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Abstract

An abundance of the Poisson-Lie symmetries of the WZNW mod-
els is uncovered. They give rise, via the Poisson-Lie T -duality, to a
rich structure of the dual pairs of D-branes configurations in group
manifolds. The D-branes are characterized by their shapes and cer-
tain two-forms living on them. The WZNW path integral for the
interacting D-branes diagrams is unambiguously defined if the two-
form on the D-brane and the WZNW three-form on the group form
an integer-valued cocycle in the relative singular cohomology of the
group manifold with respect to its D-brane submanifold. An example
of the SU(N ) WZNW model is studied in some detail.
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The Poisson–Lie (PL) T -duality [1] is a generalization of the traditional
non-Abelian T -duality [2]–[5] and it proved to enjoy [1], [7]–[13], at least at
the classical level, all of the structural features of the traditional Abelian
T -duality [14] and [15]. In particular, our so far last paper on the subject
[13] has settled (at the classical level) the remaining big issue of the PL
generalization: the momentum-winding exchange.

It is now of an obvious interest to promote the PL T -duality to the quan-
tum world. Strictly speaking, a consistent quantum picture does not nec-
essarilly imply that mutually dual quantum models have to be conformally
invariant. However, we do wish to have conformal examples in order to apply
the PL T -duality in string theory. In this paper we shall show that such con-
formal examples of PL dualizable σ-models are the standard WZNW models
and we shall give the detailed classical account of the PL T -duality for them.
The treatment of the first quantized strings we postpone to a forth-coming
publication, where an emergence of a proliferation of quantum group struc-
tures seems unavoidable.

In what follows, we shall demonstrate that a PL dualizable σ-model sat-
isfying only a certain mild algebraic condition is necessarily a WZNW model.
This means that the WZNW models are not only ‘some’ conformal examples
of the dualizable models but, in a sence, they are very characteristic for the
structure of the PL T -duality. Moreover, for various Drinfeld doubles under-
lying the structure of PL T -duality one recovers the same WZNW model!
Hence, there are many (in fact infinitely many) Poisson-Lie symmetries in
WZNW models.

It turns out that the dual to the WZNW model is again the same WZNW
model. This should not be interpreted as a drawback. After all, what really
matters is the fact that this (self)-duality induces a non-trivial non-local
map on the phase space of the model which, in particular, reshuffles zero
modes of the string, much in the same way as in the Abelian T -duality. The
fundamental groups of the compact non-Abelian groups2 are rather small
therefore the momentum-winding exchange for closed strings may be rather
modest (cf. [13]). On the other hand, the duality transformation of the zero
modes of open strings gives the rich and spectacular structure in the dual:
the celebrated D-branes [16].

We have devoted one paper in our series to the PL T -duality between

2We wish to consider the compact groups for the string theory compactifications.
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open strings and D-branes [11]. It describes the geometries of the D-branes
for arbitrary perfect3 Drinfeld double in terms of the symplectic leaves of the
associated Poisson homogeneous spaces [11]. In this contribution, we have
to describe the open strings - D-branes duality also for non-perfect doubles
in order to account for the WZNW models. We shall again obtain a rich
geometry of the D-branes dictated by a simple structure on the double. We
wish to stress at this point that the PL D-branes are very different from
the standard Abelian D-branes. In the latter case the D-branes are just
points in the direction of the space-time coordinates with respect to which
one performs the Abelian duality and they become extended objects only in
the direction of the extra (spectator or Buscher) duality intact coordinates.
In the PL case, however, the D-branes are not points even without extend-
ing the space-time by the spectator coordinates! They may posses quite a
complicated geometry, as we shall see later on.

Our presentation will contain also the case of open strings in WZNW
models. This is generally not a well defined system because it requires a
choice of the two-form potential of the WZNW three-form. This potential
is not only ambiguous but it must be also singular because the WZNW
three-form is a nontrivial element of the third de Rham cohomology on the
(compact) group manifold and, as such, it does not admit a globally defined
potential. It may therefore seem that there is a lot of arbitrariness in defining
open strings in WZNW models. One has to choose the singular points of
the two-form potential and the potential itself with the condition that the
dynamics will disallow the end-points of strings to hit the singularity4.

Some CFT results have been already obtained for open strings in SU(2)
WZNW model in [19], however, we did not find a discuusion of the subtle
issue of the meaning of the WZNW term for open strings. In our case the
arbitrariness in defining the WZNW model for open strings is completely
fixed by the requirement of the PL symmetry. By picking up one of the

3Every element of the ‘perfect’ Drinfeld double can be uniquely written as the product
of two elements of the two groups forming the double. Since the semi-Abelian Drinfeld
doubles, that correspond to the traditional non-Abelian duality, are perfect we did give the
complete picture of the T -duality between open strings and D-branes in this traditional
case. Later also works by two different groups [17, 18] appeared, dealing with open strings
in traditional non-Abelian duality.

4The bulk of the string feels only the exterior derivative of the two-form potential which
is nothing but the perfectly regular WZNW three-form.

2



Drinfeld doubles corresponding to a given WZNW model and by fixing one
half-dimensional isotropic subalgebra in the algebra of the double, we fix
uniquely the singular two-form potential of the WZNW three-form and ensure
that the end-points of strings do not hit the singular points on the target.
Moreover, there exists a dual D-brane configuration and its geometry is again
given in terms of the simple data on the double.

In the first section of this paper, we provide a topological discussion
of conditions when the WZNW path integral is well defined for interacting
string diagrams corresponding to a given D-brane configuration. Then we
give the description of the Poisson-Lie symmetries occuring in the WZNW
models in terms of the underlying Drinfeld doubles. In the third section
we describe the D-brane configurations for a particular PL symmetry also
for the non-perfect doubles and describe the classical phase space of the
system. We also formulate an easy non-cohomological criterion when the
underlying data on the double give a well defined WZNW path integral for
the interactingD-branes diagrams. In the fourth section we provide examples
of the general construction: PL symmetries and the D-branes in the SU(N)
WZNW models.

1 D-branes and the WZNW path integral.

The standard WZNW action on a group manifold R reads

S(r) ≡
1

4π

∫
dξ+dξ−〈∂+r r

−1, ∂−r r
−1〉+

1

24π

∫
d−1〈dr r−1, [dr r−1, dr r−1]〉.

(1)
Here ξ± are the standard lightcone variables on the world-sheet

ξ± ≡
1

2
(τ ± σ), ∂± ≡ ∂τ ± ∂σ (2)

and 〈., .〉 denotes a non-degenerate invariant bilinear form on the Lie algebra
R of R. The second term in the WZNW action is commonly referred to as the
WZNW term and it provide the action with the antisymmetric tensor part.
It is well-known that this antisymmetric tensor B of the WZNW background
is not globally defined (for compact groups) because the WZNW form Ω is
a non-trivial cocycle in the third de Rham cohomology H3(R) of the group
manifold R. Inspite of this, the classical WZNW theory is well defined for
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the case of closed strings. The reason is simple: Consider an evolving loop
which sweeps out a cylindrical world-sheet g(σ, τ ) on the group manifold.
The variational problem requires fixing of the initial and final position of
the loop and slightly varying the position of the cylinder between: r(σ, τ )→
r(σ, τ ) + δr(σ, τ ); δr|initial,f inal = 0. The antisymmetric tensor part of the
variation of the action can be thus written as∫

(r + δr)∗B −
∫
r∗B =

∮
dB =

∮
Ω. (3)

The integral
∮

is taken over the volume interpolating between the world-
sheets r and r+ δr and * means the pull-back of the map. We conclude that
the variation of the action does indeed depend only on the WZNW three-from
Ω and not on a choice of its potential B. Note that the interpolating volume
is given unambiguously because the variation of the action is infinitesimal.

A well known additional topological problem may occur if we wish to
define a path integral for the WZNW theory of closed strings [20]: Consider
a set of fixed loops in R and all world-sheets interpolating among them.
We wish to evaluate the WZNW action S of every world-sheet s, form an
expression exp iS and sum up it over all interpolating world-sheets of arbi-
tratry topology. Suppose we choose some reference interpolating world-sheet
sref and calculate its WZNW action Sref for some choice of the potential
B. The action S of any other world-sheet s can be computed in the same
way. It is tempting to conclude that the difference S− Sref does not depend
on the choice of the potential B. Indeed, by using the same argument as
in the variational problem, we easily see that the difference of the integral
of B over the both world-sheets is given solely in terms of the integral

∮
Ω

over the three-surface which interpolates between the world-sheets5. But
now the two world-sheets do not differ only infinitesimaly! It therefore seems
that the interpolating three-surface is not given unambiguously. The way to
get out of the trouble lies in comparing the quantity S − Sref for two non-
homotopical three-surfaces interpolating between s and sref . This difference
is obviously given in terms of the integral

∮
Ω over a three-cycle obtained by

taking the difference of (or the sum of oppositely oriented) non-homotopical

5We shall alway assume that the group manifold in question is simply connected. By
Hurewicz isomorphism and the fact the second homotopy group of any Lie group vanishes
we thus have that the second cohomology of the simply connected group manifold vanishes.
This means that the interpolating three-surface always exists.
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three-surfaces interpolating between s and sref . Fortunately, the WZNW
three-form Ω is an integer-valued cocycle [20] in H3(R) hence it is enough to
normalize action S properly in order to ensure that the quantities S − Sref
differ by a term 2πk, k ∈ Z for any two interpolating three-surfaces. These
2πk terms do not contribute to the path integral and, moreover, a depen-
dence on the reference surface sref results only in an unobservable change of
the total phase of the path integral. We finish this little review by concluding
that the WZNW path integral is well defined for the case of the interacting
closed strings.

Consider now a D-branes configuration in the group target R. By this we
simply mean that there are two given submanifolds Di and Df of R and open
strings propagate on R in such a way that their end-points i and f stick on
the D-branes Di and Df , respectively. We define the WZNW theory for this
D-branes configuration by choosing two-forms αi and αf , living respectively
on Di and Df such that

dαi(f) = Ω|Di(Df ). (4)

In words: the exterior derivative of αi(f) has to be equal to the restriction of
the WZNW three form Ω to the D-brane Di(f).

The construction of the WZNW theory based on the triplet (Ω, αi, αf )
goes as follows: Pick up an open string r(σ, τ ) with the topology of an
open strip. The variational problem requires fixing of the initial and the
final positions of the string on the target. Consider now such a variation
δr(σ, τ ), δr(σ, τi,f) = 0. The both original open strip and its variation form
together a closed strip (a ‘diadem’), whose edges lie on the opposite D-
branes. We can define the variation δSWZNW of the WZNW term of the
WZNW action by choosing an interpolating surface Σi(f) ⊂ Di(f) between
the edges of the original and the varied strip. This variation then reads

δSWZNW =
∮

Ω−
∫

Σi
αi −

∫
Σf
αf , (5)

where the
∮

Ω is taken over the volume of the figure enclosed by Σi, Σf , the
original strip and its variation. Note that this variation does not depend
on the choice of the interpolating surface Σi(f) because dα = Ω|D and all
infinitesimal interpolating surfaces are mutually homotopic. Hence we con-
clude, that the classical WZNW theory of open strings with end-points on
the D-branes is well defined in terms of the triplet (Ω, αi, αf ).
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The reader may wish to have a more concrete idea of how to compute the
WZNW action of a single strip. For a particular choice of the potential B
(dB = Ω) the combination α−B on the D-brane is a closed form, hence, at
least locally, it has a potential A on D. The WZNW action S for an open
string configuration r(σ, τ ) which sweeps out a two-surface s in the target
R and respects the D-branes boundary conditions can now be written as
follows

4πS(r) =
∫
〈∂+r r

−1, ∂−r r
−1〉 +

∫
s
B +

∫
δs∩D

A. (6)

Upon a change of
B → B + dλ, (7)

A has to be replaced by
A− λ|D. (8)

We may intepret the A-term of the action (6) as if there were equal and
opposite charges on the end-points of the string which feel the electromag-
netic fields Ai and Af on the D-branes. This interpretation does not have
an invariant meaning, however, because of the ‘gauge invariance’ (7) and (8).
Moreover it holds only locally. We stress that the global invariant descrip-
tion of the WZNW model for D-branes configuration is given in terms of
the triplet (Ω, αi, αf). We remark that in general there is no natural closed
two-form living on the D-branes. This is true only in the case if the restric-
tion of the WZNW three-form Ω on the D-brane vanishes. Note also that
if the D-brane is as many dimensional as the whole group target R is, then
the form α is nothing but some concrete choice of the potential B which,
however, may be different for the different end-points of the string.

At the presence of the D-branes and open strings, the discussion of the
string path integral is more involved as before. The group manifold will be
always taken as simply connected and, for a while, we consider the case where
also the D-branes are connected and simply connected. Now draw a general
string diagram respecting the D-branes configurations. It is an interpolating
world-sheet between a set of fixed open segments with end-points located on
the D-branes and a fixed set of loops on the target R. Much as before, we can
choose some reference interpolating world-sheet sref and calculate its WZNW
part of the action Sref for some choice of B and A according to the formula
(6). Now we can take any other interpolating world-sheet s and calculate
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its action S in the same way. As in the case of the variational principle, the
quantity S − Sref does not depend on the particular choice of B and A but
only on the invariant globally defined triplet (Ω, αi, αf). The reason for this
is the following: the union of the intersections (∂sref ∩Di(f))∪ (∂s∩Di(f)) is
a contractible cycle in Di(f), hence it is a boundary of some two-surface Σi(f).
Now the union s ∪ sref ∪ Σi ∪ Σf is a two-boundary of some interpolating
three-surface in the group manifold, because the second cohomology of the
group manifold vanishes by assumption. Then the antisymmetric tensor (the
WZNW term) part of S − Sref is defined by (5) where

∮
is taken over the

interpolating three-surface.
There occurs the same problem as for the closed strings, namely, the

interpolating three-surfaces between s and sref do not have to be homotopi-
cally equivalent. This means that the quantity S − Sref may depend on the
homotopy of the chosen interpolating three-surface. But if the ambiguity
in S − Sref is only of the form 2πk, k ∈ Z then the term exp i(S − Sref ) is
unambiguous and the path integral is well defined.

It is not difficult to find a cohomological formulation of the condition of
the integer-valued ambiguity. All what we need is the notion of the relative
singular homology H∗(R,Di ∪ Df ) of the manifold R with respect to its
submanifolds Di and Df (with real coefficients). The relative chains are
the elements of the vector space of the standard chains in R factorized by its
subspace of all chains lying in Di∪Df . The operation of taking the boundary
is the standard one. The corresponding homology is the relative singular
homology H∗(R,Di ∪Df ). The triplet (Ω, αi, αf) can act on a relative cycle
γ by the following prescription

〈(Ω, αi, αf ), γ〉 ≡
∫
γ

Ω−
∫
Di∩∂γ

αi −
∫
Df∩∂γ

αf . (9)

If the cycle γ is itself a boundary then the pairing vanishes because Ω is
closed. Hence our triplet (Ω, α1, αf) is an element (cocycle) of the relative
singular cohomology H∗(R,Di ∪Df ) because it vanishes on the boundary of
any relative chain.

Now we may conclude that if the cocycle (Ω, α1, α2) is integer-valued6

the WZNW path integral is well-defined. Indeed, if we choose two non-

6The precise statement is as follows: The cocycle (Ω, α1, α2) is integer-valued, if it lies
in the image of the natural map from the singular cohomology with integer coefficients to
the singular cohomology with real coefficients.
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homotopical three-surfaces interpolating between the world-sheets s and sref
their oriented sum is a closed cycle in the relative singular homology and its
pairing (9) with the triplet (Ω, α1, α2) is integer-valued.

It turns out that we can extend our discussion to the case of connected
but not necessarily simply connected D-branes. The main problem to be
addressed is the fact that now the union of the intersections (∂sref ∩Di(f))∪
(∂s∩Di(f)) is not necessarily a contractible cycle in Di(f) (which means that
s ∪ sref is a relative two-cycle but not a relative two-boundary). Thus the
two-surface Σi(f) does not have to exist and we cannot in general use the
formula (5) in order to determine exp i(S − Sref ). It may seem that we may
take some reference world-sheet for each homotopy class of the one-chain
∂s ∩ Di(f) and assign it an arbitrary reference phase. But there is still a
consistency condition that under summing of the relative two-cycles (unions
of s and sref ) the phases exp iS should be additive!

Recall that we can unambiguously assign the exp iS to every relative
two-boundary in such a way that this mapping is homomorphism f from the
group B of relative two-boundaries (with integer coefficients) into the group
U of complex units (phases). The consistency condition means that there
should exist an extension f̃ : Z → U of this homomorphism defined on the
group Z of all relative two-cycles. We now prove that such an extension
always exists because U is the divisible group (this means that the equation
nx = a, a ∈ U, n ∈ N has always a solution x ∈ U).

Consider the group Hf = Z + U/{b − f(b), b ∈ B}. We have an exact
sequence

0→ U → Hf → H → 0, (10)

where H ≡ H2(R,Di ∪ Df ) = Z/B and all homomorphisms are naturally
defined. Suppose now that we do have an extension f̃ : Z → U of the map
f : B → U . Such an extension enables us to write

Hf = H + U. (11)

In words: Hf is a direct sum of H and U . Indeed, for z + c, z ∈ Z, c ∈ U we
have

z + c = (z − f̃ (z)) + (0 + c+ f̃(z)). (12)

Evidently, the first term on the right hand side is from Z and the second
from U . The decomposition (12) is consistent with the factorization by {b−
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f(b), b ∈ B} because f̃ is the homomorphism. The converse is also true: if
we can write Hf as the direct sum H + U then there exists an extension
f̃ : Z → U which is a homomorphism. Indeed, consider z ∈ Z and embed
it naturally into Hf i.e. z → z + 0 ∈ Hf . z + 0 can be decomposed as
y+g, y ∈ H, g ∈ U by assumption, hence we obtain a natural homomorphism
from Z into U : z → g. This homomorphism is the extension of f which we
look for.

Summarizing, if we prove that Hf is the direct sum of H and U , we are
guaranteed that the extension f̃ : Z → U always exists. But it is easy to
prove this, by using the well-known result from the homological algebra that
every extension of an (Abelian) group G by a divisible group X is necessarily
the direct sum of G and X. In our case, we know from the exact sequence
(10) that Hf is the extension of H by U . Therefore Hf = H + U , what was
to be proved.
Notes:
1. We have a certain freedom in writing Hf as a direct sum of H and U

which is described by the group of homomorphisms Hom(H,U). The easiest
way to see it is by noting that if we have an extension f̃ : Z → U it can be
modified by adding to it any homomorphism which vanishes on b ∈ B. Any
such homomorphism is obviously from Hom(H,U). The modified f̃ then
gives another partition of Hf into the direct sum of H and U .
2. It may be instructive to relate the group H of the relative two-cycles
with the fundamental groups π1 of the D-branes. We have a natural exact
sequence

0 = H2(R)→ H2(R,Di ∪Df )→ H1(Di) +H1(Df )→ 0 = H1(R). (13)

Hence
H = H1(Di) +H1(Df ) (14)

and
H1(Di(f)) = π1(Di(f))/[π1(Di(f)), π1(Di(f))]. (15)

The last equality is the Hurewicz isomorphism which holds due to the as-
sumption that the D-branes are connected.
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2 PL symmetries of WZNW models

For the description of the PL T -duality, we need the crucial concept of the
Drinfeld double, which is simply a Lie group D such that its Lie algebra
D (viewed as a vector space) can be decomposed as the direct sum of two
subalgebras, G and G̃, maximally isotropic with respect to a non-degenerate
invariant bilinear form on D [21]. It is often convenient to identify the dual
linear space to G (G̃) with G̃ (G) via this bilinear form.

From the space-time point of view, we have identified the targets of the
mutually dual σ-models with the cosets D/G and D/G̃ [13]. Here D denotes
the Drinfeld double, and G and G̃ two its mutually dual isotropic subgroups.
In the special case when the decomposition D = G̃G = GG̃ holds glob-
ally, the corresponding cosets turn out to be the group manifolds G̃ and G,
respectively [1].

The actions of mutually dual σ-models are encoded in a choice of an n-
dimensional linear subspace R of the 2n-dimensional Lie algebra D of the
double D which is transversal to both G and G̃. The σ-model actions on the
targets D/G and D/G̃ have a similar structure; indeed, on D/G we have [13]

S =
1

2
I(f)−

1

4π

∫
dξ+dξ−〈∂+f f

−1, Ra
−〉(M

−1
− )ab〈f

−1∂−f, T
b〉, (16)

where f ∈ D is some local section of the D/G fibration which parametrizes
the points of the coset. Recall [13] that

Mab
± ≡ 〈T

a, f−1Rb
±f〉 (17)

and Ra
− (Ra

+) are vectors of an orthonormal basis of R (R⊥):

〈Ra
±, R

b
±〉 = ±δab, 〈Ra

+, R
b
−〉 = 0. (18)

The action of the dual σ-model on the coset D/G̃ has the same form;
just the generators T a of G are replaced by the generators T̃a of G̃ and f will
parametrize D/G̃ instead of D/G.

We have referred to the σ-models of the form (16) as those having a PL
symmetry [13]. There is an important feature of such models, namely, their
field equations can be written as the zero curvature condition valued in the
algebra G. Indeed,

dλ− λ2 = 0, (19)
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where
λ = λ+dξ

+ + λ−dξ
− (20)

and
λ± = −〈∂±f f

−1, Ra
∓〉(M

−1
∓ )abT

b. (21)

So far we have been reviewing the results of [13]; now a new observation
comes: If the subspace R is itself a Lie algebra of a compact subgroup R of
the double D then the model (16) is essentially the WZNW model on the
target R for the both choices D/G and D/G̃! The argument goes in two
steps:
1. R can be transported by the right action to the tangent space of every
point of the double. Because R is the subalgebra, the distribution of the
planes R in the tangent bundle of the double is integrable and it foliates the
double into fibration with fibres R and basis R\D. Since R is transversal
to the both G and G̃ (which means that it intersects G and G̃ only in O) ,
any fiber of the R fibration either intersects the fiber G (or G̃) in some finite
subgroup R ∩ G of R or does not intersect it at all. The latter cannot be
true, however, if the group R is compact. Indeed, R acts on D/G by the
left action. The R orbit of the element of D/G which has the unit element
of D on its fiber is open. Since R is compact this orbit must be also closed
which for connected doubles imply that this orbit is the whole D/G. In
other words, there always exists an intersection of R and G. The argument
for D/G̃ is the same.

If the finite subgroups R ∩G and R ∩ G̃ have only one element for both
fibers G and G̃, respectively, it si not dificult to see that the both cosets
D/G and D/G̃ can be globally identified with R. In general, the cosets D/G
and D/G̃ can be identified with the discrete cosets R/R ∩ G and R/R ∩ G̃,
respectively.
2. For simplicity, consider only the case when R can be directly identified
with D/G and D/G̃. In this case, we can choose the field f(σ, τ ) in (16) to
have values in R. Note that we can choose the basis Ra

− dependent on f in
such a way that the combinations f−1Ra

−f are f independent. Then we can
choose the basis T a in such a way that M−(f) is the identity matrix. We
have

〈∂+f f
−1, Ra

−〉 = 〈f−1∂+f, f
−1Ra

−f〉 ≡ (f−1∂+f)a (22)

and
〈f−1∂−f, T

a〉 = 〈f−1∂−f, f
−1Rc

−f〉M
ca
− = (f−1∂−f)a, (23)
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because M− is the identity matrix. Putting (16),(22) and (23) together, we
obtain

S =
1

2
I(f)−

1

4π

∫
dξ+dξ−(∂+f f

−1)aδab(∂−f f
−1)b = −

1

2
I(f−1). (24)

We conclude, that the mutually dual σ-models on the cosets D/G and D/G̃
are the same, being equal to the WZNW model on R. In general, D/G
(D/G̃) model is WZNW model on the target R/R ∩G (R/R ∩ G̃).
Notes:
1. The fact that the both models D/G and D/G̃ may be identical does not
mean at all that the duality transformation is trivial. In fact, the PL T -
duality always implies an existence of a non-trivial non-local transformation
on the phase space of the WZNW model. We shall explicitly describe this
transformation in the next section.
2. It often happens (cf. section 4) that a compact group R can be embedded
in many inequivalent ways into various Drinfeld doubles in such a way that
the both cosets D/G and D/G̃ can be identified with R. In this case we have
the abundance of the Poisson-Lie symmetries of the same WZNW model on
the group manifold R, each of them corresponding to the double into which
R is embedded.

3 D-branes in WZNW models

3.1 General discussion

For the further discussion of the D-branes, it is convenient to recall [13] the
common ‘roof’ of the both models described by (16). They can be derived
form the first order Hamiltonian action for field configurations l(σ, τ ) ∈ D:

S[l(τ, σ)] =

=
1

8π

∫ {
〈∂σl l

−1, ∂τ l l
−1〉+

1

6
d−1〈dl l−1, [dl l−1, dl l−1]〉− 〈∂σll

−1, A∂σll
−1〉

}
.

(25)
Here A is a linear idempotent self-adjoint map from the Lie algebra D of the
double into itself. It has two equally degenerated eigenvalues +1 and −1,
and the corresponding eigenspaces are just R⊥ and R respectively.
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As it stands, the action (25) is well defined only for the periodic functions
of σ because of the WZNW term. This restriction corresponds to the case of
closed strings [13] . The σ-model actions (16) are obtained from the duality
invariant first order action (25) as follows: Consider the right coset D/G and
parametrize it by the elements f of D 7. With this parametrization of D/G
we may parametrize the surface l(τ, σ) in the double as follows

l(τ, σ) = f(τ, σ)g(τ, σ), g ∈ G. (26)

The action S then becomes

S(f,Λ ≡ ∂σgg
−1) =

1

2
I(f)−

1

2π

∫
dξ+dξ−

{
〈Λ−

1

2
f−1∂−f,Λ−

1

2
f−1∂−f〉

+〈fΛf−1 + ∂σff
−1, Ra

−〉〈R
a
−, fΛf−1 + ∂σff

−1〉
}
. (27)

Now it is easy to eliminate Λ from the action (27) and finish with the σ-
model action (16). In the case of the coset D/G̃, the procedure is exactly
analoguous.

Consider the case of open strings for a generic double D with vanishing
second cohomology. In our previous paper on the subject [11], we have
studied only the perfect doubles (cf. footnote 3) nevertheless we can easily
generalize the construction.

Let F be a simply connected subgroup of the double D whose Lie algebra
F is isotropic with respect to the bilinear form on D. This subgroup, as a
manifold, can be shifted by the right action of some element d ∈ D (note that
all non-equivalent shifts are parametrized by the coset F\D). We declare
that the manifolds F ↪→ D and Fd ↪→ D are D-branes in the double D.
Consider now oriented open strings in D with the initial end-points on F
and the final end-points on Fd. Their dynamics in the bulk is governed by
the action (25) which contains the WZNW term. As we have learnt in the
previous section such an action is well-defined provided we choose some two-
forms on the D-branes such that the exterior derivative of them is equal to
the restriction of the WZNW three-form on the D-branes. In our present
case, this restriction of the WZNW form vanishes in either of our D-branes
because F and Fd are the isotropic surfaces in D. Thus we have to choose

7If there exists no global section of this fibration, we can choose several local sections
covering the whole base space D/G.
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some closed two forms on F and Fd; we choose them to vanish identically.
We summarize that our open string dynamics is fully defined by the action
(25), the D-branes boundary conditions and the vanishing two-forms on the
D-branes.

Much as in the closed string case, we can derive the open string σ-model
dynamics on the cosets D/G and D/G̃ from (25) and the D-branes data on
the double; for concreteness let us consider the coset D/G:

As we have learnt in section 2, the WZNW model for open strings is fully
defined if we manage to compute the WZNW action of the ‘diadem’. Recall
that the diadem is composed of two evolving open string world-sheets which
are glued together at some initial and final times. The edges of the diadem
, swept by the end-points of the open strings, lie in their corresponding D-
branes.

Consider now the diadem in the double. We can choose some two-surface
Σ (Σd) in the D-brane F (Fd) whose boundary is just the edge of the diadem
lying in F (Fd). The diadem together with the surfaces Σ and Σd form a
boundary of some three-dimensional domain γ. We may write the action S
of the model (25) as

S = S0 + SWZNW , (28)

where SWZNW contains solely the term with the WZNW three-form c on D.
Hence, the action of the diadem can be written as8

S = S0 +
1

8π

∫
γ
c. (29)

Again, consider the parametrization of D/G by the elements f of D. A
surface l(τ, σ) in the double (respecting the D-branes boundary conditions),
can be written as

l(τ, σ) = f(τ, σ)g(τ, σ), g ∈ G. (30)

The decomposition (30) induces two maps from D into D: f(l) = f and
g(l) = g. Consider now the Polyakov-Wiegmann (PW) formula [22]

(fg)∗c = f∗c+ g∗c− d〈f∗(l−1dl) ∧, g∗(dl l−1)〉, (31)

8Note that we have included the factor 1/6 from (25) in the definition of c.
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where, as usual, ∗ denotes the pull-back of the forms under the mappings to
the group manifold D. By using the PW formula, we can rewrite (29) as

S = S0(fg) +
1

8π

∫
γ
f∗c−

1

8π

∫
diad∪Σ∪Σd

〈f∗(l−1dl) ∧, g∗(dl l−1)〉. (32)

Note that g∗c vanishes because of the isotropy of G. The action S now
becomes

S(f,Λ ≡ ∂σgg
−1) =

1

2π

∫
diad

{
1

4
〈∂+f f

−1, ∂−f f
−1〉

−〈Λ−
1

2
f−1∂−f,Λ−

1

2
f−1∂−f〉+〈fΛf−1+∂σff

−1, Ra
−〉〈R

a
−, fΛf−1+∂σff

−1〉
}

+
1

8π

∫
γ
f∗c−

1

8π

∫
Σ∪Σd
〈f∗(l−1dl) ∧, g∗(dl l−1)〉. (33)

Of course, this is a similar expression as before (cf. (27)). However, the field
f respects different boundary conditions. A configuration f is an open string
configuration; its end-points stick on D-branes Di and Df in D/G which
are obviously obtained just by projecting the D-branes F and Fd from the
double D into the basis D/G parametrized by the section f .

Now we have to realize that upon varying Λ the last term in (33) vanishes!
This follows from the isotropy of F , Fd and G. Indeed, if we have fg ∈ F
(fg ∈ Fd) and vary g → gδg at fixed f in such a way that fgδg ∈ F
(fgδg ∈ Fd), we observe that the last term in (33) does not change9. Hence
we can eliminate the field Λ from (33) in the same way as from (27). The
result is

S =
1

8π

∫
diad

{
〈∂+f f

−1, ∂−f f
−1〉 − 2〈∂+f f

−1, Ra
−〉(M

−1
− )ab〈f

−1∂−f, T
b〉
}

+
1

8π

∫
γ
f∗c−

1

8π

∫
Σ∪Σd

〈f∗(l−1dl) ∧, g∗(dl l−1)〉.

Consider again the special situation in which the subspace R ≡ SpanR−
is the Lie algebra of the compact group R, moreover, R can be directly
identified with D/G and D/G̃. Recall, that upon transporting R by the

9It is easy to see that δg ∈ F ∩G (δg ∈ F ∩ dGd−1).
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right action everywhere onto the double, we get the fibration of D with the
fibers R and the basis R\D. With some abuse of the notation, the fiber
crossing the unit element of the double we shall also denote as R. We choose
the parametrization of the double as follows

l = rg, r ∈ R, g ∈ G. (34)

This parametrization holds for every element l of the double and is unique by
the assumption. Note that the restriction of the WZNW three-form c gives
just the WZNW three-form cR on R.

It is easy to see that theD-branes Di and Df inR, being the projections of
F and Fd to R, can be identified with the cosets F/F ∩G and F/F ∩ dGd−1

respectively. On the other hand we have just seen (cf. footnote 9) that
the variation δg ∈ F ∩ G (δg ∈ F ∩ dGd−1) leaves intact the two-form
ω ≡ (1/8π)〈r∗(l−1dl) ∧, g∗(dl l−1)〉 on F (Fd). This means that this two-
form is a pull-back of some two-form αi (αf ) from the D-brane Di (Df ). Of
course, the notation is not accidental; the two-forms αi(f) are precisely those
appearing in (5).

It is not difficult to find an explicit expression for αi(f). For this, consider
a map ki (kf ) from Di (Df ) into G such that

rki(f)(r) ∈ F (Fd), r ∈ Di(f). (35)

In general, the mapping ki (kf ) is not defined unambiguously but it locally
always exists since Di (Df ) is just the projection of F (Fd) on R. Because
two-form ω on F (Fd) is invariant under the variations from F∩G (F∩dGd−1)
we can locally10 write

〈r∗(l−1dl) ∧, g∗(dl l−1)〉|F (Fd) = r∗〈dr r−1 ∧, ki(f)(r)
−1dki(f)(r)〉. (36)

In other words, (36) is true independently of the choice of the map ki(f).
Thus in our special situation, the action of the diadem can be written as

S = −
1

8π

∫
diad
〈∂+r r

−1, ∂−r r
−1〉+

1

8π

∫
r(γ)

cR

−
1

8π

∫
Di

〈dr r−1 ∧, ki(r)
−1dki(r)〉 −

1

8π

∫
Df

〈dr r−1 ∧, kf (r)−1dki(r)〉. (37)

10The two-form αi(f) is defined globally on Di(f) only the explicit expression for it in
terms of ki(f) may, in general, be written only locally.
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We can read αi(f) off directly from (37):

αi(f) =
1

8π
〈dr r−1 ∧, ki(f)(r)

−1dki(f)(r)〉. (38)

It remains to prove that

dαi(f) =
1

8π
cR|Di(f)

. (39)

This is easy: take the PW formula (31) and restrict all forms in it on the
D-brane F (Fd) in the double. Then the form c vanishes by the isotropy of
F (Fd). Hence

r∗c|F (Fd) = d〈r∗(l−1dl) ∧, g∗(dl l−1)〉|F (Fd) = r∗d〈dr r−1 ∧, ki(f)(r)
−1dki(f)(r)〉,

(40)
where the last equality follows from (36). Thus, upon removing the pull-back
map r∗, we conclude that

1

8π
cR|Di(f)

=
1

8π
d〈r−1dr ∧, dki(f)(r)ki(f)(r)

−1〉 = dαi(f). (41)

Remarks:
1. The model (37) has the ‘wrong’ sign in front of its first term. Upon the
change of variables r→ r−1 it gives the standard WZNW model on the group
manifold R (cf. (1)). The D-branes Di(f) and the two forms αi(f) on them
have to be transformed correspondingly.
2. The geometry of the dual D-branes in D/G̃ is obtained in the same way
as in the case D/G; it is enough to replace everywhere G by G̃.
3. We should mention that the Kiritsis-Obers duality [6] fits in our formalism.
The double is the direct product of a compact group R with itself and the
invariant bilinear form in the direct sum of the Lie algebras R + R is the
difference between the Killing-Cartan forms on each algebra. Hence, the
diagonal embedding of R in R × R is isotropic. So it is the embedding
in which second copy of R is twisted by some outer automorphism. The
resulting duality is a D-branes D-branes duality, i.e. the D-branes have
never the dimension of the group manifold.

17



3.2 The classical solvability

We wish to find the complete solution of the field equations of the model
(25) submitted to the D-branes boundary conditions. It is not difficult to do
that. The bulk equations following from (25) read

〈∂±l l
−1,R∓〉 = 0. (42)

We already know that after integrating away g from the decomposition (34)
we get the WZNW model on R, hence, the solution l of (25) must look like

l(σ, τ ) = r−(ξ−)r+(ξ+)g(ξ+). (43)

The first two multiplicative terms on the right-hand-side follow from the
known bulk solution of the WZNW model on R and the fact that g is only
a function of ξ+ follows from Eqs. (21).

Putting
h(ξ+) ≡ r+(ξ+)g(ξ+) (44)

and inserting l = r−(ξ−)h(ξ+) into (37), we obtain

∂+h h
−1 ∈ R+ ≡ R

⊥. (45)

Here we have used the fact that R−(≡ R) is the Lie algebra of R. We
conclude that every bulk solution of (25) look like

l = r−(ξ−)h(ξ+), ∂+h h
−1 ∈ R+. (46)

It is important to note that R+ ≡ R⊥ does not have to be a Lie subalgebra
of D; in general it is just a linear subspace of D.

Now we can take into account the effect of the boundary conditions.
Recall that the initial point of the open string (σ = 0) should stick on the
D-brane F in the double and the final point (σ = π) on the D-brane Fd; d
is a fixed element of the double D. These two conditions can be rewritten as
follows

r−(τ )h(τ ) = fi(τ ), r−(τ − π)h(τ ) = ff (τ )d, (47)

where fi and ff are some functions with values in the group F . It follows
that

h−1(τ − π)h(τ ) = f−1
i (τ − π)ff(τ )d. (48)
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By differentiating Eq. (48) with respect to τ we obtain

−dh(τ − π)h−1(τ − π) + dh(τ )h−1(τ ) =

= h(τ−π)[−f−1
i (τ−π)dfi(τ−π)+f−1

i (τ−π)dff(τ )f−1
f (τ )fi(τ−π)]h−1(τ−π).

(49)
Now we can bracket (49) with R which gives

dff (τ )f−1
f (τ )− dfi(τ − π)f−1

i (τ − π) = 0. (50)

For deriving (50), we have used Eq. (47) and the fact that the Lie algebra
F of F is transversal to R⊥.

By inserting (50) back in (49) we get a very important relation

dh(τ + π)h−1(τ + π) = dh(τ )h−1(τ ). (51)

It expresses the periodicity of the R⊥-valued ‘connection’ dh h−1. The mon-
odromy of this ‘connection is also constrained; indeed, from (50) and (48) we
conclude that

h−1(τ − π)h(τ ) = fd, (52)

where f is some constant element of F . In words: the monodromy h−1(τ −
π)h(τ ) is an element of the double D which is equivalent to d in the sense of
the coset F\D.
Summary: The space of the solutions of the field equations (42) submitted
to the D-branes boundary conditions (47) is given by an arbitrary element p
of the double D and a periodic field ρ(ξ+)(≡ dh h−1(ξ+)) with values in the
subspace R⊥ of D and with the monodromy

P exp
∫ τ

τ−π
dτ ′ρ(τ ′) ≡ h−1(τ − π)h(τ ) (53)

equivalent to d in the sense of the coset F\D. Of course, P in (53) means the
ordered exponent. The full solution l(σ, τ ) is then reconstructed as follows:
take ρ(ξ+) and p ∈ D and construct

h(ξ+) = P exp{
∫ ξ+

ξ+
0

dξ+′ρ(ξ+′ )} × p. (54)

Obviously, the choice of ξ+
0 is irrelevant and can be compensated by the

corresponding change of p. Now we can reconstruct r−(ξ−) by decomposing
h(ξ−) as

h(ξ−) = r−1
− (ξ−)f(ξ−), r ∈ R, f ∈ F. (55)
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This decomposition is unique, because R can be globally identified with D/F .
Finally

l(ξ+, ξ−) = r−(ξ−)h(ξ+). (56)

It remains to recover from the solution (56) on the double the solutions
of the σ-models on the cosets D/G and D/G̃. Recall that the both σ-models
are the WZNW models on the group manifold R. In the D/G case we have
to decompose h as

h(ξ+) = r+(ξ+)g(ξ+), r ∈ R, g ∈ G, (57)

while in the D/G̃ case as

h(ξ+) = r̃+(ξ+)g̃(ξ+), r̃ ∈ R, g̃ ∈ G̃. (58)

Because r+ 6= r̃+ we indeed obtain a nontrivial map from the phase space
of the WZNW model with one set of the D-branes boundary conditions into
the phase space of the same WZNW model but with the dual D-branes
boundary conditions. The both phase spaces can be identified with the set
of all solutions l(ξ+, ξ−) on the double. The system (25) is already written
in the Hamiltonian form, hence the mapping between the phase spaces is a
canonical transformation.
Note: It is interesting that the both left movers r+(ξ+) and right movers
r−(ξ−) are obtained from the master function h(ξ+) in a very similar way.
Recall that

h(ξ+) = r+(ξ+)g(ξ+), h(ξ−) = r−1
− (ξ−)f(ξ−), g ∈ G, f ∈ F. (59)

In particular, if G = F then the left and the right movers of the R WZNW
model are given by the same function , i.e.

r(σ, τ ) = r−(ξ−)r−1
− (ξ+). (60)

This means that the initial point σ = 0 of the string sits at the origin of the
group R for all times. Indeed, the corresponding D-brane is just the group
origin, being the projection of F = G along G.
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3.3 Interacting D-brane diagrams

Given a D-brane configuration on the target R we can in principle compute
the WZNW path integral over all topologically non-trivial world-sheets inter-
polating between a set of fixed open string segments with end-points sitting
on the D-branes and a set of fixed loops in the target R. We postpone the
evaluation of some of such diagrams (like the open string propagator) to a
forth-coming publication, here we just discuss whether there are some topo-
logical obstructions in doing that possibly coming from the WZNW term Ω
and the two-forms αi and αf defined on the Di and Df by (38). We have
learned in the section 2 that the WZNW path integral is well-defined if the
triplet (Ω, αi, αf) is an integer-valued cocycle in the relative singular coho-
mology of the group manifold R with respect to its submanifold Di ∪Df . In
general, we have found it to be a difficult topological problem to identify for
which D-brane configuration Di ∪Df and which choice of the two-forms αi
and αf the cocycle (Ω, αi, αf) is integer-valued.

Fortunately enough, if the maximal compact subgroup of D is simple
and simply connected, we have the key for solving our problem: we draw the
interactingD-brane diagrams directly in the double and repeat the discussion
of the section 2, using the duality invariant first-order action (25). The action
(25) also contains the WZNW term but now the forms α vanish. This means
that the pairing of the cocycle (c, αF = 0, αFd = 0) with any relative cycle γ
is just

〈(c, αF , αFd), γ〉 =
∫
γ
c. (61)

Recall that we assumed π1(F ) = 0. By the Hurewicz isomorphism, we obtain
H2(F ) = 0 , hence every cycle in the relative singular homology H3(R,Di ∪
Df ) can be represented by a cycle in H3(R). This means that what matters
is only whether c is the standard integer-valued three-cocycle in the third
de Rham cohomology H3(D) of the Drinfeld double. But it is, because
H3(D) = H3(K), where K is the simple simply connected maximal compact
subgroup of D, and it is known that the WZNW three-form restricted to K
is the integer-valued cocycle.

We find quite appealing that the path integral for the D-branes configu-
rations seems to be topologically more easily tractable by using the duality
invariant formalism on the Drinfeld double. On the other hand, an account
of the local world-sheet phenomena, like a short-distance behaviour, seems
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to be more difficult when working with the non-manifestly Lorentzian first
order Hamiltonian action (25). We plan to study this issue in detail in a near
future.

4 Example: SU(N) WZNW model

Now we shall study examples of this general construction of the self-dual
WZNW models. Consider the group SL(N,C) viewed as the real group and
the following invariant non-degenerate bilinear form on its algebra11

〈X, Y 〉 = Im[(a∗)2TrXY ], Ima2 = 4. (62)

The group SL(N,C) equipped with the invariant bilinear form is the Drinfeld
double for every choice of the complex parameter a satisfying the normal-
ization constraint in (62). Two isotropic subalgebras G and G̃ of D are all
upper and lower triangular matrices respectively with diagonal elements be-
ing λka, λk ∈ R for G and λ̃kia, λ̃k ∈ R for G̃. Obviously, the index k
denotes the position on the diagonal and lambdas are constrained by the
tracelessness condition.

An example of SL(2,C):

G =
(
λa z
0 −λa

)
, G̃ =

(
λ̃ia 0
z̃ −λ̃ia

)
, (63)

where z, z̃ are arbitrary complex numbers.
The dual pair of the σ-models is encoded in the choice of the half-

dimensional subspace R of the Lie algebra D of the double. We choose
R to be the su(N) subalgebra of the algebra sl(N,C). Following our dis-
cussion above, it is easy to find the principal fibrations of SL(N,C) ≡ D,
corresponding to the algebras R, G and G̃. The total space of the bundles is
always the double D, the fibres are SU(N), expG ≡ G and exp G̃ ≡ G̃ and
the bases are SU(N)\D, D/G and D/G̃ respectively. Note that every fiber of
all three fibrations can be obtained from the fiber crossing the unit element e
of D by either the right (for SU(N)) or the left (for G and G̃) action of some

11The normalization of the bilinear form is always such that the resulting action of the
SU(N) WZNW model will be properly normalized in order to meet the requirement that
the WZNW three-form is the integer-valued cocycle.
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element of the double D. In the particular example of the double SL(N,C),
the intersection of a fibre SU(N) with fibres G or G̃ occurs always precisely
at one point. It is not difficult to prove this fact. We already know that the
intersection always exists because SU(N) is compact and SL(N,C) is con-
nected (cf. sec 3). If both fibers SU(N) and G (or G̃) cross the unit element
of the double (which is the intersection point), it is obvious that a non-unit
element of G (or G̃) cannot be a unitary matrix. Thus the intersection is
unique in this case. Also an intersection r of the SU(N) fiber crossing the
unit element of D with some fiber G must be unique. Indeed, the G fiber can
be then written as rG where r ∈ SU(N). By the left action of r−1 the G fiber
can be transported to the origin of D where there is just one intersection.

Hence we conclude: for our data D = SL(N,C), G, G̃ and R = su(N),
the both models of the dual pair (16) are the standard SU(N) WZNW mod-
els, because the restriction of the bilinear form (62) to R is nothing but the
standard Killing-Cartan form on su(N).

Now we may choose the subgroup F of D, which defines the D-branes in
the double, to be equal to G. Thus we have given a concrete meaning to our
so far abstract construction.

It may be of some interest to provide few explicit formulas for the SL(2,C)
Drinfeld double. The both cosets D/G and D/G̃ can be identified with the
group SU(2). Recall that the space of all D-branes corresponding to the
choice F is parametrized by the left coset F\D. In our case F\D can also
be identified with SU(2), hence a generic D-brane (Fd) in the double is a
set of SL(2,C) matrices of the form

Fd ≡
(
eλa z
0 e−λa

)(
C −E∗

E C∗

)
, (64)

where C,E are fixed complex numbers satisfying CC∗ + EE∗ = 1, λ is a
real and z a complex number. In order to get the D-branes in the cosets
D/G = D/F and D/G̃, we have to project Fd on SU(2) along G and G̃,
respectively:

Fd =
(
A −B∗

B A∗

)(
eηa w

0 e−ηa

)
, η ∈ R, w ∈ C, (65)

Fd =
(
Ã −B̃∗

B̃ Ã∗

)(
eη̃ia 0
w̃ e−η̃ia

)
, η̃ ∈ R, w̃ ∈ C. (66)
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Here again AA∗ + BB∗ = 1 and the same constraint is of course true also
for Ã and B̃. If λ and z vary then A and B sweep a submanifold of SU(2),
which is just the D-brane in R and Ã and B̃ sweep the dual D-brane in R.

There may occur three qualitatively different possibilities:
1. Both C and E do not vanish (a generic case).
Then B 6= 0 and it is convenient to parametrize D and B as

E = eE1aeE2ia, B = eB1aeB2ia, Bi, Ei ∈ R. (67)

The original D-brane is then a two-dimensional submanifold of SU(2) char-
acterized by the condition

B2 = E2. (68)

The dual D-brane is a three dimensional submanifold of SU(2) which is
complement of the circle A = 0.
2. C = 0.
The original D-brane is the same as in 1. but the dual D-brane is just the
one-dimensional circle A = 0.
3. E = 0.
The original D-brane is a point A = C and the dual D-brane is the same as
in 1.

It is not difficult to compute also the two-form α on the D-brane (cf.
(38)). For doing this, we have just to know the mapping k(r) from the
original D-brane in R to G and the dual mapping k̃(r) from the dual D-
brane in R to G̃ (cf. (35)). We do that for the case 3 choice C = 1 and
E = 0. The original map k is trivial, since the D brane is just the point
A = 1 but the dual map k̃ is nontrivial and it reads

k̃(A,B) =
(

eiA2a 0
−e−A1aB e−iA2a

)
. (69)

Here
0 6= A∗ ≡ eA1aeiA2a, A1, A2 ∈ R. (70)

Now insert (69) in (38) and find

8πα̃f = Im[a∗2{(−BdB∗+B∗dB)a∧(A1+idA2)+dB∗∧dB−2ia2dA1∧dA2}].
(71)

It is easy to compute the exterior derivative of α̃f :

8πdα̃f = 2Im[a∗2a dB∗ ∧ dB ∧ d(A1 + iA2)] = cR|Df . (72)
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In words: the exterior derivative of αf is equal to the restriction of the
WZNW three-form cR on the D-brane Df .

It may be interesting to remark that in the case of the SU(N) WZNW
models there are no topological obstructions in quantizing the model on the
topologically trivial open strip world-sheet. Thus, we do not have to lift
the D-brane configuration to the double in order to make the argument but
we can directly proceed at the level of the D/G ≡ SU(N) target. Indeed,
choose two different surfaces lying in the same D-brane and interpolating
between the edges of the ‘diadem’. Their oriented sum does not have a
boundary and it is topologically the two-sphere. If we happen to show that
the second homotopy group π2(Di(f)) of the D-brane Di(f) vanishes then
the two interpolating surfaces are homotopically equivalent and there is no
ambiguity coming from the WZNW term (cf. sec 2).

It is easy to prove that π2(Df ) vanishes if the D-brane Df was obtained
by our method of projecting the isotropic surface Fd from the double. Our
basic tool is the long exact homotopy sequence [23]:

π2(F ) = 0→ π2(F/H)→ π1(H)→ π1(F )→ π1(F/H)→ π0(H)→ 0 = π0(F ),
(73)

which holds for a connected group F and its arbitrary subgroup H; note
that π2 of any Lie group vanishes. Now the D-brane on SU(N) is gotten
by projection of the surface Fd from the double to D/G. This means that
topologically it can be identified with the coset F/dGd−1 ∩ F ≡ F/H. We
observe that in our SL(N,C) context the group F can be topologically iden-
tified with its algebra F because the usual exponential mapping expF = F
is one-to-one. So it is one-to-one for any its connected subgroup including
the unity component of H. Hence π1(H) = 0 and since π1(F ) = 0, from the
sequence (73) we conclude that π2 of the D-brane in SU(N) vanishes.

We should mention that from the exact sequence (73) it also follows
that π1(Df ) = π0(H). In general, for our SU(N) case the group H is not
connected. This means that, strictly speaking, the diadem in our argument
must be equivalent to the zero element of H2(R,Df ), or, in other, words it
must be a relative two-boundary. If the diadem is a non-trivial relative two-
cycle we use the results of section 2 and evaluate its contribution by choosing
the extension f̃ : Z → U of the homomorphism f : B → U .
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sity, May 1995, in Slovak; C. Klimč́ık, Nucl. Phys. (Proc. Suppl.) 46
(1996) 116

[2] X. de la Ossa and F. Quevedo, Nucl. Phys. B403 (1993) 377

[3] B.E. Fridling and A. Jevicki, Phys. Lett. B134 (1984) 70

[4] E.S. Fradkin and A.A. Tseytlin, Ann. Phys. 162 (1985) 31
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