motion
n r ` p m = (` � 1)Qx + pQy m = (p � 1)Qy + `Qx

2 2 �1 �1 m =
� �Qx

�2Qy �Qx

�1 1 m =
� �Qx

2Qy �Qx

1 �1 m =
��2Qy +Qx

Qx

1 1 m =
�
2Qy +Qx

Qx

1 3 0 �2 m =
�
Qx � 2Qy

�Qx � 2Qy

0 0 m =
�
Qx

�Qx

0 2 m =
�
Qx + 2Qy

�Qx + 2Qy

3 1 �2 0 m =
� �Qx

�3Qx

0 0 m =
�
Qx

�Qx

2 0 m =
�
3Qx

Qx

Discarding the redundant conditions, we are left with

jmj = Qx jmj = 2Qy �Qx jmj = 3Qx :

Having considering a skew sextupole instead, the resonance conditions would have been

jmj = Qy jmj = 2Qx �Qy jmj = 3Qy :

Thus, the general resonance conditions in two degrees of freedom may be cast into the
form

MQx +NQy = P ; (4.48)
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where M; N; and P are integers, P being non-negative, and jM j + jN j is the order of
the resonance, and P is the order of the perturbation harmonic. Plotting the resonance
lines (4.47) for di�erent values of M; N and P in the (Qx; Qy) plane yield the so called
resonance or tune diagram.
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Figure 20: Resonance diagram in a unit square for regular and skew multipole �elds up to the

3rd order.

If the integers M and N are positive, the resonance is called a sum resonance and
can lead to a loss of beam. If M and N are of opposite sign, the resonance is called
a coupling resonance or a di�erence resonance and does not cause a loss of beam, but
rather leads to a beating between the horizontal and the vertical oscillations. It can be
shown that the \strength" of the resonances decrease with increasing order, so that only
low-order resonances need to be avoided.

Around every resonance line in the resonance diagram, there is a band with some
thickness, called the resonance width, in which the motion may be unstable, depending
on the oscillation amplitude. When the resonance is linear (below the third order), the
resonance width is called a stopband because the entire beam becomes unstable if the
operating point Qx; Qy reaches this region of tune values. The largest oscillation amplitude
which is still stable in the presence of nonlinearities is called the dynamic aperture.

The following �gures are tune diagrams in a unit square around the origin showing
the resonance lines driven by regular multipole �elds up to the 12th order.
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Figure 21: Resonance diagrams for regular multipole �elds up to 3rd and 6th orders.

Figure 22: Resonance diagrams for regular multipole �elds up to 9th and 12th orders.

5 THE THIRD-INTEGER RESONANCE

5.1 The averaging method

Consider the equation of motion in Floquet coordinates for an nth order multipole
perturbation

�� +Q2� = pn(�)�
n�1 (5.1)

where the perturbation term pn(�) is periodic in �, with period 2�.
Assume that the tune Q is close to an nth order resonance

Q � Qr =
m

n
: (5.2)

in which m is a harmonic of the perturbation pn(�).
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De�ning the tune deviation �Q between Qr and Q as

�Q = Q�Qr

the equation of motion can then be written as

�� +Q2
r� = pn(�)�

n�1 � 2Qr�Q� (5.3)

since for small tune deviation

Q2 � Q2
r + 2Qr�Q :

The averaging method of Krilov and Bogoliubov assumes that the solution of (5.3) is
nearly periodic in the variable �. Writing this solution as

�(�) = a(�) cos [Qr�+ '(�)] (5.4)

with slowly-varying amplitude a(�) and phase '(�) over a \cycle" 2�, we impose the
condition that _�(�) should have the form

_�(�) = �a(�)Qr sin [Qr�+ '(�)] : (5.5)

By di�erentiating (5.4), this assumption leads to the additional condition

_a(�) cos  (�)� a(�) _'(�) sin (�) = 0 ; (5.6)

where  (�) = Qr�+ '(�). Di�erentiating now _�(�) yields

�� = �Q2
ra cos  � _aQr sin  �Qra _' cos  :

Substituting � and �� into (5.3) gives

�Qr _a sin  �Qra _' cos  = pn(�)a
n�1 cosn�1  � 2Qr�Qa cos  :

Adding this expression, multiplied by cos  , to equation (5.6) multiplied by Qr sin  , one
obtains

d'

d�
= �pn(�)

Qr

an�2 cosn  + 2�Q cos2  (5.7)

da

d�
= �pn(�)

Qr

an�1 cosn�1  sin  + 2a�Q cos  sin  ; (5.8)

where the latter equation is derived from (5.6), using _' given in (5.7).
The periodic perturbation pn(�) may be expanded in a trigonometric Fourier series

pn(�) =
p̂n(0)

2
+

1X
k=1

[p̂n(k) cos k�+ p̂�n(k) sin k�] (5.9)
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with

p̂n(k) =
1

�

Z 2�

0
pn(�) cos k� d�

p̂�n(k) =
1

�

Z 2�

0
pn(�) sin k� d�

where p̂n(k) and p̂
�
n(k) are the Fourier coe�cients of the series. Considering only the single

Fourier component p̂n(m) which drives the resonance Qr = m=n, the di�erential equations
for a and ' may be rewritten as

da

d�
= � n

m
p̂n(m)an�1 cos n( � ') cosn�1  sin  +

+2a �Q cos  sin  (5.10)

d'

d�
= � n

m
p̂n(m)an�2 cos n( � ') cosn  + 2�Q cos2  (5.11)

using

� =
 � '

Qr

=
n

m
( � ') :

As a(�) and '(�) are slowly varying functions of � over a \cycle" 2�, _a and _' may
be treated as periodic in  with period 2� and thus expanded in a Fourier series

_a( ) =
1X

k=�1
k 6=0

_̂a(k)eik + _̂a(0) (5.12)

_'(k) =
1X

k=�1
k 6=0

_̂'(k)eik + _̂'(0) (5.13)

with

_̂a(k) =
1

2�

Z 2�

0
_a( )e�ik d (5.14)

_̂'(k) =
1

2�

Z 2�

0
_'( )e�ik d : (5.15)

Exponential Fourier series have been considered, and the coe�cients _̂a(0) and _̂'(0)
have been explicitly written for convenience. The principle of the averaging method con-
sists in replacing _a( ) and _'( ) by their average parts h _ai and h _'i, which is equivalent
to assuming that _a and _' are not inuenced by small rapid oscillations, that is

_a = h _ai+ small rapidly oscillating terms � h _ai

_' = h _'i + small rapidly oscillating terms � h _'i :
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Hence, taking into account (5.12) to (5.15) we obtain

da

d�
�
*
da

d�

+
= _̂a(0) =

1

2�

Z 2�

0

da

d�
d (5.16)

d'

d�
�
*
d'

d�

+
= _̂'(0) =

1

2�

Z 2�

0

d'

d�
d (5.17)

or equivalently, using (5.10) and (5.11)

da

d�
� � n

2�m
p̂n(m)an�1

Z 2�

0
cos n( � ') cosn�1  sin  d (5.18)

d'

d�
� �Q� n

2�m
p̂n(m)an�2

Z 2�

0
cos n( � ') cosn  d : (5.19)

In summary, the solution of the nonlinear equation of motion (5.1) when the tune
is close to a resonance Q � m=n is

�(�) = a(�) cos [Qr�+ '(�)]

where a(�) and '(�) are given in the �rst approximation by the averaged di�erential
equations (5.18) and (5.19).

5.2 The nonlinear sextupole resonance

The third-integer resonance is driven by sextupolar �elds

Qr =
m

3
:

The equation of motion for the mth harmonic of the perturbation p3(�) is

�� +Q2
r

 
1 + 2

�Q

Qr

!
� = p̂3(m)�2 cos m� : (5.20)

For Q close to Qr the solution of the equation of motion is given by (5.4)

�(�) = a(�) cos
�
m

3
�+ '(�)

�
: (5.21)

The averaged di�erential equations for a(�) and '(�) are, after integration of (5.18) and
(5.19) for n = 3.

da

d�
= � 3

8m
p̂3(m)a2 sin 3' (5.22)

d'

d�
= �Q� 3

8m
p̂3(m)a cos 3' (5.23)
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where the following trigonometric formulae have been used

cos 3( � ') = cos 3 cos 3'+ sin 3 sin 3'

cos 3 = �3 cos  + 4 cos3  

sin 3 = 3 sin  � 4 sin3  

and Z 2�

0
sin2m  cos2n  d =

(2m)!(2n)!2�

m!n!(m+ n)!22(m+n)

Z 2�

0
sinm  cosn  d = 0 if m and=or n odd :

Eliminating the variable � from (5.22) and (5.23) yields

d'

da
=

3p̂3(m)a cos 3'� 8m�Q

3p̂3(m)a2 sin 3'
: (5.24)

By means of the change of variable

z = a cos 3'

the latter equation transforms into"
z � 4m�Q

p̂3(m)

#
da+

a

2
dz = 0 ;

which can be integrated to give

ln a+ ln

"
z � 4m�Q

p̂3(m)

#1=2
= ln A ;

where A is a constant depending on the initial conditions. Transforming back to the
original variable ' we �nd

a3
"
cos 3' � 4m�Q

p̂3(m)a

#
= A : (5.25)

The solutions �(�) and _�(�) may be represented on the phase plane with Cartesian axes
�; _�. As � increases, [�(�); _�(�)] traces out a phase path. A more appropriate phase plane
can be chosen with axes �; p�, with

p�(�) �
3

m
_�(�) = �a(�) sin

�
m

3
�+ '(�)

�
: (5.26)

The phase plane coordinates may be rewritten, using the trigonometric formulae for the
sum of the angles

� = X cos
m

3
�+ Y sin

m

3
� (5.27)
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p� = �X sin
m

3
�+ Y cos

m

3
� (5.28)

with the new phase plane variables X(�); Y (�) de�ned by

X(�) = a(�) cos '(�) (5.29)

Y (�) = �a(�) sin '(�) : (5.30)

The link between the variables (�; p�) and (X; Y ) is a rotation of an angle m�=3. Thus
it is su�cient to study the representative phase plane with Cartesian coordinates (X; Y )
or polar coordinates (a; '). In particular, for every multiple of three machine revolutions
(i.e. for � = 6k�, with k = 0; 1; 2:::), one has

�(6k�) = X(6k�) and p�(6k�) = Y (6k�) :

Y

pη
η

X

a (φ
)

ϕ (φ) m φ
3

Phase path

0

Figure 23: Coordinate systems for the (�; p�) and (X; Y ) phase planes.

Fixed points in phase plane are points for which

dX

d�
=
dY

d�
= 0 ; (5.31)

that is X(�) = X̂ and Y (�) = Ŷ where X̂ and Ŷ are constants. Fixed points are equilib-
rium points (stable or unstable). It follows from this that

da

d�
=
d'

d�
= 0 (5.32)

because

_a = _X cos '� _Y sin '

_' = �1

a
( _X sin '+ _Y cos ') :
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Thus, according to (5.22) and (5.23), �xed points are solutions of the equations

sin 3' = 0

3

8m
p̂3(m)a cos 3' = �Q

which gives
3'̂ = 2k� and 3'̂ = (2k + 1)� k = 0; 1; 2

or

'̂ = 0;
2�

3
;
4�

3
and '̂ =

�

3
; �;

5�

3
: (5.33)

The �rst three �xed points give cos 3'̂ = 1, the other three give cos 3'̂ = �1. It follows
that

â = � 8m

3p̂3(m)
�Q (5.34)

where the sign + is chosen when �Q > 0 and vice versa, since the amplitude â cannot be
negative [assuming p̂3(m) positive]. One more �xed point is given considering the trivial
case

â = 0 (i:e: X̂ = Ŷ = 0) :

Inserting (5.34) into the general solution (5.25) of the averaged equations for a and '

yields

a3
 
cos 3'� 3

2

â

a

!
= A : (5.35)

Expressed with the variables X and Y this equation becomes, using (5.29) and (5.30),

X3 � 3XY 2 � 3

2
â(X2 + Y 2) = A (5.36)

or, solving the quadratic equation,

Y = �
s
2X3 � 3âX2 � 2A

6X � 3â
(5.37)

with

a3 cos 3' = a3(4 cos3 '� 3 cos  ) = 4X3 � 3a2X

a2 = X2 + Y 2 :

The constant A depends on the initial conditions X(0) and Y (0). In particular, the con-
ditions (5.33) and (5.34) for �xed points give

X̂ = â; � â
2
; � â

2
and X̂ =

â

2
; �â; â

2

Ŷ = 0;

p
3

2
â; �

p
3

2
and Ŷ =

p
3

2
â; 0; �

p
3

2
â :
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Replacing X and Y by X̂ and Ŷ in (5.36), or better a and ' by â and '̂ in (5.35), one
�nds

A = � â
3

2

where the minus sign is chosen when �Q > 0 and vice-versa.
From now on, we shall assume that �Q > 0. Hence, for the above �xed point

conditions, equation (5.36) reduces to

X3 � 3XY 2 � 3

2
â(X2 + Y 2) = � â

3

2

which may be factorized to give

 
Y � X � âp

3

! 
Y +

X � âp
3

! 
X +

â

2

!
= 0 : (5.38)

This yields a family of three straight lines, called separatrices. These three separatrices
de�ne a triangular area in the phase plane. The three �xed points (â; 0);

�
� â

2
;
p
3
2
â
�
, and�

� â
2
; �

p
3
2
â
�
are at the intersections of the separatrices.

Y

Separatrix

Separatrix

Separatrix

X
â

â

0

ϕ = 2π
3

– â
2

δQ > 0

ˆ

Figure 24: Phase plane separatrices near the third-integer resonance.

Plotting equation (5.37) for di�erent values of the constant A gives the phase plane
portrait of the equation of motion (5.20).
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Figure 25: Phase portraits near the third-integer resonance for â = 2 (left) and â = 1=10 (right).

The phase path description in phase plane (X; Y ) is equivalent to the \stroboscopic"
representation of paths in phase plane (�; p�) in which a sequence of points are plotted
at interval 2k�(k = 0; 1; 2:::) corresponding to every machine turn at �xed azimuthal
location. The separatrices de�ne a boundary between stable motion (bounded oscillations)
and unstable motion (expanding oscillations). The �xed points are equilibrium points
(stable or unstable) of period 6� corresponding to three machine turns.

If we had considered a negative tune variation (�Q < 0) rather than a positive one

(�Q > 0), the three �xed points would have been located at (�â; 0);
�
â
2
;
p
3
2
â
�
;
�
â
2
; �

p
3
2
â
�
,

yielding a reversed phase portrait with respect to the Y -axis.
When the tune shift �Q is reduced to zero, the phase plane triangle shrinks to a

point. The stable area disappears and the separatrix crosses the origin.
The stability about the �xed points may be examined by expanding a as â + �a

and ' as '̂+ �' in (5.22) and (5.23). Keeping only the linear terms in �a and �', we
obtain

d

d�
(â+�a) = � 3

8m
p̂3(m)â2 sin 3'̂ � 6

8m
p̂3(m)â sin 3'̂�a�

� 9

8m
p̂3(m)â2 cos 3'̂�' = � 9

8m
p̂3(m)â2�'

since cos 3'̂ = 1. Therefore

d�a

d�
= � 9

8m
p̂3(m)â2�' :

Similarly we compute to the �rst order

d�'

d�
= � 3

8m
p̂3(m)�a :
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These two equations may be combined to give

d2�a

d�2
� k2�a = 0 (5.39)

d2�'

d�2
� k2�' = 0 (5.40)

with

k =
3
p
3

8m
p̂3(m)â :

Solutions for �a and �' near �xed points are of the form

�a = A1e
k� +A2e

�k�

�' = B1e
k� +B2e

�k� ;

where A1; A2; B1; B2 are constant, depending upon the initial conditions. These solutions
show that the motion may either converge to or diverge from the �xed point, depending
upon the initial conditions. This kind of �xed point is said to be hyperbolic. Hyperbolic
�xed points are unstable because any point near to them will eventually move away from
them.

For the trivial �xed point â(�) = 0 one gets

d�a

d�
= 0 and

d�'

d�
= �Q ;

which gives

�a = C1 and �' = �Q�+ C2 ;

where C1 and C2 are constants. The motion describes circles around the origin, and the
�xed point a = 0 is said to be elliptic. Elliptic �xed points are stable because any point
near to them remains always in the vicinity of them.

The third-integer resonance may be used for resonant extraction. The principle con-
sists in approaching the third integer resonance by varying the strengths of quadrupoles.
Hence, as the triangle area shrinks, the particles in a beam are moved out along the three
arms of the separatrices jumping from one arm to the next each turn. When the displace-
ment of a particle reaches the values Xs, it jumps the extraction septum. The septum
width �s is equal to the growth in the X-direction in three turns.
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δQ > 0 Kick from septum

X

Figure 26: Resonant extraction scheme in phase plane.

Finally, we shall estimate the third-integer resonance width. Suppose that the tune
Q is initially set far from the resonance Qr = m=3 so that the beam emittance � may
be represented by a phase ellipse entirely located inside the (�; p�) phase plane triangle
de�ned by the tune di�erence �Q = Q�Qr. The phase ellipse in the (u; u0) phase plane,
given by the Courant{Snyder invariant

(s)u2 + 2�(s)uu0 + �(s)u
02 = � (5.41)

transforms to a phase circle in the phase planes (�; p�) and (X; Y )

�2 + p2� = X2 + Y 2 = � (5.42)

by (5.27), (5.28), and (4.17), and because

u0 =
1

�1=2
(p� � ��) :

Let Q slowly approache Qr, then the triangle area shrinks and the phase circle
gradually distorts into a triangular shape, while its area �� is kept conserved. We de�ne
the resonance width �Q as being twice the tune di�erence �Q which yields the triangle
area equal to ��.

Y

X
â

2

3
2

â
Distorted phase
 ellipse: area πε

– â

3
4

â2Triangle of area 3

Figure 27: Distorted beam phase ellipse within the stable phase plane region de�ned by the

separatrices near the third-integer resonance.
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By (5.34), the width of the third-integer resonance may be written as

�Q � 2j�Qj = (
p
3��)1=2

2m
p̂3(m) : (5.43)

5.3 Numerical experiment: sextupolar kick

We shall study more quantitatively the motion of an on-momentum particle in a
circular accelerator subject to a periodic sextupolar perturbation. The sextupole �eld
is assumed to be a \point-like" perturbation at location s0 (i.e. the particle position is
assumed not to vary as the particle traverses the �eld). Thus, at each turn the local
magnetic �eld gives a \kick" to the particle, deecting it from its unperturbed trajectory.
This method of description is referred to as a \kick" model.

Written in the normalized coordinate (�; �) the one-dimensional equation of motion
is, according to (4.31),

�� +Q2� = A
1X
m=0

�2(�)�(�� 2�m) (5.44)

where Q is the machine tune, �(�) is the Dirac distribution, and A is the strength of
the impulse. The right-hand side of (5.44) corresponds to the periodic perturbation term
p3(�) in (4.31), with period 2�. The kick strength A may be written as

A = Q2�
5=2
0

1

2
S0` (5.45)

in which �0 is the betatron function at s0 (i.e. at � = 0), the factor S0` is the integrated
sextupole strength (in thin-lens approximation the sextupole length `! 0 while keeping
constant the product of the sextupole strength S0 by `). Between kicks the right-hand
side of (5.44) is zero, and the unperturbed solution is

�(�) = an cos (Q�+ 'n) for 2�(n� 1) < � � 2�n (5.46)

where an and 'n are integration constants, and

_�(�) = �anQ sin (Q�+ 'n) (5.47)

where n = 1; 2; ::: .
For each value of n, at � = 2�n, the angle _� changes discontinuously while the

position � is not a�ected since the perturbation is point-like. The increase of _� at the
passage of the sextupolar kick on the nth machine turn is obtained by integrating (5.44)
from 2�n � � to 2�n + �, � being an arbitrarily small number, and then taking the limit
�! 0
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� _� =
Z 2�n+�

2�n��
��(�)d� = �

Z 2�n+�

2�n��

"
Q2�(�)�A

1X
m=0

�2(�)�(�� 2�m)

#
d�

= A�2(2�n) � A�2n ;

where �n denotes the limit of �(�) for � ! 2�n. De�ning the new phase plane variable
p�(�) as

p�(�) =
1

Q
_�(�) ;

the discontinuous change in \angle" p�(�)reads

�pn � �p�(2�n) =
A

Q
�2n : (5.48)

According to (5.46) we have for n+ 1

�(�) = an+1 cos (Q�+ 'n+1) for 2�n < � � 2�(n+ 1)

p�(�) = �an+1 sin (Q�+ 'n+1) ; (5.49)

where an+1 and 'n+1 are other integration constants. In particular

�n = an cos (2�nQ+ 'n)

pn = �an sin (2�nQ+ 'n) ; (5.50)

where pn denotes the left-limit of p�(�) for � ! 2�n from the left [also written as
p�(2�n�)].

Similarly, the right-limits of �(�) and p�(�) for � ! 2�n from the right, written
�(2�n+) and p�(2�n+), read

�(2�n+) = an+1 cos (2�nQ+ 'n+1)

p�(2�n+) = �an+1 sin (2�nQ+ 'n+1) : (5.51)

Hence, since �(�) does not change between 2�n� � and 2�n+ � (with �! 0) while p�(�)
changes according to (5.48), we must have

�(2�n+) = �n

p�(2�n+) = pn +�pn (5.52)
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that is

an+1 cos (2�nQ+ 'n+1) = an cos (2�nQ+ 'n)

�an+1 sin (2�nQ+ 'n+1) = �an sin (2�nQ+ 'n) +
A

Q
�2n : (5.53)

Multiplying the �rst equation (5.53) by cos 2�nQ and the second by sin 2�nQ, and then
summing the results, we �nd, using the formulae

cos (2�nQ+ 'n) = cos 2�nQ cos 'n � sin 2�nQ sin 'n

sin (2�nQ+ 'n) = sin 2�nQ cos 'n + cos 2�nQ sin 'n (5.54)

the relationship between the coe�cients in the nth interval and those in the (n + 1)th
interval

an+1 cos 'n+1 = an cos 'n �
A

Q
�2n sin 2�nQ : (5.55)

Similarly, we can derive

an+1 sin 'n+1 = an sin 'n �
A

Q
�2n cos 2�nQ : (5.56)

Now, by equations (5.49), we can write for �! 2�(n+ 1)

�n+1 = an+1 cos [2�(n+ 1)Q+ 'n+1]

pn+1 = �an+1 sin [2�(n+ 1)Q+ 'n+1] : (5.57)

Expanding (5.57) using (5.54), and inserting (5.55) and (5.56) into the result yields after
some sorting

�n+1 = �n cos 2�Q+

 
pn +

A

Q
�2n

!
sin 2�Q

pn+1 = ��n sin 2�Q+

 
pn +

A

Q
�2n

!
cos 2�Q : (5.58)

These equations give the particle position and \angle" just before the phase 2�(n+1)
(i.e. just before the passage of the sextupolar �eld on turn n + 1) in terms of position
and angle just before the phase 2�n. Equations (5.58) form a quadratic mapping in phase
plane (�; p�), called H�enon mapping. Mappings with di�erent initial conditions (�0; p0)
have been computed and plotted in Figs. 28{29 for various values of Q (with A=Q = �1).
This yields a stroboscopic representation of phase-space trajectories on every machine
turn at s0 (i.e. at the phase values of � = 0; 2�; 4�; :::).
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Figure 28: Phase plane plots caused by a single thin sextupole for Q = 0:324 (close to 1/3) and

for Q = 0:320 (close to 1/3).

Figure 29: Phase plane plots caused by a single thin sextupole for Q = 0:252 (close to 1/4) and

for Q = 0:211 (close to 1/5).
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Tune Characteristics of the motion

Q = 0:324 Regular (i.e. predictable) bounded motion at small `amplitudes'
close to 1

3
(within the stable triangle).

Divergent (unstable) regular motion at larger amplitudes
(outward trajectory near the outermost contour).

Q = 0:320 Regular bounded (stable) motion at small amplitudes.
close to 1

3

Three regular resonance islands at larger amplitudes
(the trajectory breaks into a chain of three closed curves).

Eight secondary regular resonance islands are visible
within each of the three primary islands.

Chaotic (i.e. unpredictable) bounded motion at larger amplitudes.

Q = 0:252 Regular bounded motion at small amplitude.
close to 1

4

Four regular resonance islands at larger amplitudes,
surrounded by regular trajectories.

Chaotic bounded and unbounded motion at still larger amplitudes.

Q = 0:211 Regular bounded motion at small amplitudes.
close to 1

5

Five regular resonance islands at larger amplitudes,
surrounded by regular trajectories. A chain of 16 smaller regular
islands is visible at larger amplitudes.

Chaotic motion at still larger amplitudes.

The analytic approach for studying the third-integer resonance trajectories by per-
turbation techniques (e.g. the averaging method) is useful when the fractional part of the
machine tune is close to 1/3. Indeed, the triangular phase-plane boundary between stable
and unstable motions as well as the separatrices may be determined. However, unlike the
kick model, the large amplitude description of the motion is incorrect: islands are not
revealed and divergent trajectories, which might return, do not.

In general, the equations of motion in the presence of nonlinear �elds are untractable
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for any but the simplest situations. An alternative approach to study phase plane tra-
jectories and determine the regions that are stable consists to perform numerical particle
\tracking" experiments using computer programs. Tracking consists to simulate particle
motion in circular accelerators in the presence of nonlinear �elds. Test particles with initial
phase plane coordinates at a �xed azimuthal location along the accelerator are tracked
for many turns through the lattice using various numerical techniques. The particle co-
ordinates at the end of one turn may be viewed as a nonlinear mapping of the initial
conditions, that speci�es the motion for one turn. The resulting stroboscopic phase plane
plot of circulating particles for many turns (obtained by iterative mapping) thus reveals
the largest surviving oscillation amplitudes (that enclose a central stable phase plane
region), which then de�ne the dynamic aperture. A simple technique used in tracking
programs consists to describe the mapping by means of the kick model exposed above:
any nonlinear magnet is treated in the \point-like" approximation, the motion in all other
elements of the lattice is assumed to be linear. Alternative methods of description of the
mapping are available (e.g. the \higher-order" matrix method based on Taylor series ex-
pansion, the canonical integration method which numerically integrate the equations of
motion, and the Lie algebraic formalism).

6 CHROMATICITY

6.1 Chromaticity e�ect in a closed lattice

The focal properties of lattice elements depend upon the momentum deviation, since
the equations of motion of an o�-momentum particle are, from (4.9) and (4.10), without
skew magnets and sextupoles, and in a zero-curvature region

x00 +K0(1 � �)x = 0

y00 �K0(1� �)y = 0 (6.1)

where � is the relative momentum deviation from the design momentum p0: � = �p=p0.
This momentum dependence of the focusing, which, in turn, causes tune changes,

is called chromatic e�ect. The variation of the tune Q with the momentum is called the
chromaticity and is de�ned as (Q stands for the horizontal or the vertical tune)

Q0 =
�Q

�p=p0
: (6.2)

The relative chromaticity is de�ned as

� =
�Q=Q

�p=p0
: (6.3)
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The control of the chromaticity is important for two reasons:
1) To avoid shifting the beam on resonances due to tune changes induced by chromatic

e�ects.
2) To prevent some transverse instabilities (head{tail instabilities).

δ ≥ 0, δ < 0

δ ≥ 0, δ < 0

δ < 0

δ = 0
δ > 0

s

f (δ > 0)

f (δ = 0)

Focusing quadrupole

f (δ < 0)

Figure 30: Schematic representation of chromatic e�ect in a dispersion-free region.

δ > 0

δ < 0

δ = 0

δ < 0

δ > 0

s

f (δ > 0)
f (δ < 0)

Focusing quadrupole

Figure 31: Schematic representation of chromatic e�ect in a region with dispersion.

Particles with di�erent momenta are spread where there is dispersion. Higher-
momentum particles are focused less than particles with the design momentum p0, lower-
momentum particles are focused more. Indeed, if f(�) and K(�) are the focal length and
normalized gradient, at momentum p = p0(1 + �), of a quadrupole of length `, with

K(�) =
e

p

@By

@x
K0 =

e

p0

@By

@x
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we �nd
1

f(�)
=

K0`

1 + �
: (6.4)

Therefore, once the particles are spread by momentum in a region with dispersion, we
can apply focusing corrections depending on the momentum using a sextupole magnet.

y

S S

N

NN

S

x


 ∆p/p0 < 0

 ∆p/p0 > 0
F

B

s

y

N N

S

SS

∆p/p > 0∆p/p < 0 N

x
B

F

s

S0 = e   ∂2 By  > 0
p0 ∂x2 p0

S0 = –  e  ∂2 By  < 0
∂x2

Particles with

Figure 32: Sextupole �elds and forces in a region with dispersion (positive particles approach

the reader).

Here, the sextupole is focusing for the higher-momentum particles and defocusing
for the lower-momentum particles. Hence, it can be used to correct the chromatic focusing
errors in a region with non-zero dispersion.

δ > 0

δ = 0

δ < 0

f 

Focusing quadrupole

Sextupole with S0 > 0

s

Figure 33: Schematic representation of chromaticity correction with a sextupole added beside

a focusing quadrupole.
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δ > 0

δ = 0

δ < 0

Defocusing quadrupole

Sextupole with S0 < 0

s

f

Figure 34: Schematic representation of chromaticity correction with a sextupole added beside

a defocusing quadrupole.

Let us consider the equations of motion with quadratic terms in �; x, and y. We
get, using (4.9) and (4.10) with zero curvature, and considering regular magnets only

x00 +K0x = K0x� � 1

2
S0(x

2 � y2)

y00 �K0y = �K0y� + S0xy : (6.5)

Substituting the total coordinates for the o�-momentum particle, assuming no dispersion
in the vertical plane,

x = x� +Dx�

y = y� (6.6)

where x� and y� are the horizontal and vertical betatron oscillations, the equations of
motion (6.5) become

x00� +K0x� + (D00
x +K0Dx)� = K0x�� �

1

2
S0(x

2
� � y2�) +K0Dx�

2�

�S0x�Dx� �
1

2
S0D

2
x�

2

y00� �K0y� = �K0y�� + S0x�y� + S0Dxy�� :

Discarding the terms which do not depend on the betatron motion, because they
do not contribute to the chromatic tune shift, we are left with

x00� +K0x� = K0x�� � S0Dxx�� �
1

2
S0(x

2
� � y2�)

y00� �K0y� = �K0y�� + S0Dxy�� + S0x�y� : (6.7)

Ignoring the non-chromatic terms of second order (i.e. terms in x2�; y
2
� and x�y�) yields

x00� +K0x� = (K0 � S0Dx)x��
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y00� �K0y� = �(K0 � S0Dx)y�� : (6.8)

Introducing the normalized coordinates (4.27) and (4.28)

� =
xp
�x

� =
yq
�y

� =
1

Qx;y

Z s

s0

dt

�x;y(t)

transforms the equations (6.8) into

�� +Q2
x� = Q2

x�
2
x[K0(�)� S0(�)Dx]��

�� +Q2
y� = �Q2

y�
2
y [K0(�)� S0(�)Dx]�� (6.9)

in which K0; S0; �x;y and Dx are periodic functions of � with period 2�. These equations
may be written in the form:

�� +Q2
x� = Qxpx�(�)�

�� +Q2
y� = �Qypy�(�)� (6.10)

with
px;y�(�) = �2x;yQx;y[K0(�)� S0(�)Dx]� : (6.11)

Let us solve the perturbed equation of motion for �. Expanding px�(�) in Fourier series
yields

px�(�) =
1X

m=�1
p̂x�(m)eim� (6.12)

in which the p̂x�(m) are the Fourier coe�cients given by

p̂x�(m) =
1

2�

Z 2�

0
px�(�)e

�im�d� : (6.13)

From this we obtain

�� +Q2
x

"
1� 1

Qx

1X
m=�1

p̂x�(m)eim�
#
� = 0 : (6.14)

which is a di�erential equation with periodic coe�cients of the Hill type.
Furthermore, since

1X
m=�1

p̂x�(m)eim� = p̂x�(0) +
X
m6=0

p̂x�(m)eim�
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equation (6.14) may be written as

�� + ~Q2
x(�)� = 0 (6.15)

where ~Qx(�) has a static and an oscillatory part

~Q2
x(�) = Q2

x

"
1 � p̂x�(0)

Qx

#
�Qx

X
m6=0

p̂x�(m)eim� : (6.16)

The oscillatory part of the tune ~Qx averages to zero over one period 2�. Replacing ~Qx(�)
by its average part h ~Qxi (see the averaging method) gives the static tune shift due to
chromatic e�ect. Then equation (6.15) transforms into

�� + [Q2
x �Qxp̂x�(0)]� = 0 ; (6.17)

which may be rewritten as

�� + (Qx +�Qx)
2� = 0 ; (6.18)

where �Qx is the chromatic tune shift. It follows that for a small tune shift

Q2
x �Qxp̂x�(0) = (Qx +�Qx)

2 � Q2
x + 2Qx�Qx :

Hence, from (6.11) and (6.13) we obtain the tune shift as

�Qx = �1

2
p̂x�(0) =

= � 1

4�

Z 2�

0
Qx�

2
x(�)[K0(�)� S0(�)Dx(�)]� d� : (6.19)

Returning to the original variables x and s we �nd

�Qx = � �

4�

Z s0+C

s0

�x(s)[K0(s)� S0(s)Dx(s)]ds (6.20)

where C is the machine circumference. Similarly, we compute

�Qy =
�

4�

Z s0+C

s0

�y(s)[K0(s)� S0(s)Dx(s)]ds : (6.21)

Introducing these equations into the de�nition (6.3) of the chromaticity yields, replacing
s0 by s

�x = � 1

4�Qx

Z s+C

s
�x(t)[K0(t)� S0(t)Dx(t)]dt

�y =
1

4�Qy

Z s+C

s
�y(t)[K0(t)� S0(t)Dx(t)]dt : (6.22)
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The contribution to chromaticity arising from pure quadrupole elements (and also pure
dipoles) is called the natural chromaticity. Thus, the natural chromaticity of a lattice is
given by

�x0 = � 1

4�Qx

Z s+C

s
�x(t)K0(t)dt

�y0 = +
1

4�Qy

Z s+C

s
�y(t)K0(t)dt : (6.23)

6.2 The natural chromaticity of a FODO cell

As an example we compute the natural chromaticity of a synchrotron formed only
of thin-lens FODO cells of length 2L.

LL

Horizontal plane

Cell length 2L

QFQDQF

s

Figure 35: FODO cell (QF : focusing quadrupole, QD: defocusing quadrupole.)

The transfer matrix of a thin-lens FODO cell has already been derived to be

MFODO =

 
1� L

f
� L2

f2
2L + L2

f

� L
f2

1 + L
f

!
(6.24)

where f�1 = K0` > 0; K0 and ` are the quadrupole strength and length. The FODO
transfer matrix may be identi�ed with the general transfer matrix through any section
(from s1 to s2)
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M(s2=s1) =

2
664

q
�2
�1
(cos��+ �1 sin ��)

p
�1�2 sin ��

�1��2p
�1�2

cos ��� 1+�1�2p
�1�2

sin ��
q

�1
�2
(cos �� � � sin ��)

3
775 (6.25)

where �� = �(s2) � �(s1) is the phase advance per cell. However, the lattice being
composed only of FODO cells, periodic conditions yield �1 = �2 = �QFx and �1 = �2 =
�QFx . Hence, over one FODO cell the latter expression reduces to

M(s2=s1) =MFODO =

0
B@ cos ��x + �QFx sin ��x �QFx sin ��x

�QFx sin ��x cos ��x � �QFx sin ��x

1
CA (6.26)

where

QFx =
1 + �QF

2

x

�
QF
x

:

Identifying the matrix components, we obtain

2L+
L2

f
= �QFx sin ��x or �QFx =

2L

sin ��x

 
1 +

L

2f

!

Tr (MFODO) = 2 � L2

f2
= 2 cos ��x or

L2

4f2
=

1

2
(1� cos ��x) = sin2

��x
2

:

Hence
1

f
=

2

L
sin

��x
2

(6.27)

and

�QFx =
2L

sin ��x

�
1 + sin

��x
2

�
: (6.28)

Here, �QFx denotes the betatron function of a horizontally thin focusing quadrupole, for
which fQF = jf j > 0, with f�1 = K0`. We can derive the betatron function �QDx of a
horizontally thin defocusing quadrupole, for which fQD = �jf j < 0, by starting the cell
by a defocusing quadrupole instead of a focusing one. In that case we obtain the transfer
matrix of a DOFO cell, in which the matrix components are those of a FODO cell, where f
is replaced by �f . Hence, by identi�cation with the general transfer matrix with periodic
conditions �1 = �2 = �QDx and �1 = �2 = �QDx , we �nd

�QDx =
2L

sin ��x

�
1� sin

��x
2

�
: (6.29)

From these results, the natural relative chromaticity of a FODO cell may be computed as
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�x0 = � 1

4�Qx

Z s+C

s
�x(t)K0(t)dt =

= � 1

4�Qx

�
�QFx

Z
KQFds + �QDx

Z
KQDds

�
=

= � 1

4�Qx

(�QFx KQF ` + �QDx KQD`) = � 1

4�Qx

 
�QFx
fQF

+
�
QD
x̂

fQD

!
=

= � 1

4�Qx

�QFx � �QDx
f

;

where, according to the thin-lens approximation

Z
KQF;Dds = KQF;D` =

1

fQF;D
:

Introducing �QF;Dx and the focal length f in the expression (6.23) yields, using the trigono-
metric formula,

sin ��x = 2 cos
��x
2

sin
��x
2

the natural chromaticity

�x0 = � 1

�Qx

tan
�
��x
2

�
; (6.30)

where ��x is the horizontal phase advance for the FODO cell. If the full lattice is made
of N similar FODO cells, the natural chromaticity of the machine becomes

�x0 = � N

�Qx

tan
�
��x
2

�
: (6.31)

Furthermore, since

Qx =
1

2�
[�x(s0 + C)� �x(s0)] ;

where C is the machine circumference, we can write

Qx =
N��x
2�

:

Thus, from (6.31)

�x0 = � 2

��x
tan

�
��x
2

�
: (6.32)

To compute the natural vertical chromaticity we use the fact that �QFy = �QDx (with
fQF = jf j > 0), and �QDy = �QFx (with fQD = �jf j < 0). Therefore

�y0 =
1

4�Qy

 
�QFy

fQF
+
�QDy

fQD

!
=

1

4�Qy

�QFy � �QDy

f
= � 1

4�Qy

�QFx � �QDx
f

:
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Similarly, with

Qy =
N��y
2�

;

where ��y is the vertical phase advance for the FODO cell, we �nd

�y0 = � 2

��y
tan

�
��y
2

�
: (6.33)

Thus, the natural chromaticities of a synchrotron made up of FODO cells are negative.
For instance, if ��x;y = �=2 we obtain �x0 = �y0 = �4=�. More generally the natural
chromaticities are always negative since for higher-momentum particles (i.e. � > 0) the
focusing is less e�ective, and then the tune is reduced (i.e. �Q < 0).

6.3 Chromaticity correction

The chromaticity equations suggest the insertion of sextupoles close to each quadrupole,
where the dispersion function is non-zero, in order to correct the chromaticity. Thus, for
the chromaticity to vanish, the sextupole strength S0 would be, from (6.22)

S0`s =
K0`Q

Dx

(6.34)

where `Q; `S are the quadrupole and sextupole lengths, K0 is the quadrupole strength,
and Dx is the dispersion function value at the sextupole location.

Unfortunately, such localized connections are seldom feasible. A standard way of
adjusting both the horizontal and the vertical chromaticities is to use families of sextupoles
with moderate strength, distributed around the ring. Rewriting the equations for the
chromaticity as

�x = �x0 +
1

4�Qx

Z s+C

s
�x(t)S0(t)Dx(t)dt

�y = �y0 �
1

4�Qx

Z s+C

s
�y(t)S0(t)Dx(t)dt (6.35)

and using the thin-lens approximation, we obtain

�x = �x0 +
1

4�Qx

NX
i=1

�xiS0iDxi`si

�y = �y0 �
1

4�Qx

NX
i=1

�yiS0iDsi`si (6.36)

in which the sextupoles are located at si, their strengths and lengths being S0i and `si ,
and N is the total number of sextupoles. If the chromaticities have to be adjusted to the
values �x and �y, the sextupole strengths are obtained by solving the linear system of
equations
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NX
i=1

�xiS0iDxi`si = �4�Qx��x

NX
i=1

�yiS0iDxi`si = 4�Qy��y (6.37)

with ��x;y = �x0;y0 � �x;y. Assuming there are only two sextupoles in the ring, the linear
system of equations reduces to

(�x1S01Dx1 + �x2S02Dx2)`s = �4�Qx��x

(�y1S01Dx1 + �y2S02Dx2)`s = 4�Qy��y ; (6.38)

where we have assumed that the two sextupoles have the same lengths `s. Solving these
two equations yields

S01 = � 4�

`sDx1

 
�y2Qx��x + �x2Qy��y

�x1�y2 � �x2�y1

!

S02 =
4�

`sDx2

 
�y1Qx��x + �x1Qy��y

�x1�y2 � �x2�y1

!
: (6.39)

The sextupoles have to be placed where the dispersion function is high and the betatron
functions well separated to minimize the sextupole strengths (e.g. �x � �y at one sex-
tupole and �x � �y at the other sextupole). Furthermore, the strengths S01 and S02 are
opposite in sign (i.e. S01S02 < 0). In the case of a two-family sextupole with N1 sextupoles
of strength S01 and N2 sextupoles of strength S02, the terms in (6.37) may be grouped in
two sums and solved for S01 and S02. The \two-family sextupole" chromaticity correction
scheme yields sextupole strengths lower than those based on the \two sextupoles in a
ring" scheme.
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APPENDIX A:

HILL'S EQUATION

A.1 Linear equations

Consider a linear di�erential equation of the form, called Hill's equation

u00 +K(s)u = 0 ; (A.1)

where K(s) is a periodic function with period L,

K(s+ L) = K(s) : (A.2)

A prime denotes the derivative with respect to the variable s. For any second-order di�er-
ential equation there exist two independent solutions, C(s) and S(s), called a fundamental
set of solutions and such that every solution u(s) is a linear combination of these two:

u(s) = c1C(s) + c2S(s) ; (A.3)

where c1 and c2 are arbitrary constants. However, there is only one solution u(s) that
meets the initial conditions u(s0) = u0 and u0(s0) = u00 at s0. Assume that a fundamental
set of solutions C0(s) and S0(s)|cosine-like and sine-like solutions|of (A.1), whether
K(s) is periodic or not, have been found satisfying the initial conditions

C0(s0) = 1 C 0
0(s0) = 0

S0(s0) = 0 S00(s0) = 1 : (A.4)

Then, the solution u(s) of Hill's equation with initial conditions u0 and u00 at s0 can be
expressed as a linear combination of C0(s) and S0(s),

u(s) = u0C0(s) + u00S0(s) ;

u0(s) = u0C
0
0(s) + u00S

0
0(s) ;

or equivalently, �
u(s)
u0(s)

�
=
�
C0(s) S0(s)
C 0
0(s) S00(s)

� �
u(s0)
u0(s0)

�
: (A.5)

The above matrix is called a transformation matrix or transfer matrix from s0 to s, written
as

M(s=s0) =
�
C0(s) S0(s)
C 0
0(s) S00(s)

�
(A.6)

Equations (A.2) to (A.5) hold whetherK(s) is periodic or not. The name cosine- and sine-
like solutions of C0(s) and S0(s) come from the case whereK(s) = K is a positive constant
for which a fundamental set of solutions is C0(s) = cos

p
Ks and S0(s) = sin

p
Ks=

p
K;
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with C0(0) = 1; C 0
0(0) = 0, and S0(0) = 0; S00(0) = 1. The determinant of the transfer

matrix M(s=s0) is called the Wronskian. Di�erentiation of the Wronskian yields

d

ds
jM(s=s0)j =

d

ds
[C0(s)S

0(s)� C 0
0(s)S0(s)] = C0(s)S

00
0 (s)� C 00

0 (s)S0(s) :

Since both C0(s) and S0(s) are solutions of Hill's equation, we �nd

d

ds
jM(s=s0)j = 0

and thus the Wronskian is a constant. Consequently, since by (A.4) jM(s0=S0)j = 1, we
get the general result, true whether K(s) is periodic or not:

jM(s=s0)j =
����C0(s) S0(s)
C 0
0(s) S00(s)

���� = 1 : (A.7)

The transfer matrix from s1 6= s0 to s, written as M(s=s1), is built with the cosine- and
sine-like functions C1(s) and S1(s), which are generally di�erent from C0(s) and S0(s).
The conditions (A.4) are not generally satis�ed by C1(s) and S1(s). However,

C1(s1) = 1 and C 0
1(s1) = 0

S1(s1) = 0 and S01(s1) = 1 :

Using (A.5) in which u(s); u0(s) are replaced by C0(s); C 0
0(s)| S0(s); S00(s), respectively|

and u(s0); u0(s0) are replaced by C0(s1); C 0
0(s1)|S0(s1); S00(s1), respectively|we obtain

with C1(s) and S1(s) the fundamental set of solutions

�
C0(s) S0(s)
C 0
0(s) S00(s)

�
=
�
C1(s) S1(s)
C 0
1(s) S01(s)

� �
C0(s1) S0(s1)
C 0
0(s1) S00(s1)

�
;

where we have combined two matrix equations in one. By the de�nition of a transfer
matrix this result may be written as

M(s=s0) =M(s=s1)M(s1=s0) ; (A.8)

with

M(s=s1) =
�
C1(s) S1(s)
C 0
1(s) S01(s)

�
:

From now on the subscript in C0(s) and S0(s), or in C1(s) and C2(s), will be omitted, since
the reference point s0 already appears in the notation M(s=s0). When K(s) is periodic
the transfer matrix M(s + L=s) over one period L will be written as M(s). By (A.8),

M(s) �M(s+ L=s) =M(s + L=s0)M(s=s0)
�1 : (A.9)
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A.2 Equations with periodic coe�cients (Floquet theory)

If K(s) is periodic of period L, and since C(s) and S(s) are a fundamental set of
solutions of Hill's equation, C(s+L) and S(s+L) are also a fundamental set of solutions
of the same equation, because

d2C(s+ L)

ds2
+K(s)C(s+ L) =

d2C(s+ L)

ds2
+K(s+ L)C(s+ L)

=
d2C(t)

dt2
+K(t)C(t) = 0

with the change of variables t = s+ L.
Hence we may write alternatively the cosine- and sine-like solutions C(s + L) and

S(s+ L) as a linear combination of C(s) and S(s) using (A.3):

C(s+ L) = a11C(s) + a12S(s);
S(s+ L) = a21C(s) + a22S(s) ; (A.10)

where aij are the components of a constant matrix A. Similarly, any general solution of
Hill's equation is a linear combination of the fundamental set C(s) and S(s)

u(s) = c1C(s) + c2S(s) : (A.11)

The solution u(s) is not necessarily periodic, although K(s) is periodic. However, let us
try to �nd a solution u(s) with the property

u(s+ L) = �u(s) : (A.12)

Using (A.10) to (A.12) we obtain

u(s+ L) = c1C(s+ L) + c2S(s+ L)

= c1(a11C(s) + a12S(s)) + c2(a21C(s) + a22S(s))

and
u(s+ L) = �[c1C(s) + c2S(s)] :

Comparison of the last two equations gives

[(a11 � �)c1 + a21c2]C(s) + [a12c1 + (a22 � �)c2]S(s) = 0 :

Since C(s) and S(s) are linearly independent, the coe�cients of the last equation must
vanish, yielding the system

(a11 � �)c1 + a21c2 = 0

a12c1 + (a22 � �)c2 = 0 :

The condition for nonvanishing solution c1; c2 is���� a11 � � a21
a12 a22 � �

���� = jA� �Ij = 0 ; (A.13)
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or equivalently,
�2 �Tr (A)�+ jAj = 0 : (A.14)

This expression is called the characteristic equation. Now, we want to express (A.14) in
terms of the transfer matrix, rather than in terms of the matrix A with coe�cients aij.
Rewriting (A.10) in matrix formulation

�
C(s+ L)
S(s+ L)

�
= A

�
C(s)
S(s)

�

and transposing this expression gives

[C(s+ L) S(s+ L)] = [C(s) S(s)]At :

This equation and its derivative may be written into the compact form

�
C(s+ L) S(s+ L)
C 0(s+ L) S0(s+ L)

�
=
�
C(s) S(s)
C 0(s) S0(s)

� �
a11 a21
a12 a22

�
;

or
M(s+ L=s0) =M(s=s0)A

t : (A.15)

Introducing the transfer matrix M(s) over one period L, using (A.8) and the last expres-
sion we get

M(s) =M(s=s0)A
tM(s=s0)

�1 (A.16)

Since the determinant of a transfer matrix is equal to unity, it follows immediately that

jAtj = jAj = 1 : (A.17)

Similarly, the characteristic equation of M(s) is

jM(s)� �Ij = �2 � Tr [M(s)]�+ 1 = 0 :

then

jM(s)� �Ij = jM(s=s0)(A
t � �I)M(s=s0)

�1j = jAt � �Ij
= �2 � Tr (A)�+ 1 = 0 ;

since the trace of a matrix is equal to the trace of its transpose. Identifying these last two
expressions yields

Tr [M(s)] = Tr (A) : (A.18)

The traceM(s) is independent of the reference point s, due to A being a constant matrix.
Hence the roots �1 and �2 of the characteristic equation (A.14) are

�1;2 =
1

2
Tr [(M(s)]�

q
Tr [M(s)]2 � 4 : (A.19)
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These roots are related by
�1�2 = 1 : (A.20)

Let u1(s) and u2(s) be the solution u(s) with the property (A.12), in which � = �1 and
� = �2, respectively. De�ne wi(s) for i = 1; 2 by

wi(s) = e�
ln�i
L

sui(s) ;

then, using (A.12), we get

wi(s+ L) = e�
ln�i
L

(s+L)ui(s+ L) = e�
ln�i
L

s 1

�i
�iui(s) = wi(s) ;

so that wi(s) is periodic with period L:

wi(s+ L) = wi(s) : (A.21)

Hence we may write
ui(s) = wi(s)e

�i

L
s ; (A.22)

where
�i = ln �i : (A.23)

The numbers �i are called the characteristic exponents of Hill's equation. They need not
be real numbers. If �2 and �2 are distinct, the solutions u1(s) and u2(s) are a fundamental
set of solutions with the property

ui(s+ L) = e�iui(s) : (A.24)

This result is known as Floquet's theorem. When �1 = �2 = �, we have � = �1 by means
of (A.20). There exists a fundamental set of solutions of the form

u1(s) = w1(s)e
�

L
s

u2(s) =
�
w2(s) +

s

�L
w1(s)

�
e
�

L
s ; (A.25)

with � = 0 for � = 1 and � = i� for � = �1. In this case the solution u1(s) is periodic,
with period L when � = 1 and period 2L when � = �1. The main di�culty in the Floquet
analysis is that the fundamental set of solutions C(s) and S(s), from which we derived
�1 and �2, is generally unknown.

Instead of de�ning the Floquet solution u1(s) and u2(s) by (A.22), we may alterna-
tively express these solutions in the generalized Floquet form

ui(s) = wi(s)e
�i(s) ; (A.26)

such that wi(s) are periodic,
wi(s+ L) = wi(s) ; (A.27)
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and
�i(s+ L) � �i(s) � ln �i ; (A.28)

�1 and �2 being the characteristic exponents (assuming �1 and �2 as distinct). Thus the
derivative �0i(s) is periodic with period L. Indeed, owing to ui(s) having the property
(A.12), we de�ne

wi(s) = e��i(s)ui(s)

and then

wi(s+ L) = e��i(s+L)ui(s+ L) = e�[�i(s+L)��i(s)]
1

�i
�iui(s) = wi(s) ;

since �i = ln �i, and provided (A.28) is satis�ed. However, such an equation (A.28) exists
since �1 and �2 are independent of s by (A.18) and (A.19). The Floquet solutions u1(s)
and u2(s) are obviously di�erent from the cosine- and sine-like solutions C(s) and S(s)
from which they are derived.

A.3 Stability of solutions

In plain words, a given solution of Hill's equation is stable (in the Liapunov sense)
if any other solution coming near it remains in its neighborhood. Otherwise it is said to
be unstable. It can be shown that a solution is stable if, and only if, it is bounded. Some
deductions about the stability of the solution u(s) of Hill's equation can be made from
the roots �1 and �2 of the characteristics equation. By (A.19) and (A.20) we see that:

1) The roots may be complex conjugate on the unit circle

�1;2 = e�i� ; (A.29)

representing stable solutions

u(s) = c1w1(s)e
i
�

L
s + c2w2(s)e

�i �
L
s ; (A.30)

with
jTr [M(s)]j = j2 cos �j < 2 :; (A.31)
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2) The roots may be real reciprocals

�1;2 = e�� ; ; (A.32)

representing growing and decaying solutions

u(s) = c1w1(s)e
�

L
s + c2w2(s)e

� �

L
s ; ; (A.33)

with
jTr [M(s)]j = j2 cosh �j > 2; (A.34)

where the unstable solutions are divided into two possibilities:
Tr [M(s)] > 2 (for �1 > 1) and Tr [M(s)] < 2 (for �1 < �1).

3) The roots may be equal,
�1 = �2 = �1 ; ; (A.35)

representing transition between the stable and unstable cases with

jTr [M(s)]j = 2 :; (A.36)

According to (A.25) there is one stable solution of period L for �1 = �2 = 1 (the
other is unstable), and one stable solution of period 2L for �1 = �2 = �1 (the other
also being unstable).

 Tr(M(s)) < 2  Tr(M(s)) > 2

10 0 1

λ1

λ1

λ2

λ2

Figure 36: Stability conditions for a one-period transfer matrix: location of eigenvalues in the

complex plane (left �gure: stable motion, right �gure: unstable motion).

As an example, consider again a symmetric thin-lens FODO cell of length 2L whose
transfer matrix has been derived to be

MFODO(2L=0) =

 
1 � L

f
� L2

f2
2L + L2

f

� L
f2

1 + L
f

!

The stability criterion (A.31) gives the condition

jTr [MFODO(2L=0)]j =
�����2 � L2

f2

����� < 2
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or equivalently

�1 < 1 � 1

2

L2

f2
< 1

yielding

0 <
L

2f
< 1

The stability is thus obtained for distances L between the quadrupoles up to twice their
focal length f .
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