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Summary 

The finite number of protons in a circulating 
beam gives rise to statistical fluctuations in the 
beam current and beam's centre of gravity. This 
Schottky noise is used to monitor the distribution of 
particles in longitudinal momentum as well as to 
measure the extrema of the Q-values in a stack without 
any interference with the beam coasting for many hours. 
It is also instrumental in detecting the growth of 
betatron amplitudes at particular orbits of a stack, 
which helps to discern presence and strength of non
linear resonances. 

Theory 

The statistical noise due to the incoherent 
motion of particles in a coasting beam can be cal
culated from the signal of one particle. At the azi
muth of a pick-up station the line charge density of 
the i'th proton is a sequence of delta-functions: 
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where e is its charge, fi its revolution frequency, 
θi its azimuth at t = 0, and 2π R is the machine cir
cumference. This can be Fourier analysed: in terms 
of non-negative frequencies: 
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it is a spectrum of lines with frequency spacing fi 
and mean square values 
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We have present particles with their fi in some 
range, say fo to fo + fo : then for any one given 
η the resulting frequencies of (2) are in a band of 
width n f o . To avoid confusion we work in the region 

η < fo/Afo 

so that this band does not overlap those belonging to 
the neighbouring η-values. In the ISR this means 
working below η ~ 3000, or 1 GHz. The signals contributing 
to this band are given by the n'th term in 
(2), summed over all the particles: 
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Let the spectrum of revolution frequencies be defined 
by N(fi) dfi, the number present in an interval dfi at 
fi. We take an idealised model of a spectrum analyser; 
when tuned to a frequency f it responds to all 
signals in a small interval δf , called its resolution, 
and evaluates their root mean square. The number of 
particles contributing is therefore 
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and the result is 
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where the summation is restricted to the particles (4). 
A necessary assumption for going from (5a) to (5b) is 
that the particles in any group having all the same 
revolution frequencies fi must have randomly distributed 
phases nθi , so we are excluding cases where 
the beam has any coherent disturbance. 

This (5b) is effectively Schottky's formula 1) for 
the statistical fluctuations of a d.c. current. It 
shows that the spectrum analyser gives out the spectrum 
of particle revolution frequencies, with a scale factor 
η in the abscissae and a square root function in the 
ordinates. 

Now consider one particle making transverse beta
tron oscillations. At the azimuth of the pick-up 
station it will have a vertical displacement given by 

zi(t) = z0 + Ai COS(2Π Qi fi t + φi) (6) 

where zi is the closed orbit displacement and Ai the 
particle's betatron amplitude at that azimuth. 

A difference pick-up responds to the line dipole 
density, which we call d. di is given by multiplying 
(1) or (2) by (6), and its expansion in single frequencies 
is 
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Again it is possible to work in the region of η low 
enough that the bands belonging to different η values 
do not overlap, and to look with the spectrum analyser 
at any of the three n'th terms in (7), summed over all 
the particles. 

We note in passing that information about the 
closed orbit zo may be obtainable from the transverse 
signals in the "longitudinal", nfi , frequency band. 
Calculating the root mean square in δf , as before, 
the n Q bands give 

drms ( f ) = 
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where Nn(f) is the number of particles per unit inter
val of 

f = (n Qi)fi 

and A(f) is their rms amplitude. 

In the general case Q-spread, fi-spread and 
amplitude will all affect the spectra and need to be 
disentangled, but any marked feature like big amplitudes 
or missing particles occurring at some specific 
tune Qk and revolution frequency fk will show up 
as a spike or slot at the frequencies f = (n Qk)fk 
for every n. 

Application 

Figure 1 shows a scan in the frequency domain of 
the noise picked up from the coasting beam. It is the 
difference signal derived from two parallel plates 
located on opposite sides of the beam. The central 
peaks are enhanced by a resonant transformer which was 
used to form the difference. The small spikes arise 
from the longitudinal Schottky noise; they are harmonics 
of the revolution frequency fo = 320 kHz. The 
transverse Schottky noise gives the large signals corresponding 
to Fourier expansion of the incoherent 
motion into slow and fast transverse waves. Their 
different spread in frequency is determined by the 
interplay between Q-spread and spread in revolution 
frequency. In the case of slow waves, f = (n - Q)fo, 
the contributions of the two spreads add up if the 
accelerator is operated above transition and with positive 
chromaticity. Thus the signals are wider. The 
opposite holds for the fast waves, f = (n + Q)fo. The 
Q-value was ~ 8,63 when this scan was made. 

Fig. 1 - Frequency spectrum of the difference signal 
derived from two plates and induced by the 
Schottky noise in the beam. Small peaks 
harmonics of the revolution frequency. 
Large peaks fast and slow transverse waves. 

Longitudinal Schottky scan 

Scanning one of the harmonics of the revolution 
frequency in detail gives the longitudinal Schottky 
scan. The signal is taken from a sum pick-up, is 
amplified and displayed in the frequency domain by a 
HP 141 Τ frequency analyser. A substantial improvement 
in signal to noise ratio is achieved by averaging the 
analogue output of the analyser over many sweeps by 
means of a 1000 point HP 5480 Β signal analyser. The 
choice of the harmonic is a compromise between con
flicting requirements. At a too high frequency the 
harmonics start to overlap, at a too low harmonic the 
averaging takes too long because the sweep time of the 
analyser has to be increased for the same resolution. 

Fig. 2 - Longitudinal Schottky scan taken at different 
intensity levels during build-up of a stack 
(10 A, 15 A, 19 A). Average over - 2000 
samples. Δρ/ρ = 6.4%, per hor. Division. 
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Figure 2 shows a sequence of longitudinal Schottky 
scans taken during the build-up of a stack. Typically, 
one averages over 2048 sweeps which takes 1,7 minutes. 
Figure 3 shows that a longitudinal Schottky scan pro
vides the same information as a scan made by sweeping 
empty RF buckets through the stack. Moreover, the 
Schottky scan is not interfering with the beam in any 
way. This is an important point since the empty bucket 
scan turned out to be a rather gross perturbation of 
the coasting beams. 

Fig. 3 - Scans of the longitudinal density 
in a stacked beam. 

a) sweeping empty RF buckets through the beam 
b) longitudinal Schottky scan 

For these reasons the Schottky scan has become the 
standard technique in the ISR for measuring density in 
longitudinal momentum space. It is used operationally 
to monitor the mean momentum and the momentum spread of 
stacks coasting for many hours. It is also a valuable 
tool to detect the density variations due to beam loss 
at particular orbits caused by non-linear resonances, 
or due to diffusion in momentum space. 

Transverse Schottky scan 

Vertical Schottky signals in the low frequency 
range (5 - 20 MHz) are obtained with a resonant differ
ence transformer connected to electrodes above and 
below the beam. Radial signals are obtained similarly 
from a pair of lateral electrodes. At higher frequen
cies (20 MHz - 2 GHz) where the capacitive coupling 
between beam and electrodes is increased, signals can 
be obtained with a 50 Ω hybrid transformer, using its 
difference output. The signals from the resonant 
transformer are fed to a high impedance low noise 
amplifier, those from the 50 Ω hybrid to a 50 Ω low 
noise amplifier. Then the signal is scanned in the 
frequency domain and suitably averaged as in the case 
of the longitudinal scan. 

The transverse Schottky scans are mainly used to 
find the maximum and minimum Q-values of a stack. A 
large Q-spread in the stack is needed to prevent trans
verse coherent instabilities of the coasting beam. 
This Q-spread can be just accommodated between lower 
order non-linear resonances 2) known to be harmful. 
Hence, an accurate, "on line" monitoring of the stack 
extension in the Q-plane is imperative. The usual 
technique is to display scans of a slow and a fast wave, 
which are adjacent in frequency, on the same screen by 
mixing down the fast wave scan. Corresponding points 
of the stack will appear on opposite sides of each scan. 
By measuring the real frequency difference f between 
these points one can calculate the non-integral part of 
the Q-value 

q = 0,5 + ( f/2f0) 

where f0 is the revolution frequency in the middle of 
the stack. Figure 4 shows two such scans. Each of 
them represents an average over 6000 sweeps of the 
frequency analyser. The sampling lasts 10 minutes in 
total. It is obvious from the figure that the ends of 
the distribution are quite well defined and that the 
frequency difference can be measured to better than 
1 kHz. This means in turn a precision of 10-3 in the 
absolute value of q. 

Fig. 4 - Transverse Schottky scan of a 6,5 A beam. 
Average over ~ 6000 samples. 
2 kHz/hor. Division. 

upper trace: scan of slow wave f = (43 - Qv)f0 
lower trace: scan of fast wave f = (26 + Qv)f0 dis

placed downwards in frequency by 76 kHz 

Since the transverse Schottky scan gives the rms 
dipole moment as a function of the betatron frequency, 
one can observe changes in the rms betatron amplitude 
at a particular Q-value and orbit, provided that no 
beam loss occurs at this orbit; and the latter can be 
checked with the longitudinal Schottky scan. Figure 5a 
gives the vertical Schottky scan of a 15 A beam after 
stacking. Comparison with Figure 5b, a repetition of 
the scan after 80 minutes, shows a clear amplitude 
growth at distinct places. Figure 5c is identical to 
Figure 5b apart from the higher resolution of the 
former. The large peaks are due to 8th order resonances 
whereas 11th order resonances caused the smaller peaks. 
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Fig. 5 - Transverse Schottky scan of the slow wave 
f = (43 - Q)f0 showing amplitude growth 
due to 8th order and 11th order non-linear 
resonances. 

a) after stacking Q = 0,016/hor. Division 

b) 80 min. later Q = 0,016/hor. Division 

c) same as b) Q = 0,0063/hor. Division 

A further application is the monitoring of the 
position and extension of slots cut by RF knock-out in 
the particle distribution. Such a cleaning operation 
is needed if the beam position is so close to strong 
resonances that periodical removal is needed of those 
particles which diffused towards the resonances. 
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