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WHAT IS INTERESTING ABOUT THE REGION OF SMALL
MOMENTUM TRANSFERS AT HIGH ENERGIES?

*
By Ya. I. Azimov, E, M, Levin, M. G. Ryskin and V. A. Khoze

ABSTRACT

In these papers, an attempt is made to make a complete review of
those experiments at small momentum transfers and high energies (Elab
= 50~1000 GeV), the setting up of which would enable answers to be
given to the most interesting questions posed by the modern theory of
hadron scattering at high energies. The basis of these is as follows :

determine

is it not possible at the achievable energies to diseevwe® the charac-
teristic consequences for the hadron scattering processes resulting

hypothesis at : s
from the £ae4% of constant cross-sections fer—ear asymptotic energy!
Specifically, this means: the disappearance of quasi-elastic processes
at zero momentum transfers, the vanishing of all vertices of vacuum
Reggeon emission and of lpart{ole enussion from a vacuum Reggeon,
if crossed by a zero.ﬂ0wwnkmmhe papers examine precisely the behaviour
of the cross-sections of the various reactions to which the above-

mentioned features of asymptotic scattering lead, at real energies.

Inépite of the fact that such examinations are of a particularly

*
V. N. Gribov participated aptively in the discussions of all

fundamental questions discussed in this paper,



estimatory nature, the authors consider that as a result of
difficult, but in principle feasible experiments at small t and

in a wide energy range, the asymptotic theory may be verified.

Furthermorg the papers examine in detail questioné of a

more specific interest,such as the behaviour of p = -g:‘—%—

for high energies, the kink in the slope of the diffraction cone

at t

Q

-Ql (GeV/c)2, hadron scattering on a deuteren target

etc.

The first part of the papers may be considered as an attempt
te enumerate the fundamental qualitative results of the theory of
complex angular momenta, which are necessary for an understanding

of the whole of this series of papers.

I. INTRODUCTION

Basically, this series of papers is devoted to a review of
those experiments at small momentum transfers and high energies
( >50 GeV), the setting up of which would enable the following
question to be answered: are the presenteday concepts on hadron
interactionsSat high energies reasonable or unreasonable? In
discussing the possibility of one type of measurement or another,
we were guided towards the set-up used in the LNPI‘/I/ for those
questions relating to accuracy, the range of accessible momentun
transfers etc. First of all let us dwell on a theoretical descrip-

tion of hadron interaction at high energies. The only consistent
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theoretical foundation for studying strong interactions at high
energy as a whole (and not individual reactions) is now the

theory of complex angular moment; and the parton (mult;_peripheral)
picture of interactions which is closely related with it. Un-
fortunately, the theory of complex momeng;'was not discussed in
detail at the winter schools at IndPl(an intelligible exposition

of the fundamental arguments and results of this theory is given

in /2/), but the space«Ftime picture of interaction, occurring
in the parton (multiperipheral) model, has been examined on
several occasions at these schools /3/ (and in particular detail
at the last of these /4’5/). Here we shall not discuss in detail
the theory of comple Moment; but shall rather enumerate the
fundamental consequences of it which must be known in order to

understand these papers, and we shall also dwell on the basic

experimental data which confirm it.
REGGEONS

I. Dependence of scattering amplitude on energy. In the

a
theory of complex angular momenif a fundamental contribution to

the amplitude of hadron interaction at high energies is the
exchange of a particle or group of particles with a variable
spin ol (1’.) (t =2(Fa - PRa") 2 - momentum transfer, see
Pig. l.1a). Such a particle (group of particles) is referred
to as a Regge pole or Reggeon. Reggeon exchange leads to an
m dependence of amplitude on energy Su(t)(Ss(Fh-y P!:)Q,

see FPig. l.la) and corresponds to a definite feature (relatig%

to the pole) of the partial amplitudes(fg(t)) of the T-



channel angular momentuni( é } (i.e. f? (t)" -v—:zzzzj—- ) e

The link beiween the asymptotic form of Sd(t) with the spin

of a particle parficipating in the exchange is shown in Fig. 1l.1lb,
where the amplitudes are given for the exchange of vector and scalar
particles. In this case a contribution is given by.the i-
-channel partial amplitudes j; (t) and fc,(t) , respectively.
Comparing drawings l.la and l.1b, we see that Reggeon exchange may
in fact be looked on as an exchange of a particle with a spin

oL (‘t) . oL(t) is referred to as the trajectory of the

Reggeon.

2. Link between a Reggeon and particles with hish spinse. This

link is established by the fact that for t 2 0, when WFE- is the
energy and tae process must be regarded as shown in Fig. l.lc, the
real part of the trajectory Ol(t)(Re O((t)) S Lﬂr‘g" M~y
punber (n)(ReoL(tn)=n) for values of t = t_, corresponding to
the masses (tn = M2) of resonances v.th a spin n,(J-=o1) e The

width of the resonances is expressed by Im o (tn) , namely :

MF Um:u(fnl) , where Reot(t)=al(*.) + d'(‘t-tn) . It

is recalled that the conitribution of resonance to the reaction is

written in the usual form :

- el
Bls)= - L2/ 14, | sewt e P P (Z),
ore &ual o the
where I, J, [T and ree/g’;;;;:_ggin total and elastic width of
the resona.nce,@'(Z) = a Legendre polynomial, Z = the cosine of
the scattering angle, P = the momentum in the cms system. In

this way, once the resonance spectrum is known, it is possible to

establish a picture of the dependence ofo(('t) on t « The
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surprising thing is that all known resonances lie on linear
trajectories, which have the form ol(t) =ol(0)+at't (see drawing
1.2). This fact enables us to predict the energy dependence
of the amplitude of the interéction of two partic¢les at high

energy, which is determined by the same d (t) (see Pig. 1l.1a).

3. §Qacf::itime picture of interaction. The basic idea of

the parton model /4,6/ is that a fast hadron ﬁmWﬂﬂ wilh a.rnomentywwgfy
P ) may be regarded as consisting of a large number (~ QP\P )
of point particles (partons) which can be described in the usual
quantum-mechanical manner by means of a wave function. But in
what manner does the interaction with the target take place in
this model? As the interaction cross-section of point particles
is not greater than T X 2~ ‘/5" , where Siq ‘s the pair
energy of two particles (1 and 2 in Fig. 1l.3a), it will only be
the slow partons which will interact with the target‘at rest, as
is shown in Fig. l.%a. The process of elastic scattering expres-
sed in this way will be that when a slow parton interacts with
the target it is scattered at a very small angle. In this case
there will be a probability ~ (not small for small
will ceilect
momentum transfers)lat the padons/in a hadron similar to the
initial one (elastic scattering), or in a hadron with other quantum
numbers (quasi-elastic scattering) see Fig. 1.3b). It is natural
that the probability of such collection will rapidly fall as the
momentum trensfer increases, réughly N 3ccordance willh e-p’(t)

R = radius of the parton (hadron) system, i.e. substantial distances

in a plane perpendicular to the direction of the flight of a particle
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e, on which slow parton$ may be found. As was explained in

detail in /4/, these distances are ~.Vd'en-5 « In this way
RYL) _'lnS(t ~
()_:e ( Lsd.t

3

the amplitude of elastic scattering will be ~e
In other words, the basic contribution to the cross-section in

this picture will be given by the processes of the multiperipheral
type, which differ kinematically from the others in that the
relative energies of any two neighbouring particles ( L and

5 + 1 in Fig. 1.30) or otherwise their square of the mass
SL,L+1 = H§,L+1 = (9(, + 9L+1)2 , are limited and do not increase
with a rise in the total energy offgglliding particles, Finally, in
accordance with the optical theor@m SE = ImA , Wwhere A . is = (e
amplitude of elastic scattering, and, consequently the equality

shown in Fig. l.3c must be satisfied; laler, we shall use

fAis to a very great extent.

4. Quantum numbers. As all resonances must lie on Reggeon

trajectories a’ t)O(Reo((Ma)=J ; ( M and j = mass and
spin of the resonanvf), it is clear that the Reggeons are charac-—
terized by the same quantum numbers as the resonances. In other
wordi each Reggeon has a definite isotopic spin (I), strangeness
(s), parity (P) etc. Table 1 shows the quantum numbers and para-
meters of the trajectories, and also those particles which lie on
these trajectories for all of the most important Reggeons. It is
necessary to pay attention to the fact that in the theory of

o Number Ihe.
complex angular moment# a new quanium figwrPe appears - & signature
which characterizes the change in the Reggeon contribution (R (S, t))
during the substitution S =¥ -S. For Reggeons with a positive

signature ( & = + 1 in Table 1) R (S, t) = R (~S,t), for Reggeons

with a negative signature R(S, t) = —R(—S: t) . It should
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be noted that if R(S,t) equals the Reggeon contribution to the
reaction A+ & — a + &, then for high S R(—S,t) equals the
contribution of the same Reggeon to the crossing-symmetrical re-~
action G+ & o & + b, conséquen‘cly the signature forms a

link between the scattering of a particle (Jf)and an anti-particle
(jf)on a target Qvﬁn). On the other hand, the signature charac-
terizes the parity of the spins (j) of those resonances which lie
on a given trajectory (for baryons the parity is j—i). The
trajectories with a positive signature pass through resonances with
spins of :qv-::a& parity (see Table 1 for trajectories f, Ag ’ r ),
whilst trajectories with a negative signature pass through resonances
with spins having an odd parity (see jD,LJ - trajectories in Table
1 and Pig. 1.2). For the characteristic of the trajectories we
shall subsequently find convenieﬁi t%ﬁlgyantum number f% =

Pé = p(-’)n' s Where ¥ and 6 &fthe parity and signature of the
trajectory, n the spin of j for a boson and j=% for baryons.
It F%, = +1 particles O+, l-, 2+ lie on the trajectory, i.e. particles
which are described by scalar, vector an@ tensor wave functions
(particles with a natural parity F¥=6-1)J, j = spin resonance). If
R, = -1, then on the trajectory lie resonances 0, 1', 27, and
for such particles we must use pseudo-scalar, axial-vector and
pseudo~-tensor wave functidns (particles with non-natural parity

P = -(-l)j). On completing a summary examination of the guantum

numbers of Reggeons, we note that for all known Reggeons with

<1(o);> O , one simple relation between quantum numbers is fulfilled:

GGr-1)7 = 41 (2.1)
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Table
¥or the convenience of the reader, #ig, 2 enumerates the most

interesting reactions and shows which Reggeons contribute to
they
them and how/do this.

Buwer . law
5. &Bxponential dependence of amplitudeSon energy. Let us

go into greater detail on the basic consequences of the fact that

at high energies a contribution is given to the hadron scattering

amplitude (A) by Reggeon exchange, i.e. A~S*(t),  avove all,
mapu«hs

the differential cross-section for a fixed t should fall experen—

#taeldly with the increase in energy. In effect,

ds . 4 2 g2 (x(t)-]
At /6.77\5“7’/'4/ ~ 3 ) (1.2)

power. law

It is obvious that the expernentied character of the fall is maintained
also for the total cross-—sections of this process, if we disregard

their additional logarithmic fall as S increases.

5 ~ a2 04-(0)"/) 7
SE et~ 52 ¢ PEEs (1.3)

-n
In this way, all cross-sections should behave according to 6 =AS ’

where | n" may be calculated by ot(a) of the corresponding Reggeon.
It will be immediately seen that the cross-sections of the elastic
reactions and diffraction dissodiation, to which the basic contri-
bution is given by the exchange of a vacuum pole (p,o(P(O) = 1,

see Table 1), should be almost constant. For the reactions in
which there is an exchange of isotopic spin in the % ~-channel

(for example JT":—;-a J°n )n-= -2(0(/3(0)—4 ) =4+ 1.

For reactions with an exchange of strangeness (for example
Kp—»T°Z° ) n :-Q(JK*@)-1) = 1,34; with an

exchange of a baryon number z - 2(°LN(°)-1) = 2.8 eté.
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/1/

and theoretical values of
power . law

Table 3 shows the experimental
"n" for many reactions. It will be seen that the
drop in cross-sections agrees well with experiment and the values
of "n" , calculated by the Reggeon trajectories, at least
gqualitatively agree with the experimentally observed dependence
of cross-section on energy.

Shr'mkagc.
6. Newpowine of the diffraction cone. As follows from (1.2),

2 (e (o) -~ -2 (L) R 8
g~ s 0o k] Ga (&) g5 (2)=

dt
-2 (REv s CrS) (1.4)
- g2 gt @ O, oy

where %a (f) and 35 (t) are taken, for simplicity, in the form
2
g(t) = g(o) e~ . It will be seen from (1.4) that

in expression %_z Ae"/t/)
shrinKage
RORPOW—

[
the slope of the cross-section ( « 8

must increase with a rise in S(ﬁ = Q(R: +'0n 5)) . This
ing of the diffraction cone is observed for those reactions in which
a contribution is given only by one Reggeon (for example the reaction
X p -+ T takes place owing to the exchange of only the f -Reggeon),
or in the case where the reaction is measured right up to the high
energies, for which only the contribution of a Reggeon with the
highest oz(o) survives (see Fig. 1.4, 1.5, 1.6). For some reactions,
nowever, ,B" does not depend on S (see for example *Jr}; and K';a
in Pig. 1.6, whereas in other cases (see PP in Fig. 1.6) the
diffraction cone is widen%. as S increases (03“ falls with a rise
in S ). The usual explanation bf this fact is that in these reac-

tions the contribution is given by the exchanges of many Reggeons

*

There is an indication that when there is a limitation of the
range to |t]<0.1 and energies to S » 40 GeV2 in these reactions the
cone also will be-naxrewed /8/.

shrink
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(see Table 2) and, at an energy which is not too high, they are
all substantial,and an asymptotic narrowing of the cone does not

develop. In reality, let

2, .1 J 2 ‘g ‘
AG _ o 2R e CnS)L, vy 2R +4, G2 8)t:

g " Ve (1.5)

The first term corresponds to the contribution of the vacuum Reggeon,
the second to interferences with all non-vacuum Reggeons of type /o
the Ag,w,f,o{(O)of which are close to 1/2 (see Table 1). If ds

is represented in the form Al ’ ‘5’ for (1.5) is equal to

g k)= dz:2 G 2 ZulR S L2 5) e /\+d;é’m)' )

dt = P T
So’

If we take '1,,_/ y = 2 (which corresponds to an identical

contribution of Pand fto the amplitude) and

= * not. 02, ] # o eeemEn
=2(Recadn S / ke &5)) (10 e ) (1.6(

then the variation in B as S increases from 10 to 100 GeV2

is equal to 1. Let us note that b for P (first term in (1.5))
varies by 4 B = 2 . It is clear that by selecting R,’, R:, 'z,/'z, ’
etcs., it is not difficult to arrive at a coincidence with experiment.

shrink
(Let us note that for large energies the cone must be—shertened in
all reactions, including also JT‘P - and k—p -scattering). In
shrinka +
this language the s-he-pte&g of the cone in f:ls and K p occurs,

beginning with comparatively small energies, because the contributions

of the poles P’ Ag, w and f s which generally speaking may
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sheink
exist in these processes, are—shortened. In this way the
shrinkage : .
experimental data show a shee%eazﬁg of the diffraction cone

in accordance with the theoretical predictions.

7. Factorization. Reggeon exchange, like particle exchange,

has a factorization feature which consists in the fact that the

Reggeon contribution (see Fig. 1.1 a) is of the form :
£lse) =G0 (8) 24 )5 CLE) (1.7)

(i.e. the dependence on the sorts of particles, which are exchanged
fackors

with a Reggeon, 1s separated out in the form of separate mwldiplienrs

80‘ (t) and g¢ (t). It follows in particular from (1.7) that if only

the exchange of one Reggeon is important, then

g@"l’fﬁ&) . 249
G(EA = 64) 20 (1.8)

we have the
irrespective of the type of target A. For example, they—-sheuid

equality

(1.9)
where h-Slip=3p) p.clip=TpZY,
Clrp-=pP) * "8 Clrp—~pipl))’
£,- ST L)) . p Ol =T (p55) )
B OlpppphHT)) RGP (puat) ) (1.10)
The brackets denote systems of particles travelling with similar

momenta (see Pig. 1.7 which graphically elucidates relation @.9) ).
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Table 4 shows the values of R., R,, R, and R, , taken from /9/.

1 T2 3 4

It will be seen that within the limits of experimental error
(which, however, are great) the relation (1.9) agrees with
experiment. Naturally, factorized relations exist only when
there is an exchange of one Regge pole, consequently their

fulfilment should be improved as the energy increases, since at

high energies a basic contribution is given by the exchange of

the Hhe biggest
X Reggeon with &-—sm-a-l—lol(o). (For the reactions enumerated in
Table
Tables 4 and 5 the vacuum pole P 1is given in Table ﬂ. Biey 5
raHes
shows the values for the melation
Ri* ALl L) o e Ol =)
GEP AP+ TI) 0 Ra” G o s
Ry= TP~ 7o)
6(/;'-' —e Ay :..;———-
(i o NN ,
which should also be equal to each other (Rl =R, = RB)' It will

be seen that this equality improves as the energy rises and is
fulfilled with an accuracy of 10%. The overall totals for the
verification of the factorization lie in the fact that factoriza-

tion takes place with an accuracy of 10-20%.

8. Dependence of Reggeon contribution on the spin of scattered

particles. Hitherto we have not taken into account the spin of
scattered particles, and expression (1.7) for Reggeon contribution
has, in essence, been written for scalar particles. In this case
when particles have a spin, the vertices are ga (t) and gg (t) ’
generally speaking, will depend on the polarization vectors of the
particles a@ and f . There is a simple rule for writing this

/10/

dependence , namely: the vertices 941 (see Fig. 1.8) are



constructed from the polarization vectors forming part of the
vertex of the particles (Qa ) 28 ) of the vectors Pa and P8 ’ 9*
and 7" , Where q"- is a component of momentum transfer, directed
perpendicularly to the plane formed by the vectors Pa and Pa of
the initial particles in the reaction a + b-pc + d (see Fig. 1.8),
3" = the component of momentum transfer lying in the plane P“ and
ps - From the polarization vectors q' and q' y & four~dimensional
scalar is constructed if the product P,' of the particles and the
Reggeon entering the vertex is equal to +1 (R%P; P* for the
vertex acad on Fig. 1.8) and a pseudo-scalar, if the product is -1l.
B for a particle is P(_1)j , where j is the spin, and P is
the internal parity.

FPor example J changes :’2 A (17) and A, (29) omﬂee the
exchange of a Reggeon with Pz =41 « The /?; of a T -meson
is =1, A (1%) is -1 ana A, (2%) is +1. In this way the vertex
I - Ay is a scalar, equal to 94(&‘, q") + g, (eA; 94) , whereas

the vertex ¥, —» Ay must be pseudo-scalar, i.e.
e /%‘ ” J.e J4 e 0 # - W
D Cvss 9 D 08 2o” B2Savac 09,9, €559

From this it will be seen that the reaction amplitude with produchon
of A, (for example JTP quP ) vanishes when qi—>0(for a zero

angle), whilst A. may be produced at a zero angle.

1

9. Complex nature of Reggeon contribution.MeReggeon exchange

amplitude, unlike particle exchange, generally speaking, is complex.
This can be seen if only from the spac€-—#time picture of the
Reggeon, since the imaginary part of the Reggeon contribution cor-

responds to the fact that multi-particle production processes
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contribute to Reggeon exchange. The complex nature of the Reggeon
4bcar
is determined by the so-called signature multipliex (n) , which is

For a positive

—Cfg %CQ + e signature
= l.11
4 JA(t) ( )
. -t “”é""‘ Lt Por a negative
signature

In this way, finally the contribution of the Reggeon to the scattering

amplitude a + B-%a + B is equal to
= ' g . % (E)
£(st)=p(x(t) g () 9g()8" " (1.12)
Let us note that 1§  has a graphic physical meaning. In reality,

nd
if tso ‘e Re o (to)z0

then, when t - t,

& (to)
RN N T bR X -
E e sin T i Fule-te) cImd ) (1.13)
= C
- S R(te)
¢ ta*l' o/ l 7
faclor

i.e. the signature mwi$ipiier ensures precisely the necessary
correlation between Reggeon exchange and resonances, to which
reference was made above, Of course, in the example analyzed
above, it was only the amplitude with a positive signature which
possessed the pole, when t - tat‘“%n the negative signature,
there is no pole when t — ts. éhié is reflected by the fact
that particles with an even spin parity lie on trajectories with

a positive signature. The direct consequence of the theory is
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that for reactions to which only one Reggeon contribute, J‘_n]spite
of the fact that the amplitude is complex, the polarization must
be equal to zero. This is due %to the fact that the amplitude with
and without spin-flip in this case has an identical phase, whilst
the polarization PrImAt+TA*t- =0 .i However the
probability of spin~flip should, generally speaking, be great. One
of the simplest examples is as follows: the polarization in

jT‘P —- T°n (exchange of only a P Reggeon) must be small,
which corresponds with the new experiment /11/ (Fig. 1.9 a). Since
the interference of the two Reggeons contributes to the polarization,
then, for example, it should fall roughly in accordance with 'VV:S_'

for the reactions FF.; PP' ‘IZ'P.JP i.e.

P 2V (1.14)
k/ = /DZ*/€2 o :if._-‘
)

R designates any non-vacuum Reggeon o((O) = %, ie.e. P y A
f and W .

The dependence (1.14) corresponds to the experimental results
(Pig. 1.9 b, in which are given the polarization values as a function

of S , the continuous line is the dependence 1/V.S ).
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REGGE CUTS

We have seen that the exchange of Reggeons, which occurred
naturally in the theory of complex moments, explains many
éharacteristic features of scattering at high energies. However,
it appears that it is not possible to confine oneself only to
the contributions of Reggeon exchanges to the scattering amplitude
at high energy. The fact is that the exchange of two, three etc.
Reggeons, generally speaking, produces a contribution which is not
small. For example, the contiribution of the exchange of iwo Reggeons

(oly and Ay in Fig. 1.10) is of the form : /12/

/2 ).

152)= é“frzx,)a RS )R, G W e
/Vzé(f;"‘z £ /g~ £)?) = _
= S /0/,«-0(2 fo) f/‘ "K" e +c(2 (9 ()2)(}15 (1.15)

b K g -1)2)

R )o) Wy iy, 42 19499 No (0, K21 —:_)’*”)%%’,.

Let us examine briefly the basic characteristics of this type of
exchange which corresponds to more complex ones than the pole
features of the partial amplitude of the cross-over channel (Jef )
in the plane of complex angular moments (J) §the so-called bﬂr‘g%eh-

euls
ing-pointed. In concrete terms, the graph of Fig. 1.10 corresponds

to

Sy Rl =y (0) =Ko (&) o~ j—-ﬁd £) .

I. The quantum numbers of cuts., The quantum numbers, such as

isotopic spin, strangeness, the baryon number, G -parity for
tuls

-pranohing, are obtained in the same way from the gquantum numbers

of the Reggeons as for the quantum numbers of the two, three etc.

particle systems. For example,the isotopic spin of two-Reggeon
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et
sranehing (1(2)) (see Fig. 1.10) can pass through values extend-
ing from I,, + 12 to 14 - I, y Where I, and I2 are the isotopic
cub
spins of Reggeons o, and 0(2611)12) , the ®remekring strangeness

is S®_5,,.5, , the G -parity is G®= G, Gg etec.

It is necessary, in particular, to dwell on two important

cut
features of bxranehing quantum numbers.

a) The signature of n -Reggeon exchange (© m)) is equal to
the product of the Reggeon signatures 6(n)= 64 6n (for

graph Fig. 1.10 &%) - &, 64 ).

b) The parity of a system of many Reggeons is not fixed. In
effect, for the very same reason as the two-particle system, which
mey have both positive and negative parities depending on their
relative orbital movement. In this way G P,_ of the corresponding

w alse s
branoehing point is/mot fixed. This is a very characteristic
culs
feature of branekingyand below we shall give some examples of

processes in which this feature is developed.

c) An exception is the system of two equal (iden’cical)
Reggeons (for example the exchange of two P -Reggeons), which
has only one (positive) parity. This can be explained in the
same way as the fact that the system of two identical scalar
neutral bosons can have only even orbital moments, i.e. their

wave function must be symmetrical ...

2. Energy dependence. From the simple expression (1.15) it

would be seen that the exchange of two Reggeons generally speaking

ower . law
leads to an ogep-onent-i.al-dependence S"“‘(o)""’l2 (0) -1 , whilst for all
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Reggeons in which o, (0),0(2 (0)(1 s these corrections are small
in comparison with the exchange of a Reggeon o(4 (5"’(0)) or

oy (5“’ (O)) . Only in the case when one of the Reggeons is
a vacuum-Reggeon, il.e. ol = aLP (o)= 41, does b};“m:-ue’;a-mg give a
contribution of M\S“’ (°) s 1se. of the same order as the contri-
bution of one Reggeon. However the braa—c:r-b&ag shown in Fig. l.11
(or 1.10), has in this case too a small value in comparison with

the contribution of the pole, but this small value is only loga-

rithmic. In reality, we shall disregard the dependence of Nl and

2 power - law
N. on K in comparison with the rapid (expementiel) dependence

2
(this can be done if ol;o&5>><l<‘°)-'where <k?> is the characteristic
momentum transfer in Nl and Nz), then the integral for d,‘QKJ' can
be taken, and it is of the order 4/@(4'-;-0[2')2,,_ S .
cut

From the view point of the space ’jtime description, the breaneh-
ina (see for example Fig. 1.10) corresponds to the process shown in
Pig. 1.12. This diagram shows two fluctuations, which began at
slightly different moments in time, but each produced a slow particle
which corresponds with a target at rest. The smallness of this
process can easily be evaluated from the fact that both slow particles
must have an identical impact parameter ( P ), coinciding with the

impact parameter of the target. As the substantial /o"‘ in each

fluctuation ~ -1 @1 S, this smallness is of the order
m?2

1/w2 [ 1/m2 s o~ 1 /3_5/)

(for more details, see

The graph of the type in PFig. 1.1l showsa smallness ~ (ol'P éns)"‘.
In this way, for large energies the scattering amplitude can be

represented in the following form

- 044: ) ) / .
4(6,&‘): I /‘)f (%ol s) (1.16)

/
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where f‘; (t,x'P&S) takes into account the contribution of all
cuks ‘ )
bronehing of the type in Fig. 1.11 when o =ol; . For large o(pz'\s

we have ‘f(t,Qn S)-—-) 8‘1 (’l‘)gg (t) , where ga (t) eand g& (-l-) are

residues of the Reggeon of; .

773 4
%. Dependence on t. It can easily be seen that the brawvohins

gives a slower reduction in amplitude as the momentum transfer increases

[t] «+ In reality, at high energies (let 0(2(0) =1)

e Lesy 4l ks
Rl 5™ ERE

-
®»
O

(1.17)

and even when o(,: = ol,P » the slope of the cone is obtainedﬁc :%fe &;S,
which is twice as small as the slope owing to the exchange of one
Reggeon. It is necessary to note that even at energies which are

not too high, the assertion that the contribution of b‘;;a-ce‘ga:n-g falls
slowly as ’tl increases, remains applicable, in any case this is

visible from two examples :

a) A weakly—coupled system of the deuteron type. The exchange
of one Reggeon gives a dependence of (see Fig. 1.13 a) Se(t)sd(t)
where S (t) is the electromagnetic form factor of the deuteron, and

the exchange of two is of the form :

) s IS WA S C R S-S
s O st )yl T (F KR F 2 1)F) as

vesy
i.e. it falls extmemedy slowly as 1 increases (see Fig. 1.13 b).
It is clear that a qualitatively similar character in the dependence
on t will exist in any model where the hadron is represented as a

weakly coupled system of quarks, partons etc.
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b) Eikonal. In N,account is taken only of the graphs of
the type shown in Fig. lel4. Unlike the case of the previous
examination, the hadron is represented as a strongly coupled system.
If we take 9(t)=9(o)e:&'gﬂ,we have for the graph of Fig. 1l.14 the

answer (for Pig. 1.10 o, =0dly zdp ):

P& ga(P)8 i (e 4B
¢ T RI(RE+a p i8S € , (1.18)
tulk

i.e. in this approximation the branehing slope is twice as small as

that of the pole.

Phase (M 4
4. GCeomprexidy and sign of bramehims contributions. The embiwre
phase cut
eeomplexi-ty 0f the bremehine contribution (for example, the second

Firel cfe .
one - see Fig. 1.10) ism .er::ermined by the -mu-i-aﬁ-;&-'rer ll[@t,(f))tz (di (t))
For example, let dg(t) =dlo(t) s, then

/

P(p(t) =L -Cégr@%@_)__ = (-5 Xpt

for small 1t and, consequently, the phase of the cut contribution is

given by

G,
TP, T Apllp(, (L) (1.19)
It can be seen from (1.19) that :

a) PFor small t (i.e. everywhere in (1.15) we take out

. bl phase
from the :.ntegral) the brarehing-contribution has the same 3

wb A
as the pole, but the b®»emekinmg contribution is negative. The overall
el
contribution of the pole and b»areking of the type shown in PFig. 1.10
al

is of the form (whem t = 0) :

(o) -

pl@) s [T S (1.20)
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where C = -ﬁ(ogegg; (O) in the eikonal approximation. Let us
note that the contribution of the exchange of (n+l) Reggeons has

a sign (-1)" , and consequently in formula (1.20) generally speak-
ing, there are also positive terms but they are smaller (logarith-

o the cut
mically) at high energies. (The contribution , R + 1 of braneh-

4m@- is of the order (- 1)"' (2_',5%5)_"_ )e

b) When taking into account the following corrections for small
wl phase phase
t , the branehing—eomplexidty differs from the Reggeon eomplewxity.
For example: let us examine the exchange of two vacuum Reggeons

at
(P, see Table 1) whewe t = O . The pole gives a purely imaginary

the it
contribution (i S ) of eremehine (sece expression (1.15)).

. F 2, ,~Retp K& 2
S )i-Felo (K%K S , AT
ﬁ ZD“/O/ * ) //f{}/“@)‘[—

Cer i O —2xp k%, g -2
=St g 5%) Je AT Sy, 24 (1.21)

It is clear that the expression (1.21) cen be rewritten in another

way, namely:

() g & L Tr K fe)fs,t
Re Fe (5,¢)= Sz~ 9853 (- 3 )) . (1.22)

It is interesting to note that the relation (1.22) is true not only

for the simplest exchange (see Fig. 1.11), but also when taking into
cubli

account all vacuum bramehing. Consequently, when examining high

energies, at which a contribution is given only by the vacuum pole,
(791, 3
and coupled with the exchangeYof many vacuum poles ef—bwemehims, we
relation

can write the coupling between HeA (S,t) and JmA (J,f) (or the

total cross-section) es:

Red(so)= fs -2 T A o)

Too_® f 1.23)
D& 8 3 25 Symz OO _(
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where G (S) is the total cross-section. Formula (1.23)
establishes the link between the rate of variation in the total

cross-sections on the energy and  ReA(S,0).

The fact that the cut has a phase which is different from that

of the pole may manifest itself in various phenomena, in particular,

tause
it may serve as a seuwee of polarization in those reactions where

a contribution is given by the exchange of one Reggeon (for example,

in \71',? —->.T°/’l )

5., The wupling of the culs with parkicles carrying a spin . Mul ti-

Reggeon amplitudes (N in formula (1.15) can be constructed for the
case where the external particles @G and 5 have spins, in
accordance with the same rules as for constructing the vertex of

the coupling of one Reggeon, but only in the system of vectors from
which it is necessary /ctoonstruct Ny, it is necessary to include, in
addition to the polarization vectors of particles Q and #

(€a eand Ly )s CZ,” and 7"' y also the vectors K‘: K',.l; /10/.

e it
In this connection let us point out that P of bramekiwe is not

2
fixed and therefore it is necessary to construct from all these

factors both a scalar and a pseudo-scalar.
Exemples

a) 'JIP — A’P . ‘—;Jté/f .0 1s determined only by the contribution

the eur
of bmanehine (see Fig. 1.15 a) with a negative Fr /13/. For N,

42 ”" "
it is possible to write n,E/.,v 9/‘, 9, , which corresponds to
T, A
P, = -1 for a system of Reggeons (production of AP, 2P,

cut
(epaneking) = +1)., This contribution does not disappear for

4 .
C} >0 and determines dd—'té_ t*o (the pole contribution tends to zero

at t->0 see above).
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b) FP - PP the spin-spin te;‘m in the scattering amplitude

(type .6(6462> for 10 cannot appear owing to the Reggeon
exchange with Pv, = + 1. In reality the coupling vei’tex of
this Reggeon with P is of the form (it is necessary to

construct the scalar):

67(/‘2;/)(9/ 9, él)a_ (,Q") or in the two dimensional form
G2 (597 ),
(1.24)

-P
where N is the direction of the colliding particles (the

L
remaining designations are shown in Fig. 1.15 a), for Ci->0 in (1.24)

there remains only the contribution which is not dependent on the

(2

spins. PFor the exchange of two Reggeons, the vertex N is of

the formr

. Ay AL ’
G () (r,+ s (KK e (R, (1.25)

Equation (1.25) takes into account that the two Reggeons are identical

and consequently N must be & symmetrical function of K, and K

1 2 °
1 -4 4
It is clear that for g --«>0K,’=-'K2 and (1.25) disappear. In this way

cuk
the bxanching gives a contribution to the spin-spin interaction, only
| g (3)

beginning from the exchange of three Reggeons, where must have

the form

) (1) a &y A 2 a2 4 2 24
N =N a(fzz)//(, Ky ) Ky (A A) K //f,*/fg)/@}ag,%,) ' (1.26)

For ‘h —> 0 the contribution of three~Reggeon exchange will be

proportional to

_,4'(({,1,@4/2,/,(’1)2,/,@‘)2)&, s/;/’“’/vmé/‘g‘(""derl (1.27)
' N & Na

Je



2
Since (Nla)) ~ (K'L)G , then after integration for Ky
and KZ we have a contribution of the order of 1 (; h &5
2 pinS)

i.e. the spin-spin terms shouwld fall rapidly as the energy rises.

24.
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Hhe cub
What is the effect of the presence of brenchins

on the asymptotic nature at high energies’

I. Behaviour of total cross-sections. As has already been

pointed cut in (see (1.20)) the total cross-sections for S —» oe

| | from . 1y
approach their maximum valueYbelow (thls fact was predicted in
a long time before the acquisition of experimental data demonstrat-
ing the increase of the total cross-sections -~ a psychological plus
to the advantage of the concept under examination). This conclusion
is based on the fact that the exchange of two vacuum Reggeons is
of a Screening character (has a negative contribution).
Experimentally. at the owrsel time the increase in the total cross-
sections has been revealed for K+P and 'bp -scattering
(detailed discussions of the experimental data are given in /15/).
Let us note that the simple eikonal evaluation for (1.15) gives
an increase in 6<K +F) which corresponds with experiment, and
a slightly lower increase in comparison with the experimental values
in the case of 6(PP) /16/. Naturally, the eikonal is nd a
strict result and the behaviour which is predicted by this type of
formula can be accepted only as a rough estimate. In particular,

in the models of the "brittle" hadron the behaviour
c
Otor =G = FErms

2
will be determined by R‘D s which is linked with the slope in
the diffraction cone ( inthis model it is determined by S(t), see

=9
Fig. 1.13 a). R

is significantly smaller than the characteristic
distances over which there is a variation in S(t), consequently in

this type of model the increase in cross-section will be faster than

for the simple eikonal estimates.
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2. The real part of the scattering amplitude must be positive

/14/. This can also be seen from (1.22). Consequently

higher sheuld
if experimentally ReA < O, then for émy valuesof S it may tend to

when S=Peo

zero. PFrom (1.22) it follows that this point corresponds to the
Re A

minimum of the total cross-section. Experimentally, p= ImA tends

to zero for pp -scattering at S a 500 (GeV)2 /1/ (see Fig. 1.16).

3. Crossover s+ The phenomenon known as "crossover'" is that the
differential cross-sections gg(_‘}r‘ —P)'gté (K —P)'dd'_té-(PP) at which t
(‘t‘ ato, to~0.1-0.2 (GeV/c)z)cross over (see Fig. 1.17) with
g%(ﬂqp)'gg(,(-rp 'gg—(PP) , respectively. The explanation of this
is as follows : the difference in cross-sections(d(ae):gtg(ae)-gté(ae).
is determined by the interference of the contributions of Reggeons
of a positive and negative signature (the first give an identical
contribution to the scattering cross-section of particles and anti-

particles, the contributions of the second are distinguished by the

sign).
This i A
aie s Afas)=Re Prst) P (s c)
’
(1.27)
where P(S,t) is the contribution of the vacuum Reggeon (P) and
culk v
the vacuum bmenehing (the contribution of the remaining Reggeons can

be disregarded for sufficiently large S). R(S,t) is the contribution
of non--vacuum Reggeons with a negative signature ( /O for A(thlb) and
basically for A(KI P) and A(Ptp) ) andﬁ:/he b-naﬁeug&ng points

of the type in PFig. 1l.11, where ol is the non-vacuum Reggeon. The
tendency ’cq zero of A (C\G) at t = to is due to the fact that

R(S/t°)= 0 owing to compensation of the Reggeon contribution and first order

cub
oronchine 18/

y 1.e. compensation of the contributions of the diagrams
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shown in the figures type 1.18., As the graph 1.18 b falls more slowly
with an increase in small t than graph 1.18 a, it is clear that for
a certain small t this compensation is possible. It follows from the
condition that this occurs at »tOR'O.l - 0,2 (GeV/c)2 s that the con-
tribution of the diagram of Fig.L;8 b must be increased.approximately
twice in comparison with the eikonal contribution, i.e. it must be
approximately 50-60% of the contribution of the Reggeon for S = 100 GeVZ.
cuk

4. Dips. A negative b»emekime contribution and the different
dependence on t of the exchange of a Reggeon and bygzigéag leads to
the fact that the differential cross-section must have a minimum ("dip")
at a certain value of small t. These "dips" are in fact observed (see
Fig. 1.19 a, b and Table 2). An explanation of the minimum in the
reactions 37-!/9, K‘I"-" P FP for ta~-0,6 (GeV/c)2 (which disappears at
high energies) consists in the fact that the contribution of ﬁ-(s,t)
(see above) tends to zero in this point owing to compensation of the
graphs 1,18 a and 1,18 b, The fact that this occurs in a slightly
different point for small t , is due to the fact that this miﬁimum
occurs in an amplitude with a reverpai of helicity. Let us note that
in those reactions where the contribution of non-vacuum poles is

small .
shontened ( K*f) and FP , for example), such (type of minimum does

/19/

not exist (see, for example, and Table 2) and on the contrary in
thos reactions where only the exchahge of a non-vacuum Reggeon is
possible it is present (see JTJO-a J in Pig. 1.19 a). The
minimum at t = <l.3 (GeV/c)2 in the pp -~scattering can be explained

cancellarion ketwesn

by the fact that there is ' the contributions of
cub

the pomeron and ef the Branohins due to the exchange of two P . The

correct position of the minimum is obtained from an eikonal estimate
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the cub
of the contribution of bwzamekins (i.e. 10-15% for t = 0). However

this evaluation cannot reproduce the trend of the differential

crosg—=section.

o /13/

5. The wul gives a contribution for t = in such

reactions as JTF-,» A_g P, TP —-aPP , i.e. in the reactions of type
ON— 17(2%)N (0’:'1','.9"'_JP) . As has already been pointed out, the
contribution of all known Reggeons tends to zero at t = O in these
reactions. In addition in such reactions asfP——) Jl'*n, Pn -->np

and others one can clearly see from experimeﬁt a peak linked with the
exchange of a Tr-meson (characteristic At ~ m_r ). However

the contribution of the ﬂ'-exchange must disappear in these ?egctions
at t =% 0 (since the m::: of the Jf -meson in the N T %“ *

when

ad’s u ~ ﬁ a#% -)0). Consequently, the absence ofﬁa minimum

at £+ = 0 in these reactions may be explained only by bn;:ohing of the
type JTIP (P = vacuum pole, see Table I), which may have a different

cul conkribulion

parity and not tend to zero at t -»0. In 1" 's case, the brenehing

must be taken to be l.5 = 2 times greater than for the eikonal estimate

/20/

6. One of the most interesting predictions linked with the
presence of b»anshing-is that in studying the production cross-section

6n as function of the number of particles n we should observe for
/21,22/

large energies characteristic minima for n = N, 2N, 3N etc,

(see Fig. 1.20 a, N = multiplicity of the particles in the fluctua-
tion corresponding to one Reggeon). In reality the graph of Fig. 1.10
corresponds to the fluctuation of Pig. 1l.12 in which on the average

2N particlés are produced etc, If in each fluctuation the particles are

distributed according to Poisson's law, then the dependence of Fig. 1.20 a
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is obtained. For present-day energies the peaks overlap (since

N< VaN , where V2N  is the width of the peak), and con-
cds

sequently the b»aneohing must lead to a dependence of én on T

which is wider than for the Poisson distribution. Such. a widening

/23/

is observed in fact in the experiments , and for its explanation

culs
it is sufficient to suppose the beanching contribution obtained from

/24/

the eikonal estimate

7. The el leads to a strong dependence of the average number

of Tl -mesons (& Ne> ~ ) for a given number of " (n -) on N-,

°
even if in one fluctuation (one Reggeon) Tr and Tr are produced

/25/

independently In reality in each fluctuation the average number
of Wo is equal to the average number of n (see Fig. 1.20 c¢), but
the average number of Tr. s produced by q( fluctuations, is equal to

? N, because the function  Ry)- Wwill have small steps in the regions
of n = 1 N. For present-day energies the dependence will be L NgH =nN-
up to the time when all of the peaks in &n_ are overla'pping. The
/25/

experimental results can be explained if use is made of the eikonal
cutb
for estimating the b»enehing contribution.

8. If we consider the reactions of the inclusive type (for example
anybthing
P+pP— P + &H—‘sh-e—-pema-ia-d.e-n), whilst measuring the protons with
longitudinal momenta, close to the momentum of an incident particle

um
(x = %. -— 1 ) % = longitudinal momen_%f the particle being recorded,

p is the pulse of the incident hadron), then for an increase in

the longitudinal momentum of the recorded particle the multiplicity of

/26/

all particles produced in this reaction should increase In reality

if for small Q'L a contribution is given to this process by the graph
culs
of 1.21 a, then, as q‘L increases the contribution of the bremehins
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points increases (their contribution falls more slowly as (ii increases)
and the graphs of type Fig. 1.21 b and c¢ become substantial. However

the number of particles which correspond to these is equal to 2N and 3N
etec. N = Q EH.S' is the multiplicity of particles in the processes of

Fige 1.21 a.

To sum up, we may say that a sufficiently large number of charac-
teristic features of the processes at high energies are linked with the
presence of multi-Reggeon exchange and, if we speak of figures, the
correct evaluation of the value of this exchange is given by the eikonal
multiplied by a coefficient of 1-2. In other words, the contribution

of the graphs of type Pig. l.11l is small at high energies.
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o7/
Results of the latest development of the theory /22,21,

It is a well known fact that the total 4mbereedieon cross-sections
of hadrons at comparatively small energies fall rapidly as the energy
increases, whilst at large energies the total cross-sections are
practically independent of energy (in any case, the drop or increase
of total cross-—sections at S 2> 50 (G-eV)2 ig ef—& much slower aneature-

cwonstancy
than their decrease at S & 50 (Gev)2 . The problem of the w¥ebility
of total cross—sections at high energies is one of the most interesting
problems in the theory of complex angular moment?. At first sight it
is solved very simply: for this one has only to assume that there
exists & Reggeon with.ota9= 1 (the vacuum Reggeon or Pomeranchuk pole).
However a Reggeon introduced in this manner has certain characteristics
which are not at all simple. PFirst of all there are no particles
(more precisely, no particles have yet been found), which would lie
on a trajectory corresponding to this Reggeon. Indeed the trajectory
itself is somewhat unusual, in any case,CL?: ~0.2 - 0;3 (GeV/c)_2 ,
whilst o' of all remaining Reggeons is of the order of 0.6 - 1 (GeV/c)Z.
We are certain that all the remaining trajectories exist, since if the
resonances with high spins did not lie on these trajectories (i.e. W
their spin did not depend on the momentum transfer small t), then the
exchange of a resonance would lead to an increase in cross-section
(JSJ-q , where J is the resonance spin) which would be faster than
follows from the Froissard La;ganga-en (6% bh? S ). For the vacuum
trajectory such an argument does noct (probably) exist, In this way
the vacuum trajectory has been introduced only to explain the constancy

turned ot

of the cross-~sections. But it has A that it 18 not so easy to ensure

the constancy of the cross~sections, even if it 18 assumed that a

Pomeranchuk pole exists. %X\r{cud>/ ten years ago it was shown
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that the emission of particles from a vacuum Heggeon leads to an
increasing section in contradiction with the Preissard condition /28/.
The only solution was to assume that the vertex of hadron emission
from P  disappears at(K‘{')z 0 (see )y~ in Pig. 1.22 a), In this
way 1t was clear that the constancy of cross-sections imposed many
conditions on the interaction of particles and Reggeons, and right
up to recent times it was not clear what this full list of conditions
was. By all appearances, these conditions have now been formulated
/2_7/. However before enumerating them, let us dwell on the so-called
enhanced .
"peinfereed" graphs (see for example Fig. 1.22 b). To this, corresponds
a fluctuation of the type shown in Pig.l.22 c, in which the second
"punch" of partons is emitted by a particle which is slow in comparison
with the incident particle. These graphs provide basically a contribu-
tion which,as before,has a factorization characteristic, and they
determine the true behaviour of the scattering amplitude at large S ,
which differs from S“P(t) /12’29/. The results of works _/22’27/ can

be formulated in the following manner. To ensure that the total hadron

cross~-sections at high energies areconstant, it is essential that :

1) the cross-sections of all hadrons are equal to each other at
S-» o0 , This means, for example, that 6er = 6PP = 6pd must be
equal and so on. This condition provides a theoretical criterion, as

to the energies at which the asymptotic nature occurs.

2) The processes of diffraction dissociation, i.e. the processes
in which a resonance or group of particles is produced (see Pig. 1.23 a)
vanish L
owing to the exchange of a vacuum pole, should disappear at q'_,, o ,

-
generally speaking’in accordance with (cr‘Z?) , Where € is a vector
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(tensor) of polarization of the resonance (of the group of particles),
and in accordance with (q} 2 for emission of a particle with zero
vanishlng $rom
spin. The cause of this meduetion—te—szere can easily be understood ex
the parton diagram, since the particles "a" and "c'" are described by
different wave functions, which are orthogonal to each other at <
break . up
This occurs in a similar manner to the disappearance of the diwintesraw
4ien cross-section of the deuteron at qu_y 0o (see Fige. 1.23 c), since

it is proportiomal to

/ 14 i);e-{h[ 4 82 € %,o /8/—'?2) =
- ” . - - pu —
J% (2 %) f0 (€6 )d(E,-8,) 0

& -0

‘ﬁgp , ﬁﬂj are the wave functions of two free nucleons coupled in the

deuteron.

3) All the verti;es of emission of a vacuum Reggeon from other
Reggeons of type nP—» mP, nPyR 5 mP+ kR, nR— mP+KR(K:/:0)
etc. (see Fig. 1.24) must disappear at Kt—O (Kl is the momentum
over the vacuum Reggeon, P designates a vacuum Reggeon, R is a non-

vacuum Reggeon). For example JPPP = 3PPP (k:', K;), ¥RPR = GReR (K;L, K;)

etc.

4) As has already been pointed out, the vertex of emission of
aﬁy hadron from e vacuum pole should be vanishing when Kt—aO . TFor

. L 4
example 149 in drawing 1.22 a should be proportional to Q<1 Kg')

In this way, the vacuum pole should have such a high symmetry that

at zero momenta it should not interact with anything, except for the
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vertices of type ac —» P and RR — P (a is a}{ particle) - see
FPig. 1.24 £, g, iee. it will provide a contribution only to the

processes of elastic particle~and Reggeon—~scattering.

The purpose of the following‘zggggs is t0 discuss how it is possible
to prove experimentally that all the above-mentioned consegquences are
accomplished. As present-day energies are far from asymptotic (@Tp'f
6PP ), the question of an experimental separation of the various
contributions is not so easy and unambiguous. Subsequently we shall
examine in greater detail how the asymptotic characteristics of the
vacuum pole can develop at the attainable energies. It is clear that
clarification of this question is the most important problem from the
standpoint of the present-day theory of hadron interaction at high

energies.
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I1, Elastic scattering in the region of Coulomb

interference and the diffraction peak

It is a well known fact that the measurement of the dependence
of the elastic differential cross-section on b in the region
of Coulomb interference enables A4 determination to be made of the
real part of the forward scattering amplitude. Consequently this
discussion here will concern only the reason why these results

are interesting.

The contribution of a pomeron to the forward scattering amplitude
is purely imaginary, but the exchange of several pomerons produces

in the amplitude also a real part. At high energies the contribution

culs
of pomeron bremehins t0 the value of SO = {%ﬁéﬁ%} is ap-
proximately equal to
o . 1 b .
SR e (2.1)

In the derivation of expression (2.I) use has been made only of
the fact that both the pomeron and all pomeron bragg;ing have a
positive signature and are located, at ts0 , a point J = I .
It is also assumed that the contributions of other features to (;&
and to '/9 are not substantial. As has already been mentioned,
at a high energy c;t should increase, approaching a constant

maximum ( see introduction). In accordance with (2.I), >0 ‘actually

diminishes.

For a finite energy, there are corrections to (2.1), which take

into account the detailed structure of multi-pomeron exchanges, and
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not only the position of berandshing in the 0/ - plane. In

addition, there are the contributions of the non-pomeron exchanges.
These, apparently, contribute substantially to f for /D,o- scat-

tering in the energy region 10 - 30 GeV. In any case, in this region
_ Qs a power in S
/ ff < (O , and expeneniially tends to zero as the energy increases.,

However, already at the Serpukhov energies (E < 60 GeV) departures
occur from this simple dependence /30/ and a tendency arises for
JafP to pass through zero at a finite energy (Fig. 1.16). Passing
through zero Messantial, gince at E & 70 GeV ﬁ?-\l‘o
AP SEETeT W8 %, and in the asymptotic region P >0 . How-
ever, generally speaking it is difficult to say at precisely what
energy ﬂ = 0 and in what manner _P behaves in the vicinity of

this energy. T..c answers to these questions depend on the structure

culd
of the contributions of the various pomeron bremehings, and on the

relationship of the value of these contributions and of the contributions

of the non-pomeron features. Experiments on the CERN colliding beams

/31/ indicate that Jopp passes through zero at Elab = 250 GeV. Recent

measurements by the Soviet/American group in Batavia /11/ show that

fpp increases from 0,156 + 0,012 at E = 51.5 GeV to +0.039 + 0.012

lab

at E, . = 393 GeV and passes through zero at E; .

I.16). If the dispersion relations are correct and the Pomerenchuk

= 280 + 60 GeV (Pig.

theorem is right, these results confirm the increase in dt (ff)
discovered at CERN, at least up to 2000 GeV, and contradict the
constant nature of 65- (FP) , starting from 120 GeV, Figure 2.1 shows

also the values of Ppn at B & 70 GeV 32/, 1% is obvious that these

agree well with PFP .



It appears that the measurements of JD for PP - scattering
are no less interesting, even at E & 60 GeV. The reason is as

follows. If we judge from the energy behaviour of ét (FP) and
then :
éﬁ (PP) , are/among the non-pomeron contributions to the amplitude

of FF and FP - scattering the greatest contributions are those
'
of the U - Reggeon and P - Reggeon, coupled with an f

- meson (see Table 1). At {—-‘-q 0‘;(0)’:9(}'(0)*% (here oL(é)
signs of the
is the Reggeon trajec‘bory). The »eeidues of these Reggeons, ap-
sublract each other

’

parently, are such that their contributions to 6e (PP)

whilst #%ke- contributions to 66 [PP) aooumulate. The equality
]

of the residues of P and W - Reggeons is one of the

‘consequences of the hypothesis of exchange degeneration (see for

/197y,

example in accordance with which the trajectories and residues
of Regge poles of various signatures are equal to each other. The
signature of fl is pbsitive also in accordance with (I.ll)
Pf’ﬁ‘oj_ﬂ:‘f’ whereas (J is negative and 'Zw = £+1 (in this it
has been m that LollO)ptt) ). Consequently' in the case

'
of the Pp - interaction, which contains the remainder of P /.
(see Table II), the imaginary part of the non-pomeren iy contribu-
tions is zero, whereas for FP - scattering, which contains the
sum of P’ + W s the non-pomeron contribution to the imaginary
part is great. It is precisely this which explains that in the
interval E = 10 - 70 GeV ¢ (PP) = const , whereas Q¢ (PP) varies
very significantly. But then in the real part of the amplitude of
forward scattering, the situation is the reverse: the contributions
of &)  and P’ to PFP &ee;g:-l-a%e, and the contribu-
tions to fﬁp are reduced. Consequently it may be expected
that the contribution of pomeron b-ra:::mg. to fﬁp will be

of significance at energies lower than ‘PPP . 4 measurement

at 11.9 GeV/c gives _PPP = «~0,006 + 0.034 with a systematic



/33/

error of + 0.06

In the case of ol p -scattering, the situation is very similar

to that of P - and P'P -scattering. Here also the non-pomeron

. Subtrack cach other mutual
contributions to & /A',O),. sre—-rodueed, and we may expect their sedus—

subtracrion alse tn

Hon—to fk-P . The substantial r'd'ifference){a:e that GL‘ (/(*p)
begins to increase at a much earlier time than ée (/OP) , and

that there are very few data for f/(tp at high energies. Here

it is interesting to note that the recent measurement of -FK -P

at pl(' = 10 GeV/c /34/ shows that /% p>0 and apparently, depends
weakly on the energy in the range p =1 :\r«oilo GeV/c (Fig. 2.2). It

is precisely these features which are expected for the contribution

of two-pomeron exchange. It should, incidentally, be noted that a
recent measurement at 14 GeV/c, reported to the conference at Aix-en-

/35/’

Provence gave a value of fk -P &L O . Apparently the

situation requires further experimental study. In oruer to demonstrate
culs
what value of f may be given by pomeron bremehins, and what value

by non-pomeron poles, Pigures 1.16 a and 2.2 show the curves for the

dependencies of ﬁpp , JOFP and .PK »P ,

*
_PK"P on 3 . These curves have been computed in the simple

cuk
model, where account has been taken of a pomeron, two-pomeron bwraneche

ing,y Pl and w .

AG3)= 50 rlgs)* o0 7 )15 (2.2)

Similar curves for .PK -tp ’ fk*n have been communicated
/36/

in papers by K. A, Ter-Martirosyan sy Where an examination was

the {itting

made of a more realistic model and during predessing of the experi-
mental results no conditions of exchange degeneration were imposed.



khe cubs
The contribution of b»anehing (coefficient C) has been chosen in sweh a u

23S 4o describe the increase in PF (or X" p) -cross-sections
(see Fig. 2.3) observed experimentally, at S> 100 Ge:V2 (S) 20 GeV2),
, )
the residue P and &) was determined from the remainder of the
O110) =5 (P ) =0 @uV3, & 14 S
- i “ ,O (K 0)-Cri )=

cross-sections ) ,%7/1/_' (% o) ) //('/ojr 29“_//? ,

whereas the real part of the forward scattering amplitude, occurring
cubs

as a result of braneching, has been found by (2.1). As has already

been stated, in the P.p- and K™g interactions, ReA{o) occurs only
cubs

on account of branching. Consequently ,PPP ’ fK'P are small

(of the order of +0.,04 - +0.03) and decrease slowly as S increases.

At the same time JDPP and fK‘P are negative right up %o S~ 1000

Ge'\l2 y and are determined by the contribution of non-pomeron poles,

as a power InS
which decreases expernentiaily

7/V?' ) as the energy increases.

As can be seen from drawings I.16 and 2.2 even such a simplified model
agrees poorly with experiment (when § > 20 GeVz). This is due to

the fact that in the case where there is an exchange degeneration,

the relation (2.1) unambiguously links /Ref (D,8) in ,5 P (K 'P)
~interactions with the speed of the increase in total P (K P)
-cross—sections (irrespective of the parametrization of the br&&eh-a:ng
contribution). Of course, the curves given must not in any way be

considered as precise quantitative predictions, but they give a

representation of the scale of the real part occurring as a result of
< u—w«a(/

pomeron br&&eh&ag—,- and of the vercsSaYy accuracy) wh'en measuring it.

+
In the 7"‘P ~system the increase in total cross—sections has

*)

not yet been discovered ‘. It is possible that the measurements of

* Recent measurements carried out in the NAL bubble chamber (D.
Bogert et al.) at 205 GeV/c give for 6& ﬁ?), a value of

24 + 0.5 mb.,



JD'n' tP will make it possible to estimate the energy at which it ookt

S presenk
beging. The mede®r experimental situation is shown in Fig. 2.4.

To resume, it can be said that a precise measurement of the
real part of the forward scattering amplitudes will enable our views
of the multi-pomeron exchanges to be made clearer from the quanti-

tative stand-point (and perhaps the qualitative stand-point). 1In

/
and 6(_. (K*F) increase owing to a reduction in the bmemehing

contributions or in fact whether some other mechanism is at work.

particular,it will be possible to verify whether in fact 6& (PP)
eut

In addition/ it will be possible to verify in a more reliable
manner the reduction in the contributions of P' and QI to 6& [PP)
and to G (| /{*p). The point is that p' and (I %ﬁfc;/ibut‘wn
to Bt and to Jo of the same order, whereas the b-r-mc:hg.ng- contri-

bution to P is less than to éb « If, therefore, the overall

contribution of P and W72 to QB¢ (PP) a.nd to At (k’P is in

by the
fact non-vanishing and is reduced s addition wa.-%h a b-r&nehmg contri-

b_ution (such a reduction, of course, is possible only in a finite
auch
range of energies), then :.nf PP and 1anP there will be no ﬁéltional

{
reduction, at least at this energy. In this way, if P and W

do cance) Md’%

a®e not completely reduced, and f)/('p should contain

negative terms which diminish like & power in S as the energy increases.
cancelialion the ‘From
The assumption of the total medwetien of fContributions e£ P and
w is one of the consequences of the hypothesis of exchange
degeneracy, which is closely linked with the idea of duality (see
for example /19¢. A ver_ification of the extent to which exchange
s
degeneracy is true wo@klAme interesting for an understanding of the

characteristics of many hadron processes.,


http://particular.it

£

Let us point out further, that although .fj and C;b are
linked by a dispersion relation, in the conditions where only =
limited energy range is accessible for study, measurements of'jo

provide information independent of the measurements of Gt .

A further remark can be made in relation to the theoretical
accuracy of the measurement of JFD » Usually the accuracy of
determining _/9 is generally restricted by the indeterminacy of
thesgzzé phase., In the difference of cross-sections of particles
and anti-particles on the proton, many indeterminacies are eliminated
/377

The theoretical error for the real part of the crossing-sym=-

metric amplitude, which precisely contains a contribution of pomeron
culr
Ppanehing, sharply diminishes,

In order to find j’ sy as we know, it is sufficient to know
only the dependence of the elastic cross-section on T in the range
of Coulomb interference. Indeed a measurement of the absolute value
of the differential cross-section of PP and PP -scattering in
this field, as can be seen from the scattering example at low energies
/38/

y enables also the contribution of spin correlations to the cross-

section of forward elastic scattering to be found.

Single-pomeron exchange does not give rise to correlations owing
to the positive parity of the pomeron and factorization of its contri-
bution. Two-pomeron exchange also does not give this contribution ow-
ing to the identicality of the pomerons. However, in the three-pomeron
system (Fig. I.15 d) there are states which give a spin correlation,

—

in forward scattering, of the type {éiécgl s where the transversality



is determined in relation to the momenta of the initial fast particles.
At a very high energy, the value of this spin correlation diminishes
~ ( h S)‘s‘ in amplitude (~ (&2 S) “1®  in cross-section -
see Introduction for further details). As for the value of this

at a finite energy, it is difficult to say anything definite. Probably
at B & 10 GeV, it is less than the experimental error. But even a
limitation to the contribution of spin correlation may be important
for theory. Let us note that the contribution to spin correlation is
given by another configération of pomerons than to <$e and ‘j7 .
Consequently the information which may be given by a measurement of
this correlation is completely independent of the information obtained
when measuring the total cross~section, and the real part of the

amplitude of forward scatteringe.

Let us turn now to elastic scattering outside the region of Coulomb
' shrinkage
interference. Here one of the most interesting questions is the warrew-
ine of the diffraction cone. Single-pomeron exchange gives rise to
shrin Kdgc

universal aazrowing of the cone, identical “or alli reactions which
contain it. An exchange of several pomerons as a result of non-factor-
izability complicates the picture and makes it non-universal. But it
does not contribute any differences to the behaviour of the cone “Hr
particle and anti-particle scattering. If account is taken of the
contribution of more distant, non-pomeron features, the behaviour of
the cone becomes different for all reactions. However these contributions

as a power in S
should diminish expenerntiaily as the energy increases,



shrinkage
Experimentally, a namrewing of the cone is observed in pp- and

K+p -scattering., In I +p -scattering the cone, apparently, also
shrinks - - .
sarpews, but much more slowly. In W "p~- and K p -scattering the
shrnKage . - .
narsowgng has not been detected, but in the pp the cone even widens
/11/

out On the other hand, there are indications that also in

Jr",qK: ’ P -scattering on the proton, it is possible to detect

a ﬂﬁiﬁgﬁg;g of the cone if we confine ourselves to an examination of
fairly small t (for example Jtl.é 0.1 GeV2) and sufficiently high
energies E & 20 - 30 GeV /8/. A comparison of elastic pp -scattering
in conventional accelerators and colliding beams shows that the
contribution of non-pomeron features to the differential cross-section
apparently dies away (for small t ) at E ~ 30-50 GeV. It may there-
fore be expected that at a high energy, the differential cross-sections
of pp- and pp -interactions are similar, so that it will also be
possible to detect a §§Q£§§2§g of the cone in pp -~scattering. In

this way, a comparison of the behaviour of the diffraction cone in

various reactions, particularly for particles and anti-particles,

at E > 30 GeV, should provide important and interesting results.

Another interesting problem is the so-called kink in the dif-
fraction peak, recently discovered in pp -scattering in colliding
beams (Elab D 250 GeV) /39/. It is seen in the fact that at (t)
~ 0,13 GeV2 there is a change in the progression of the differential

peak, so that the slope in a peak measured at (t) € 0.13 GeV2 , 1is

<

approximately greater by 2 GeV - than the slope measured at (t)>
0.13 GeV2. The nature of the kink is not clear, although a great
number of possible explanations have already been put forward. In

effect, all of these explanations can be broken down into three groups.

In one of these it is assumed that for some reasons or other the



reduction due to
deduretrion—ef the vacuum Reggeon sharply changes the rate of the

drop as the momentum transfer grows at 1 N'to = ={0.,1 = 0.15)
2
)

(GeV/c)“. 1In another, the variation in the slope is linked with

a more complex dependence than the linear dependence of the tra-
jectory of the vacuum pole on % (naturally, for explaining the
experiment it is necessary that o((t) should change rapidly at t~’co).
The third group includes the attempts to explain the character of

the behaviour of the differential cross-section by the b@agzging
contribution. Let us go into greater detail into all of the abovew~
mentioned possibilities. We shall first of all examine whether the
behaviour of the residue should be in any way unusual, in order to
explain the experimental data. It appears not., For this, it is

sufficient to assume that the scattering amplitude

S s (2.3)
Als ¢)=02nm) e *rn Voo [ .S

where G_ (t) is the electrical form factor (Fig. 2.5). Let us

&

note that the expression (2.3) arises in a natural manner, for example,
/40’41/0 If the

itted
computed according to (2.3), is pieeeeeeé with two exponents, as is

in the gquark model pp =-scattering cross-section

done by the experimenters - see Fig. 2.6), the difference in their
slopes is A B‘ = 2.4 (experimentally Ab - 2, see review /15/).
However, for this it is necessary to assume o(%) = 0,125 (where
SO =1 GeVz), which 1s considerably less than the experimental value

o(’P ~ 0.3 (GeV/c)™2

' -2
. Of course we can pose c(P = 0.3 (GeV/c)™",
but then in order to have agreement with the experiment it is necessary
to consider So = 50 GeV2. In this way the kink at t,~ -0.13 (9%1)2

appears strange only from the point of view of simple parametrization



9 (t) = e-4ag ,t] « The basic qualitative consequence of this type
of explanation is the fact that in other reactions, generally speak-
ing, there will not be any kink in the diffraction cone or it will

appear to be completely different frém that in the pp . For example

Pig. 2.7 shows

eiet? 2 2 ~2xp bn S[YY
_Tg‘zflzgf[t)ﬁp (t)e =7 ’ (2.4)
where the electromagnetic form factor of a U —meson Gjr(t) is taken

in the form of VGF (t) (this behaviour of Gg(t) agrees both with
the simple considerations of the non-relativistic quark model, and

with experimental data for'C;n'Ct) /42/).

It can be seen from Fig., 2.7
that the kink in the diffraction peak at Tp may be at t = 0,22
(GeV/c)2 , whilst A& = 1.7 (GeV/c)-Q . However the idea that only
the behaviour of the residues is responsible for the kink which is
observed contradicts the experimental data in respect of the dependence
of the slope of the diffraction cone on energy. It is a known fact
that the slope at small t ( ‘t,‘< 0.1 (GeV/c)z) varies with an

) Infermediale
increase in bn S with oL P, =0.28 (GeV/c , Whereas at gzeast

t values

smelis (0.15 < t]€  0.5)otpg ~ 0.1 (GeV/c)™® (see for example
/II/).

)-2

On the contrary, it may be assumed that the entire kink is
explained only by the variation ined ‘F . In effect,‘A€=2/oé,’o, 'd/”e)& 5=2 4
at the ISR energies. The idea why such a rapid variation inol P (t)

should be possible was proposed in /43/. It is that the large

contribution to o(#)(t) should be given by two~ JV-meson exchanges,

which owing to the smallness of the masé of a pion lead to the small

but quickly varying part in od(t), the value of which depends only

on the cross-section of Cﬁnjr at large energies. Computation of the

graphs of the type shown in Fig. 2.8 a leads to /43/:

Cregld . GEF o
Lplt)=1rdot - LIp 4, (¢4



where

(2.5)

/?72 . _.__v
“C ] “CF) G4 p?
/ &n MR _ g ~t )<= 2
ad Ct)ce g e,

/u is the mass of the pion, m 1is the nu on mass. PFig. 2.9 shows
the pp -scattering cross-section determined by clfa(t), calculated in
accordance with (2.5) whereCS;nn’ was taken as 16 mb (Fig. 2.9 a)

and 32 mb  (Fig. 2.9 b), kb = 0.21 (Gev/c)™® , B, = 7.44 (cev/c) 2.
b + 2d'|t)fhS in

accordance with (2.5). The curve in Pig. 2.9 b quite well describes

Al _bltl

The cross-section £ﬂ§;. = s Where 5’

]

the experiment and gives AR - 1.75 (GeV/c)-z, which is very close

to that discovered in the experiment. However finar obtained from
the factorized states (631'3;- =%§_'JI_ ) is 16 mb . Consequently it

is quite possible that the nature of this characteristic behaviour of
the cone consists in taking into account both effects: The exponential
character of the behaviour of the residues and the presence of two - I

-meson exchange in the trajectory of a vacuum Reggeon.

On the other hand, it appears more natural to explain the observed
change in the slope of the diffraction cone by taking into account the
contribution of bremekine (i.e. the sum of the graphs in 2.8 b and 2.8 c).
In effect, the contribution of bggg;hing-falls more slowly as 1t increases,
than the contribution of the pole, and consequently at large % the slope

should be smaller. Let

Lz

Ale,)=2%/¢ % o = ,
(2.6)

R A2y A2

th = _ -ai 2.
o e e 1)
whilst the slope b2z 5 (2.8)

J

0/6 eﬁe /__.Q g
g d U Z7 _ 8RY7-3 7
at fa-c £ RET 2



It can be seen from (2.8) that ﬂ' increases as lt‘ rises until

culs . [ —-R2 to
the contribution of the pole and bremekins are equal 4-— c
cub

and then 8" begins to fall. In this way, allowance for branehing

)s

leads to an increase in the slope and only at large ,t , to a drop.
Furthermore, emald t = to is usually linked with the position of a
minimum 1n._EIEll_ at t = ~1l.3 (GeV)Z and therefore in the region of
t which is of interest to us the contribution of beeaeh&ng increases

/44/

the slope « However the latter argument only applies in the case

it enhanced
if it is taken into consideration that bxamehirg is of a non-smplified

character (i.e. the graphs of the type shown in Fig. 2.8 c). In effect,

we know that at present day energies (for which 6]]- f 6PP )
enhanced
the contribution of the ampiified graphs should be great (see for example
anhanced
Pig. 2.8 d). But the amptified graphs fall rapidly as | l increases
enhaneed

(faster than the non-amplified graphs) and therefore cannot have an
effect on the position of the minimum at t = -1.3 (GeV/c)°. For small
t , the graphs of the type shown in Fig. 2.8 4 are substantial, and
they may lead to a reduction in the contribution of the pole at (to)

= 0.1 (GeV/c)2. In this case it is eagy to obtain agreement with

experiment. For example the cross-section of the form

- ey (2.9)
8 o rasse Litear e

% 5/2=0)

satisfactorily describes all the qualitative changes in the experimental
cross-section (see Fig. 2.10). Of course, in expression (2.9) the
contribution of the real part or of other spin amplitudes is too great
in comparison with the imaginary part of the amplitude (the first

term in (2.9)). Nevertheygs, the expression 2.9) shows that this

explanation is also possible in principle. In this wey, summing up,



it may be said that on the one hand the kink detected in the diffraction
cone is not very surprising from the view point of present day views

on the interaction of hadrons at high energies, and on the other hand
the precise cause of it is still not known and addiiional measurements
are necessary in various reactions and at different energies. We

should also point out that if the kink is linked with Q[P (t) , then
its character is identical in all reactions, whilst measurement of the
slodp%‘ falls as the energy decreases (at S = 52 cev AR = 0.65
(GeV/c)_2 instead of A® = 1.75 (GeV/c)2 at ISR energies (S = 2300
GeV2). Present day experiaental information on this phenomenon is

very scanty. It is known from experiment simply that there is a kink

in pp -scattering at ISR energies, and that apparently it does no%t

/15/

exist in Jﬁﬁ-—scattering at 14 GeV and that it does exist in

/34/°

K p -scattering at 10 GeV/c At the present time there are no

other experiments in which the scattering has been measured with
sufficient accuracy either at (t) < 0.1 GeV2 , or at (’c)) 0.1 GeV? .
A comparison of the results of the various experiments points, however,

/48/

to a possible existence of a kink at other energies

In order to understand the nature of the kink it is necessary
to ascertain to what extent it is universal (i.e. how it develops
during the scattering of various particles) and how it behaves as
the energy varies. For this purpose fairly accurate measurements of
the elastic scatterings of different particles are required in an
energy range of 30 = 400 GeV (between the previous accelerator energies
and the ISR energies) and at (t) from ~0.05 GeV° to~0.2 GeV" , so
that it would be possible to determine the slope at (t) & 0.13 GeV2 and

(t>‘> 0.13 GeV® with an accuracy of at least ~ & 0.5 GeV 2.
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IIT1. Inclusive spectra in the three-Reggeon region

In recent years inclusive reactions have attracted an
increasing attention from both theoreticians and experimenters,
There are many reviews(for example /15/) containing discussions
of experimental results and physics problems related to inclusive
reactions. Here we shall discuss only those aspects which have a
direct bearing on the proposed experiment to study the three-~-pomeron

vertex. But first of all let us examine one kinematic relation.

Let there be two particles having momwenta of Fﬁ ’ F& and
masses of n14, n12 which collide , forming two other particles (or

groups of particles) having momenta of P3,P and masses of n15,rnq

4
(PFig. 3.1). Let us examine this process in the rest system of
particle I which we shall denote as the laboratory system. Then

we can write the relations :

= 2 2
S=10,+5) =,og€+,02 + 2, £,

e} 2] P
27T = D A )T D o o .
5 //-/ ,'//—-//77, r A, 530 R

/}7_2;‘ n—-r_.’,')
SRS, (3.1)

where ci = PS" P1 = P2 - P‘l is a four-momentum transfer,

o and are the time and longtudinal (along . ) components
] Pa ’

t = Q2 . For a large energy Eg z,ﬁ;’ and Sa 2m459, so that

Y i /72
Gp = >
2 '2/ng
2 2 2
VPN  7 I 25 P
5 -~ me —F_ 2 = = =72 -EL— R
7 Po 2F., 38 d
2 ! (3.2)

i1f t is fixed, then

-2 —-—a 77, . \
) 2. ‘/0 —"9 270 w ¥ "/})»') '79—1 s “”b;-/- /"/&'06(. CVE <= j/} (3. 3)
& ==/%, efgen T F8 F o 7.
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Let us note that in the laboratory system

'i;},/i/ ‘:./z;"‘ P }?/7 ;/%",7; ;?o = /:; o+ Py = /'/é, 5 (304)
where T3 is the kinetic energy of particle 3. Let us introduce
also the value o= 2 i , Where PSC " is the longitudinal

- S

(in direction of E&c ) component of the momentur of particle 3 in
the centre-of-mass system. By carrying out the Lorentz transformation,

it is easy to find that for a high energy

z 2 . 2 :
N IR B P & e EL 4 (3.5)

Frequentlx use is also made of more precise relations:

2 o 7.2 2 (3.3a)
i X - ‘/-l//X/ // /X/)//X/f’—-/??,) P
. 2 2 2
e G 2 ) e

We see that at a high energy the longitudinal and transverse components
Q (or P3> have a substantially different kinematic meaning. C;i de-
termine the value of t , since q,, and qo determines the masses of
the finasl particles. It is clear (3.3) is correct in any frame of

-
reference which moves with (or against) the momentum Pe -

Let us now return to the inclusive processes. Let a fast
initial particle A <collide with a proton of the target which is
stationary in the laboratory syctem. thus giving rise to a stream
of fast particles, and that a recoil proton is emitted at a small
momentum. We shall be interested in the kinematic configuration,
when this process can be described by Reggeon exchange. The amplitude

of this process is expressed by the diagram in Fig. 3.2.
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In elastic or quasi-elastic scattering all larg energies
in the reactions have the same order of magnitude. The contribution

Jactor s \e(t)
mstiies (2-)

of a Reggeon contains, as we know, the
where ~So = 1 GeV2. if, howéver, the invariant mass M of the

stream of fast particles is great in comparison with the usual masses,
than there are,in the reaction generally speaking several independ-
ent large energiesyand the situation becomes complicated. A theoretical
analysis shows in this case %ﬁe single-Reggeon contribution to the
amplitude contains the -maﬁ-z-p—l—xe-r ( )d(-q'-‘-. Such a factor

can be explained in various ways, for example, on the basis of rep-
resentation of a multi peripheral model or by introducing complex

angular momenta in multi-particle amplitudes. However, here we shall

not go into the detail of the theory but shall use the result obtained.

In order, now, .to obtain the cross-section of the inclusive

reaction

A -+ P——? P I ' (3.6)

we must summate the square of the amplitude modulus of Fig. 3.2 and
integrate over the quantum numbers and momenta of the fast particles

of the stream and summate over their number, which is shown schematically
in Fige. 3.3a. It can easily be seen that the upper block in Fig. 3.2
can be considered as the interaction amplitude of particle A with
Reggeon o with the formation of real pacliclé< . With this
approach,;ig;er part of Fig. 3.%a contains the total cross-section of
Reggeon interaction with particle A. The optical theorem links the

total cross-section with the absorption part of the forward scattering

amplitude, which corresponds to the diagram inFig. 3.3b.
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Generally speaking, the amplitude of the inclusive
process may contain several different single-Reggeon contributions
of the type in Fig. 3.2. In this case, there appear in the cross-
section interference terms which correspond to the fact that the
Reggeons in the left and right-hand sides of Fig. 3.3 a, b may be

different.

Let us now note that the square of the mass of the stream
M2 plays the same part as the square of the total energy in the
cms of § for the usual elastic amplitude. It is, therefore,
natural to expect that at 1arge_§?£.the amplitudes of the interaction
of Reggeons with a particle, in t;¥n, are determined *y the sum of
the single-Reggeon exchanges. Then we come to diagram 3.3c , which
is called the three-Heggeon diagram. Its contribution to the

/48/

inclusive cross-section is described by formula

owhﬁ a/O’ oc ot _/_ . L o)
/ e =R F C,{/»,u) ’/x//z// //*/2) (; 7)

ayrac)
"%coc/stéffi) Z, 0) //‘ ~

™

where E and p are the energy and recoil proton momentum, Q. and

l%s are the vertices of Reggeon coupling with the particles,

9 . . i“%"’a".
Q“_<9L) is the signature » The wvalue gdﬁﬁ

_ cror [
describes a three-Reggeon vertex. The +p1-d 13_ is linked

with the flow of initial particles. The contributions of the inter-~
ference terms, where all three Reggeons are different, also are of

a form similar to (3.7). In expression (3.7) instead of _.qi

one often writes t . However, at 7$§ » 1 sy Where this expres-
sion was in fact obtained, small t and qf practically coincide

(see (3.3)), so that if their difference is taken into account,

accuracy will be exceeded. If, however, we use (3.7) for the finite
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values of S s then t contains the contribution of the long-

h1§
itudinal and time components and it becomes imporftant as to which
variable should be used. It is, however, clear that the question
of how to write the asymptotic formula in the non-asymptotic region
can only be answered on the basis of a more complete théory or
experimental data. However, as has already been pointed out, the
transverse and longitudinal components of the momentum itransfer have,

at a high energy, a substantially different meaning. This is once

again shown in formula (3.7) where the trajectory and vertices at

2 L
5> Mi » So depend on 7,_‘_ s whereas /; &2 Q=% (see
mp

(3.2) )o 1In addition the permissible range of variation in t depends
on M° and S (t <t min). For an insufficiently high resolution

sSmall
this may lead to an erroneous reduction in the cross-sections at/ t .
Consequently we consider it more reasonable to use precisely qf ’

and not t .

Using the variable & , equatior (3.7) assumes the fomm

(see (3.5) ) :
== N v s /\"‘7 . £ 2 /, sl Z
Sre = TEED Fes(2L) VL) as) E e
s\ OIT A) mEk 5 (3.7a)
Xl 30,) ﬂv‘.ﬁ(‘) .

In this way, the energy dependence of the inclusive <-pss-~
section in the three-Reggeon region at X = const is determined by
the sum of the Reggeon contributions (more precisely, the upper

Reggeons in Fig. 3,3c). Here the non-pomeron contributions, for
as a powes 05

which }3(0) £ 1, decrease expementially with the energy.

Formalily equations (3.7) and (3.7a) can be used when

X

2
N 7 < I3 »
>0, s m =8
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We shall discuss the experimental situation below but it is already
clear from (3.8) that in order to determine the three-Reggeon contri-
bution to the inclusive cross-section much greater energies are
required than for observing the Reggeon behaviour of two;particle
amplitudes, where only é?_ » 1 is required (let us recall that

-]

5,% I GeV2).

The conditions of (3.8) show also that in the three-Reggeon
range, the value of X should be close to -1. . X=—p-=1l, the in-
goes as a power
clusive cross-—section behawes—exponendtialiyy, and it may either decrease

or increase. But even if the cross-section increases, it remains,

a L
of course, limited, since in the physical region ‘J+9C> 2(’" ggi')

0f special interest is the case where all *hree Reggeons

\

are pomerons. In accordance with (3.”" the three-pomerm contribution

to the inclusive cross-~section is o. the form :

\/07-/0“@[94&)./7+x)—/*2oc/; f.‘f (5'9)

where use was made of the expansion of the trajectory of the pomeron

dPqu)=1—dbqi at small ?f.

In order to obtain the contribution of the inclusive three-
pomeron cross-section to the total cross-section of interaction it
is necessary to integrate‘/o+P in the three-Reggeon region over the
recoil proton momenta. The invariant phase volume can be conveniently

integrated over the azimuthal angle and expressed by the variables

X and ?f (at )x' ~ 1 ).



If G(O) # O, then at J=P>ee the three-pomeron contribution to
the total cross-section increases in accordance withn ~G(0)Qn B\S.
Qimiled

If the three-pomeron contribution remained mestriobed at S-ves

then its increase might have been compensated by the reduction in

the contribution from other kinematic regions and the total cross-

section might have remained constant. But since it increases in

untimifed , _

an empestriesed manner, it cannot in any way be compensated. In this

way, 1if the total cross-section is asymptotically constant, then

G(0)=0, i.e. 0)=0, where is the wvertex of coupling
(0) ’ QPPP( )=0, QPPP P g

of the three-pomeron. This result is important not only for the

behaviour c¢f inclusive cross-sections, but also for understanding

eul
the structure of pomeron branekiss and the trajectory of the
/14/ . . o . i o X
pomeron s, Since its verification is very interesting.

The study of the three-Reggeon region is generally very
interesting since it provides substantially new information concern-
ing the trajectories and other properties of Reggeons. ﬁut the
study of the three~pomeron contribution is of particular importance.

As has been explained, it is expected that ?PPP (0) =0 . However,

culy
pomeron bremerdws may imitate the effective three-pomeron coupling

e
with 3PI£P (0) 1: Q0 . The three-pomeron region may prove responsible

for the main part of the observed increase in the cross-sections of

k*,) and ,JF -interaction /15’49’50/,

and it may determine

the energy behaviour of the correction in scattering on a deuteron
/50,51/

ol
orernehine will be found below .

etc, A more detailed discussion of the contribution of

Let us examine the experimental situation. The investigation

of three-pomeron contribution has hitherto been made only in the
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F + P -> F-r reaction on the CERN colliding beams and in P-p—lp—-) [b-ra::

and ST;P-) x +F at Batavia. At CERN the measurements of the

inclusive cross-section have been carried out at four ISR energies

't] >» 0.15 GeV2 and \jc‘ up to unity, but with an error of

/52_b4/. The measurements at Batavia were carried

/2%,5%,55-57/

Ax ~ 0.01-0.02
out by various groups with different methods They
cover a wide range of S and t. The absolute cal;ibration of the

cross-sections in these measurements however is apparently of a

preliminary nature (the error in the absolute normalization is 30%)

Pigures 3.4 - 3.6 show the existing experimental data for
proton spectra obtrined at Batavia and CERN for small ¢1i .« Here
it should be noted that the drop in cross-section observed in Fig.
3.5f at t~0.03-0,05 GeVg, may obviously be linked with the faet that
in this case, for a large part of the interval over M2 there was
the inequality ,t’ < 'tm'ml = m? M‘ysa (and such events were
kinematically prohibited). This situation once again points to the
fact that it is preferable to make the search for spectra zt small
tru..fers and non-asymptotic energies as a function of Cii (which

may be vanishing) and not as a function of +t.

In order to describe the existing ISR spectra it was sufficient
to take into account two Reggeons: the Pomeranchuk pole Pwiﬁ\ o(F (O)=1
and the Regge pole RM‘*%(R(O) =1/9 /50’55/. This pole provides an
effective description for the contributions of P',UD and otner Reggeons,
which it has not yet been possible to break down. The contribution of
the terms which describe the interference of P and R is apparently
small and it can be disregarded. In this way, in the inclusive cross-
section there remain the terms PPP, RRP, PPR and RRR, where the
first two symbols correspond to ﬁhe lower Reggeons and the third symbol
to the uppér Reggeon in Fig. 3.35*3 In this examination we

{f?fi SOl Y gitae
{ e
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have disregarded the contributions of the poles lying to the

left in the j -plane. However as shown by the model calculations
/59/, at small Cﬁ, the contribution of the I -pole is quite
substantial. Ffor example at - x £ 0.8 the contribution of WP is

equal to the contribution of RRP at Pf £ 0.2 GeVg.

As follows from an analysis of recent measurements at Batavia
. /60/ X . .
of the p+n > X + P reaction (which was isolated in a
study of the p* d —->Cx+P process), the inclusive cross-sections
of this reaction should be described well by the coantribution of
the J-pole (term ¥F P ) (see Pig. 3.7). As the role of the

FJI'TP~ (t_-:tF?r—)-!(f —x)),

contribution must be taken into account even when analyzing the data

T —-exchange sharply increases at small a'i(

for the A 4 p— x+p spactra at not too small 1-—'94((" -‘xD;,0.0S)
and fairly small qgj_ (less than or of the order of several

eVZ).

The ISR data at S 2 1000 GeV2 within the limits of measure-
ment accuracy ( ~ 20%) do not depend on energy at a fixed x (see
Fig. 3.8)., In accordance with (3.7 a), this means that they are
sensitive only to the term ©PPP and RRP. The three-Reggeon description
is us able at ]x, & 0.8 /59/, In tne interval o.8<,x) < 0.9
the main contribution is RRP , which slowly decreases for ‘IX-\—) I,
For ,x’ 2, 0.95 it is the contribution of PPP which begins to play

the main role, which increases at lOC)—>I. A comparison of ISH data

*
Let us note that in the theory with the asymptotically constant

total cross-section the vertices %PPR (0) ’%PRP (0), %RPR‘(O)

should also vanish, when p is a true pomeron.
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and previous accelerator data indicates the important part played
. 1 o /50/ .
by the non-scaling =~ ‘/5” of the term RRR « This con-
: . : R /55/ o
firmation agrees with the Batavia results (see Fig. 3.9, 3.10).
Here we should stress the particular importance of the experimental
] .
determination of the term RRR , and its dependence on 34 in the
region of small momentum transfers. We shall note first of all that

-
the contribution of this term at small q,, to the spectrum fopg~

_;_L____ 1 actually increases at ’JCI___, 1, which complicates
Vi-lx| VS

isolation of the effective contribution of PPP . HFurthermore the
size of PRRR is very substantial, for example, when calculating

the contributions of the spectra to the total cross-sections and for

checking the various laws of the sums for the inclusive cross-sections.

As far as the ©PPR term is concerned, there ~ubstantial
data relating to such values of S and X where the spectra are not
3
sensitive to the PPR contrivut , which at small ﬂA- is propor-
. -1 =3 o N .
tional to 8 (1 + JC) « An indirect representation of this

/50/

term can be obtained in the following manner Extrapolation
to the "infinite energy'" of the missing mass spectra in the p + p—ap
+ M reaction at EL30 GeV makes it possible to find the "cross-section

of pomeron scattering on a proton 5Pp at M2< 6 GeV2. The same

cross-section from the ISH data at Ma = 50 GeV2 and 100 GeV2 agrees
. i GS 112 . 2 s

with the fact that pp = const at M 26 GeV (see Fig. 3.11). As

the variation in ‘SFP at large M2 is determined by the term PPR this

indicates that the erfective vertex of PPR is not great. ‘o isolate

directly this term we need measurements of the inclusive spectra at

(1+ x)é 0.05 (i.e. for small "t at recoil proton momenta of

P, £ 45 1ev) and 100 Gevzé s £ 1000 GeV® (i.e. at the initial

energies I in the 50-500 GeV range).



Let us now turn to the term PPP . The ISR data at
\tl 2 0.15 GeVZ can be described, by assuming both GPPP (0)4:0 ,
and GPPPL‘t)‘\-w At /50/. However, the data of Batavia, obtained
in a bubble chamber at |t] = 0.05 Gev® , which are normalized
to the ISR data, show c\e,artv " that GPPP (0)4:0 . A comparison
of the Batavia and ISR data also points to the fact that the slope
GPPP (t) at 'tl < 0.1 (GeV/c)2 is possibly greater than at |ti>
0.1 (GeV/c)2 /23/. This change in the slope may have the same nature
as in elastic pp -scattering (see section II). It would be very
interesting to study this question in greater detail, having pwoaréssed
into the region of smaller CiL » If subsequent investigations
show that GPPP(O) is really non-vanishing, it will mean that
either the total cross-~section cannot be asymptotically constant,
or that pomeron bf;:iiing is a substantial contribution, imitating
the three-pomeron term. In the second case, the question arises
as to how to distinguish %he effective three-pomeron term from the
true one. As the need to review the nature of the pomergn has not
been proved yet, we sh1ll start here from the second possibility

cuky
and discuss in greater detail the contribution of bzranchingss

From the derivation of the expression for the three-pomeron
term, it is clear that its contribution to the inclusive cross-section
occurs on account of the diffraction dissociation of the incident
particle A with the excitation of very large masses M (by the
exchange of one pomeron). Consequently the vanishing of the threec-
pomeron vertex at q =0 denotes that at q = QO the amplitude of

1 1
diffraction dissociation must vanish, at least, for the case of
excitation of fairly large masses. But this in turn means that at
-—’
C‘l = O the vertex which links a pomeron with the particle A

and with the state with the large mass M vanishes (see Pig. 3.2).
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As a result,at EiL=(> the diffraction excitation of the state with
large masses occurs only on account of the exchange of two or more
pomerons (Fig. 3,12). Unlike single-pomeron exchange, which at

ELL = O is asymptotically constant, the contribution of multi-pomeron
exchange decreases as a certain power of Pn S . This power is
smallest for two~pomeron exchange, and it may be expected that it is
precisely this contribution which is @:QEQQSQEL; already at energies
which are not very great. Then the inclusive cross-section at a

high energy and M2 = const, Ei* = 0 is determined by the diagram of
Fig. 3.13 (instead of diagram %.3b for the single-pomeron exchange)

and we obtain (instead of a constant)

s T I, < ~ /““i" / y R
. [ v e ._‘.,7,‘{‘ ~ ~ T d ) e 5 . 10
A e B ESEE e 7 (5.10)
2 E :
’ f;"~0) Meecons?

culs
In this way, when taking into account ®®ermebineg the inclusive cross-
-
section at qJ.= 0 is non-vanishing, even if ppp (o) = o,
) : be, ¢
At first sight the two-~pomeron exchange —ny eéiffex from the single-
Wy rale ‘
pomeron exchange aw the ®eduwetioern with energy. In reality, the
situation is not so simple. In effect, the experimentis are set up
at a small, but finite, <a£ , wWhere the single-pomeron contri-
"bution is always non-vanishing and always decreases with energy. This
as o power in S —Qo(fp C;i 2
decrease is eaepexze-n%ea-l (~ 8 ), but at a small 9.
and in a finite range of energies it is difficult to distinguish it
from the logarithmic. Consequently, in order to clarify what exchange
[~
ig fundamental at Ch — 0 , 1t is necessary to study not only

2
the energy dependence of the inclusive cross-section (at constant C};

2 2
and 1), but also the variation in this dependence at g9, —» 0.

If the main exchange remains the single-pomer exchange

(i.e. %PPP(O)#D ), then

L 2 d/£6.

(% 245 r5) gt (3.11a)
‘@z di? Gl

=consl.e



61l.

If, however, %PPP (O)_—_O and the single-pomeron contribution dies
away at CLL-_+ 0O, then for the purposes of the evaluation the

cross-section may be written in the form

*/h”'~ & -,
0‘72 LL 6#50 /ﬁ-wga( &S)Q_L C}Q’zef 4"{.4[;7 )‘71

o 7
i (7+ %;_4‘53,5)2 (5.11p)
@ —/Iej'fd‘a 5)5’)95 v

(7 + ~——z §)% 7

11 R2, R3 are certain

characteristic radii. Both the coefficients and the radii, generally

where B, C, D are constant coefficients, R, R

speaking, are different and vary with M2. In {3.IIb) the first and
third terms describe the contributions of a pomeron and bremeking, Ind
the second term describes their interference. It is obvious that
(3 Ila) has a simple energ gy dependence, which varies steadily as
c%i decreases. In (3.IIb) both the energy dependence and

its variation with Cﬁi have a more complex form.

Let us examine the structure of the expression (3.IIb) nore

closely. 1for any energy and sufficiently small <1i the main factor

ok
is the bwamehiwns contribution. But if we fix this value Cl? and

increase the energy, then the main contribution is that of the pole.
However, when the energy increases further, again it is the bvenehins

contribution which is the main contribution. If the coefficient D
als
dgr d M2

. . , . e .
steadily with an increase in c‘l , although in (3.IIb) there are

is sufficiently great, then at a finite energy M decreases

. . 2 . . .
terms which increase at small Cil . However with an increase in S ,
there appears, in the angular distribution, a maximum. It occurs at

C}L = 0 and with the increase in S at first moves towards large

9 . . _ R i

-

f CiL and then again goes towards ‘1L = O.



At a very large energy the position of the maximum almost coincides

with the maximum of the pomeron contribution, i.e. it is situated at

2 4
I R +2d'pinS

a Tinite energy is assisted also by the negative sign of the inter-

« The possible absence of a maximum at

ference term (if it is in fact negative).
- w . . . > > *
The ®ranching contribution also leads to a variation in

the dependence on X . If,when there is only the contrlbutlon of a

pomeron (1+x)a%z-%l/ -0 ~>const. thon when b—ra&e-h—i—ng is taken

S—p oo
into account terms appear which contain cxpressions of the type

: EY 1 N\~
('/*"l'é'af&’ﬁx)

) an
An explanation of the properties of these terms calls for/analysis
of the structure of the top block in Fig. 3.1%. For example, the
diagram of Fig. 3.l4a give a contribution which does not depend
on energy but decreases Ju\uahnj hy»&hzjzz; whilst the diagram
of Pig. 3.1l4b gives a slower decrease at X —¥-1, but contains

decrease with$S
however a pedwetion at 5 —» oe, ¥ = const. Apparently, for the
_ s
break«down of the contribution.s of + pole and brenmehiws it 1is
necessary to have a full analysis of the dependenc es of the in-
2 2
clusive cross-section on I (or x), t (or C‘L ) and S. Un-
fortunately we know very little at present of the structure of
Cuks
srenehing and cannot give any substantiated knowledge at all about
the radii and coefficients in expression G.Ild). As a simple
auk

qualitative illustration let us examine more closely the brarshing
corresponding to the graph in PFig. 3.12, 3.14a and the interference

wd
of this exemehing with the single-pomeron term (Fig. 342, 3.14b).

. 2
The contribution of these diagrams depends only on ql_ and (1 + x)
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and leads to a cross-section

(7+ X)d .~ 8/9%e RO 24753&)‘212_

2 A)*T"(/"&/m(‘/f.z 2 ) (3‘12>
f/,:%ﬁf& Z)F e Zra /47 )/

>

We select the relationships between the radii in (3.12) starting
from an eikonal approximation, which, although not true, neverthe-

less may, clearly y be used for rough qualitative evaluations

2 -

-2 2 2 | 2 *
)ez. = 6 QeV ,@»:5&\!"’, /ﬁ =/(;,=Z}G¢V—2.
For o(P let us take the present-day value of /17/¢,LP = 0.3 GeV-Z,

T 4
and let us take the relative value of the ewemeliwms contribution

d equal to I (variant I) for I/2 (variant II). The value d = 1
cut
exceeds several times the value of the bmemekins contribution usually

obtained in the eikonal model.

In connection with this, let us point out that we are

discussing the theory with asymptotic constant total cross-sections

*
Here we have taken account of the fact that the proton

may consist of partons (quarks) and that part of the proton radius
(~ half) corresponds to the small probability of collection of
partons after backscattering on to a proton. But the second part

of the radius relates to the vertex of parton interaction with a
pomeron. I1f is precisely this part of the radius which is determined

by the eikonal approximation.
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(equal to each other), when the contribution of the precise
(asymptotic) pomeron vanishes for inelastic processes at q_l__;o.
Consequently, in the evaluation used for d account has been taken
also of those b?éggaéﬁge which are responsible for the fact that

at present-day energies the total cross-sections are markedly dif-

ferent from each other. A real evaluation of the contribution of

eut
bramehine is the value

Lot —_ ot
/ PENS)
& oY _“—G’t-o’f— .
~ exp
. tot . . .
Taking as G;,, the cross-section of the pp ~interaction

15 tot
(6*'2 = 6;"; ), and as 6:2 - 6:”_; , we obtain

tot Zol
-G
Q/N .._6_:.":&_——-—..47./2?—.—- o2 1 a

e
7
///-4

Figure %.15 shows graphs which demonstrate the expected dependence

for model (3.12) of

2 .

o ANe)
f ) & 2
(7+7) alxaly? on g,

for two values of x and two values of the parameter d . As is

seen at d = —;— and (14.31:):0.1, in the region of qi £ 0.05 Ge'VQ a

nmarked reduction in the slope of the curve (II) is observed, whereas
at (1 + x) = 0.01, curve II has a maximum in the region of Qrfz0.06

GeV2 and the cross-section at zero differs by 25% from the maximum.

But here too it is not easy to note a drop, since it occurs in a

very narrow region of cii‘< (0.03-0.04) GevZ. If, however, the

cut
branching contribution (and we do not know this precisely) is greater
(curve I, d = l), then it will be extremely difficult to note a

[-]
variation in the slope at q_L-—)O in the interval 0.05 > 1 + x » 0,02,

For this it is necessary to make measurements with an accuracy of
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*
the order of 0.1% in the region of C}i'<: 0.02 GeV2 R

Nevertheless, the dependence of the value

G
Fi=)= fre 1/57;3‘5;

a2z0

/J-

on (1 + x) is fairly strong. As (1 + x) varies from 0.05 to 0,02
F (x) decreases by 40% (irrespective of the value of 4 , since at

. s
cIi = 0 in formula (3.12) there remains only the brenehinsg.

contribution).

It should be remembered, however, that the evaluations made
were obtained in a very primitive concrete model and provide only a
qualitative representation of the possible scale of anticipated
effects. In this way, even in the model case (3.12) it is not easy

decrease
to detect a fedbimm—away in the pole contribution at CLL —» 0. The

aut
brapehine strongly screens this effect, displacing the maximum of
the cross-section towards smaller Qi. and blurring it. In the real
case, the situation is even more complicated by the presénce of non-

pomeron contributions, which cause additional distortion to both

the angular and energy dependences.

In order to note the reduction in the single-pomeron contri-
bution at qi —» 0, measurements of the inclusive cross-sections are

required in the range CLL £ 0,05 C—eV2 with a resolution of

OI course, at particularly small I+x, which are attainable at

very high energies, the maximum for ‘1& will nevertheless appear.

-3

For example, the curves I (d:l) at I+X(I)= I.8 x 10 and I+x(j)

-4

= 0.7 x 10 coincide with the curve II (d=I/2) at I+x&ﬂ = 0.1 and

I+X(n9 = 0.01 respectively.,
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13C1i‘< 0.01 GeV2 and an accuracy not worse than 1—2%. Consequently

it is particularly important to investigate the dependence
C/QZ

on x and on the energy in as wide as possible a range and with the
best possible resolution. For a more reliable separation of the non-
pomeron contributions which decrease «,1VT§".(or Vi+x ), it is
necessary to make measurements not only at the ends of the interval,
but also in as large as possible a number of points inside it for a

more accurate determination of the pattern of the energy dependence.

Finally, let us discuss yet one possible feature of inclusive
cross-sections, which is required in an experimental check. If the
cross-sectionieﬁetermined by the three-pomeron contribution, then it
satisfies the condition of factorization for the incident particle 4 ,
i.es the equality for the inclusive crogss-—sections of two particles A

and B on a proton is fulfilled

s ‘£¥3§f -t = TE
C’;A E a-"P Gﬁg ~ (/3/0 7 (3013)

‘where 6: and éte are the total scattering cross-sections of A and
B on any (but identical) target. When calculating the contributions
of b@agﬁzing and non-pomeron terms, the cross-sections, generally
speaking, should not be factorized. However, experimentally factoriz-
ation is @ffected in a number of cases with satisfactory accuracy

even when there are no grounds for describing the cross-sections by
the contribution of one Reggeon. The nature of this phenomenon is

not clear and requires detailed study. A check of factorization is

particularly important in the region of small Cﬁi y Since in this



case in the theory with the asymptotically constant total cross-
section the contribution of the true Pomeranchuk pole to the
spectra tends to zero («.11 ) and at large S, when the secondary
poles die away, investigations are in fact made only of the contri-

ks
bution of the pomeron bxranehins.

In order to check factorization we need the inclusive cross-
sections of the interaction of the various incident particles with

a proton of the target in conditions of S > Mz »So ~1 GeV2 .

If the pomeron b@&::iéﬁg is factorized, the value of the inclusive
cross-~sections of the various particles enables a more reliable
separation of the three~pomeron contribution (although this is in
fact the effective one).

dOwn 4

If it proves possible to make measurements o to‘t,ale-
GeV2 , then, generally speaking, it is possible to note electro-
magnetic corrections owing to excitation of an incident particle by
the Coulomb field of the proton in the target. A corresponding
contribution to the inclusive cross-section is determined by the
diagram of Fig. 3.16, which is similar to diagram 3%.3b, but with

replacement of the Reggeons by photons. At S oo and X —» -1

this contribution is egqual to

/é‘ L ﬁzﬁ".‘) PR AP O 4 ) ‘/2 /

/. = Fo i A AL Sl B R

(& oBn o " G2y YD s e (3.14)
3 JA . . . .

where t igs the total cross-section of photo-absorption of

2
S . Mm% a, \%
the inecident particle A . ZIet us remember thatlt';a'fl"ﬁhz (F‘/S) A

The corrections owing to interference of the Coulomb amplitude with



the powerful hadronic amplitude in the region indicated are not

substantial. If particle A 1is a proton then at IVI2 » m2

Sl ES -t 8 S <

Y o g s T 8 L Do mb b

(C TN L PR /(Gev) - (3.142)
The behaviour of the Coulomb term at 2x4-1, obviously

almost coincides with the behaviour of the three-pbmeron term (see

(3.9) )o As must be the case, as the photon spin is equal to 1, so

is the pomeron spin too equal to 1 (at qiz t = O).

If the incident particle is a proton, the cross-section of
photo-absorption is, of course known by means of direct measurement.
But a target made up by X - or K -mesons is clearly not aceessible
in the immediate future. In these conditions, a study of the inclusive
.cross-sections at very small |t| might be an irreplaceable source
of information concerning hadron photo-absorption. If the three-pomeron
term does in fact die away at cﬂ:.—; 0, the Coulomb term may poésibly

be noticeable already at |t] in the interval 1074 - 1077 gev©,
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Iv. Diffraction excitation of resonances

As was discussed in the previoﬁs section, the conditiqn of
asymptotic constancy of the total cross-sections requires that the
pomeron, at ¢f = 0, cannot transfom the particle into a state
with a great mass M , i.e. for single-pomeron exchange the upper
block in Fig. 3.2 should tend to zero at éz = 0, It may however
be shown that an even stronger assertion is correct, namely: at

q& = 0 the pomeron should not transfom the particle into any other

state, even with a limited mass /27’64/.

As a result, at éfl = 0 , the pomeron may provide a contribution
only to elastic scattering of the particles.

In quantum mechanics there is a similar phenomenon /27/. If the
coupled quantum-mechanics system (for example a deuteron) is scattered
at a zero angle by a potential of a very large radius, then there
cannot in this case be any rearrangement of the internal wave function
of the deuteron, since only elastic scattering is possible, but not

its decay or excitation.

In the relativistic theory, a similar interpretation can be given
iy
to the disappearance of the single-pomeron contribution at 9-1 =0,
if the fast hadrons are considered as coupled states of a system of

/4/

partons with definite internal wave functions .

Thus, the single-pomeron contribution to diffraction dissociation
disappear —»
should édeeey at 1 = 0 for any excited mass M . Consequently,as
in the three~pomeron case, which was discussed above, the cross-section

-
of diffraction dissociation in a  state with any given mass atl£==o
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should decrease with energy, and at a high energy the angular

disappear at
distribution should have a maximum and desday—-+6- a zero angle,

As described in the previous chapter, single-Reggeon contri-
butions to excitation of the states with a large mass M are
determined by the value S/M2. This means that the Reggeon condition

smailer S
is established for small masses at am—earlier—$ime than for the
large masses. It is expected that the decrease in the contributions

from cutbs will
of—branehing begin for small masses at a lower energy. Consequently,
afr
the diminution in cross~section %e—%ke zero angle for small excited

masses probably occurs earlier than for large ones.

The spectra of diffraction dissociation in the region of small

masses M , measured at energies of up to 40 GeV, strongly depend

on the mass and have sharply expressed peaks, which correspond to
the states with definite values of JP . It is natural first of
all to study the excitation of these states, which occurs with great
intensity. We shall, in fact, discuss this later in this section.

Shales
We shall talk of these -eeméitieoms as resonances, although in reality

it will be unimportant for us whether these are true resonances or,

in fact, kinematic reinforcements which have specific quantum numbers.
Let us examine briefly what sort of states these are,
In the spectrum of diffraction dissociation of the proton, the

most intense is the overlapping state of N (1470) with jP= ZL/:E+ ,

N (1520) with ]’: 3/27 and a peak at M % 1700 MeV, which is formed



by several resonances which lie close to each other. The states

with even greater masses are not so sharply distinguishable,

In the dissociation spectra of the 1Y -meson, the peaks A

( H ~ [|]00 I‘/IKJP= /*) and A, (M= /30017!", jp= 2 ) which over-
lap are clearly visible. Somewhat less visible is the peak A3 (Hz

1600 ”el/, Jf=2. )e Similar states are visible during dissociation of
the K -meson. This is a peak in the Q -region (Mz/.?OO//CK JP. /f),
a resonance X (1420) with ‘7! 3,2* and an /j -region

(1700-I800 MeV) with preferential values of JP.-.?,'.

For the majority of the resonances, the tendency to zero of the
single-pomeron contribution at i.l = 0 is the result of the assumption
concerning the asymptotic constancy of total cross-sections. However
for some boson resonances, this effect may be the consequence of
simpler causes. Thus, in the case of the dissociation 7/4 Az or
K =$K (1420) the pomeron c(annot give a contribution at é’l = 0,owing
to conservation of parity. In effect, the pomeron has a positive
parity and as a result of the factorization of the single-~pomeron

has been multiplied

contribution, the vertex 71'141 jo, after it %wame with the tensor of
polarization A2, must be pseudo-scalar. But at a zero angle, when

all the momenta have identical directions, there are not enough vectors
for constructing a pseudo-scalar. For Fermion resonances, this pro-
hibition does not arise, since in constructing the vertex it is possible
to use the pseudo-scalar 6" « (Let us remember that as already
discussed in the Introduction, the longitudinal and transverse components

of the momenta, polarization vectors etc. are included in the Reggeon

vertices and amplitudes separately).
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Thus, at irl = 0 the contribution to the diffraction execitation
of resonances may provide only multi-pomeron exchanges, i.e. beggzh—
4ng. (see Fig. 3,12), The slowest to decrease with energy is the
contribution of two-pomeron bsa:g;éng1 and consequently it may be
expected that it is precisely this contribution which is the main one.
As has already been said in the Introduction, two-pomeron contribution
to the elastic amplitudes decreases in accordance with me Z!g e In
the case of diffraction dissociation, the disappearance of the in-
elastic pomeron vertices at a zero transverse momentum of the pomeron

leads to a more rapid decrease in the contribution of two-pomeron

7
exchange, ~ 7Zy3. This fact has already been used in (3.11 b)e.

Since the excited resonances have a specific value of spin and
parity, the question arise: as tc the spin structure of the amplitude.
In all cases which are of practical interest, the two-pomeron contri-
bution at a zero angle has (taking into account the identicality of
the pomerons) the same spin structure, which is attainable kinematically
for the single-pomeron contribution. More concretely, this means that
at j;} = 0 the helicity is conserved in each vertex of the diagram
iﬁ Pigure 3,12 in particular, whereas the spin correlations between the
vertices are non-existent., For example, in the reaction 7fp->4,P ’
at g} = 0 the fwo=pomeron c.:itribution to the amplitude is proportional
to e, ( é? is the polarization vector of the resonance Al in its
rest system), i.e. at a zero angle the two-pomeron exchange may excite
A1 only in the state with zero helicity, as in the case of the incident

7 -meson. The helicity of the proton in this case, is, of course,
conserved?//k variation in the helicity of the resonance in comparison
with thebhelicity of the initial particle may occur at 93 =0 only

with a simultaneous variation in the helicity of the proton, i.e. these



terms in the amplitude describe, in substance, the usual spin cor-
relations. For example for 7fP »,41p they are proportional to

ZE? xé{]} « The spin correlations occur only during the exchange
of three or more pomerons (Fig. 4.1), as also in the case of elastic
pp ~-scattering (see section II)s» Even the configuration of the three
pomerons, which leads to spin correlation, is the same as in pp -scat-
tering. Correspondingly the correlation amplitude at S -» ® also
decreases ~(ﬁ s)“s‘, as in pp -scattering (in this case the properties
of the inelastic pomeron vertices do not accelerate the decrease in

amplitude with energy).

We see that the spin correlations fall more rapidly than the
terms which conserve helicity. In practice this means that if the
m?esonance is greater than the spin of the initial particle,

then at a large energy and at a zero angle the resonance must be
excited in the aligned state with the same helicity as in the initial
particle. This anticipated result does not contradict the experimental
data for the reactions mTp—~ 41/0 65/ ana pp =» N (1700) p /66/
at former accelerator energies.

s

In this way, the contribution of pomeron bramehime to the dif-
fraction excitation of resonances at a finite energy, as in the in-
clusive cross-section, may imitate the single~pomeron contribution at

é._[ =0 , even if the true single-pomeron contribution in this

case tends to zero. Consequently a check of the expected properties

b modi
of the true single~pomeron contribution should 4&«é® for resonances

precisely in the same way as in the inclusive case (see discussion

73.



in connection with expressiong(3.11b) and (3.12)). When the energy
is increased in the angular distribution a dip must occur at g-‘z =0,

which will become deeper as the energy increases.

Generally speaking, the dip in the cross-section at ?f =0
could cccur also on account of the large value of the amplitudeswith
spin rotation, which die away at 91 - 0 in a purely kinematic manner.
For example, in the reaction e = Ayp s spin -re-‘ba—gte-rr of A is
possible (production of A1 with a non-zero helicity) as well as that

of a proton. However/ the effect of the spin rotation of
Al does not give a contribution to the element of the spin density
matrix fw (in the system of the S -channel helicity). Consequently,
in _P.., the masking effects may be linked only with the proton spin
rotation and they may apparently be evaluated from the data for elastic
Np -scattering at the same energies and momentum transfers. The

/68/

corresponding data for 7fp -scattering at energies of up to
25 GeV indicate that the :uvatribution of amplitude with proton spin
rotation is not great for pomeron exchanges. In contradistinction
to this, in the charge exchange reaction 7 °p ¥ °n (excha.nge of a

f -Reggeon) the spin rotation gives a large contribution and gives

in the small /69/

rise to a minimwn[t:ﬁ)ss—section at¥ ¢ « Let us point out that
we may eliminate completely the effects due to the spin rotation of the

4

target, by studying the production of resonances on a He nucleus.

In addition, the reactions of resonance production on helium have

also other advantages:

4.
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even taking into account branehine (on account of the zero spin
of 4He) sy which may increase the accuracy of isolating the Al

resonance in the 3 W-system ;

2) owing to the fact that the isotopic spin 4He is equal to zero,
in the reactions of the production of G -odd resonances by pions
on 4He there are no contributions of~7#y”'a)»42-4,.8 trajectories,

which simplifies isolating the contribution of the pomeron.

Let us examine more closely what dependence on gf and S should

be expected for the wvalue

./go 5/26‘/7 f"//e - A/ 'L‘//e /,.9

where there are no masking effects linked with spin rotation. For the

sake of illustration, let us take a model which allows for the diffraction

(47 2
excitation of A, by one pomeron (Fig. 3.2) and by two-pomeron bramok—
ing. (Fig. 3.12). In this case the production amplitude of A, (with

1

a zero S —channel helicity) by a single pomeron decreases in accordance
#*
with gf at 91-’0 . But, accordingly, the cross—section of the

single-pomeron exchange

1Y) (K DR Er & oy Q) 2
oG =C'0”8t'2:e (K% 2K 5 & ) e

¢ [

(4.1)

wb
The amplitude, however, which corresponds to two~pomeron branehina i)

not disappear at 91 = 0, but on the other hand decreases with

energy proportional to

——
(7 g2 bsx)

* we have no other vector which has a non-zero transverse
™
component by which it would be possible to mulitiply g.l sy in order to

obtain a scalar.
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w](,{//
As a result wel obtain

V%g nI).L.

2 _ -{" *"(/’f"’”})QA L=
/o % 5/J // .é“d c,,x, ] (4.2)

!"‘

We should notice an interesting fealture of expression (4.2) compared
with (3.12). Owing to the fact that the contribution of the pole
decreases here in accordance with 9:’ (see 4.1), the interference
term (the product of the two terms in square brackets of (4.2)) is
more substantial than it was in (3.12) *. Consequently there is now
a region where the contributions of the pole and %H%é&gﬁﬁﬁf will
compensate each other (the expression in square brackets in (4.2)

tends to zerv) and the value Jgaégg will have a dip.
"J—

This dip will occur at 91 of the order of several tens of GeV2
and only at a sufficiec..iry high energy when in a certain region of
cut )
9} y the braneking contribution becomes less than the pole contri-

bution which is shown schematically in Fig. 4.2.

At 2 cub . 2
small 2‘ the beranehing predominates, and then as ?,‘
grows the contribution of the pole becomes substantial. At gf = 9;2‘
these contributions become equal and a dip is observed. Between 9,21
and q:‘ a single pomeron exchange dominates, leading to a maximum
at

2 2
Pos ™ REIZIL 57552

In (3.12) both the contribution of the single-pole and the
contribution of the interference terms to the cross-section decreases
in accordance with ~ q: » This occurs as a result of averaging for

N

4>
o

N

polarization of the beam particles which is net present in



1 - - .
(see (4.1)). And finally at 91 s ¢§1 there is again a dip,

cu

over which there is again a predominance of the b®enehing contribution,
. 3. 8.2 .

which decreases more slowly as 9‘ increases (-i- in the exponent

of the second term in expression (4.2)).

As the energy increases the position of the first dip ( 9;21 )
and of the maximum (2;1 ) will move to the left ( Q/J,Q.u »0 ), and

the position of the second dip ( gél ) - to the right (Fig. 4.2D )e

All of this is clearly visible from diagram 4.3, whiqgwgontains
the results of calculations in accordance with formula (4.2). Just as
in the previous example (3.12), the relationships between the radii
were selected on the basis of an eikonal approximation:

£% 6'/55:-2,- £= 'ﬁz" #/26 ;"af,é'—'czé,/}/;" whereas the relative size of the -bré;gb-
4ug contribution ¢ was assumed to be equal to 1, 1/2, 1/4.
cut
In the case where the bremeohims contribution is great (Fig. 4.3 a,

A = 1), the characteristic dependence of ﬁ. ﬁ%" on Qi , which
é

{
is coupled with the vanishing of the pole contribution at ?f -» 0 ’

. +he cut
does virtually not appear. The interference of bwamehimas with the pole

leads only %o an increase in the slope of the curve as the energy

increases., But this increase in the slope can easily be taken as the

Shrinkage
usual skerdenins of the diffraction cone,

ewt
At a smaller beamehine contribution (Fig. 4.3 b, d& = %) the
5 shrinkage
minimum occurs, already starting at S = 100 GeV , whereas the esheriening

of the cone as a result of interference corresponds to an increase in R
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by 5 GeV™? with a change in energy from S = 100 GeV? to S = 800 GeVZ.

However it should be stressed that in the model of (4.12) only the
imaginary part of the production amplitude Al is taken into account.

The real part of this amplitude does not vanish and at S £ZX 100 GeV2

it may fill in the dip, either reducing it considerably or even removing it
totally. But as the real part decreases more rapidly as the energy
increases, at S5 = 800 GeV2 the dip will still be present (the dotted

line shown in Fig. 4.2 b and c )« The development of the minimum, with

an increase in energy may occur roughly as in elastic pp~scattering

at -t 2 1.3 GeVo /157

The model examined is, of course, of a particularly qualitative
nature and demonstrates only the approximate scale of the effects
expected., It also shows the degree of theoretical indeterminacy of
our predictions. However one prediction remains valid irrespective
of the wvalue of the bfegggéng-contribution, namely: the decrease in

the differential cross—section

a0,
d92/9%. 0

as the energy increases in the theory with the asymptotically constant

total cross-section.

The behaviour described for the angular distribution is expected
for the WP—’A'F' WF"’ 3 P reactions, but also for the correspond-
ing K-meson reactions and for reactions of the pp —» Np type. These
are the reactions in which the single-pomeron contribution at _: =0
is not prohibited on kinematic grounds.

group

Recently a Soviet/American/in Batavia obtained preliminary results

on the measurement oif the diffraction excitation of nucleon resonances
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in the energy range 175-400 GeV and at 0.01 € /t/ <€ 0.05 (GeV/c)2
/70/. It appeared that, within the limits of fairly large errors,
the crosgs-sections of the diffraction excitation of resonances do not
depend on energy and their values are close to the corresponding

/11

values obtained at energies of below 30 GeV The dependence on
t for excitation cross-sections N (1470) in the range of energies
and momentum transfers studied did not, within the limits of error,
change in comparison with the data at lower energies /71/. Let us
note, however, that the accuracy of these measurements is still not

high enough.

As has been mentioned above, the situation is different in the
) -
”P"Aho reaction, and in the fp—=A/#xr  reaction. At Q_L = 0,
the production of A2 with zero helicity may be caused only by t
-channel exchange with a non-natural parity (the states with P =(-l)3
have a natural parity, and those with P = (--l)j+l have a natural parity).

But this contribution to the amplitude 1is provided only by the non-pomeron

v encmpl_
terms (fthe fz -Reggeon) and decreases as a power of the energy. But

the pomeron terms at é; = 0 can excite A2 only with a single helicity
and with simultaneocus rotation of the proton helicity, i.e. owing to
spin correlations. Consequently, for diffraction excitation of A2 at
a zero angle an exchange is required of not less than three pomerons
(Fig. 4.1), and the cross-section of this process decreases with energy

in accordance with =~ ( €p S)’lo.

Of course we are not able to compare at a finite energy the
contributions of the different byagzgiﬁgsu A rapid reduction in any
contribution at a high energy by itself does not mean that it is small
at finite energies. However, the experiment shows that already at

energies of ~ 10 GeV i@ resonances with a high spin are excited at



/65’66/, i,e. already at such

small angles in the aligned state
energies the spin-correlation terms are small. Consequently we
may naturally expect that at these energies the cross-section of
the 7TP e 4,_? process already falls at iLJ’ 0, althqugh in
the excitation of other resonances this drop is still not visible.
It is, for example, a fact that at an energy of E = 40 GeV the
angular distribution of the Tfp"ﬂzfreaction has a sharp maximum
at &l ~ 0.1 Gev? and falls at |t} = 0 , whereas in the TIP“’ ”lf
and 7/F" A3P reactions the cross-sections increase rapidly and
steadily as |t} falls to |t} ~ 0.04 ceV? (see Pige 4.4) /67/. (We
should note that here ‘t‘ coincirdes in practice with ef ). Un-
fortunately)unlike other resonances, the appearance of a minimum in
the angular distribution of t!. diffraction excitation T -» Aﬂ at
ef'-yo only indicates the small value of the spin-correlation
terms and does not give any non-trivial intormation concerning the
single-pomeron contribution. Another reason for studying the in-
elastic diffraction processes is the following. Generally epeaking
it is possible to constiruct theories in which the ftotal cross-section
is asymptotically non-constant, but only slowly falls or increases
with S . If in the asymptotic form the total cross-section varies
fairly slowly, it is difficuiz in experiments to distinguish it from
total/ *

the asymptotically constant)cross-section . Experimentally, the case

of the asymptotically constant total cross-section is isolated as a

The increase in the total cross-sections of pp- and K+p -inter-
actions observed in the experiments in all variants of the theory
(irrespective of the assumed asymptotic behaviour of c;é,e ) is linked
with a decrease in the contribution of vacuum brarekis@s. The true

asymptotic increase /12/ (or drop /{3/) of the total cross~sgection

80.
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(*Contdc )

may appear only in the region szbiégg ¢ o« The parameter R is
expressed by dL[J and the three-pomeron vertex 50 () (which
is noW-vanishing, if the total cross-section is asymptotically non-
constant). From modern experimental data the condition arises of

€n é/k} > 100. It is precisely in this region that the so-called

enforeed  cut
i ; i£4 rex becomes substantial (see for example Fig.

4.5).

result of the vanishing of the single-pomeron contribution to the
inelastic processes at Q‘l = 0 (see Introduction). As a result, the
processes of diffraction production of resonances (particle groups)
at a zero angle occur as a result of the exchange of at least two
pomerons. The cross—section of these processes in the energy range
Eigz?“éi should fall in accordance with ~ TieE ey sy

In all other cases, in this range, the single-pomeron contributions

do not vanish at gf. = 0 and the diffraction dissociation at a zero

angle is not gqualitatively different from elastic diffraction scattering.

In particular, if the reduction in the negative contribution from the
en&:c«i cut

non- £ two~pomeron drapshing leads to an increase in the total

cross-section, it s »uld lead both to an increase in the cross-section

of the forward diffraction dissociation in roughly the same energy

region and roughly to the same increase as a square of the total cross-

i : do [ 412 o e
section (since TE fend CvaA) S oo )e
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In this way, we may expect that if the total cross-section is

asymptotically constant, the cross-section of the W + p ¥ ﬁ‘y "'P

2
forward process will decrease in the energy range S & 400 GeV .

As a result of the higher power of the logarithm ( =~ '7?%?5 ¢ )

this effect in the inelastic processes may possibly occur even at

lower energies. In the cases involving an asymptotically non-constant
total cross-—section in this same energy range an increase of the follow~

)

*
ing type may be expected

oG/ i ’ )2
dgl g,=0 (a %_ﬁ_?_?sm/

Measurements of the slopes of the cross~sections of the inelastic
Svnedl
diffraction processes at 712 and of the energy dependence of these slopes

is of particular interest. Thus, the measurement in the range of small
Cisz of the slope of the 3Tf"14ﬁp cross-section assisté?égglana—
tion of the nature of the Al resonance (in particular, the question as
to whether it is in fact a resonance or a kinematic reinforcement). In
additionjinformation concerning the values of the slopes of the cross-
sections of inelastic diffraction processes is necessary for carrying
out calculations of the contributions o%&hese processes 1o the total

cror.=sections of the PP"J ]fi P-' kip ~interaction and verification of

compliance with the various sum rules for cross-sections.

* e erkered
In sz approximation &= —etikponel in the theory with the asymptotically

non-constant total cross-section,the cross-section of the forward process
7+ P -> 41 + P, increases by 5 - 124 as S increases from 100

to 800 GeV2.



The study of the diffraction excitation of resonances at high
energies and small ]t] is a fairly complicated problem. It imposes
severe requirements on the resolution of the equipment. TFor example
in order to see the shape of the peak in the mass spectrum, it is

forward 2 2
necessary to have a e%ream mass resocolution of [&M L 0.1 GeV©,

At S -~ 1000 GeV2 y this means that for the recoil proton A/%§;1;Z§ﬂjf'
(see (3.2) and (3.4)). In order to obtain such a high angle resolu-
tion it is necessary to fix with a high degree of accuracy the
em . $Sion angle of the recoil proton in relation to the incident
veam: A (P ~ Lmrad at ¥ 2 90° and T ~1 MeV.
In addition>in order to separate the overlapping resonances and remove
the possible influence of the background on the angular distribution
at Qjﬂ,o , it is necessary to isolate the state with specific
- quantum numbers. This can be done by means of phase analysis of the
final fast particles an-the—st»eew. A phase analysis is necessary
also in order to determine the helical state of the resonance. In
this way it is necessary to detect not only the slow recoil proton
but also some fast particles. The situation is to some extent
simplified by the fact that for all of the resonances of interest to

of decay
us there are 5§ modes/into three charged particles, so that there

is no need to restore the kinematics of the neutral particles.

Above we have discussed the diffraction production of Reggeons
(by the exchange of a pomeron and pomeron bséggg;ng). However it is
also interesting to examine the production of resonances caused by
other exchanges, and examine more closely those basic qualitative

consequences resulting from the theory of complex momenta, which are

obtained for this type of process. This question was examined in

83,
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detail in the communications by ¥ajdalov /14/ | Let us enumerate
some of the consequences formulated therein of the theory of complex
momenta and the relations of 1.1, which should be experimentally
checked at small t.

T )N = [/ e, 7 N ‘
I) In the f/Aa;f; AN reactions

_qig t-—-—o t“ 2
[2e &5 ¢ at (t <<p?)

where ﬁw is an element of the spin density matrix of the vector

(tensor (27)) Fafrf»c'le’

2) In the reactions involving the production of two pseudo-scalar
mesons the TN~ TT (7, p T, & &)W differential cross-section
should be vanishing when 1t = (Pn "pN') % O and the angle ©
in the centre of mass system of two mesons between the momentum of
one of them and the direction of the momentum of the initial meson

tends to zero (or 7 )

ad&is,co58¢) __ t—- o
@'t dcose at oo/,

Let us point out that the corrections to these predictions (without take

ing into account electromagnetic effects) decrease exponentiallyin

accordance with - %"/fé 7) as the energy increases.

As was discussed in the previous section in connection with

inclusive cross-sections, if it were possible to carry out measurements

* gev? , then it would be possible

of resonance production up to |t} ~ 107
to isolate the contribution of the Coulomb excitation of resonances:

(Figo 4.6) and determine from it the photo-absorption cross-section by
M- and K-mesons in the resonance region.
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V. Doublvy inclusive spectra and double-Heggeon processes

In this section we shall study the doubly inclusive reac-

tions

A+Po>A +P+ 4.4, (5.1)

in which a small recoil proton and a weakly deflected initial particle
are observed, and in addition other particles are formed. We shall be
interested in the case where this process is described by the double-

Reggeon contribution (rig. 5.1).

But before discussing it in greater detail we shall again have to

concern ourselves with kinematic relationships.

l,PZ’

and masses my Mg collide and are transformed into three particles

Let us assume that two particles with momenta of P

39 P4, P5 and masses

of my, m, , Mg (Fig. 5.2). We shall examine the kinematics of this

(or three groups of particles) with momenta of P

—tp
reaction in the laboratory system (p,, = O), assuming that q§ and q,‘:

are limited.

In accordance with the equalities (3.1) we obtain

s 2 y (5.2)
5:/77’ 'ff}/ "/‘y.,/)?’ é//u‘)
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In addition, we insert the values of 33 and 84 y, Which

can be considered as the square of the invariant mass of the system

, wxclusion ]
of final particles, which remains after sepaxaiicn of particle 5 or

4, respectively. Then

34 :ﬁ% */{)5):—%-‘ /Qz -’/9)2:_ gj*m‘qf"’?’”r '?EC’;

7

(5.3)

] _ a: . o s
55 (B +/05/ = /"27 7/2/2:'?;"25.2 ‘2/0 * 4J/[ff§/,:;/// + P77

e

f‘

We shall now find the components of the momentum transfers. In

this we shall consider that the initial energy is very great and

all the masses are limited so that f_gf pod 4,£<< 1. The values

of S3 and S4 will be regarded as great and the relations of 53= .%2
and 84 = %? shall be accurately calculated. Then from (5.2) and
(5.3) we shall obtain expressions for the time and longitudinal

components q‘ and % :

-G -
?1// F10 é.j 'm, J

= Sgmmi-Ze Cic .
Qeo T, freend, (5.4)

2

. 2 2 a .
D20~ T2y = %{/’v”z TPy ALy T ‘54)/

whereas the transverse components are determined from the equalities

- o P 2 2
t==9/2-=‘,- 97$+d5[%_m7 i ;5)\;
7- 95 (5.5)
2 é?;fi-&;/ﬁnf-wvzf»/nf S )
2259, =~ 7 -S4 .
The momentum transfers must satisiy the condition
mE = /9,-9 /z
5 27T Fr/ o (5 6)
from which we obtain
Py 2
vl =, g S .-
5 Ty T 95 % 5 (2 ,-2, 7 )+ (5.7)

2 2
+d;//¢£"2f(-m4’i)-&; mj‘_(%sz
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At a high energy, the main term in the right-hand part of the

; { . ; 34 o2 =(q g \* 5
equality {5.7) is the first one. Since ng -(Q&l - Q1L) y 88

-2 . 2
the energy increases P51 remains restricted if q4 and
2 ' 1y s Sy me i th
c;z are fixed. Consequently 3 Oy~ s , i.e. as e energy
increases at least one of ihe AQ should fall if rn: is restricted.

If S, and S, are identical in magnitude, then 6\'v A& «,£2§

5 4 % s

and the equality (5.7) can be further simplified

2 —_— -
/nf'*@jaﬂr‘ ;S:: ,..%iﬁ', (5.7&)

It is this relotion thet we shall use in future.

If we insert as in the usual inclusive processes (in the

CelleS.)
= L/ e - 2R
R Al (5.8)
we oObtain
/R s ;1 foy (5.9)

(cte (3.5) at m:--»sa). The sign of J; 1is determined on the

basis of which of the momenta is considered to have a positive direction,
Although the determination (5.8) for X; contains the momenta in

the c.m.s., we see from (5.9) and (5.4.) that at a high energy X

can easily be expressed by the momenta in the laboratory system.

Here, |Q§| is determined by the energy and emergence angle of

the recoil varticle 3

I~z = S5 = 45 Cas;idgj#”” 2, (5.10)

14

but 'OCNI depends only on the fraction of energy lost by the fast

incident particle

N
i
“
-
[

R

Tt se Fm 2l
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3

energy of particle 3, 5) is i1ts angle of emission in relation

-> . .
In these equalities‘ P5\ and T are the momentum and kinetic

-

to the momentum of initial particle 2, and E2 and L4 are the

total energies of particles 2 and 4.

Let us now return to the dm&kReggeon process (Pig. 5.1)

As far as the theory is concerned, the first to point to the existence

/75/

of such processes were Ter-Martirosyan and Kibble

/76/.

They have

also recently been discussed in papers

The amplitude corresponding to the diagram of Iig. 5.1

contains the Reggeon multipliers

~A f92 1 R
(7=/ 2,2 fg“’/9“74¢@0' +/

and the "amplitude" of the conversion of two Reggeons into the particles
produced system

of the e4weam. In order to obtain the cross-section of the doubly —

inclusive reaction (5-1), as in the case of the normal inclusive

reaction, we shall summate and integrate over the variables linked

with the particles of the stream (Fig. 5.%a and b; cf. Fig. 3.3a and b).

The inclusive cross-section will be expressed by the "cross-section"

GS,qB of the interaction of two Reggeons (more precisely the cross-

section of the conversion of Reggeons into the usual particles).

TS N AN . 7 (5.12)
T o ds a6 i UloL) 237 RPN

2, 9% de,, I @653/‘ %/ % P /’i/,/_v’),y,/i,/; (a2)/ s
; - —.-1,(/,(7 ] ] R .
‘. o _‘/-,. 1 +r4, gty €

N AT 17~/ /) 7

S R —

PO S
]

o \
’ ‘;fo"-ll/.

[N

1%

- . L
If v :«4‘ ’..’ -~ % ’
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then we can use relation (ef. formula (5.7a) )
2 .
M= S(1-/ o)) 7-/x, /) (5.13)

At large M2 the Reggeon cross-section Giﬁﬁ may also be
described by the sum of the Reggeon contributions,and the doubly =
inclusive cross-section is fully defined by the three~Reggeon
vertices. It may be expected that at small M2 the cross-section
Gixjs s like the cross-sections of interaction of the usual
particles, is basically described by the contributions of the

resonances permissible in accordance with the gquantum numbers.

Let us examine, for example, the expected behaviour of the
interaction cross-section of two pomerons. It is clear that the
system of normal particles which 1is produced should also have vacuum
quantum numbers, This 1is already possible for two I -mesons in
the S -state, so that the cross-section is non-vanishing at M2>’4/u2.
However, the cross-section will obviously remain small until the
resonance region is reached. The resonances (or intensifications)
in the two-pomeron system should have a zero value for the baryon
number, strangeness and isospin, a positive charge parity (and
G -parity) and the natural values of spin and parity. In this way
the following states appear permissible: é?ﬁ’ich/V%cc;5773é/2

S* (207 pr2 387, f (7527 M 76038)%) and

f//]p=2; ./‘7:2’3//;!7'. No suitable resonances with a high mass
have yet been discovered. Thus, the pomeron-pomeron cross-—section
will obviously be relatively large at M from ~0.3 C-eV2 to 2.5 GeVZ.
It is probable that the cross—section will be largest in the region
of the f- resonance. At M° 2 2,5 GeV® it begins to diminish, ap-

proaching a constant value which is determined by the three-pomeron

vertex wnhich is included in the usual inclusive cross-sections.
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The possible trend of the pomeron-pomeron cross-section @%pp

as a function of M2 is shown in drawing 5.4. Of course, the
relative height of the various peaks, shown in the diagram, is
based only on conjectures, and not on any precise knowledge. Apart
from the resonances, the cross-section may display an 5 -wave

enhancement 2
i L£3 iem in the two- T -meson system at small M° (dotted

enhancement
line in Fig. 5.4). This dmtensifieatien may be caused by the so-
called DecK -€ffect, which is clearly observed in the inelastic

diffraction processes.

It is possible to describe in a similar way the expected
behaviour of other Reggeon-Reggeon cross-sections. But however
likely such descriptions may appear, they are only hypotheses. Con-
sequently any experimental information concerning the interaction

of Reggeons would be very interesting.

Let us consider at what energies we should searéh for double-
Reggeon processes. In order to be able to apply the Reggeon descrip-

tion the following conditions are necessary

(7)) )<< £, [T~/Ca)) << £, (5.14)

In addition to enable the usual particles to be produced, the follow=-

ing conditions should be achieved

o/ / o 1) ey 2
g / 7 //"C/"//)//’/"//"(A/,'/'JB “7%

@

(5.15)

Here "15 is the production threshold of the normal particle system
with the appropriate quantum numbers. However 6 as has already been said,
the cross-gection probably becomes pronounced only in the resonance
region. Consequently, in (5.15) it is necessary to replace mi by the

square of the resonance mass. This value coincides in magnitude with



So ~ I GeVz. In this way, we obtain

S

7 S
These conditions are reminiscent of the conditions of (3.8) required
for applicability of the three-Reggeon formula in the single-particle
inclusive process. As in that case too, the necessary energy is
substantially greater than the energy required for observing the
Reggeon process in two-particle reactions. For example,if we take
(1-'0CP D ~ (1 _i'xAi)w 0.4 (this corresponds to E~5 GeV for
a two~particle reaction on a proton), then in accordance with (5.16),
S 3 100 GeV®, i.e. E » 50 GeV. However, already at ¢ &£ 25 GeV
some attempts have been made to detect the double~Reggeon, and in

particular the double~pomeron contribution.

In the reaction Jrr;_‘TF‘(Jr"'Tr')P at 25 aev 717/ | it is
clear that a double~Reggeon contribution has been discovered, in which
a pomeron is linked with a proton, and the W -meson with a Reggeon

with & (0) = % .

In the T __,Jr*'(JrJr)‘,’D reaction at 8 and 16 Gev/c /7% it
has generally not been possible to isolate the double-Reggeon contri-
bution owing to strong overlapping with the contributions of other
mechanisms,

In the pp —» P(JI"JI‘)?) reaction at 12 and 24 Gev/c /1Y

an S -wave peak have been discovered in the (I  )° spectrum at
MTEF & 0.6 GeV, which might be caused by double=-pomeron contribution.

However, having investigated the correlation of T -mesons with

protons, the authors of this paper have come to the conclusion that
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the peak is formed by the decay products of nucleon excited
Some
states. Only at 24 GeV/c is there emy indication of the possibility

of a small double-pomeron contribution. On the basis of the energy

/19/

behaviour of the experimental data, the authors of paper hope
that the resonance contributions will cease to screen the double=

pomeron contribution at p>50 GeV/c.

This particular group studied the pp —» pxp reactions at
the same energies, where X =/33 U),fl,gc /80/. The suthors con-
sider that their data may satisfactorily be described by the following
double-Reggeon corributions: w and n ~-Reggeons for produc-
tion of the /Oo-meson, /O - and X -Reggeons for the

w -meson, A2 and JT-Reggeons for the Q ~meson. The production

of the ‘f -meson can clearly be better described by a super-
imposition of the contributions of P + P‘ and P + P , although within
the limits of accuracy it may be described also by each of these
contributions individually. It should, however, be noted thaf owing
to the insufficient energy, the comparison of the experimental data
was carried out with model expressions, which took into account in a
random manner the corrections to the Reggeon terms. Consequently

/80/

the conclusion of the authors of paper cannoct be considered as
completely $§2§g§e. Their measurement;?%édﬁégtinued iﬁﬁthe region

of nigher energies. In addition, the resonances were isolated only

in accordance with the mass spectrum of the /A or

JIT T~ T°system, whilst the background was removed by comparing with
neighbouring regions. If a phase analysis is made of the meson systen,
it would help to reduce the background which is particularly high

under the . f: ~meson peak, and lower the requirements on accuracy

when determining the mass. The FF — FF']T T “reaction was studied
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also in Batavia on a hydrogen bubble chamber of the NAL at 205 GeV/c
/81/. In this case it was also not possible to isolate unambiguously
the double~pomeron exchange owing to the large value of the contribu-
tions from the diffraction dissociation of nucleons in the event
observed with four tracks. As an upper evaluation of the double~pomeron
contribution to the total cross-section in the kinematic configuration,
when all of the effective masses of the an -systems exceeded 2 GeV,
yb _ e

a value of 44 : 15 ‘e was obtained.

With an additional limitation on the mass of the JIJT
-gysten, MJT'JT #M <& 0.6 GeV, the upper evaluation was of the order

of 9 mb. The estimates quoted are, apparently, very much over estimated.

Let us now consider a proposed experimental layout at a
large energy with detection of a slow recoil proton and a fast weakly
scattered particle A. We shall, for example, consider that the

o= -
transverse momenta q,“_ and qu_of the recoil proton and scattered

particle A are fixed, and also the value

6/\0 = /-—/_2;0‘ ~ _/_‘2__7./:0,

7720
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|
Each time we shall select the value JA= 1-le]‘~"' 1 —_E- (E and E!
= energy of particle A before and after scattering), in order to keep
the mass M° constant (see Fig. 5.1). Then we shall obtain for the

cross-~-section

o

,2 . o =E2/K=3) S 2 -
/‘f é;o /e % ’-’/;{}é;/\ /ﬁ 7)

&
N e ~ C) P
O/fu 0/9& A7, : %G ’21/72/, (5.17)

-,\racja'rs
Here we have written out only the mwd¥ipliexs which depend on CS\P s

S and M.

Before studying the dependence of the cross-section.on 6}) N
let us briefly examine the possible values and measurement accuracy of

1, 38
tSP . Here we shall base ourselves on the LNPL set up / /

If the kinetic energy of the recoil proton 7;; < 5 MeV, and its
exit angle 50 varies from -~ 90° to 60°, then 5’0 < 0.05.
The errors, which are equal to A J. =40 keV and A S" = 2% o 35 mrag,

P
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might provide ~ 10 intervals of JP , in which case the extreme
values of S‘P would differ by about 10 times. This would give
Separalion
grounds for hoping for a precise breakdown of the various double~
) situation
feggeon coniributions. In reality, the pesidien is more complex,
gince it is necessary to take into account also the permissible
values of 6; =1- |'3£AI . In order to remain in the region of
applicability of the Reggeon formulas, it is clearly necessary to
?
take JA £  0.2. As J:q . CS‘P = Lf} we obtain 0,05 2 SP >
5M2 2 2 W
“5— ¢+ VWhen M~ = 0.6 GeV ', i.e. for /0 and resonances
and with S = 200 GeV2 c;P may vary only by three times: 0.05 2

é\P }_ 0.015. For the ]C - resonance (M2 = 1.6 GeVg) the permis-

sible interval is narrower still. But in any case it widens out with

energy.

Let us also discuss the necessary accuracy when measuring

the energy of particle A after scattering. The relative measurement
a.ccurza.c‘;g{/m2 is composed of relative accuracies SA a.ﬁd Jp .
For the I.MFlw'-ue relative accuracy of JP is ~ 0.1 (at $~ 70°
and Y ~ 2°) and is determined basically by the error in measuring
the angle. To ensure that the relative error of d‘A does also not
exceed 0.1, it is sufficient to measure, in the conditions discussed,
the finite energy of particle A with an accuracy not worse than 0.5%.

This provides a value of A%;. ~ 0.2 i.e. .éﬁr_"_. ~0.1( A M

~ 100 MeV at M~I GeV), which would, of course, be quite satisfactory.

Let us now consider the behaviour of the right-hand side of
(5.1’7) in various cases. If we study the production of resonances
p , W, and Jc s then in the conditions we are discussing
it is probably sufficient to take into account the pomeron and Reggeons
P, w y P and Ay for which oL (0) & S

(For the evaluation we shall consider the transverse momenta to be small
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and use the zero trajectories).

For the production of L and W , one Reggeon must be
of the non-vacuum type. In this case the right-hand side of (5.17)
either decreases ~SP at J'o —_— 0, if « ( O) = 3, /3(0)
= 1, or increases mé’F , if oL (O) =1, ﬁ(O) = 3. In this
a

way for small é\P configuration is determined in which the ©oX

a2
Reggeon is/pomeron, and the ﬁ Reggeon is a non-vacuum Reggeon

( P or W ). Here the cross-section decreases with the energy
AL » Other double-Reggeon contributions (for example, /3 and

I or W and T ) decrease with energy more rapidly, “'é%f ,
but may have the same behaviour at S = const, (SP_,O . P  and

[
P contribute to the production of f.

If both Reggeons are identical, the right-hand side of (5.17)
is constant at 5{) -~—> 0, S = const. Here the cross-section either
does not depend on energy, if both Reggeons are pomerons, or decreases
according to ~ -%— in the case of two P! . If the Reggeons are
different, then for small SP the case is again determined where

4 is a pomeron, and ﬁ is P’ s so that the cross-section

decreases in accordance with -~ _'L .

When one of the Reggeons is a pomeron, then, as in the usual
inclusive case, the case of small transverse momenta is of interest.

Here also the vanishing of the single-pomeron term can be predicted,

Hhe cub
as in diffraction dissociation,but bremehinms may again screen this

effect so that it is necessary to study the change in the angular
distribution with energy. For the second Reggeon it is not essential

to have very small transverse momenta. But they should not be selected

tnn Tamen Poam menmemla 2 AT A 2
VULV Al gTy LUl TaAQilplcT «, Vel UT

“
-4
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Wnen both Reggeons are pomerons, the vertex which links them
with the usual particles (see Fig. 5.1) should vanish with a decrease
in the transverse momentum of any of the pomerons. The reason is
as follows. The contribution of the double-pomeron process (Fig. 5.1)
to the total cross-section decreases logarithmically wifh energy. How-
ever, if we sum the contributions of all the so~called multi-pomeron
processes (Fig. 5.5), the total cross-section proves to increase with
energy iar{giqupcgzgziaizm:lner /28/, and the J:;::Q;;;;; is proportion-
al to the value of the pomeron vertex at zero transverse momenta of
the pomerons. The exponential increase of the cross-section contradicts
not only the assumption concerning the asymptotic constancy of the
total cross-section, but also such general representations of modern
theory, such as unitarity of the S-matrix and the analyticity of the
amplitudes. There is only one case where there is no contradiction,
namely when the vertex which links two pomerons with the particle is
equal to zero at zero transverse momenta of both pomerons. (This
question has already been discussed theoretically by Ter;Martirosyan

/3/).

in one of the previous schools The vertex might vanish in ac-

- -
cordance with.‘V(q4L ?,L)or another law. Because of this it would

be interesting to measure the dependence of the cross-section not

-2 -2 -
only on 4, and q,u_ s, but also on the angle between qu and

2;21 sy i.e. on the relative azimuthal angle of the recoil proton and

the weakly deflected fast particle A.

We shall now attempt to evaluate the expected values of the
cross-section of the double-pomeron process. The simplest solution
is to do this at large M2 , when the pomeron-pomeron cross-section is
constant, and does not depend on M2. Then the double-inclusive cross-

section is described by the diagram of Figure 5.6, where all Reggeons
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ore pomerons. This diogram is referred to as the double-three-Reggeon
diagrom {cf. Fig. 3.3c), and it is sometimes referred to as the "Beetle".

The contribution of this diagram to the double-inclusive cross-section

can be subdivided Sachors
deeays into the product of two multipliers, corresponding to the upper

and lower halves of the diagram in Figure 5.6 (see expression (5.12) and

(5.13) at Giéﬁ = const.).

Let us examine for comparison, the three-pomeron diagram of
factors
the type shown in Figure 3.3c. This also breaks down into meltipliers,

one of which (from the lower half of the diagram) has the same structure
fackors
as the multipliers in the diagram of Figure 5.6, whilst the other is
simply a constont of the pomeron link with particle A , which in turn
factors
is one of the multipliere in the expression for the total interaction
cross-section of particle A with any target. By accurately following
factors : .
all of these muttipliere, we arrive at a factorization formula which
links the twice-inclusive cross~section with the single-inclusive and

total cross-section. For example, in the case where particle A is a

proton, we obtain

i Pl o5 S
I, A, G, g~ TF ez, Az, R (5.18)

where .xP = :x:“xAsxe. If the incident particle A is not ¢ proton,

then in the right-hand part of (5.18) there occurs an additional
facror
Ltioli

/ o
i et J 29t ’
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where E%f? is the total interaction cross-section of particle

A with the proton. For the total cross-section of pp -scattering,

we shall take the value of 646 2 40 mb. As for the three-pomeron
contribution tn the singly -inclusive cross-section, we shall now
concern ourselves only with the contribution of the effective pomeron,
and shall not separate the contribution of the true pomeron from its
occompanying b*;::héag. Consequently in (5.18) we insert a phenomeno-

logical three-pomeron term which contain a vertex which is non-vanishing.

The processing of the inclusive proton spectra of the ISR,

/50/

described in paper , shows that it is possible to have slightly
different parameters for the effective three-pomeron contribution
depending on the assumption concerning the size of the term PPR and

on the slope of the pomeron trajectory. By using one of .the parametriza-

tions described in /50/ , and using (5.18), we obtain, for the double-

inclusive proton-proton cross-section

Jdsr Ofpuf//f”/4 '_3/5/95*5’:.54)
cf? odx, g9, dx, (7720 /)0 ¥~/ 2/) v (5.19)
204,0 921

O e 2T W)
where 615L is meosured in GeVz. In order to understand what this
expression denotes, we shall find a total doubly -inclusive cross-

section in conditions of the experimental geometry. By again basing

4, 38
ourselves on the set up at LNPI //’ /: we may, at S = 800 GeVz,

pose 0 < Q«f.x. < 0.03 GeV2, 0.03<1 - /xl/< 0.05. For &g and

9:1_ we shall take a wider range O<9:_L £ 0.1 GeV2, 0,03 1 -/xz/

< 0.1. If we now integrate over the angles and intervals indicated

9? and . , we obtain for the total cross-section of the
(L

L
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doubl}’-inclusive proton-proton reaction the value ~ 0.15 mb., If
for %:J_ and Xy the same region was selected as for ?29.1. and X,
then we would obtain ~ 0.02 mb. When obtaining these estimates we

: chor
can take into account sufficient accuracy only the first ! in
(5.19), i.e. we may assume that gf: = 0. Then integration over
94'24_ is simply reduced to a multiplication by gf_L max. In
this connection it should be pointed out that measurements of the in-

cross

clusive ﬁ'éfgions were made in the region 0.15 GeV2< Cﬁ <L 1 GeV2.
If at 93 <Z 0.1 GeV2 the dependence of the three-pomeron contribution
on ?.{ becomes steeper (and this is possibly indicated by the
/23/)' 2 o

then the cross-section at 1
/50/

is greater than would follow from the parametrization obtained in .

measurements at Batavia

In this case it is necessary to increase also the evaluations quoted

here for the doubly'-inclusive cross~section,

The small value obtained for the cross-section is partly due
to the small value of the asymptotic pomeron cross-section in comparison
with the cross-sections of normal particles (for example G%ﬂo > 1 mb,
essencially

Spp ® 40 mb), but it lergely reflects the small value of the

accessible phase volume.

Thus we have obtained an evaluation for the anticipated value
of the double-pomeron contribution in the region of large M2, where the
2

pomeron-pomeron cross-section is constont. However at S £ 800 GeV”,

this region is practically unattainable. 1In reality, it follows from
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an analysis of the inclusive spectra /50/, that the pomeron exchange
can be isolated only at (Llacl)s 5-10-—2, but for the constancy of
the interaction cross-section of two pomerons it is necessary that
the value of M2 is greater than at least 4 - 5 GeV2. Cbnsequently,
strictly speaking, the region in which formulas (5.18 and 5.19) can

be applied begins at S 2> 2000 GeV2.

At energies of S _ﬁ; 800 GeV2 we may hope to measure the
pomeron-pomeron cross-section only at smoll M2 in the region of
resonances. As has already been explained, in this region 6PP
clearly exceeds the asymptotic value (see Figure 5.4). Accordingly,
the double-pomeron contribution to the doubky -inclusive cross-section
in this region is also greater than for large M2. Thus, although at
S S; = 800 GeV2 the region to which the above cross-section evaluations
refer is unattainable, the evaluations nevertheless retain a meaning

as the lower bogéary of the anticipated cross-section.

The fact that at finite M2 the double-pomeron contribution is
greater than at large M2, is clear if, for example, we take into account
the correction to the pomeron-pomeron cross-section which arises from
exchange of a Reggeon P (Figure 5.7). It is in fact similar to the
contribution examined in 5.6, but is expressed by the vertex PPR,
QFPR (in this case R may correspond only to the Reggeon P’ )
and contains a decrease according to M2. The overall contribution of

the diagrams of Figures 5.6 and 7 to the doubly inclusive proton-proton

cross-section at gf“' = 9:; = 0 is (see (5.19))
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L
o O ST /. r/ﬂ/e S0+ 72
ag; a&:a@‘au./{ 77//Q9’KZ47/ Jrfw/ /7%/ (5.20)

Zu 20

. 2 .
It is obvious that with the decrease in M, the right-hand part of
(5.20) increases. However it is difficult to use this relation for
numerical evaluation since we do not know the value of ?,"PR
We only know that
| Freg - I,5 730/ x.
25%? =
In addition, at small M2 the expansion over the contributions of
Reggeons cannot be used. Owing to this, it is not clear to what
extent we may decrease M2 in order to remain in the region of ap-

plicability of expression (5.20).

In order to obtain o more accurate representation of the
resonance region, we shall use another approach. In accordance with

197y,

the idea of duality (cf. for example the review of the contribu-
tion of the resonances is described, on an average, by the sum of
Reggeon exchanges (but not pomeron exchanges). If we apply this idea
to the "reaction" PP —» T, then we arrive at an examination of
a single-pion Reggeized exchange (Figure 5.8). Accordingly for the
amplitude of the two-pomeron contribution to the reaction f%b —
"'q)f7 we obtain the diagram of Figure 5.9, and for the contribu-

tion to the cross-section of the doubly -inclusive process, the diagram

of Figure 5.10.



103.

Let us evaluate this contribution at 2 ?? =0 .
qu_ 2L

We shall first examine the structure of the amplitude corresponding
to the diagram of Figure 5.9. At values of M2 which are not too
large, the values ofltﬂ! are also not too great. In these con-
ditions we may use as the vertex linking the T -meson with the

M -Reggeon and pomeron the usual pion-pomeron vertex. Then, for
example, the lower pomeron in Figure 5.9 contributes to the amplitude

kdor . s) a a
the multiplier QJTP P . But the product 93”, P
is equal to the contribution of the pomeron to the total cross-section
Cirmb . This contribution can be identified with €$TIP at E~ 30
GeV, where the total cross-section varies weakly and is approximately
24 mb (let us recall that we are using here not a true pomeron which
strictly will work only at very large energies, but an effective pom-
eron which occurs at E 2> 10 GeV). Furthermore, we shall use as the
4
W -Reggeon propagator the usual pion propagator '?557__1r_ , where

Hhe
H is the mass of the pion. In order to take into account meesure-

effecr on
menit—of the vertices and the propagator, which is introduced by

being away Shell

the—doeccont from the mass swrfeee (i.e. the virtual exchange JI -meson),
we shall introduce the form factor F(‘tﬂ-) . Let us point out that

we have not introduced a specific dependence on Mz. This means that

we do not, in reality, Reggeize the T -meson. In this connection let

. C e . 2
us point out that Reggeization is substanticl only at M > S5,. At

M2 ,gSo it practically does not change the result.

*

In order to obtain this evaluation it is necessary to use the fact

’

that O.P R O.P.
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Thus we can write the amplitude for the diagram of Figure

5.9 in the following form :

o 7 _ ’/ 7
A=(08)G ™. = L s )T
44

' (5.21)

For the contribution to the cross-section (Fig. 5.10) we obtain

0/6" 5 / N Uj_( 0‘1 /’z/;'i‘;'c(‘(%i - G-
9 AE N (73 AT AT
/?40/;00/3 d/“) [/27 374/ "/.'1 | Ly e ’) (5.22)
o )2 ge TP g £ s '
1/3 /O‘r ) ”éz‘/"’ /4

Here 1. describes the invariant flow of initial particles at high
)
facror
energy. The mettipitier 3 is linked with the three possible charge
states of the I -meson (¥ Jr~,6 Jre ) in the diagrams of

§a¢hws
Figures 5.9 and 5.10. The remaining meliipliers in (5.22) which do

Jacrers -
not directly follow from (5.21), are the normol meltipliers linked

with normalization or phase space.

In the region of small values of af.l. and (1 - ‘:xi_l)

which is of interest to us the following relation is correct :

=4 R -4}
’D-’fo/io a’ e T 9z, :/.r c/g

Integration in (5.22) can now be corried out conveniently in the centre-
of-mass system of a pair of final pions. Then, neglecting the mass of
the pion H o ve obtain

&5
e e S I
Zf:?a a, d?z; e Zs /3]{/“‘ /

~L
p /3 s//)é ;CT‘/

T T X

/DZro’caJc‘? (5.23)
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—P
where K = lk‘:\ = ,?Ql% M . @ is the angle between K,
and Zi4 (in fact at a large energy this is the angle between

The kinematics of the conversion of two particles

~
o
3
o
)
-
SN

into four leads, at lorge S, &', 8" and fixed C;f ,' i'”- to the

relations

.~

v

% e ot s @ . T /"/ 2/ - . ,
SSRGE g i F (7-corE). ,i;:;zfc‘ﬁfﬁ: gir (5.24)
/y(Z

(Their derivation is similar to examination of the kinematic re-
lationships for conversion of two particles into three, which was
examined at the beginning of this section). Tntegration over the
angle should be limited to the region 0O COs 0< 1 * Let us explain
this in greater detail for the case of two T° _mesons. In reality,
we are interested in the totol amplitude of the process P+F —>Jreare,
Obviously in view of identicality it is sufficient to examine the
range of angles 0 <(Cos O< 1 . Itis precisely at such angles
(angles which are not too large) that it is reasonable to describe
the total amplitude by the contribution of the single-pion exchange.

For charged pions, the range -4<t0s® <O corresponds to another

*
We should point out here that the relation (5.21) which we

in fact used, and the formulas (5.22), (5.23) based on it, are valid
only for fairly large values of S',S" ( S', S"> Sm+ where Sn

~ 5-10 GeV2). Consequently the calculations carried out by us
are, strictly speaking, applicable only in the region }'%-’) ItJT!m'm
=E§§ /S , i.e. are not valid for very small tJr . However in
future when carrying out the evaluations we shall not take this factor

into account.
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charged configuration of final particles. As we have already effected
a summation over the charged configuration (the maigggz;er-three (5.22)
and in (5.23)), it is sufficient to take into account only the first
range of angles. Let us point out that we take into acéount the dia-
grams of the type shown in Figure 5.10, but not the diagram with the
cross as shown in 5,11. This is due to the fact that the mechanism

of single-pion exchange is substantial only at relatively low angles

of particle emergence whilst in the diagram of Figure 5.11 both in

the initial and final stotes the process occurs at large angles.

bty

If we insert the expression Fg(t‘)'r) = e for the
*
form factor, the cross-section takes the form :
2G” ' A3 g
0’92 ax, &‘/47 s, —/4—/ //M/lz/) 57) 47f 7/ (5.25)
- 2 J-)
where J/E/"‘?/i é;j}’zc/y_ . At small M2 J(ﬁg— X 3’2 , at
2 gM2 8 .
large M :]('-—T) r L . This corresponds to the fact that
2 82 MH )
the cross-section of the P+P —»2J reaction increases ot small M,
and at large M2 it decreases in accordance with ~ [:H . At M2

3 bread
x E- , it has a very slighily—sloping maximum (jmax 0.17). If

we were to take account of Reggeization, the cross-section would drop

slightly quicker as M increased. However the position and value of

¥ A similar evaluation was obtained also by A.B. Kajdalov and K.A.

/82/

Ter-Mortlrosyun
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the maximum is only weakly affected by Reggeization, since the maximum

is located at relatively small M2.

[ ]
For a numerical evaluation of -e- contribution of single-pion
J; -2 .
exchange, we shall take the value of = 5.5 GeV =, which ensures

& reasonable description of all the experimental data collected for

the reactions NN — JTNN , pn— nP , IIN - 23N in
83/

T
the model of single-pion exchange . Inserting also G%.P = 24 mb,

we may rewrite (5.24) in the form :

- . dG y : = 6 . / L L'M‘
(/) -/%el) g el g7, 0, ""‘/?-i‘o cm /a2 4 (5.26)

where M2 is measured in GeV2. The right-hand part of (5.26) attains,

at Mz ~ 0.53 GeV2, a maximum valve of ® 0.1 mb/(GeV)4, after which
it drops as M2 increases. Thus, the greatest value of the right-hand
side of (5.26) corresponds to the evaluation of (5.19), obtained at
large M2. Let us remember that in (5.26) account has been taken not
only of the charged I -mesons but the neutral T -meson. If we
confine ourselves only to the charged pions, it is necessary to multiply

the right-hand side of (5.26) by 2/3.

At first sight, the result of (5.26) may appear contradictory
with (5.19). 1In reality, this is not so. In (5.26) account has been

taken of only the cross-section of the "reaction" PP — 2T, which
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. . 2 .
attains a maximum and then drops as M~ increases. But at the same
At euen
time the transition cross-section of PP —» WJT increases. Aftern

higher M2 '
wards this cross-section also begins to decrease but the cross-section
of PP —> ©J etc. increases, so that the total cross-section of
pomeron-pomeron scattering is constant. (It is precisely in this way
thaot the constancy of total cross-sections occurs in accordance with
the multi-peripheral models). Thus, the cross-section of pomeron-

pomeron interaction at large M2 is determined by the sum of the con-

tribution of JT -meson states (see Figure 5.12).

By reasoning further in this way, we arrive at the conclusion
that also the effective pomeron itself is equivalent to the summation
of the T -meson lodder diagrams of the type shown in Figure 5.12.
We should also point out that as has already been shown by Boreskov,
: /84/ .
Kajdalov and Ponomarev (see for example ), the model of the single-
pion exchange reproduces well the fundamental features of the experiment-

2
al data for proton spectra at 0.15 < qu 0.5 GeV2 and gives, for a
three~-pomeron vertex aPPP (qj) y & value close to that found when
/50/

processing the experimental data

The evaluation of (5.26) points to the fact that the pomeron-
pomeron cross-—-section may, possibly become constant (or more precisely
almost constant) already at M° &% 0.5 GeV® and that the threshold

reinforcement in it may not occur, or at least be relatively small.

As has already been said, it may be expected that the model

¢f single-pomeron exchange descrives the average trend of the cross-—

gsection in the resonance region of the values of M2. But immediately
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in the resonance peak the cross-section will increase. Let us

briefly discuss the development of concrete resonances. The states
E and S‘ s if they in fact are resonances, will have large

widths. Consequently they will, probably, develop weakly in the

pomeron-pomeron cross-section.

The peak of the jﬁ -meson may be much more distinct.
Its value is determined by the vertex which links the Jc ~meson
with two pomerons. We cannot evaluate this vertex. It is, however,

argumenly

possible to use the following manew¥ex. By using dual models it is
possible to find a "precise" vertex for linking Jc with two P’
-Reggeons (the authors are grateful to V. A. Kudryavtsev, who carried
out these calculations). In the dual model this value is expressed
by the linking vertex /o.'JT' JI, which obviously is linked with the
life-time of the JO -meson. On the other hand, we may consider the
"reaction" P'+ P'—5 2 in the model of the single-pion exchange.
It so happens that the "precise" cross-section, integrated over the
peak of the J[ -meson exceeds by several times the prediction of

the single-pion exchange. Probably this statement is valid also for

pomerons.

/
Finally let us examine the j[ -meson. It can be compared
with a jﬂ -meson, if we use the gquark model (see for example the

/41/).

Frankfurt lecture From the point of view of the gquark model
the total cross-section of interaction of a non-strange quark (or
anti-quark) with a proton is approximately 3? T ~ 12 mb, and
the interaction cross-section of a strange quark with a proton
b

sk _ 1 glP o 17 mb - 12 mb = 5 mb. In this wey the

T q -7
effective pomeron is linked with a strange quark which is almost twice
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as weak as the non-sirange guark. But JC' is almost completely
composed of sirange quarks, whilst ;; is composed of non-strange
quarks. If we describe the production of resonances of the diagram
as shown in 5.9 (by replacing the Jr -meson pair by a quark-anti-
quark pair) then it is clear that the JC' -meson must be produced

approximately four times weaker than jc .

In conclusion let us stress that here we have confined
ourselves basically only to the discussion of contributions from
double-pomeron exchange. In effect, as has been shown by the cal~
culations we have made, and also by the experimental data which exist,
the background contributions from non-pomeron exchanges and from
diffraction dissociation of initial particles are quite significant,
particularly in the energy range S 5; 400 GeV2, where the problem of
separating the various contributions is fairly complex. Let us point,
however, that in the region of the ]c -meson resonance the back-

grounds from diffraction dissociation may prove to be less substantial.

Let us also make an evaluation of the lower boundary for
the value of the cross-section of the doublv -inclusive process (5.1)
in the region "xA)) ,:rp, — 4, qi‘. ) qi_\._"’o « We are now
speaking of the conitribution of the purely electromagnetic process
of Pigure 5.13, where a central group of hadrons is produced in a
collision of two géﬁé quanta. The corresponding contribution to a
cross-section of the process (5.1) for a-;::&uﬁ charged particle A

is of the form

, 2
agc ¥t . L & 7 L DL P o &
s = s 7 42 O
9,7 5, P T TSRS E) G < (5.27)

7,6:/077 /,z_zf)_@ﬁ‘) wb
R = )/ (T eE /e qe



where 63,( is the total cross-section of hadron generation in
a JJ ~collision (by factorization
o= ¥4
Cpr = 5—:;;”"*0,5/«1’ ).
re :
The cross section is compared with the

: R [} 3 -'4' 2
evalvation of (5.19) only at q%, 9 ™ 10

GeV .



1i2.

VI. SCATTERING ON A DEUTERON

Tests with a deuteron target are of interest for the follow-

ing reasons.

I. In many cases the use of a deuteron is the only possible
way of studying interactions with a neutron. This is the case, for
example, for Kn— ’ F—Sn -scattering, as distinct from f)n

-scattering, where it is possible to use a neutron bean.

2. The proton and neutron in the deuteron are weakly
linked, so that the nuclea corrections are small (of the order of 10%).
Consequently, when studying the scattering of fast particles it is
possible to ignore the interaction of a neutron and proton in a deuteron
(impulse approximation). The corrections related to the processes in
which the incident particle interacts with both nucleonsﬂ(double re-

scattering) may be computed /85=90/

by the inclusive scattering cross-
sections on one nucleon. Consequently the measurement of such
corrections both for total and for differential cross-sections enables
a check to be made of the correctness of our present concepts of the
deuteron as a weakly linked system of nucleons. In this respect the
most convenient incident particle is the I -meson, since as a result
of charge symmetry 6(7T+P) = 6(37—n) . Consequently by
comparing the data for the .'IT"'d‘,JT'd.— and the JT'[o"/'JF"‘P‘
interaction we can determine unambigiously the contribution of double

re-scattering in Jd -processes.,

3. The deuteron is not only the simplest compound system,

whose properties are interesting to investigate and which can be'used
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for obtaining neutron data, but it is also the simplest target

with ::isotopic spin equal to zero. Consequently it is interesting
to examine the inclusive reactions on a deuteron (i.e. reactions

of the type Q +d — d + all the remainder, where - Q is
the incident particle), especially in the three-Reggeon region (see
chapters II and III above), as in this case the value of the cross-
section will be determined by the contributions of a slightly dif-
ferent combination of Reggeons (i.e. Reggeons with T-_- o R F ’
and w ) in comparison with the inclusive cross-section on
protons. In addition, the measurement of the difference in the

differential cross-sections of J)'d and JT_A scattering enables

a much more accurate determination of the electromagnetic corrections

Eethe
(=ta phase, 797/ ana below).

Let us now turn to a more detailed evaluation of the neces-
sary experimental accuracy and a discussion of the character of the

data which can be obtained in deuteron target experiments.

I. The deuteron as a neutron target at small t

We shall first examine the scattering of any fast particle
(for example, a proton) on a deuteron in the region of Coulomb
interference, which is the most interesting for the LNPI set-up.

In this region of momentum transfers

— </ i s E
Apel = (At " Aep58) * A (6,2)) S )+ & (5,2) (6.1)

¢
where A /oF ’ AFP are the amplitudes of the Coulomb and strong
interactions of iwo nucleons (see Fig. 6.1 a-c),A@;t)is the contribu-

tion of double re-scattering (Fig. 6.1d), S (t) is the electro-
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magnetic form factor of a deuteron derived {rom dala on ed -scattering

(more precisely S(t):g.iﬂl., where GJ/GP is the electromagnetic
t

form factor of the deuteron and electrical form factor of the proton).

Below, we shall use in the evaluations

Sre)= & e (6.2)

where Q = 10 ((}eV/c)"2 . However it is important ‘Yo point out here

that in the region of small ,tlS(t) behaves more rapidly, and a
/92/

better approximation is

(6.3)
‘O//t'/ . —-0‘ by
Ste)=€e (w5 E g//,
where '
6 = O,} b -,OI.' -
@, = (29,7 £ 0,25) (GeV/c)™",
@z = (5,68 £ 0,06) (gev/c)-2,
The interference term in the Fd ~gscattering is of the form :
,w— ,
e (IR A 58] 348 ) + (6.4)

p]
- A th*;f")-ﬂ

where f3  is expressed by the total cross-section and Bethe phase
(see below). From the data on Pd -scattering we can attempt to

determine ReAPn (or Pph= M_ﬂ_ , see Fig. 2.1). This can be

Im Apn
done either in the case when Re.A(.s,t) is small in comparison
with ReAPP - ReApn y Oor when it is possible to distinguish

the first term in (6.4) from the second as a function of t



A (S,f) depends on t exactly as any strongly interacting

- Bt B

amplitude (i.e. A (5, t)~ e y Where ~ 4-6 (GeV/C)-z,
whilst S(t) falls more sharply in accordance with small t (see (6.2)

and (6.3)).

gyarvarIon ofF Re A (s,t)

A contribution to A (S,‘t) is given by various processes
(see Pig. 6.1d) and the basic condition (linked with the fact that the

deuteron should not collapse) is that q,’ (at t = 0) should be

*
smaller than 4/R§ (Qd is the radius of the deuteron ). Since
o< /./_‘1.":_-”..7‘7 s
Z i, = G 2

& ' / /> P (6.5)
where M is the mass of the nucleon, and M is the mass of the

system of particles produced in the intermediate state (Pig. 6.1) M2 =

K -]
(K4+ -—-- + n) y then
LE e A
3 LR (6.6)
¥
By Rd we understand the radius which characterizes
the reduction in the electromagnetic form factor of the deuteron
RSt 2 -2
(S(t)= e alti , lee. Rd X 10(9%1’) ) or (6.2)) Thus, a
specific Rd ~ }44— (r: is the mass of a 7  -meson),
which is considerably less than R > 4/2\‘ mé ( E is the bind-

ing energy of the deuteron). This comparison already shows that the
deuteron cannot be represented as a very brittle system. DBelow we
shall make considerable use of the fact that the radius of the deuteron
( Rd ~ 4/)4 ) is nevertheless considerably greater than the radius
of the strong interactions of hadrons, which is of the order of

A

4/ m/, ( mlo is the mass of the P -meson).
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For elastic and quasi-elastic processes (i.e. for processes in which

a finite number (not depending on S ) of particles with a small mass
(for example with M2< M‘g , where Mg =4 -5 GeV2) the condition
of (6.6) is always fulfilled and the main contribution to double re-
scattering is given by the graphs with the exchange of two vacuum
Reggeons (at a large total energy S). (see Fig. 6.2a). The real

part of these graphs is small, since the exchange of a vacuum Reggeon
gives a purely imaginary contribution ( o/}, is small) and the overall

real
smallness of the contribution of figure 6.2c to the medewrial part is

[ ]
R 4 3 ~,
Rea'™ o"‘},\;f,/ T e QO Tind ~0, Of mb

real
(IOmA~ 4 mb is from the experiment). Let us recall that the materied

olo(t
part of the exchange of the vacuum pole is proportional to o('l.at .S P().

*
We shall note here that /86/
I -
T A5t = 0)=2/S/79%) oz g% < (6.7)
It can be seen from (6.6) that a contribution may be given to the re-

scattering by the processes in which many particles are produced (their

2
number increases as S grows), but Pﬁ/@ should be lower or of the order

1 ] 2
of . & m* S/MR a S,y P> M
Rolnﬂ // CN )
the range of the large masses is described by the three-Reggeon limit.
At an energy of Fﬂab = 100 - 400 GeV/c M2 1s not very great and as
FProm here onward dé is dé(PP-’Px)g dé(gf-anxz
dqldn? dg®d M2 dqgq*dm?

(V. V. Anisovish, L. G. Dakhno, Preprint IHEP STF-74-II). When
deriving this formula it was assumed that the isotopic spin of
the upper Reggeon was zero. This is clearly true for a very high

energy.
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feal
the meterial part of the scattering amplitude increases as the energy

decreases, generally spesaking Ae A" may be fairly large. The

*%
greatest contribution is given in this case by the vertex RRR ,

which is great in comparison with present-day processing values for

/50/

inclusive proton cross-sections and which precisely reflects the
growth in Re ANN in the small energy region. It turns out that,
having taken G.o. from /50/, and S(t) in the form of (6.2) we

obtain

"Pe Qpp < V5) % 2pub | 5,. 4 Gev?

(s = 200 ceve A Rrp £ 0.1 mb). This value is fully comparable
with the difference Mg APF—ReAinhich we expect on the basis of the
theory of complex momenta, since Re APP -Re AP" is determined by

the /o -Reggeon, the contribution of which falls as the energy

increases in accordance with 1“5 and in addition is suppressed

/36/).

in the nucleon system (see The remeaining contributions to

Re A are considerably smallexr :

ﬁ’edpﬁ,’e < Cif,vd‘n') /(’eAA~.4,P ot O,/Md‘»/}

- &
Le Appp < 2 /0 ror

Below, we shall use for the evaluations the analysis of the inclusive

proton cross-sections on the basis of the Regge pole model, disregarding

wls
braneking contribution. With the present-day experimental accuracy the

culs
contribution of b»enekime and poles should not be broker down.
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(it GPPP-v’c at t = O)*. Thus, we cannot consider that Re A is
small, and the experiment to determine Re APP-—RQ AP{I y disregarding
RZ;Q y can be performed, relying solely on the fact that for
some causes which we do not know Re Apn - Re_ APP 2
0.3 - 0.4 mb., We can attempt to determine ReAPn - Ae APP = é)
using a different dependence on t for the first and second terms
in expression (6.1). As the Coulomb interference is great at small t
( Jt] is £ 0.01 GeV®), then for AP" . APP' A(s,t),
which depend on the momentum transfer approximately in accordance

with e il (where ,tl is in (GeV/cz), we may use the linear
expansion over lt, . fSlt' depends sharply on t and for lt‘gs 0.01
)2

(GeV/c it is necessary at least to take into account the guadratic

term for t (see (6.3)). In this way

(6.8)
SE Ao (effar berct ST

where G = Re App (5,0) t ke Apn(S,0)+ e a (59,

Qy is determined by the dependence of the strong amplitudes on small

t , whereas ’ 25
ClfeApp (50) 0 A, 00 L F

in particular for (6.3)
C=(Re Arpr fe hon) 790 SYL

In determining C , we can determine Re APP + Re Apn sy not knowing

the corrections from double re-scattering. In comparing A and C, we

*

Iz GPPP £0att=0,Re A ppp < 0.15 mb.
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can determine e A (5,0) , which also is of interest (see
below). In measuring the cross-section with an accuracy of up to

1%, the term will be determined with an accuracy of not less than

20% at ,‘t’, 0.01 GeV2, and consequently it is possible to determine

(S\ only in the case where

d ~ ReAp

Thus the value anticipated in this way for 6(6'\— 0.1 Re App} can be

determined only when the measurement accuracy of the cross-section is

0.1%.

2. MEASUREMENT OF DOUBLE RE-SCATTERING

When measuring the scattering on a deuteron at small
momentum transfers, it is possible to measure the correction from
double re-scattering not only in the imaginary but also the s
part of the s ttering amplitude (see formulas (6.1), (6.~4), (6.8)).
Here it is best to use (as has already been pointed out above), the
T -meson beam or make the assumption that Apn = APP at large
energies. Various processes have essentially different contributions
to ij and Re A . This can be seen even from the fact
that a significant contribution to JmA is given by the processes
of the quasi-elastic type (6.2a), which have a contribution to g A
which is so small that it can be ignored. The formulas which determine

jm A and ReA have been written out below (see also /86’88’90/)‘

-2 (2/6_.. .
Tn o = 2/9’5 5/4*) -7l
+e/ a//v/a’t oo 54

r2/ d,,z/dz 5’/%/ , (6.9)
3 _
/~ 7 o 06[ “2 ,}') - 1 ﬁ/é-.‘//A ﬁ‘;}) 7

f[g, Scad fu, - 2s%) otdM* &n}zﬁ(;-fp}) de S+ S
26'//4/'0/(‘ /’“"0/3) a’taﬁ/-/'(-alf/72

S /&t o1t
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ﬂm:%aW/%tq%yc@ z%.

(// zﬁ‘ 2/,7) °i-Lz_£3_

GEAPPE
| dGﬂc ' (6.10)
YT AN g e/E +
th?aS O'fQ/M‘ /o‘ //=—-Q-/~G’_ dMZ_/

For the designations see Fig. 6.2c. In (6.9) and (6.10) it was
congidered, for the sake of simplicity, that the Reggeon ol has
a positive signature. For the poles with a negative signature, the
formulas vary insignificantly. In addition, we have written out in
(6.10) only the contribution from the large masses, since the con-
tribution to Re‘A. of the elastic and quasi-elastic processes is
small (see above). The inclusive cross-section over the same poles

can be written in the following form

= T Ak pl) . SO, B
a%cwvf Pt o ME At o M

We see that Qe A gives us essentially new information concerning
three-Reggeon vertices. The main advantage of determining A at
present is that the three-Reggeon PPP vertex determines the
dependence of Jm A on energy. In order to determine
GPPP(O) it is necessary to measure Jm A at various energies and

isolate logarithmically the increasing term

de’—‘d'fc é S//Zz //f)a/ﬁy/ (6:11)
h
where Q= Z{ 76;_.,/0/} /g//,pj
(6.12)
If GPFP(t)=5t whent — O, then

o (6.13)
C=F /R ‘
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i.e. is considerably smaller than in the previous case. What should
be the measurement accuracy of the total cross-section, for example,

of Pd -scattering, in order to determine ya\ ? For this we will

insert in (6.12) and (6.13) GPPP(O) and bt from the experi-
mental incluszive spectrum of protons in accordance with the processing
method /50/. Then
4 =
Appr < G7 mb 5 S/"yaé/”’fa//- for (6.12)

This means that when S +varies from 20 to 200 (}eV2 APPP varies

only by 0.23 mb. For (6.13) we have

Appp < 5870 C mb 5 Sppr2 0 fu))

Consequently in order to notice this variation it is necessary to
measure the cross-section of Pd ~-gcattering at least with an
accuracy of 0.1%. If the cross-section is measured with an accuracy
of up to l%, then, quite obviously, we can measure only G-RRR ’
which generally speaking is extremely important, since after its
measurement it is possible to isolate accurately the contribution of
PPP in the inclusive spectrum of the protons. Here it
is convenient to use Re A y 8ince, in fact, it is basically

determined precisely by the contribution of GRRR

- A S, Ve, . im
fe drpp = P2 GA’M//S‘,/ (7% prn (6.14)

/50/

(for this,use was made of the expression (6.2) for S (t)). From

Re Apep£3.0 w8 /VE (5.2160%)
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3. The deuteron as a target with an isgotopic

spin equal to zero

When measuring inclusive cross-sections on a deuteron in
the range 'OCI — 4 , it is possible to obtain informafion concerning
the contribution of the different Regge poles, if we describe this
inclusive cross-section by the frequently used formulas (see above
under chapter 3). It is most interesting to determine the contribution
of the PPR and RRR terms, since in this case a
contribution is given only by the non-vacuum Reggeons with I = O
( ) and f ), as distinet from the inclusive process on the
proton, where ( jO and 442 ) Reggeons are also substantial. In

addition,when comparing the cross-sections of the processes

o+ C/—r &+ — -
(6.15)
CZ 7 - —_——
~ Vol ,
(6.16)
it is possible to check the factorization relation
1, A L. . 2 lors. 8 (6.17)
o - = - 2 2
(@-da/)_ o'z Q/ﬁ- /60/0) o'oc Q/?J.

The relation (6.17) is valid only for OC —» 1 in the range where

the contribution is given only by the graph PPP « Consequently
this, provided that (6.17) is properly fulfilled, will enable us to
make a judgment concerning the size of the contributions of types
RRR and PPR , the isolation of which is essential in order
to determine GPFP sy and the study of this as a function of +t

is indeed one of the fundamental tasks of the projected experiment.
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Let us now show that having measured the difference

. -
G ST el . AT
A = @,Ja/ft 4 H,...élﬁ B

it is possible to determine the relation of the real part to the

imaginary part for a scattering amplitude of ord (.Pﬂa)
with an accuracy of o(/ds/go' /91/.

In reality, at high energies

S o (6.18)
FELEZR e Jh o2t 200 4 1, 2

where A(+) and A(-) are the contribution of Reggeon or gamma-
gquanta exchange with a positive of negative signature. It can be
seen from (6.18) that

Dd=g R 44
- (6.19)

As the isotopic spin of the deuteron is equal to zero, a contribution
to /\(') is given only by the exchange of one photon (as we know,
the photon has a negative signature and contains a state with I = O)
or graphs of the type shown in Fig. 6.3b. As a x exchange gives

terms of the order of a(/t in the cross-section, and the graphs

4
TRIRT

in reality are not great, we shall take into account only the exchange

of Figure 6.3b give terms only of the order of o{fn which
of Figure 6.3a in ,A(f) . A contribution to A(*) may, generally
speaking, be given by the exchanges expressed in Figure 6.4. It should
be pointed out that the graphs of Figures 6.4a - 6.4f determine the
contribution to the maézgiai part of the scattering amplitude of strong
Tl -interaction and only the graph of Figure 6.4g gives the

electromagnetic corrections to it. But this graph has an order of
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o?QE;/So , 50 that the contribution of @ and )p Reggeons

falls with an increase in S . Finally, (6.19) can be re-written in

/91/

the following form

- e 479 (A0 0 () . (6.20)

d
where Ac is the contribution to the amplitude of photon exchange

i Je the
(Fig. 6.3b), equal to ~ -—0 c , wWhere fcc is @ Coulomb phase
equal to o(en‘t/j . Ajgd is the amplitude of strong inter-

action. Thus, (6.20) enables a determination of Re@sjue -t y“)
with an accuracy of o(v S . Returning to the contribution to the
cross-sections of the JT+‘d -scattering of the interference terms

of the c(/t type (Coulomb interference), we have

C‘/Cc;/b Z ) 2/ J/J/ﬁ?e Ta(+) 'dbpcc) .
4
+ Ae (Avd/j -“.% /\ (6.21)

(), -t fec
where Re (A ) is determined from a measurement of
Aol , and the contribution to (Qg (Asgdl-)e'tf“))
is given by the graphs of the type shown in 6.3b, bearing in mind
that at high energies the main contribution fits the diagram of
Pigure 6.5 ab. The diagrams of Figure 6.5a determine the so-called

Bethe
Bet& phase /93/

/94/.

, for which there is the generally accepted expression

1 7 - )= . if’..‘;?_
T =l e )= % (6.22)

(the latter equality forming part of the potential approach), whilst

the diagrams of Figure 6.5b give the corrections.
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In this way, by measuring the differential cross-section of
X*'d and M-d- ~gcattering in the region of Coulomb interference,
it is possible to find with an accuracy of<¥/f1§7;; the correc-
tions to the 3223 phase and determine how well the generally accepted

formula agrees with experiment.

The questions touched upon in this lecture are now being
subjected to intense experimental research. The authors hope that in
the next volume of material for the present school they will be able

to report some new experimental data.

The authors are grateful to V. N. Gribov, whose work was
the theoretical basis of these lectures. The numerous discussions
with him have also played a substantial part in preparing the lectures.
The authors are also grateful to A. A. Vorob'ev and A. B, Kajdalov

for some stimulating discussions.
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:Reg- :___Quantum number * Trajectories ¥ *: Resonances ° :
igeonsl G 17 151816 1ALl otfo) i(QV/G)! :
PmmomT=AToo= ::.-::‘::.::‘.:::.‘.::::’::::::::1::::::::_—.::::;::::::::::::q::::::::::::::::::::::::::::1

PP o0 0|+ I 0,278:0,024] No

S8 |+ |ojojol+ |+ |+ 05802 {0,322 #(1270)

Az |+ [T lolot-1+ )+ Jos2o1 |0,6%0,2]A4,(1310)

« - 4000l -1-1+ 10401 |0,7%0,3 ] c(78)

£ - ‘Ilojo0 s+ {~1+ lo,57kog,02 | 0,9 0,1 P (765), @ (1660)

J o+ {Ilojof-1-1- 10,15%0,12 | 0,62t0,23 {7 (140)

.} ©

.- peprjo Y ) e33t0.02 | 0.84%0,05 £*(820)

' + (I/24%1 | o + 1+ AP(1420)

49 3/20 ¢ {1 $ 1= 0,15%0,05 | 0,8720,20 | See Fig. 1.2.

He |+ ATjey 011 + 0+ 1 -0,38%0,04 | 0,88%C,09 | N (980),/(I683), /(2650)

Py 1~ I/ 0} X R T R VY- 0,92 A (1520), /' (2190)

SR Il T } . -0,8% 1,0 See Fig. 1.2.

rs |- |1l 1 “ ]

Av. 1+ Q0.1 11 L+ )+ -0,7 0,97 See Fig. 1l.2.
l Av |- 10 l’-z 1. -1+ | -

* 6 is the Reggeon signature, I is isotopic spin, S is strangeness,
B is the baryon number, G is the parity equal to C(-1)1, where C
is the charged parity, P is the Reggeon parity, P2 = 6 P,

*x The Reggeon trajectories are reproduced from the data on particle
scattering, with the exception of the values underlined. The latter,
when drawn through the resonances shown in the table, pﬁyxhged a
straight line (the trajectory parameters were taken from .

**%* P is the vacuum Reggeon or Pomeranchuk pole (pomeron). It has been
introduced to ensure the constancy of total cross-sections at
S-—-)oo.
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T able

: §918 PTOF Gen 1 cha teristics of
iReaction WIRERRR ol Cenppal chappperistics
{ ,
- P+f-aw+A,-P |& = 9-13, cone shrinkage withetp = 2 = 0,28%,
rr /?O / 2/ minimum at t = -1 3 (GeV/c)?, P 5
PP =P  |PHrethztp B = 13-10, cone wldening, minimum at t ~ = -0,6 (Gev/c)“.
K70 o Prf-c A, P b = 3-6, cone shrinkage . no minimum at t = -0.6 (GeV/c)2.
KP=K P |Prfsc +A+p - 7, the cone does not shrink, the minimum is at t ~ -0.6 (GeV/c)z.
‘_/7*/0—.],#/3 P f7[-)a # = 6-7, cone narrowing, minimum at t ~ -0.6 (GeV/c)Q.
TP~Tp f*f"f E= 7.5, the cone does not shrink, minimum at t ~ -0.6 (GeV/c)2
A p-Tn i k- 9, minimum forward and at t~ -0.6 (GeV/c)2o
'77’,0*2” Ao ‘E'= 5.5 no minimum,
.T’,o—'ﬂ‘h” f §- 10, minimum forward and at t~ -0.6 (GeV/c)z.
]"‘/,»,ZA” As Minimum forward, 0
Ko+ £7°a" 7+ 4, rp |[Peak forward ("f" in the peak ~ 40 (GeV/c™%).
pn/o—~ 82 | TrALTF Peak forward.
pp=aTaTt | Trapep (W= 120 2
5ip =P &+ 7 =8, minimum at t ~ -0.6 (GeV/c)".
K = <N r ﬂ'= 3, minimum forward.
N—~ T P+ I ﬁeak forward. 4
ﬁP”AQP £+j9 »f inimum forward = 8,
pn—~hrp f%‘/larf Peak forward, at -t = 0-C,02 (GeV/c)z,
"§" in it 57.4, at large t, = 4.3, ,
Fp—~pi Ast N N, b= 10-12, minimum at W = -0.19 (GeV/c)“.
7 p > T as b= 10-12, no minimum at W =
-0.19 (GeV/c)“,
¥*

For further details on cone shrinkage see Figures 1.4, 1.5 and 1.6 and also in the text.



Reggeon exchange n ? - 2 < (0)
F) 0.3 o}
Reggeon with S = O 1.3-2.3 1 for p,Aa
1-1.4 forw
2.0 for I
Reggeon with S = 1 2.0-2.8 1.4
Fermion 3 -6 2 -3

Values of N , taken from processing the dependence of the cross-
sections of vario r tions on S according to the formula
ST R DLarertops, Taeyt

a) n are reproduced, averaged over the total collectionof reactions
with the exchange indicated.



Table 3b

iEne rgy regi on§

Reaction ‘Reggeon

ae oa aor:
DETRTAY B

iP) pin GeV/e ! &
Tp 7% P 5-50 1,12 * 0,03
T8 p 2 - 13 e to,l
Jp ~pn Az 6 - 50 1,35 % 0,04
Tpwpa’” Ag 2-19 1,57 £ 0,15
Kp=a™a F 4,6-16 1,68 0,08
Proa’ A" F 3-30 I,45 10,2
pp=a a7 3-6 1,09 t 0,10
Fp~pp | &7 b - 40 1,87t 0,09

Table 3b gives a representation of the scatter of N
over the reactions with the exchange of strange
meson Reggeons ( 2 - 2 «(0), see Table 3a).
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Table 4

R = 6‘/2-23*47-:0) =V 0,43
" Ol ~pp)

(2 3
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& 0,15
ClrP =P P 7)

1
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Momentum, GeV/c
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