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Abstract

In high frequency linacs, where the wake�elds are strong, the stability of a train of bunches is
critical. It was therefore important for the Compact Linear Collider study (CLIC) to investigate
numerically and theoretically this question. Basically, two methods of controlling beam break-
up have been considered; �rstly a multibunch generalization of the BNS damping principle and
secondly the attenuation of the long- range �elds as it results from damping or staggered tuning
of the accelerating sections. Simulation codes have been written for both checking the theoretical
predictions and investigating the requirements associated with a possible application to the CLIC
main linac.
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1 Introduction

The question of the stability of a train of bunches in a high frequency linac is important in the
framework of the Compact Linear Collider (CLIC) study. Indeed, though the single bunch mode
of CLIC already provides an usable luminosity, a large fraction of the research planed in the
physics experiments requires even higher luminosities with small energy spread, that can only be
reached in a multibunch mode, if we want to restrict the necessary RF power. The more recent
lists of parameters [1,2] therefore take this into account and are based on the use of at least �ve
to ten bunches per pulse or more.

In these new conditions, the possible instability of the bunch train often called beam break-
up and associated with the long-range dipole modes of transverse wake�elds has to be cured.
If not, the transverse beam modulation is carried along the linac from accelerating section to
accelerating section, through the beam. Beam blow-up then occurs and manifests itself along the
linac as an amplitude growth from the head to the tail of the bunch train, decreasing thereby
the luminosity. Di�erent remedies can be considered.

The �rst two possibilities envisaged in most designs consist of attenuating the long-range �elds
seen by the trailing bunches, either by damping or by detuning of the RF cavities [3]. In damped
structures there are modi�ed disk-loaded wave-guides in which the power is coupled out to lossy
regions, whereby the quality-factor of the indesirable modes is strongly lowered. In staggered
tuned sections, the cell dimensions are varied in order to spread the dipole mode frequencies and
to induce a roll-o� of the wake �elds behind each bunch. In the design of such structures, it is
essential to have an estimate of the �eld attenuation required to stabilize a given bunch train.
In order to obtain this information for the CLIC parameters of LC95 [4], it was necessary to
develop a numerical code with long-range wake�elds in addition to the short-range ones and with
multibunch treatment, using di�erent wake�eld models as described below.

Another possibility [3], never seriously considered because of its apparent di�culty to be
implemented, is based on the generalization of BNS damping to a train of bunches. Since the
train in CLIC is limited to a relatively small number of bunches, the chance of stabilizing the
beam is a priori better and it was therefore interesting to study this idea in spite of the expected
di�culties. Such a principle study obliged us to �rst develop the necessary theory dealing with
multibunch BNS damping using microwave quadrupoles and strong focusing. Then, the speci�c
code developed for multibunch tracking could be used for checking the principles of this method
as well as the validity of the theoretical predictions.

In this report, we �rst deal with the general theory of BNS damping and its extension to multi-
bunch operation. Then the multibunch numerical simulation codes MBTRACK and WAKET are
described. Later, the numerical tests on BNS damping and on wake�eld attenuation e�ects with
a simpli�ed model of a multibunch train are reported, so that we can draw out some conclusions
about the limitations of the former approach and the attenuation requirements in the latter.

2 Short recapitulation of the general theory of BNS damping

Following Ref. 5, we write the integro-di�erential equation of second order for a 'slice of charge'
in a bunch traveling at relativistic speed along a linac and feeling the focusing magnetic forces
as well as the force of the tranverse wake�elds inside the bunch.

(s)x00(s; z) + 0(s)x0(s) + k2(s; z)(s)x(s; z) =
e2

m0c2

Z z

�1

�(z�)W (z � z0)x(s; z�)dz� (1)

In this equation x denotes the transverse displacement of a slice of charge in the bunch. The
independent variables s and z are there for the position of the bunch inside the linac and the
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relative position inside the bunch respectively; the origin z = 0 corresponds to the center of the
bunch. The quantities e, m0 and c represent the elementary charge, the rest mass of the electron
and the light velocity while (s) is the energy of the bunch as function of the position in the linac
and therefore is given by

(s) = 0 + Gs (2)

Here 0 is the energy of the injected bunch and G the accelerating gradient of the linac. The
derivative 0 is always taken with respect to s. The function �(z) describes the particle density as
function of the position inside the bunch while W stands for the transverse wake potential per
unit length produced by a point charge of unit value [5]. The 'homogeneous part' of equation
(1) contains a damping term proportional to 0(s) which can be supressed by using the following
ansatz for x:

x(s; z) = a(s; z) exp [b(s; z)] (3)

Inserting (3) into (1) we �nd

a00+[2b0+0]a0+[b00+b02+0b0+k2]a =
e2 exp (�b)

m0c2

Z z

�1

�(z�)W (z�z�)a(s; z�) exp (b)dz�

(4)
Now we determine the function b such as to supress the a0 term of this equation, hence

b0 = �1
2

0


=) b(s) = ln

1p


(5)

Then the coe�cient of a becomes

:::+ [k2 +
2

4
]a::: (6)

Note that for obtaining this expression we have to evaluate

b00 = � d

ds

�
0

2

�
= �2

00� 202

42
=

1

2

02

2
(7)

since from (2) follows that 00 = 0. The function b just depends on  and (because of (2)) only
on the independent variable s. So we may extract exp (b) from the integral in (4) where it is
canceled by the factor exp (�b). After a division by  Eq. (4) becomes eventually,

a00 +

"
k2(s; z) +

1

4

02

2

#
a =

e2

m0c2

Z z

�1

�(z�)W (z � z�)adz� (8)

The basic idea of BNS-damping [6] is to cancel the wake�eld e�ect by a proper choice of the
focusing force along the single bunch. As we can see for instance from [5] this is in principle
possible. Using our undamped version of the equation for a we write the focussing force k2(s; z)
as

k2(s; z) = k20(s)[1 + f(z)] (9)

so that Eq. (8) becomes

a00 +

"
k20(s; z) +

1

4

02

2

#
a =

e2

m0c2

Z z

�1

�(z�)W (z � z�)a(s; z�)dz� � k20(s)f(z)a(s; z) (10)

A coherent oscillation of all bunchslices can be obtained if the right hand side of the above
equation becomes identical to zero i.e.

f(z) =
e2

m0c2k
2
0
(s)a(s; z)

Z z

�1

�(z�)W (z � z�)a(s; z�)dz� (11)
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In the coherent limit we may cancel a(s; z) and a(s; z�) in the above equation because in this
limiting case a only depends on s. Hence,

f(z) =
e2

(s)m0c2k
2
0
(s)

Z z

�1

�(z�)W (z � z�)dz� (12)

In order to cause no contradiction with Eq. (9) which states that f should only depend on the
position in the bunch z we have to cancel the explicit s dependence in Eq. (14). This leads to a
necessary condition for BNS-damping

k20(s) =
C

(s)
=

1

0 + Gs
; C = Constant (13)

which is also given in [5,7]. The �nal condition for f(z) then becomes

f(z) =
e2

m0c2C

Z z

�1

�(z�)W (z � z�)dz� (14)

If we �nd means to realize this function f(z) in a real linac we may exactly cancel the wake e�ect
and we remain with a bunch in which all slices of charge oscillate in a coherent way.

3 Extension of BNS damping to multibunch operation

We now show how the method of BNS damping can be extended to the situation of a train
of bunches moving along the LINAC and acting on each other via the long range wake�elds.
The underlying model is the one of a 'superbunch' consisting of a certain number of equally
spaced Delta Function charges representing the single bunches. Of course we may apply the
same equation (1) to this problem but now the integration along the bunch coordinate z is
transformed into a �nite sum over the di�erent single bunch contributions. Then we de�ne a new
correcting focusing function f(z) which should be chosen such as to cancel as well as possible the
noncoherent part of the multibunch oscillations. Assuming equidistant bunches separated by �z
and with identical charge q, we can write the value that should be taken by �f(z) at every bunch
i of the train

f(zi) = fi =
Qe

m0c2C

i�1X
n=1

WT [n�z] (15)

For i = 1 (Bunch #1) this sum has to be set equal to zero since this bunch is not exposed to any
longrange wake�eld. The quantity Q stands for the total charge of one bunch. It has to appear
because the integral over one Delta Function bunchZ zi+�

zi��
�(z)dz = N ; Ne = Q (16)

where N is the number of particles in one bunch. With the further assumption that the bunch
separation �z is a multiple of the RF wavelength �RF , say 20, Equation (15) becomes

fi =
eQ

m0c2C

i�1X
n=1

WT [20n�RF ] (17)

In order to have numerical estimates of the rigth hand side of equation (17), we can for instance
use the development of the wake potential in terms of the structure normal modes

WT (z) = 2
MX
m=1

k1mc

!1ma2
sin (!1m

z

c
) (18)
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where k1m and !1m are the loss factors and frequencies of the M modes retained and obtained
from a �eld calculation code [8], while a is the iris radius. Of course, focusing does not make it
possible to exactly ful�ll the condition for �f(z) to be independent of s

k20(s) =
C

(s)
(19)

but allows to reach in average a situation close to the coherent oscillation. Supposing this is
done, remains the major task of achieving a di�erential focusing function �f(z) able to stabilize
the multibunch mode and avoid the so-called beam breakup. Extending the principle applied in
CLIC of using (high-frequency) RF quadrupoles in order to provide single bunch BNS damping ,
we can use di�erent sets of (lower-frequency) RF quadrupoles to generate the function f required.
The idea is to represent the ideally required function f , i.e. more precisely the values it takes at
the bunch positions zi, by using a function arbitrarily called f?, obtained by the addition of a
small number of frequency components. Such a function can be realized in the form

f?(z) =
X
k

Ak sin!k
z

c
(20)

where the index k runs from 1 to the number of bunches minus 1. This form automatically
gives f(z = 0) = 0 (no e�ect on the �rst bunch). If we choose the driving frequencies for the
RF-quadrupoles as given, we may compute the amplitudes Ak necessary to equalize f?(zi) with
the required values fi in Eq. (17). This leads to a linear set of equations in the amplitudes Ak:

M

0
BBBB@

A1

A2

A3

...

1
CCCCA =

0
BBBB@

f1
f2
f3
...

1
CCCCA (21)

with

M =

0
BBBB@

sin!1
z1
c

sin!2
z1
c

sin!3
z1
c

� � �
sin!1

z2
c

sin!2
z2
c

sin!3
z2
c

� � �
sin!1

z3
c

sin!2
z3
c

sin!3
z3
c

� � �
...

...
...

1
CCCCA =) ~A =M�1 ~f (22)

3.1 Strong focusing

The theory developed in the previous section is based on the integro - di�erential equation Eq.
(1) describing the dynamics of a bunch with focusing and transverse wake�elds and supposing a
weak focusing situation. (The s dependence in K2(z; s) is only due to the scaling of the focusing
with energy and is adiabatic (slowly changing within one FODO cell)). The expression for the
correcting focusing function f?(z) given in Eq. (20) has been derived using this weak focusing
assumption. However in the real main LINAC of CLIC focusing is achieved using a strong focusing
structure (FODO lattice). So we expect that a correction to the function f?(z) has to be applied
in order to cope with the fact that focusing and correction are not continuously distributed along
the LINAC. In order to derive the necessary correction we sart with Hill's equation describing
the betatron motion in a strong focusing periodic lattice:

x00 +K(s)x = 0 ; K(s) = K(s+ L) (23)

The exact solution can be written using the betafunction �(s) as

x(s) = a
q
�(s) cos

�Z s

0

ds

�(s)
+ b

�
(24)
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Since �(s) is periodic in L we may write it as Fourier series

�(s) = �� +
1X
n=1

�
an cos

�
2�n

L
s

�
+ bn sin

�
2�n

L
s

��
(25)

The quantity �� represents the average value of �(s) over the cell length L.

�� =
1

L

Z L

0

�(s)ds (26)

The weak focusing approximation consists in neglecting the s - dependence of the betafunction
and representing it just by its average value.

�(s) � �� (27)

With this approximation the solution becomes

xw(s) = a

q
�� cos

�Z s

0

ds
��
+ b

�
= a

q
�� cos

�
s
��
+ b

�
(28)

The di�erential equation having this general solution is

x00 +
1
��2
x = 0 (29)

from which we deduce that the weak focusing force k in Eq. (1) is equal to the inverse of the
average betafunction of the associated strong focusing lattice.

x00 + k2x = 0 =) k =
1
��

(30)

Following Eq. (9) we �nd

k2 = k20[1 + fw(z)] =
1
��2
[1 + fw(z)] (31)

In order to compute �� for the case of the CLIC main LINAC we use the thin lens model of
the standard FODO lattice. While between the thin focusing and defocusing quadrupoles �(s)
follows a quadratic parabola - �(s) = a+ bs+ cs2 - its values at the positions of the quadrupoles
as functions of the phase advance per cell � are given by

�F;D =
L

sin�

�
1� sin

�

2

�
(32)

where the indices F and D stand for focusing and defocusing quadrupoles (Ref. "Erice School").
The slope �0F is given by the expression

�0F = � 2

cos �
2

�
1 + sin

�

2

�
(33)

If we identify the positions of QF with s = 0 and the one of QD with s = L=2, �(s) reads as

�(s) = �F + �0F s +
4s2

L2

�
�D � �F �

�0FL

2

�
(34)
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Since the betafunction of a thin lens FODO lattice is symmetric w.r.t. the defocusing quadrupol,
the average �� is given by

�� =
2

L

Z L

2

0

�(s)ds (35)

which results in
�� =

2

3
�F +

1

3
�D +

1

12
L�0F (36)

Inserting the formulae (32) and (33) and application of some trigonometric identities �nally leads
to

�� =
L

cos �
2

"
1

2 sin �
2

� 1

6
sin

�

2

#
(37)

The integrated focusing strength of a thin lens quadrupole can be written as follows in terms of
the cell length L and the phase advance per cell � (Ref. "Erice School")

�0 = (Kl)0 =
4

L
sin

�

2
(38)

Now we use

k20 =
1
��2

=
cos2 �

2

L2

1�
1

2 sin
�

2

� 1

6
sin �

2

�2 (39)

From Eq. (38) we deduce

sin
�

2
=
L

4
�0 (40)

cos2
�

2
= 1� L2

16
�20 (41)

so that

k20 = �20
1� L2�2

0

16�
2� �2

0
L2

24

�2 (42)

This establishes the equivalent weak force for a FODO lattice with a thin lens strength �0
given in Eq. (38). Going from k20 to a modulated weak force k20[1 + fw(z)] (fw(z) is the function
f?(z) computed in the previous section) we are interested in the equivalent modulation 1+ fs(z)
to be applied to the strong force. We therefore must solve the following equation in the unknown
� = �0[1 + fs(z)]

�20
1� L2�2

0

16�
2� �2

0
L2

24

�2 [1 + fw(z)] = �2
1� L2�2

16�
2� �2L2

24

�2 (43)

The main LINAC of CLIC operates with a FODO lattice around � = �=2. The thin lens
strength (38) behaves fairly linear in the interval 0 < � < �=2 so that we may expect to obtain
a good approximation by linearizing (43) in �2 and �20. Setting u = �2 and performing a Taylor
Expanssion w.r.t. u gives

u
1� L2u

16�
2� uL2

24

�2 =
1

4
u� 1

192
L2u2 + O(u3) (44)
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Truncating after the linear term and resubstituting for � leads to

�20 [1 + fs(z)]
2 = �20[1 + fw(z)] (45)

which results in
fs(z) =

q
1 + fw(z)� 1 (46)

If fw(z) is su�ciently small, we may expand the squareroot to obtain

fs(z) =
1

2
fw(z) + O(fw(z)

2) (47)

Hence, given a certain value for the function f?(z) = fw(z) which can be computed using the
wake�eld formalism described in the previous section, we obtain the necessary modulation of the
strong focussing based on a FODO lattice by dividing the weak force modulation by 2.
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4 Multi-bunch simulation codes

4.1 The code MBTRACK

For linear accelerators that are supposed to contain a large number of bunches, it often looks
judicious to study the multi-bunch stability of a train independently of the single bunch behaviour,
by assuming that each bunch can be represented by a macro-particle. Merging eventually both
mechanisms may be tedious but necessary to understand the properties of the whole beam.
In CLIC, where the beam should not contain a very large number of bunches , we decided to
include from the beginning the single bunch treatment in the multi-bunch simulations. However,
other approximations described below have initially been used to limit the computing time.
Consequently, the multibunch codes of the MBTRACK series have been based on the MTRACK
group of codes [7] written for single-bunch stability studies. The main characteristics of the
MTRACK family are therefore recalled hereafter.

4.1.1 Recall about the MTRACK codes

The group of codes of MTRACK type (written in FORTRAN) solves the equation of motion of
a single bunch travelling through drifts, accelerating cavities, position monitors, magnetic and
microwave quadrupoles, in using a matrix formalism with the following points:

- solution derived in the two transverse directions x and y for both trajectories and emittances.
- realistic strong focusing of FODO type which can be arbitrarily scaled with the energy, i.e.

with the distance along the linac (assuming thin lenses in the simpler version).
- transverse and longitudinal self (short-range) wake�elds either approximated by close for-

mulae (resistive cylindrical pipes in drifts) or obtained from a separate calculation providing a
large number of loss factors and frequencies of synchronous modes (accelerating structures).

- longitudinal motion containing acceleration and action of the longitudinal wake�eld.
- coupling between the transverse and the longitudinal motions through the energy dependence

of the focusing.
- random transverse misalignments of all the linacs components if required.
- di�erent kinds of trajectory corrections [10].
- longitudinal division of the bunch in slices, populated according to a gaussian distribution

and having same initial transverse emittances as well as injection energy. The beam is assumed
to be fully relativistic so that there is no possible longitudinal redistribution of the di�erent slices
("frozen" beam).

The most recent version of this code allows a division of the linac in sectors (at constant
focusing) linked through matching insertions, linear coupling between transverse motions (tilt
e�ect) and the use of thick lenses [11]. However, these options were not considered to be necessary
for the present multibunch study, though they might be used later for more detailed investigations.

The speci�c points of the MTRACK codes are the strong focusing, BNS damping with mi-
crowave quadrupoles [12] rather than with energy spread, independent scaling of quadrupole
strength and cell length to balance dispersion and wake�eld e�ects [13], the use of Green's func-
tions for the short-range wake�elds and the beam model. The e�ective emittance of the bunch
is calculated by projection into the transverse phase plane of the individual ellipses of each slice
which are independently o�-centered by the betatron motion. Main inputs are the lattice data,
beam parameters, misalignment amplitudes and the frequencies and loss factors of the wake-�eld
modes. The �rst three groups of data are contained in a commnon �le with namelists while the
wake�eld data appear in a separated �le. Main outputs are the trajectory deviations, transverse
e�ective emittances obtained by projection in the phase plane of each slice contribution, optics
parameters and the characteristics in energy, all as functions of the position in the linac. The
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�rst two are listed in a common �le, that is distinct from the �le containing the other two. A
third �le contains a brief summary of the input data and of the output values at the end of the
linac. Special �les can be created on demand with the necessary information for plotting the
wake�eld functions or the beam energy distribution at the linac end.

4.1.2 Description of the codes MBTRACK

Starting from MTRACK codes, an extension to the multibunch mode has been worked out in
the group of codes MBTRACK in three steps, with increasing complexity:

- At �rst, the particle distribution was duplicated in order to track two identical bunches,
both experiencing the same short-range wake�elds. The long-range wake�eld applied to the
second bunch was approximated by a �eld constant along the bunch and depending only on the
average position of the �rst bunch. First indications of long-range transverse wake�eld e�ects
were obtained in this way.

- Facing the need for a better model, we worked out a second version still tracking two bunches
only (large number of slices permitted) but with more realistic �elds and o�ering the possibility to
approximately estimate the behaviour of any bunch in a train, as explained below. A routine was
added, which computes the long-range e�ects on the following bunch, by applying slice by slice
and proportionally to each slice-position and -current , the �elds generated by the �rst bunch. At
this point, the approximation made for convenience resides in the fact that the long-range �eld
due to one short slice was taken equal to the integrated �eld of a short (but still longer) gaussian
bunch. This approximation is certainly acceptable when considering the e�ect of bunch 1 on
bunch 2. Turning to the trailing part of the train, if long-range �elds are su�ciently attenuated
or multi-bunch BNS damping is successfully applied, the motions of the �rst two bunches will
be so similar, i.e. coherent, that their motion can be simulated through one head-bunch only
and the direct addition of their wake�elds can be done with the code WAKET (Section 4.2) for
getting the e�ect on bunch 3. The code gives then a reasonable (preliminary) approximation
of the behaviour of bunch 3, even if it tracks only two bunches simultanously. Generalizing the
argument, it is possible to get an idea about the stability of any bunch in the train near coherent
conditions. This code has been used for obvious reasons of simpli�cation and computing time
saving.

- It is clear that we ultimately need a code that allows to track simultanously an arbitrary
number of bunches, with all their identical short-range �elds and self-consistent long-range �elds
computed within MBTRACK, using Green's functions and according to the actual slice positions.
The less coherent is the motion of the �rst bunch, however submitted to BNS damping, the more
important it is to have the entire interdependence of the single-bunch motion and of the long-
range e�ects. Unfortunately, since the number of cross dependences increases quadratically with
the total number of slices in a train, the computing time rises in the same way. This may oblige
us to work in particular cases with a reduced number of slices per bunch and to run the program
on fast computers. A version of MBTRACK has been written with such a full bunch-to-bunch
interaction [14], allowing in general for an arbitrary number of bunches. This version called
MBTR is described in the quoted reference and now produces animated graphics showing the
evolution of the bunches. It will be intensively used in the future.

In the �rst two versions of the codes MBTRACK, both the single bunch and multibunch
BNS damping are included and simulated in the same way. Indeed, thin microwave quadrupoles
are supposed to be installed next to each magnetic quadrupole of the FODO lattice, with their
appropriate amplitudes, frequencies and phases. It is worth to mention that the present MB-
TRACK family assumes uncoupled vertical and horizontal motions, as well as thin quadrupoles
and a continuous scaling of the focusing properties with the beam energy. It uses a one-to few
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(more beam position monitors than quadrupoles) algorithm of trajectory correction with possible
iterations of this correction. Comparing with MTRACK, the input �le contains an additional
namelist, with multibunch parameters like the long-range �eld attenuation and the possible BNS
damping quadrupole strengths. The output �le with trajectories and emittances is duplicated
for the lagging bunch. On option, it is also possible to get the e�ective emittance of the whole
train by including the bunch o�-sets relative to the average beam position.

In the following sections, the results presented and discussed concern the three versions of
MBTRACK, though mostly the �rst two. All these codes have been written in FORTRAN
(on the CERN VM system) and have been transferred to the new CERN platform SP2. In
addition, for development purposes, working convenience and interactive procedures that include
the possibility to have animated graphics showing the evolution of the whole bunch train (utility
written in QBASIC), an MBTRACK version has been created for running in a stand-alone mode
on a personal computer (DOS system). Given the speed and power of the recent computers, this
version makes it possible to track through the main linac in a still reasonable time a train of
more than 20 bunches subdivided in more than 10 slices.

4.2 The code WAKET

Parallel to the development of MBTRACK we worked on a second code capable to compute
short and longrange longitudinal and transverse wake�elds generated by a train of bunches which
travels through the accelerating and focusing structure of a LINAC. Input parameters are the
basic properties of the structure and the bunches (bunchlength, bunch population, frequency of
the accelerating �eld, bunch separation) as well as a list of frequency components and loss factors
describing the wake�elds. The latter are calculated in a �eld computation program [8,15] which
uses as input the geometry of the accelerating structure as well as the shape and the population
of a bunch of charged particles.

The code WAKET has been written in FORTRAN 77 using an IBM compatible PC. A
mathematical coprocessor is strongly recommended for running the program on PC. Of course
the (interactively organized) program can be installed on any computer containing a FORTRAN
compiler.

The basic functions of the program are shortly described in the following subsections.

4.2.1 Long-range transverse wake�elds

In this part of the code the transverse wake�elds are computed along a train of bunches (up to
�ve). In this case we apply the following approximation:

� A coherent motion of the leading bunches is assumed. This implies that the contributions of
all these bunches can simply be added (taking also into account the given bunch separation)

In order to compute the contribution of a bunch for every slice of this bunch (from head
to tail) the Green functions transverse wake �eld is computed and weighted with the actual
population according to a Gaussian bunch. Then the so obtained Green function �elds are
superimposed according to the relative positions of the generating slices. In Fig.1 we see the
longrange transverse wake�eld across a train of �ve CLIC bunches with a relative separation of
20�RF � 20cm.

4.2.2 Computation of the RF focusing function for multibunch BNS damping

Following the formalism developed in section 2, this part of the program �rst computes the
necessary values of the RF focusing function f(z) (in the weak focusing approximation) at the
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Figure 1: Transverse wake�eld across a train of �ve CLIC bunches.

bunch center positions in order to minimize the noncoherent relative bunch oscillations. For that
it uses Eq. (15). Finally a correction scheme for �ve bunches is set up using four given frequencies
and four amplitudes which follow from the linear system (22). These amplitudes (weighted with
a factor close to 0:5 in order to cope with the realistic strong focusing situation in the main
LINAC) can then be used to modulate the FODO lattice in the desired way. Fig. 2 shows this
function for the four frequencies f1;2;3;4 = 10; 11; 12 and 13 Ghz and the according amplitudes
along a train of �ve bunches (no e�ect on the �rst bunch).
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Figure 2: RF focusing function f(z) along two CLIC bunches out of a train of �ve.

5 Numerical Tests on Multibunch BNS damping

For this series of tests the program code MBTRACK (2nd version) as described in section 4 has
been used together with the code WAKET. WAKET is used to compute the longrange wakes of
a train of bunches as well as the RF focusing function f(z) (in the weak focusing model) to be
applied to the FODO lattice of the main LINAC. The program MBTRACK tracks two bunches
through the LINAC structure containing accelerating cavities, focusing and the presence of short
and longrange wake�elds. The longrange transverse and longitudinal wakes are provided by the
code WAKET. Since many runs have been performed we used the relatively small number of 11
slices for representing one bunch (slice number 6 represents the central slice). Although we know
from experience that with such a low number of slices we do not obtain very good quantitative
results, the qualitative behaviour of the bunches is well represented.

5.1 General tests with two bunches

At �rst we make a test with two bunches where the second bunch feels the transverse wake�elds
of the �rst one. We use no attenuation of the propagating �elds and we follow the motion of
the two bunches over a total length of 500 m. Using the code WAKET in the described way for
given frequencies f1;2;3;4 = 10; 11; 12; 13 Ghz we �nd the particular value at 20 cm of the focusing
function f(20cm) = 1:57 after the application of the following Fourier's development (in the weak
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focusing model):

fw(z) = A1 sin[20�z=c] +A2 sin[22�z=c] +A3 sin[24�z=c] +A4 sin[26�z=c] (48)

where A1;2;3;4 = 1:38; 0:11;�0:55;�10:04. The function fw(z) is always computed to interpolate
correctly through 5 bunches. Then we apply the modulating function

fs(z) = �fw(z) (49)

to the strong focusing quadrupoles of the FODO lattice. In Fig.3 we plot the second bunches
emittance Ey as function of position inside the LINAC. We compare the case of � = 0 (no
correction) to the cases of 0:46 < � < 0:52 and we see clearly that we obtain a strongly reduced
emittance blow up of the second bunch for values of � close to the predicted value of 0:5.

Figure 3: Emittance of the second bunch without and with BNS correction using di�erent focusing
factors around 0.5, as function of s.

To demonstrate more clearly that in fact we obtain a minimum emittance blow up close to
� = 0:5 as predicted from theory we plot the emittance of bunch 2 after 1000m as function of
�. The horizontal line in Fig.4 represents the emittance of the �rst bunch and we see that the
emittance blow up of bunch 2 w.r.t. bunch 1 for a small interval of � close to � = 0:5 becomes
smaller than unity.

In Fig. 5 we see a more detailed picture of the minimum emittance region for bunch 2.
As it could already be seen in the previous �gure, the emittance of bunch 2 is even smaller

than the one of bunch 1 when 0:58 < � < 0:60.
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Figure 4: Emittance of the second bunch as function of � for 0:0 < � < 0:80.

5.1.1 The slope e�ect

The theory of multibunch BNS damping only applies to the central value of the transverse
wake inside the bunch. However, we expect a residual e�ect if the transverse wake has a �nite
slope. In order to study the e�ect we continue considering a two bunch situation but now
having in addition an attenuation of the long range transverse wake�eld by a factor of 5. The
actual wake function across bunch 2 is shown in Fig.6. The corresponding focusing function for
providing multibunch BNS damping is now given by the same function (48), but with A1;2;3;4 =
0:00717; 0:05525;�0:0518;�1:80291.

As can be seen, the wake across bunch 2 is close to be at (zero slope). In order to produce a
clean situation we replace this wakefunction by an exactly constant one leaving the central value
(slice 6) unchanged. Then we 'rotate' this reference case around the central slice to produce
di�erent 'test wakes' with given slopes. The slopes are measured in changes of W , namely
�Wtrans=slice.
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Figure 5: Emittance of the second bunch as function of � for 0:4 < � < 0:6.

Fig.7 shows the vertical emittance blow up in percents w.r.t. the zero slope case as function
of the slope. The zero slope case has been corrected using two sectors with di�erent RFQ's (0 -
1500 m, �1 = 0:54 , 1500 - 3000 m, �2 = 0:52). The maximum change of the transverse wake�eld
across bunch 2 (with a �eld attenuation of 5) can be obtained by looking at the amplitude of
the transverse wake between bunch 1 and 2 and approximating the wake by its lowest frequency
component as

WT (z) = A sin!1z=c ; c = 3 � 108m=s (50)

From Fig.8 we see that in the given unit V=pCm, A � 2 between bunch 1 and 2.
The lowest frequency component of the transverse wake�eld inside the CLIC structure is

38Ghz, hence !1 = 2� � 38 � 109. The CLIC bunches are truncated at +1:3 and �1:8�z hence
they extend over about 3�z. With �z � 0:2mm this means that the e�ective bunch length
�z � 6 � 10�4m. Therefore the maximum possible change of WT per slice of charge - if we model
one bunch by 11 slices - becomes:

�WT

slice
=
A!1�z

11 c
� 0:1 (51)

From Fig. 7 we �nd that the corresponding vertical emittance blow up over the entire 3 km
LINAC is about equal to 10% w.r.t. the case of zero slope which is not a very critical e�ect.
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Figure 6: Transverse wake�eld in bunch 2, generated by bunch 1 and attenuated by a factor 5.

Figure 7: Emittance blow-up due to �nite slopes of the transverse wake�elds in bunch 2.
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5.1.2 Random machines

The behaviour of LINACS of CLIC type depends strongly on misalignments of di�erent machine
components. These misalignments are always present and they are randomly distributed along
the machine. In the CLIC case three types of misalignments are important, namely the ones
of quadrupoles, accelerating sections as well as pickups. This is why - as has been described in
the section concerning tracking codes - we always have to deal with a set of di�erent random
machines using a Gaussian random generator which adds random misalignments to the critical
components. Hence if we wish to check multi bunch BNS damping we have to make sure it works
for a random set of LINACS inside the speci�ed tolerances. In Fig.9 we see such a test for a set
of 10 random machines. As before we concentrate on the action of bunch 1 on bunch 2 without
attenuating the �eld. We follow the bunches over 1 km and plot the RF focusing factor � against
the vertical emittance of bunch 2 after the 1000 m. The horizontal line represents the emittance
of bunch 1.

Figure 8: Transverse Wake�eld between bunch 1 and 2 (attenuation of 5).
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Figure 9: Test of BNS damping for multibunch mode, on 10 machines.

It is clearly visible that all the emittance curves have local minima in the given range of �
(0:35 < � < 0:65) which means the method works in princip. However there are non neglegible
di�erences in the quality of the correction of di�erent machines. Table 1 shows the statistics.

Item Ocurrencies Percents

Local Minima 10 100 %
Ey(2) � Ey(1) 6 60 %

Ey(1) � Ey(2) � 3Ey(1) 3 30 %
Ey(2) � 3Ey(1) 1 10 %

Table 1: Statistical behaviour of 10 random LINACS with a two bunch BNS damping.
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5.2 BNS damping in a train of bunches

Since the LC95 design parameters of CLIC mentions up to 10 bunches [4] we are interested to
extend our investigations to more than two bunches. Here we only report the simulation results
obtained from the `two bunch approximation' simulation code described in subsection 4.1. Using
the code WAKET (see subsection 4.2), we are able to compute the combined longitudinal and
transverse wake e�ects of an ensemble of bunches. We therefore use our two bunch program MB-
TRACK with externally precomputed wake�elds (assuming coherently moving exciting bunches)
and apply these wakes to a test bunch. We use two examples. In the �rst only the action of
bunch 1 on bunch 2 (separated by 20�RF ) is studied with no �eld attenuation. In Fig. 10 the
result of the emittances with and without correction is presented for this case.

Figure 10: Vertical Emittance of bunch 2 along the linac without and with BNS damping (no
attenuation.

The correction, being very powerful in this case, has been realized in two sections, from
0 � 1500 m with �1 = 0:54 and from 1500 � 3000 m with �2 = 0:52. The procedure is �rst to
minimize the emittance at the end of the �rst section varying �1 and then to minimize on the
second section using �2.

Considering the e�ect of the �rst four bunches on the �fth one it turns out that it is not
possible to work without an additional �eld attenuation. There is a simple explanation for
this fact. Computing the necessary values of fw(z) for this case and for bunch 5 we obtain
f5 = fw(z5) = 9:15 Applying the factor � = 0:5 we still obtain a modulation to be applied to
the strong focusing magnets equal to about 4:6. This means that fs(z) upsets completly the
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focusing by inverting the focusing force from focusing to defocusing and vice versa during the
passage of the bunch #5. This evidently leads to an unstable betatron motion and the beam gets
lost. A detailed theory about motion of bunches through modulated FODO lattices remains to
be developed. However, using a �eld attenuation of 3 is su�cient to obtain a perfect correction
scheme as we see from Fig. 11. As before, we used a two sections correction, each 1500 m long,
with focusing modulations of �1 = 0:55 and �2 = 0:51. As can be seen a close to constant vertical
emittance for bunch 5 can be achieved throughout the whole LINAC.

Figure 11: Vertical emittance of bunch 5 along the linac without and with BNS damping (atten-
uation by a factor 3)
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6 Test of wake�eld attenuation e�ects in multibunch mode

The way usually considered in order to take care of the long-range wake�eld e�ect consists of
attenuating the �eld seen by the following bunch either by producing a wake roll-o� in staggered
tuned sections or by using damped structures [16,17]. The resulting di�erence between these two
approaches on the emittance growth mainly comes from the way the attenuation is distributed
over the di�erent wake�eld modes. In the �rst method, mainly the fundamental mode is decreased
while the control of the next ones is di�cult, but in the second method, the high frequency modes
are consequently damped when the �rst one has been reduced. The "attenuation factor" of the
long-range wake�eld at the position of the trailing bunches is a critical design parameter and the
numerical tests performed with MBTRACK are aiming to an estimate of the required attenuation
for the di�erent modes.

At �rst, we used the code based on the coherency assumption ("two-bunch" tracking described
in section 4.1 ) to simulate the long-range wake�eld e�ect on a train of up to 10 bunches separated
by 20 RF periods. For all the bunches sitting beyond bunch 2, the coherent addition of the
wake�eld modes is done in the code WAKET (section 4.2) externally to the tracking program
and simulations have been carried on for some of them in the train. Considering the kind of
attenuation resulting from staggered tuning of the accelerating sections [18], the following model
was retained for the wake�elds:

- about 200 modes are used to describe short- and long-range wake�elds,
- all modes are kept at full intensity for the short-range wake�elds of both bunches,
- the �rst long-range longitudinal mode is cancelled in order to simulate beam loading com-

pensation,
- the �rst �ve long-range transverse modes are attenuated by a variable factor, the others

remaining unchanged.
The obvious aim is that the emittance of the following bunch is as close as possible to the

emittance of the �rst bunch, at the end of the acceleration, in order to avoid a signi�cant loss of
luminosity.

Firstly, tests have been done in this direction considering initially the bunch 2 and a short
distance along the linac, equal to 200 m. Fig. 12 (case a) shows that in this case the individual
emittances of the bunches 1 and 2 di�er by a factor 4 without attenuation and becomes almost
identical after an attenuation by 50.

Next came tests over the whole length of the linac, i.e. 3200 m corresponding to 250 GeV.
Considering bunch 2, an attenuation of 50 for the �rst dipole mode, of 10 for the next 4 modes and
no attenuation for the others give the following results for a machine with r.m.s. misalignmenst
of 50 �m for the quadrupoles and 5 �m for the other components and after three iterations of
the correction:

- �nal emittance of bunch 1 equal to 1.43 10�7 radm
- �nal, total emittance of the two bunches equal to 1.92 10�7 radm
The ratio of the �nal emittance of the 2 bunches to the bunch 1 emittance is of the order of

1.4 and the absolute di�erence equal to 0.5 10�7 radm approximately.
For bunch 3, Fig. 12 (case b) indicates now that the emittance ratio between bunches 1 and

3, equal to 6 without attenuation, goes down exponentially to reach an asymptotic value of about
1.3 in this particular exemple. The absolute di�erence between the two emittances is about 1.5
10�7 radm.

Let us mention for the record that these simulations were done with 5 �m r.m.s. misalignments
of all components, �RF = 0.49, �RF = 12 degrees, 8 109 particle per bunch and a bunch length
of 0.195 mm. The curve of Fig. 12 shows that the asymptotic value is almost reached for an
attenuation factor of 50 to 100.
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Figure 12: Emittance as function of the long-range wake�eld attenuation factor (no multibunch
BNS).

For bunch 10, in similar conditions as for bunch 3 but with a di�erent set of actual mis-
alignments and a longer linac of 12750 m (about 1 TeV), two-bunch tracking with externally
computed wake�elds indicates �nal emittances of 1.58 10�7 radm for the head-bunch and of 4.19
10�7 radm for the follower. The emittance behaviour indicates that the ratio of these two emit-
tances regularly increases along the linac (starting from 1) and eventually approaches 2.5 in the
last part of the linac.

These simulations prove that an attenuation of the order of 50 to 100 for the �rst mode
provides approximately the asymptotic value of the following bunch emittance, at least in the
CLIC situation where the tolerated single-bunch emittance growth is by a factor of the order
of 3. This asymptotic value however remains too high for it implies a signi�cant reduction of
luminosity. Since it was checked that long-range longitudinal wake�elds are not responsible alone
for the fact that the asymptotic value never reaches the bunch 1 value, results suggest that a
further gain can only be obtained by also attenuating the higher transverse modes in the same
proportion as the �rst dipole mode.

We then turned to the most recent version MBTR of MBTRACK [13] written for dealing with
several bunches simultanously and many slices per bunch, but initially applied to two bunches
only (see Section 4.1.2). The same beam parameters and the so-called wake�eld model are used
as above, but the wake�elds are now calculated within the program in a consistent way for both
the short- and the long-range e�ects, with the complete interdependence between all the slices.
R.m.s. misalignments of all components are taken equal to 5 �m and the �rst 5 dipole modes are
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attenuated by the same factor, more like in a damped structure though the higher modes should
also be reduced in this case.

With a linac not fully optimised for single-bunch BNS damping, i.e. with a �nal emittance of
bunch 1 larger than desired (6.4 10�7 radm), tracking in this way reproduced the curve obtained
with the simpli�ed version of the code. The asymptotic emittance value of bunch 2 for a large
attenuation di�ers from the bunch 1 emittance by an amount which is compatible with the other
results (Fig. 12, case c). If both the relative e�ect and the absolute di�erence ( � 1.0 10�7 radm)
are small, it is due to the fact that the bunch 1 emittance is not minimized. This result advocates
an attenuation of 100 approximately and the residual emittance di�erence is simultanously due
to both dipole and longitudinal high-order modes.

In the next series of simulations, we have re-optimized the microwave quadrupoles for single
bunch BNS damping and the �nal emittance of bunch 1 (250 GeV, 8 109 particules, 0.2 mm
bunch length, RF at 12 degree) reaches now the value of 2.35 10�7 radm. As a by-product, this
re-optimization gives back the result already obtained [19] for the single bunch energy spread,
i.e. 0.24 %. Considering now the beam made of the two bunches as a whole and computing the
total emittance (that also includes the deviations in the trajectories of one bunch with respect to
the other) with a �eld attenuation (or damping) of 100, trackings have been done while varying
the number of transverse modes that are damped. With an attenuation of 100 over 15 modes,
for instance, the total emittance is only 0.4 10�7 larger than the emittance of bunch 1. The
behaviour of bunch #2 is very similar to the one of bunch #1 all along the linac (with only
localized di�erences of the order of 20 %), while the optimization of the trajectories is done on
bunch 1 only. The same exponential decrease of the total emittance is observed as in Fig. 12 and
indicates that with a bunch separation of 20 RF wave lengths the asymptotic value is reached
when about 20 modes are attenuated (Fig. 13).

In order to have a broader knowledge of the e�ects, the sensitivity of the multibunch blowup
to the bunch separation and to the frequency of the �rst dipole mode have been investigated by
varying both these parameters and by repeating multibunch tracking. Fig. 13 shows the total
emittance growth for bunch separation equal to 19 or 21 RF periods and variable number of
attenuated modes. The e�ect is more important and the asymptotic value is reached with 50
modes say. With 19 RF periods, the remaining emittance di�erence when virtually all the dipole
modes are attenuated (by 100) has been checked to be due to the longitudinal higher modes.
Varying next the dipole mode frequency by � 1.5 GHz around the nominal value of 37.90 GHz
exhibits only a weak dependence of the total emittance on this parameter, with an attenuation
100 of 20 modes (maximum emittance increase is 8 %).
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Figure 13: Emittance as function of the number of attenuated modes and RF separation (no
multibunch BNS).

7 Summary and Comments

A multibunch tracking code family, called MBTRACK, has been created on the basis of di�erent
assumptions which are given in Section 4.1.2 together with a description of the progam. It is
issued from the single bunch tracking code MTRACK (Section 4.1.1) and speci�c to relativistic
bunches. The most advanced version MBTR of the program contains a fully self-consistent
calculation of both the short-range and the long-range wake�elds for a train of bunches, It is an
undispensible tool for the study of beam break-up in the CLIC main linac and it has been used to
simulate di�erent cases related to either multibunch BNS damping or �eld attenuation through
staggered tuned or damped structures.

The principles of a multibunch BNS damping have been investigated. The theory is recapit-
ulated and has been extended to the case of a train of bunches equidistant in time. In addition,
an approximate theory for translating the weak focusing modulation function into the modula-
tion required in a strong focusing FODO lattice has been provided. They allow to predict the
correction to apply, in using a small number of families of microwave quadrupoles running at
di�erent frequencies and sitting near each magnetic quadrupole. The simulations con�rm the
theoretical results and the bunch train can be stabilized, but the practical application of this
method remains problematic.

The strongest limitations for multibunch BNS damping are the following:
- Without some (limited) attenuation of the long-range wake�eld, the amplitude of the focus-
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ing modulation with RF quadrupoles is so large that the overall focusing can be upset in some
cases. This implies to combine attenuation with a hypothetical BNS damping. A theory about
the stability of the betatron motion in a modulated FODO lattice would be required for better
understanding modulation e�ects.

- The simulations presently assume a distribution of the microwave quadrupoles all along
the linac which means additional power sources in these positions. More investigations would
indicate if focusing modulation over a limited distance toward the end of the linac is possibly
su�cient.

- The required power per microwave quadrupole (around 11 GHz) looks prohibitive after a
rapid estimate. By optimizing the choice of the RF frequencies of the micowave quadrupole
families used for multibunch damping, it is possible to minimize their required strength and
subsequently the required power. However, in the most optimistic case, the peak power to �ll
such a quadrupole in 25 nsec would be 6 MW say, that corresponds to an average power of 0.45
kW [20].

Nevertheless, the basis for a possible multibunch BNS damping has been established theoret-
ically and numerically in the case of a small number of bunches (5 to 10) though the application
is questionable. The additional variation of the wake�elds within the bunches, that we call slope
e�ect, appears not to be very important for the �rst 3 to 4 bunches but becomes signi�cant for
the bunches 5 to 10 and this represents another possible limitation.

The probably most important outcome which was expected from the multibunch numerical
simulations concerns the long-range �eld attenuation that is necessary to damp the beam break-
up as well as the number of dipole modes that have to be included in this attenuation. The
results obtained so far with the MBTRACK codes indicate that it is not su�cient to attenuate
1 to 5 transverse modes, but that not less than the �rst 20 deecting modes must be attenuated;
the necessary attenuation factor should be contained between 50 and 100. This �rst conclusion
tends to indicate that it is preferable to use damped accelerating structures rather than staggered
tuned sections.

These results appear to be coherent with those obtained in other designs [21,22,23] after
scaling quantities like the wake�elds, the r.m.s. misalignments, the charge per bunch, the bunch
length and the linac length. It looks therefore very interesting to exploit the unique facilities
based on MBTR and on the utility program MBUNCH [14] which have been toroughly checked
and provide an extremely useful tool. They can now be ran to build up some statistics in
the simulations, and to test new possible sets of parameters and characteristics of accelerating
structures.
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