WHAT IS INTERESTING ABOUT THE REGION

OF SMALL MOMENTUM TRANSFERS AT HIGH ENERGIES?

Ya.I. Azimov, E.M. Levin, M.G. Ryskin, V.A. Khoze

Translated by kind permission of the editor, from the Proceedings of the 9th Winter School of the Leningrad Nuclear Physics Institute on Nuclear and Elementary Particle Physics, 15-26 Feb. 1974. Leningrad, Akademiya Nauk SSSR, 1974, pp. 5-161.

WHAT IS INTERESTING ABOUT THE REGION

OF SMALL MOMENTUM TRANSFERS AT HIGH ENERGIES?

Ya.I. Azimov, E.M. Levin, M.G. Ryskin, V.A. Khoze*)

Copyright Notice

This translation was made and reproduced with kind permission of the publisher. This document, or any part of it, may not be reproduced by any means, or translated, without written permission of the Leningrad Nuclear Physics Institute of the USSR Academy of Sciences, Gatchina, Leningrad District, 188350, USSR.

[^0]
WHAT IS INTERESTING ABOUT THE REGION OF SMALL MOMENTUM TRANSFERS AT HIGH ENERGIES?

By Ya. I. Azimov, E. M. Levin, M. G. Ryskin and V. A. Khoze *

ABSTRACT

In these papers, an attempt is made to make a complete review of those experiments at small momentum transfers and high energies (Elab. $=50-1000 \mathrm{GeV})$, the setting up of which would enable answers to be given to the most interesting questions posed by the modern theory of hadron scattering at high energies. The basis of these is as follows : is it not possible at the achievable energies to delermine the characteristic consequences for the hadron scattering processes resulting from the hypothesis of constant cross-sections at asymptotic energy? Specifically, this means: the disappearance of quasi-elastic processes at zero momentum transfers, the vanishing of all vertices of vacuum Reggeon emission and of particle emission from a vacuum Reggeon, if crossed by a zero momentum The papers examine precisely the behaviour of the cross-sections of the various reactions to which the abovementioned features of asymptotic scattering lead, at real energies. Inspite of the fact that such examinations are of a particularly

[^1]estimatory nature, the authors consider that as a result of difficult, but in principle feasible experiments at small t and in a wide energy range, the asymptotic theory may be verified.

Furthermore, the papers examine in detail questions of a more specific interest, such as the behaviour of $\rho=\frac{\operatorname{Re} A}{\operatorname{Im} A}$ for high energies, the kink in the slope of the diffraction cone at $t \approx-Q 1(\mathrm{GeV} / \mathrm{c})^{2}$, hadron scattering on a deuteron target etc.

The first part of the papers may be considered as an attempt to enumerate the fundamental qualitative results of the theory of complex angular momenta, which are necessary for an understanding of the whole of this series of papers.

I. INTRODUCTION

Basically, this series of papers is devoted to a review of those experiments at small momentum transfers and high energies ($>50 \mathrm{GeV}$), the setting up of which would enable the following question to be answered: are the present-day concepts on hadron interactionsat high energies reasonable or unreasonable? In discussing the possibility of one type of measurement or another, we were guided towards the set-up used in the LNPI/1/ for those questions relating to accuracy, the range of accessible momentum transfers etc. First of all let us dwell on a theoretical description of hadron interaction at high energies. The only consistent
theoretical foundation for studying strong interactions at high energy as a whole (and not individual reactions) is now the theory of complex angular moment ${ }^{2}$ and the parton (multi_peripheral) picture of interactions which is closely related with it. Unfortunately, the theory of complex momenty ${ }^{a}$ was not discussed in detail at the winter schools at INPI(an intelligible exposition of the fundamental arguments and results of this theory is given in $/ 2 /$), but the space-ftime picture of interaction, occurring in the parton (multiperipheral) model, has been examined on several occasions at these schools $/ 3 /$ (and in particular detail at the last of these $/ 4,5 /$). Here we shall not discuss in detail the theory of complexpmoment ${ }^{\text {ang }}$ but shall rather enumerate the fundamental consequences of it which must be known in order to understand these papers, and we shall also dwell on the basic experimental data which confirm it.

REGGEONS

I. Dependence of scattering amplitude on energy. In the theory of complex angular moment $\boldsymbol{a}^{\boldsymbol{\beta}}$ a fundamental contribution to the amplitude of hadron interaction at high energies is the exchange of a particle or group of particles with a variable $\operatorname{spin} \alpha(t)\left(t=\left(P_{a}-P_{a}\right)^{2} \quad\right.$ - momentum transfer, see Fig. l.la). Such a particle (group of particles) is referred to as a Regge pole or Reggeon. Reggeon exchange leads to an power - law see Fig. l.la) and corresponds to a definite feature (relating to the pole) of the partial amplitudes $\left(f_{j}(t)\right)$ of the t -
channel angular momentum (j) (i.e. $f j(t)=\frac{2}{j-\alpha(t)}$). The link between the asymptotic form of $S \alpha(t)$ with the spin of a particle participating in the exchange is shown in Fig. $1.1 b$, where the amplitudes are given for the exchange of vector and scalar particles. In this case a contribution is given by the t --channel partial amplitudes $f_{1}(t)$ and $f_{0}(t)$, respectively. Comparing drawings I.la and $1.1 b$, we see that Reggeon exchange may in fact be looked on as an exchange of a particle with a spin $\alpha(t) \quad \alpha(t)$ is referred to as the trajectory of the Reggeon.
2. Link between a Reggeon and particles with high spins. This link is established by the fact that for $t>0$, when \sqrt{t} is the energy and tne process must be regarded as shown in Fig. 1.lc, the real part of the trajectory $\alpha(t)(\operatorname{Re} \alpha(t)) \quad$ equals intager values $(n)\left(\operatorname{Re\alpha }\left(t_{n}\right)=n\right)$ for values of $t=t_{n}$, corresponding to the masses $\left(t_{n}=M^{2}\right)$ of resonances tith a spin $n(j=n)$. The width of the resonances is expressed by $\operatorname{Im} \alpha\left(t_{n}\right)$, namely : $M \Gamma=\frac{\operatorname{Im} \alpha\left(t_{n}\right)}{\alpha^{\prime}}$, where $\operatorname{Re} \alpha(t) \approx \alpha\left(t_{n}\right)+\alpha^{\prime}\left(t-t_{n}\right)$. It is recalled that the contribution of resonance to the reaction is written in the usual form :

$$
B(s, t)=-\frac{3 \pi \sqrt{s}}{i}(2 j+1)_{\bar{s}-\frac{M r^{e l}}{M^{2}+i M T}} p_{j}(t),
$$

where M, j, Γ and $\Gamma^{\text {ale equal tothe mass, spin total and elastic width of }}$ the resonance, $P_{j}(\boldsymbol{Z})=$ a Legendre polynomial, $\boldsymbol{Z}=$ the cosine of the scattering angle, $P=$ the momentum in the cms system. In this way, once the resonance spectrum is known, it is possible to establish a picture of the dependence of $\alpha(t)$ on t. The

Abstract

surprising thing is that all known resonances lie on linear trajectories, which have the form $\alpha(t)=\alpha(0)+\alpha^{\prime} t$ (see drawing 1.2). This fact enables us to predict the energy dependence of the amplitude of the interaction of two particles at high energy, which is determined by the same $d(t)$ (see Fig. l.la).

3. Space $=$ fime picture of interaction. The basic idea of the parton model $/ 4,6 /$ is that a fast hadron (moving with a momentum of p) may be regarded as consisting of a large number ($\sim \ln p$) of point particles (partons) which can be described in the usual quantum-mechanical manner by means of a wave function. But in what manner does the interaction with the target take place in this model? As the interaction cross-section of point particles is not greater than $\pi \pi^{2} \sim 1 / S_{12}$, where S_{12} is the pair energy of two particles (1 and 2 in Fig. 1.3a), it will only be the slow partons which will interact with the target at rest, as is shown in Fig. 1.3a. The process of elastic scattering expressed in this way will be that when a slow parton interacts with the target it is scattered at a very small angle. In this case there will be a probability (not small for small momentum transfers) that the partons/in a hadron similar to the initial one (elastic scattering), or in a hadron with other quantum numbers (quasi-elastic scattering) see Fig. 1.3b). It is natural that the probability of such collection will rapidly fall as the momentum transfer increases, roughly in accordance with $e^{-R^{2}(t)}$ $R=$ radius of the parton (hadron) system, i.e. substantial distances in a plane perpendicular to the direction of the flight of a particle
a, on which slow partons may be found. As was explained in detail in $/ 4 /$, these distances are $\sim \sqrt{\alpha \cdot \ln S}$. In this way the amplitude of elastic scattering will be $\sim e^{-R^{2}(t)}=e^{-\alpha^{\prime} \ln S(t)}=S^{\alpha^{\prime} t}$. In other words, the basic contribution to the cross-section in this picture will be given by the processes of the multiperipheral type, which differ kinematically from the others in that the relative energies of any two neighbouring particles (i and
$i+1$ in Fig. 1.3c) or otherwise their square of the mass $S_{i, i+1}=M_{i, i+1}^{2}=\left(q_{i}+q_{i+1}\right)^{2}$, are limited and do not increase with a rise in the total energy of the Colliding particles. Finally, in accordance with the optical theorem $S \sigma=\operatorname{Im} A$, where A is The amplitude of elastic scattering, and, consequently the equality shown in Fig. I.3c must be satisfied; later, we shall use this to a very great extent.
4. Quantum numbers. As all resonances must lie on Reggeon trajectories a' $t>0\left(\operatorname{Re} \alpha\left(M^{2}\right)=j ; \quad(M \quad\right.$ and $j=$ mass and spin of the resonan , it is clear that the Reggeons are characterized by the same quantum numbers as the resonances. In other words, each Reggeon has a definite isotopic spin (I), strangeness (S), parity (P) etc. Table 1 shows the quantum numbers and parameters of the trajectories, and also those particles which lie on these trajectories for all of the most important Reggeons. It is necessary to pay attention to the fact that in the theory of complex angular moment ϕ a new quantum number appears - signature which characterizes the change in the Reggeon contribution ($R(S, t)$) during the substitution $S \rightarrow-S$. For Reggeons with a positive signature ($\sigma=+1$ in Table 1) $R(S, t)=R(-S, t)$, for Reggeons with a negative signature $R(s, t)=-R(-S, t)$. It should
be noted that if $R(S, t)$ equals the Reggeon contribution to the reaction $a+b \rightarrow a+b$, then for high $S R(-S, t)$ equals the contribution of the same Reggeon to the crossing-symmetrical reaction $\bar{a}+b \rightarrow \bar{a}+b$, consequently the signature forms a link between the scattering of a particle (a^{*}) and an anti-particle ($\bar{a}^{\bar{a}}$) on a target $\left({ }^{\prime \prime} b^{\prime \prime}\right)$. On the other hand, the signature characterizes the parity of the spins (j) of those resonances which lie on a given trajectory (for baryons the parity is $j-\frac{1}{2}$). The trajectories with a positive signature pass through resonances with spins of parity (see Table 1 for trajectories f, A_{2}, π), whilst trajectories with a negative signature pass through resonances with spins having an odd parity (see ρ, ω - trajectories in Table I and Pig. 1.2). For the characteristic of the trajectories we shall subsequertly find convenient the quantum number $\mathrm{P}_{\mathrm{q}}=$ $P .6=P(-1)^{n}$, where P and σ are qual the parity and signature of the trajectory, n the spin of j for a boson and $j-\frac{1}{2}$ for baryons. If $P_{n}=+1$ particles $0^{+}, 2^{-}, 2^{+}$lie on the trajectory, i.e. particles which are described by scalar, vector and tensor wave functions (particles with a natural parity $P=(-1)^{j}, j=$ spin resonance). If $P_{2}=-1$, then on the trajectory lie resonances $0^{-}, 1^{+}, 2^{-}$, and for such particles we must use pseudo-scalar, axial-vector and pseudo-tensor wave functions (particles with non-natural parity $\left.P=-(-I)^{j}\right)$. On completing a summary examination of the quantum numbers of Reggeons, we note that for all known Reggeons with $\alpha(0) \geqslant 0$, one simple relation between quantum numbers is fulfilled:

$$
\begin{equation*}
\sigma G \cdot(-1)^{I}=+1 \tag{1.1}
\end{equation*}
$$

Abstract

For the convenience of the reader, Table 2 enumerates the most interesting reactions and shows which Reggeons contribute to they them and how/do this.

Power_law

5. Fupond dependence of amplitudes on energy. Let us go into greater detail on the basic consequences of the fact that at high energies a contribution is given to the hadron scattering amplitude (A) by Reggeon exchange, i.e. $A \sim S^{\alpha(t)}$. Above all, the differential cross-section for a fixed t should fall (ally with the increase in energy. In effect,

$$
\begin{equation*}
\frac{d \sigma}{d t}=\frac{1}{16 \pi s^{2}}|A|^{2} \sim s^{2(\alpha(t)-1)} \tag{1.2}
\end{equation*}
$$

power_law

It is obvious that the expenentiat character of the fall is maintained also for the total cross-sections of this process, if we disregard their additional logarithmic fall as S increases.

$$
\begin{equation*}
\int \frac{d \sigma}{d t} d t \sim \mathcal{S}^{2(\alpha(0)-1)} \frac{1}{R_{0}^{2}+\alpha^{\prime} \ln S} \tag{1.3}
\end{equation*}
$$

In this way, all cross-sections should behave according to $\sigma=A S^{-n}$, where " n " may be calculated by $\alpha(0)$ of the corresponding Reggeon. It will be immediately seen that the cross-sections of the elastic reactions and diffraction dissociation, to which the basic contribution is given by the exchange of a vacuum pole $(\rho, \alpha \rho(0)=1$, see Table l), should be almost constant. For the reactions in which there is an exchange of isotopic spin in the t-channel (for example $\left.\pi \bar{p} \rightarrow \pi^{0} n\right) n=-2(\alpha \rho(0)-1)=+1$. For reactions with an exchange of strangeness (for example
$\left.K^{-} p \rightarrow \pi^{0} \Sigma^{0}\right) n=-2\left(\alpha_{K}^{*}(0)-1\right) \quad=1.34$; with an exchange of a baryon number $n=-2\left(\alpha_{N}(0)-1\right)=2.8$ etc.

Table 3 shows the experimental $/ 7 /$ and theoretical values of " n " for many reactions. It will be seen that the power-law drop in cross-sections agrees well with experiment and the values of " n " , calculated by the Reggeon trajectories, at least qualitatively agree with the experimentally observed dependence of cross-section on energy.

Shrinkage

6. Anewing of the diffraction cone. As follows from (1.2),

$$
\begin{align*}
& \frac{d \sigma}{d t} \sim s^{2(\alpha(0)-1)} e^{-2 \alpha^{\prime} / t / \cos s} g_{a}^{2}(t) g_{B}^{2}(t)= \\
& =g_{a}^{2}(0) g_{b}^{2}(0) e^{-2\left(R_{0}^{2}+\alpha^{\prime} \cos j|t|\right.} \cdot s^{2}(\alpha(0)-1) \tag{1.4}
\end{align*}
$$

where $g_{a}(t)$ and $g_{b}(t)$ are taken, for simplicity, in the form $g(t)=g(0) e^{-\frac{R_{0}^{2}|t|}{2}}$. It will be seen from (1.4) that the slope of the cross-section ($" b^{\prime \prime}$ in expression $\frac{d \sigma}{d t}=A_{e}-8 / t /$) must increase with a rise in $S\left(b=2\left(R_{0}^{2}+\alpha^{\prime} \ln S\right)\right.$). This shrinkage inf of the diffraction cone is observed for those reactions in which a contribution is given only by one Reggeon (for example the reaction $\pi \bar{p} \rightarrow \pi^{0} n$ takes place owing to the exchange of only the ρ-Reggeon), or in the case where the reaction is measured right up to the high energies, for which only the contribution of a Reggeon with the highest $\alpha(0)$ survives (see Fig. 1.4, 1.5, 1.6). For some reactions, however, " $b^{\prime \prime}$ does not depend on S (see for example ${ }^{*} \pi \bar{p}$ and $K \bar{p}$ in Fig. I.6, whereas in other cases (see $\bar{P} p$ in Fig. 1.6) the diffraction cone is widen/ $/ \mathrm{d}$ as S increases (${ }^{\prime} G^{\prime \prime}$ falls with a rise in S). The usual explanation of this fact is that in these reactions the contribution is given by the exchanges of many Reggeons

[^2](see Table 2) and, at an energy which is not too high, they are all substantial, and an asymptotic narrowing of the cone does not develop. In reality, let
\[

$$
\begin{equation*}
\frac{d \sigma}{d t}=r_{1} e^{2\left(R_{1}^{2}+\alpha_{p}^{\prime}\left(\ln J^{\prime}\right) t\right.}+\frac{r_{2}}{\sqrt{S}} e^{2\left(R_{2}^{2}+\alpha_{f}^{\prime} \operatorname{Rn}^{\prime} S\right) t_{B}^{\prime}} \tag{1.5}
\end{equation*}
$$

\]

The first term corresponds to the contribution of the vacuum Reggeon, the second to interferences with all non-vacuum Reggeons of type ρ the $A_{2}, \omega, f, \alpha(0)$ of which are close to $l / 2$ (see Table l). If $\frac{d \sigma}{d t}$ is represented in the form $A l^{b t}, b$ for (1.5) is equal to

If we take $\eta_{2} / \eta_{1}=2$ (which corresponds to an identical contribution of Pand f to the amplitude) and

$$
=2\left(R_{1}^{2}+\alpha_{0}^{\prime} l_{n} S+\frac{r_{a}}{2_{1} \sqrt{\frac{s_{0}}{S_{0}}}}\left(R_{2}^{2}+\alpha_{f}^{\prime} \ln _{2} S\right)\right)\left(1+\frac{\tau_{2}}{z_{1} \sqrt{s} / s_{0}}\right)^{-1}
$$

then the variation in " b " as S increases from 10 to $100 \mathrm{GeV}^{2}$ is equal to 1. Let us note that " b " for P (first term in (1.5)) varies by $\Delta B=2$. It is clear that by selecting $R_{1}^{2}, R_{2}^{2}, \mathbf{r}_{2} / \mathbf{r}_{1}$, etc., it is not difficult to arrive at a coincidence with experiment. (Iet us note that for large energies the cone must shrink in all reactions, including also $\pi \bar{\rho}-$ and $K^{-} \rho$-scattering). In this language the shrinkage of the cone in $p p$ and $K^{+} p$ occurs, beginning with comparatively small energies, because the contributions of the poles ρ, A_{2}, ω and f, which generally speaking may

Abstract

shrink exist in these processes, In this way the shrinkage experimental data show a shrinkage of the diffraction cone in accordance with the theoretical predictions.

7. Factorization. Reggeon exchange, like particle exchange, has a factorization feature which consists in the fact that the Reggeon contribution (see Fig. 1.1 a) is of the form :

$$
\begin{equation*}
P(s, t)=g_{(s}(t) g(i) s^{\alpha}(t) \tag{1.7}
\end{equation*}
$$

(i.e. the dependence on the sorts of particles, which are exchanged with a Reggeon, is separated out in the form of separate factors $g_{a}(t)$ and $\left.g f(t)\right)$. It follows in particular from (1.7) that if only the exchange of one Reggeon is important, then

$$
\begin{equation*}
\frac{\sigma(a A-a A)}{\sigma\left(b A-\frac{a}{6}\right)}=\frac{g \pm(0)}{\sigma s(0)} \tag{1.8}
\end{equation*}
$$

irrespective of the type of target A. For example, we have the equality
equality

$$
\begin{equation*}
R_{1}=R_{2}=R_{3}=R_{4}, \tag{1.9}
\end{equation*}
$$

where

The brackets denote systems of particles travelling with similar momenta (see Fig. l.7 which graphically elucidates relation (1.9)).

Table 4 shows the values of R_{1}, R_{2}, R_{3} and R_{4}, taken from /9/. It will be seen that within the limits of experimental error (which, however, are great) the relation (1.9) agrees with experiment. Naturally, factorized relations exist only when there is an exchange of one Regge pole, consequently their fulfilment should be improved as the energy increases, since at high energies a basic contribution is given by the exchange of the Reggeon with the biggest $\alpha(0)$. (For the reactions enumerated in Tables 4 and 5 the vacuum pole P is given in Table 1). Table 5 shows the values for the ratios

$$
\begin{aligned}
& R_{3}=\frac{\sigma\left(T p-\pi_{\rho}\right)}{\sigma(\overline{1} \rho \rightarrow \bar{N}+(\rho \bar{\eta} \tilde{j}-)),}
\end{aligned}
$$

Abstract

which should also be equal to each other $\left(R_{1}=R_{2}=R_{3}\right)$. It will be seen that this equality improves as the energy rises and is fulfilled with an accuracy of 10%. The overall totals for the verification of the factorization lie in the fact that factorization takes place with an accuracy of $10-20 \%$.

8. Dependence of Reggeon contribution on the spin of scattered particles. Hitherto we have not taken into account the spin of scattered particles, and expression (1.7) for Reggeon contribution has, in essence, been written for scalar particles. In this case when particles have a spin, the vertices are $g_{a}(t)$ and $g_{b}(t)$, generally speaking, will depend on the polarization vectors of the particles a and b. There is a simple rule for writing this dependence $/ 10 /$, namely: the vertices $g_{a_{i}}$ (see Fig. 1.8) are
constructed from the polarization vectors forming part of the vertex of the particles $\left(e_{a}, e_{b}\right)$ of the vectors p_{a} and p_{b}, q^{\perp} and $q^{\prime \prime}$, where q^{\perp} is a component of momentum transfer, directed perpendicularly to the plane formed by the vectors $p a$ and $P B$ of the initial particles in the reaction $a+b \rightarrow c+d$ (see Fig. 1.8), $q^{\prime \prime}=$ the component of momentum transfer lying in the plane ρ_{a} and P_{B}. From the polarization vectors $q^{\prime \prime}$ and q^{\prime}, a four-dimensional scalar is constructed if the product P_{2} of the particles and the Reggeon entering the vertex is equal to $+1\left(P_{2}^{a} p_{2}^{c} p_{2}^{\alpha}\right.$ for the vertex acd on Fig. I.8) and a pseudo-scalar, if the product is -1. P_{2} for a particle is $P(-1)^{j}$, where j is the spin, and P is the internal parity.

For example π changes into $A_{1}\left(1^{+}\right)$and $A_{2}\left(2^{+}\right)$through the exchange of a Reggeon with $P_{2}=+1$. The P_{2} of a π-meson is $-1, A_{1}\left(1^{+}\right)$is -1 and $A_{2}\left(2^{+}\right)$is +1 . In this way the vertex $\pi \rightarrow A_{1}$ is a scalar, equal to $g_{1}\left(e_{A_{1}} q^{\prime \prime}\right)+g_{2}\left(e_{A_{1}} q^{1}\right)$, whereas the vertex $\pi_{\alpha} \rightarrow A_{2}$ must be pseudo-scalar, i.e.

$$
q_{1} e_{\mu \nu \lambda \sigma} P_{\mu \mu} q_{v}^{\prime \prime} q_{\lambda}^{\alpha} e_{\sigma \delta} q_{\sigma}^{d} q_{2} e_{\mu \nu \lambda \sigma} p_{\mu \mu} q_{v}^{\prime \prime} q_{\lambda}^{+} e \sigma s q_{\delta}^{\prime \prime}
$$

From this it will be seen that the reaction amplitude with production of A_{2} (for example $\pi_{p} \rightarrow A_{p} p$) vanishes when $q_{1} \rightarrow 0$ (for a zero angle), whilst A_{1} may be produced at a zero angle.
9. Complex nature of Reggeon contribution. WeReggeon exchange amplitude, unlike particle exchange, generally speaking, is complex. This can be seen if only from the space-fime picture of the Reggeon, since the imaginary part of the Reggeon contribution corresponds to the fact that multi-particle production processes
contribute to Reggeon exchange. The complex nature of the Reggeon
is determined by the so-called signature foctor n (n, which is

$$
\eta= \begin{cases}-\operatorname{ctg} \frac{\pi \alpha(t)}{2}+i & \begin{array}{ll}
\text { For a positive } \\
\text { signature }
\end{array} \tag{1.11}\\
-\operatorname{tg} \frac{\pi \alpha(t)}{2}-i & \begin{array}{l}
\text { for a negative } \\
\text { signature }
\end{array}\end{cases}
$$

In this way, finally the contribution of the Reggeon to the scattering amplitude $a+b \rightarrow a+b$ is equal to

$$
\begin{equation*}
R(s, t)=p(\alpha(t)) g_{a}(t) g_{b}(t) s^{\alpha(t)} \tag{1.12}
\end{equation*}
$$

Let us note that η has a graphic physical meaning. In reality, if $\quad t>0$ and $\operatorname{Re\alpha }\left(t_{0}\right)=0$,
then, when $t \rightarrow t_{0}$

$$
\begin{aligned}
& R(S, t)=\frac{g_{\alpha} g_{t} S^{\alpha\left(t_{0}\right)}}{\sin \frac{t a(t)}{\varepsilon}}=\frac{g_{a} g_{0}}{\frac{g_{0}}{2}\left(t-t_{0}\right)+i \operatorname{Sm} \alpha\left(t t_{0}\right)}
\end{aligned}
$$

factor
i.e. the signature ensures precisely the necessary correlation between Reggeon exchange and resonances, to which reference was made above. Of course, in the example analyzed above, it was only the amplitude with a positive signature which possessed the pole, when $t \rightarrow t_{0}$. . In the negative signature, there is no pole when $t \rightarrow t_{0}$. This is reflected by the fact that particles with an even spin parity lie on trajectories with a positive signature. The direct consequence of the theory is
that for reactions to which only one Reggeon contribute, inspite of the fact that the amplitude is complex, the polarization must be equal to zero. This is due to the fact that the amplitude with and without spin -flip in this case has an identical phase, whilst the polarization $\mathcal{P} \sim \operatorname{Jm} A^{++} A^{*+-}=0$ - However the probability of spin-flip should, generally speaking, be great. One of the simplest examples is as follows: the polarization in $\pi \bar{p} \rightarrow \mathbb{J}^{0} n$ (exchange of only a ρ Reggeon) must be small, which corresponds with the new experiment/II/ (Fig. I.9 a). Since the interference of the two Reggeons contributes to the polarization, then, for example, it should fall roughly in accordance with $1 / \sqrt{5}$ for the reactions $p p \rightarrow p p, \pi p \rightarrow \pi p$ i.e.

$$
\begin{equation*}
\mathscr{S}=\frac{\operatorname{mon} P P^{*}}{P^{2}+R^{2}} \sim \frac{1}{\sqrt{s}} \tag{1.14}
\end{equation*}
$$

R designates any non-vacuum Reggeon $\alpha(0)=\frac{1}{2}$, i.e. ρ, A_{2}, f and $\boldsymbol{\omega}$.

The dependence (1.14) corresponds to the experimental results (Fig. 1.9 b , in which are given the polarization values as a function of S, the continuous line is the dependence $1 / \sqrt{S}$).

REGGE OUTS

We have seen that the exchange of Reggeons, which occurred naturally in the theory of complex moments, explains many characteristic features of scattering at high energies. However, it appears that it is not possible to confine oneself only to the contributions of Reggeon exchanges to the scattering amplitude at high energy. The fact is that the exchange of two, three etc. Reggeons, generally speaking, produces a contribution which is not small. For example; the contribution of the exchange of two Reggeons (α_{1} and α_{2} in Fig. 1.10) is of the form :/12/

$$
\begin{align*}
& R_{c}^{(2)}(s, t)=\frac{i}{s} \int \frac{d^{2} k}{(2 \pi)^{2}} R_{\alpha}(s, t) R_{2}(s t) N_{1}\left(\alpha_{1}, \alpha_{2}, N^{-2}(q-1)^{2}\right) . \\
& \text { - } N_{2}\left(\alpha_{1}, \alpha_{2}, K^{2},(q-K)^{2}\right)= \\
& =i S^{\alpha_{1}(0)+\alpha_{2}(0)-1} \int e^{-\left(\alpha_{1} x^{2}+\alpha_{2}^{\prime}(q-\alpha)^{2}\right) \theta_{2} S} \text {. } \tag{1.15}\\
& \cdot q\left(\alpha_{1}\right) \eta\left(\alpha_{2}\right) \cdot N_{1}\left(\alpha_{1}, \alpha_{2}, X^{2}(q-k)^{2}\right) N_{2}\left(\alpha_{1}, \alpha_{2}, X_{1}^{2},(q-k)^{2}\right) \frac{\alpha^{2} K}{\left(2 \lambda^{2}\right)^{2}} .
\end{align*}
$$

Let us examine briefly the basic characteristics of this type of exchange which corresponds to more complex ones than the pole features of the partial amplitude of the cross-over channel $(f j)$ in the plane of complex angular moments (j) 参the somcalled Ragge binem culs ing pointa). In concrete terms, the graph of Fig. 1.10 corresponds to

$$
A_{j} \sim \ln \left(\alpha^{\prime}-\alpha_{1}(0)-\alpha_{2}(0)+1-\frac{\alpha_{1}^{\prime} \alpha_{2}^{\prime}}{\alpha_{1}+\alpha_{2}^{\prime}} t\right)
$$

I. The quantum numbers of cuts. The quantum numbers, such as isotopic spin, strangeness, the baryon number, G-parity for
cuts
manohing; are obtained in the same way from the quantum numbers of the Reggeons as for the quantum numbers of the two, three etc. particle systems. For example, the isotopic spin of two-Reggeon
cut ${ }^{(2)}$) (see Fig. 1.10) can pass through values extending from $I_{1}+I_{2}$ to $I_{1}-I_{2}$, where I_{1} and I_{2} are the isotopic spins of Reggeons α_{1} and $\alpha_{2}\left(I_{1} \geqslant I_{2}\right)$, the cut is $S^{(2)}=S_{1}+S_{2}$, the G-parity is $G^{(2)}=G_{1} G_{2}$ etc.

It is necessary, in particular, to dwell on two important cut features of branohine quantum numbers.
a) The signature of n-Reggeon exchange $\left(\sigma^{(n)}\right)$ is equal to the product of the Reggeon signatures $\sigma^{(n)}=\sigma_{1} \ldots \sigma_{n}$ (for graph Fig. 1.10 $\sigma(2)=\sigma_{1} \sigma_{2}$).
b) The parity of a system of many Reggeons is not fixed. In effect, for the very same reason as the two-particle system, which may have both positive and negative parities depending on their relative orbital movement. In this way the P_{2} of the corresponding cut ping point is/not fixed. This is a very characteristic culs feature of and below we shall give some examples of processes in which this feature is developed.
c) An exception is the system of two equal (identical) Reggeons (for example the exchange of two P-Reggeons), which has only one (positive) parity. This can be explained in the same way as the fact that the system of two identical scalar neutral bosons can have only even orbital moments, i.e. their wave function must be symmetrical ...
2. Energy dependence. From the simple expression (1.15) it would be seen that the exchange of two Reggeons generally speaking leads to an power-law

Reggeons in which $\alpha_{1}(0), \alpha_{2}(0)<1$, these corrections are small in comparison with the exchange of a Reggeon $\alpha_{1}\left(S^{\alpha_{1}(0)}\right)$ or $\alpha_{2}\left(S^{\alpha_{2}}(0)\right)$. Only in the case when one of the Reggeons is

the cut

a vacuum-Reggeon, i.e. $\alpha_{1}=\alpha_{p}(0)=1$, does give a contribution of $\sim S^{\alpha_{2}}(0)$, i.e. of the same order as the contricut
bution of one Reggeon. However the shown in Fig. 1.11 (or 1.10), has in this case too a small value in comparison with the contribution of the pole, but this small value is only logerithmic. In reality, we shall disregard the dependence of N_{1} and N_{2} on K^{2} in comparison with the rapid (power-law) dependence (this can be done if $\alpha^{\prime} p \ln S_{\gg}\left\langle K^{2}\right\rangle^{-1}$ where $\left\langle K^{2}\right\rangle$ is the characteristic momentum transfer in N_{1} and \mathbb{N}_{2}), then the integral for $\alpha^{2} K^{\perp}$ can be taken, and it is of the order $1 /\left(\alpha_{1}^{\prime}+\alpha_{2}^{\prime}\right) \ln S$.
cut
From the view point of the space -fame description, the (see for example Fig. 1.10) corresponds to the process shown in Fig. 1.12. This diagram shows two fluctuations, which began at slightly different moments in time, but each produced a slow particle which corresponds with a target at rest. The smallness of this process can easily be evaluated from the fact that both slow particles must have an identical impact parameter (ρ), coinciding with the impact parameter of the target. As the substantial ρ^{α} in each fluctuation $\sim \frac{1}{m^{2}} \ln S$, this smallness is of the order

$$
1 / m^{2} / 1 / m^{2} \operatorname{cns} \sim i / \ln s
$$

$$
\text { (for more details, see } / 3-5 / \text {). }
$$

The graph of the type in Fig. 1.11 shows a smallness $\sim\left(\alpha^{\prime} p \ln 5\right)^{-n}$. In this way, for large energies the scattering amplitude can be represented in the following form

$$
\begin{equation*}
A(s, t)=\sum_{i} s^{\alpha}(c) \mathscr{L}_{i}(t, \alpha, \hat{o} \ln s) \tag{1.16}
\end{equation*}
$$

where $\varphi_{i}\left(t, \alpha^{\prime} p \ln S\right)$ takes into account the contribution of all
cuts of the type in Fig. 1.11 when $\alpha=\alpha_{i}$. For large $\alpha_{p}^{\prime} \ln S$ we have $\varphi\left(t, l_{n} s\right) \rightarrow g_{a}(t) g_{b}(t)$, where $g_{a}(t)$ and $g_{b}(t)$ are residues of the Reggeon α_{i}.
3. Dependence on t. It can easily be seen that the cut gives a slower reduction in amplitude as the momentum transfer increases
$|t|$. In reality, at high energies (let $\alpha_{2}(0)=1$)
and even when $\alpha_{1}^{\prime}=\alpha_{p}^{\prime}$, the slope of the cone is obtained $b_{c}=\frac{\alpha^{\prime} \rho}{2} \ln S$, which is twice as small as the slope owing to the exchange of one Reggeon. It is necessary to note that even at energies which are not too high, the assertion that the contribution of the cut slowly as $|t|$ increases, remains applicable, in any case this is visible from two examples :
a) A weakly-coupled system of the deuteron type. The exchange of one Reggeon gives a dependence of (see Fig. 1.13 a) $S^{q}(t) s^{\alpha(t)}$ where $S(t)$ is the electromagnetic form factor of the deuteron, and the exchange of two is of the form :

$$
s=(0)\left(S^{\prime}\left(\frac{1}{1}-2\right) \alpha^{-2} e^{-\left(\alpha \dot{\beta}\left(\frac{y}{2}-K\right)^{4}-\alpha_{i}\left(\frac{4}{2}+K\right)^{2}\right) E_{n}}\right.
$$

i.e. it falls very slowly as t increases (see Fig. I. 13 b).

It is clear that a qualitatively similar character in the dependence on t will exist in any model where the hadron is represented as a weakly coupled system of quarks, partons etc.
b) Eikonal. In N, account is taken only of the graphs of the type shown in Fig. 1.14. Unlike the case of the previous examination, the hadron is represented as a strongly coupled system. If we take $g(t)=g(0) e \frac{-R_{p}^{2}(t)}{2}$, we have for the graph of Fig. 1.14 the answer (for Fig. $1.10 \alpha_{1}=\alpha_{2}=\alpha_{p}$):

cut

i.e. in this approximation the slope is twice as small as that of the pole.
4. Phase cut \quad and sign of contributions. The entire phase of cut of the contribution (for example, the second one - see Fig. 1.10) is/ entirely) dermined by the factor $i \eta\left(\alpha_{1}(t)\right) \eta\left(\alpha_{2}(t)\right)$ For example, let $d_{q}(t)=\alpha_{p}(t)$, then

$$
\eta\left(\alpha_{p}(t)\right)=i-\operatorname{ctg} \frac{\sqrt[F]{\alpha}(t)}{2}=i-\frac{\pi}{2} \alpha ; t
$$

for small t and, consequently, the phase of the cut contribution is given by

$$
\begin{equation*}
-Q\left(\alpha_{1}(t)\right)-\frac{\pi}{2} \alpha_{p}^{\prime} t i \eta(\alpha,(t)) \tag{1.19}
\end{equation*}
$$

It can be seen from (1.19) that:
a) For small t (i.e. everywhere in (1.15) we take out from the integral) the cut phase cut as the pole, but the contribution is negative. The overall cent contribution of the pole and of the type shown in Fig. 1. 10 is of the form (when $t=0$):

$$
\begin{equation*}
p(\alpha(0)) \cdot s^{\alpha(0)} \cdot\left[1-\frac{c}{R^{2}+\alpha^{\prime} \operatorname{en} s}\right] \tag{1.20}
\end{equation*}
$$

where $c=\frac{g_{a}^{2}(0) g_{b}^{2}(0)}{16 \pi}$ in the eikonal approximation. Let us note that the contribution of the exchange of ($n+1$) Reggeons has a sign (-1$)^{n}$, and consequently in formula (1.20) generally speaking, there are also positive terms but they are smaller (logarithmically) at high energies. (The contribution ${ }^{\prime} n+1^{\prime \prime}$ of the eur is of the order $\left.(-1)^{n} \frac{C_{n}}{\left(\alpha^{\prime} p \ln S\right)^{n}}\right)$.
b) When taking into account the following corrections for small t, the cut phase For example: let us examine the exchange of two vacuum Reggeons (P , see Table l) $\mathrm{t}=0$. The pole gives a purely imaginary contribution (iS) of (see expression (1.15)).

$$
\begin{align*}
& -s \int\left(i-\frac{\sqrt{2}}{2} \alpha_{p}^{\prime}\left(K^{2}+K^{2}\right) S^{-2 \alpha_{p}^{\prime} K^{2}} N_{1} N_{2} \frac{d K^{2}}{\left((\pi)^{2}\right.}=\right. \\
& =S\left(-i+\frac{\pi}{2} \frac{d}{\partial \ln S}\right) \int e^{-2 \alpha_{p}^{\prime} K^{2} \ln S_{N_{1}} N_{2} \frac{d K^{2}}{(2 \bar{\pi})^{2}}} . \tag{1.21}
\end{align*}
$$

It is clear that the expression (1.21) can be rewritten in another way, namely:

$$
\begin{equation*}
R_{e} R_{c}^{(2)}(s, t)=s, \frac{\pi}{2} \frac{\partial}{\partial \ln S}\left(\frac{\operatorname{tm} R_{c}^{(2)}(s, t)}{s}\right) . \tag{1.22}
\end{equation*}
$$

It is interesting to note that the relation (1.22) is true not only for the simplest exchange (see Fig. 1.11), but also when taking into cuts account all vacuum . Consequently, when examining high energies, at which a contribution is given only by the vacuum pole, of cuts,
and coupled with the exchangerof many vacuum poles we
can write the relation between $\operatorname{Re} A(s, t)$ and $\operatorname{Im} A(s, t)$ (or the total cross-section) es:

$$
\begin{equation*}
R_{2} A(s, 0)=\frac{\pi}{2} s \frac{\partial}{\partial \ln s} \frac{\operatorname{Im} A(s, 0)}{s}=\frac{\pi}{2} s \frac{\partial}{\partial \pi s} \sigma(s), \tag{1.23}
\end{equation*}
$$

where $\sigma(5)$ is the total cross-section. Formula (1.23)
establishes the link between the rate of variation in the total cross-sections on the energy and $\operatorname{ReA}(S, 0)$.

The fact that the cut has a phase which is different from that of the pole may manifest itself in various phenomena, in particular,
cause
it may serve as a coupe of polarization in those reactions where a contribution is given by the exchange of one Reggeon (for example, in $\left.\pi \bar{p} \rightarrow \pi^{0} n\right)$.

5. The coupling of the curs with particles carrying a spin. Multi-

 Reggeon amplitudes (N in formula (1.15) can be constructed for the case where the external particles a and b have spins, in accordance with the same rules as for constructing the vertex of the coupling of one Reggeon, but only in the system of vectors from towhich it is necessary /construct \mathbb{N}, it is necessary to include, in addition to the polarization vectors of particles a and f (e_{a} and e_{f}), $q^{\prime \prime}$ and q^{\perp}, also the vectors $K_{1}^{1} \ldots K_{n}^{1} / 10 /$. In this connection let us point out that P_{2} of the cut fixed and therefore it is necessary to construct from all these factors both a scalar and a pseudo-scalar.

Examples :
a) $\pi_{p} \rightarrow A_{2} p \cdot \frac{d \sigma}{d t} / t=0$ is determined only by the contribution of che (see Fig. 1.15 a) with a negative $P_{r} / 13 /$. For N_{1} it is possible to write $n_{1} \varepsilon_{\mu v}^{A_{2}} q_{\mu}^{\prime \prime} q_{r}^{\prime \prime}$, which corresponds to $P_{z}=-1$ for a system of Reggeons (production of $P_{\eta} P_{P_{2}}{ }^{12} P_{n}$ cut
(${ }^{(1)}$). This contribution does not disappear for
$q^{\underline{L}} 0$ and determines $\frac{d \sigma}{d t} / t=0$ (the pole contribution tends to zero at $t \rightarrow 0$ see above).
b) $p p \rightarrow p p$ the spin-spin term in the scattering amplitude (type $B\left(\sigma_{1} \sigma_{2}\right)$ for $t \rightarrow 0$ cannot appear owing to the Reggeon exchange with $P_{2}=+1$. In reality the coupling vertex of this Reggeon with P is of the form (it is necessary to construct the scalar):

$$
\begin{gather*}
\vec{u}\left(g_{2}\right)\left(g_{1}+g_{2} \hat{q}^{1}\right) u\left(\mathcal{B}_{c}^{\prime}\right) \text { or in the two dimensional form } \\
\left.\vec{g}_{1}+\vec{g}_{2}\left(\vec{\sigma} \hat{g}^{+}\right] \vec{n}\right), \tag{1.24}
\end{gather*}
$$

where \vec{n} is the direction of the colliding particles (the remaining designations are shown in Fig. 1.15 a), for $q^{\perp} \rightarrow 0$ in (1.24) there remains only the contribution which is not dependent on the spins. For the exchange of two Reggeons, the vertex $N^{(2)}$ is of the form

$$
\begin{equation*}
\vec{u}\left(B_{2}\right)\left(n_{1}+n_{2}\left(\hat{K}_{1}^{1}+\hat{K}_{2}^{4}\right)\right) u\left(\hat{a}_{a}^{\prime}\right) \tag{1.25}
\end{equation*}
$$

Equation (1.25) takes into account that the two Reggeons are identical and consequently N must be a symmetrical function of K_{1} and K_{2}. It is clear that for $q^{\perp} \rightarrow O K_{1}^{\perp}=-K_{2}^{\perp}$ and (1.25) disappear. In this way cut the givening gives a contribution to the spin-spin interaction, only beginning from the exchange of three Reggeons, where N (3) must have the form

$$
\begin{equation*}
\left.N^{(3)}=n^{(3)} \bar{u}\left(P_{a}\right)\left\{K_{1}^{2}+K_{2}^{2}\right) \hat{X}_{3}+\left(K_{1}^{2}+K_{3}^{2}\right) \hat{K}_{2}+\left(K_{1}^{2}+K_{2}^{2}\right) \hat{K}_{3}\right\} u\left(R_{1}\right) \tag{1.26}
\end{equation*}
$$

For $q_{\perp} \rightarrow 0$ the contribution of three-Reggeon exchange will be proportional to

$$
\begin{equation*}
\int e^{-\alpha\left(\left(K_{1}^{2}+K_{2}^{\alpha}\right)^{2}+\left(K_{1}^{-1}\right)^{2}+\left(K_{2}^{1}\right)^{2}\right) e_{2} s} N^{(3)} N^{(2)} d^{2} x_{1}^{1} \alpha^{\varepsilon} k_{2}^{1} \tag{1.27}
\end{equation*}
$$

Since $\left(N^{(3)}\right)^{2} \sim\left(K^{\perp}\right)^{6} \quad$, then after integration for K_{1}^{\perp} and $K_{2}^{\frac{1}{2}}$ we have a contribution of the order of $1 /\left(\alpha_{p}^{\prime} \ln 5\right)^{5}$ i.e. the spin-spin terms should fall rapidly as the energy rises.
on the asymptotic nature at high energies?
I. Behaviour of total cross-sections. As has already been pointed cut in (see (1.20)) the total cross-sections for $S \rightarrow \infty$ approach their maximum valuerbelow (this fact was predicted in /14/ a long time before the acquisition of experimental data demonstrating the increase of the total cross-sections - a psychological plus to the advantage of the concept under examination). This conclusion is based on the fact that the exchange of two vacuum Reggeons is of a screaning character (has a negative contribution). Experimentally, at the piesent time the increase in the total crosssections has been revealed for $K^{+} P$ and $p p$-scattering (detailed discussions of the experimental data are given in /15/). Let us note that the simple eikonal evaluation for (1.15) gives an increase in $\sigma\left(K^{+} p\right)$ which corresponds with experiment, and a slightly lower increase in comparison with the experimental values in the case of $\sigma(p p) / 16 /$. Naturally, the eikonal is not a strict result and the behaviour which is predicted by this type of formula can be accepted only as a rough estimate. In particular, in the models of the "brittle" hadron the behaviour

$$
\sigma_{t o t}=\sigma_{t \infty}-\frac{c}{\hat{k}_{0}^{2}+\sigma_{2}^{2} t_{2} S}
$$

will be determined by \bar{R}_{0}^{2}, which is linked with the slope in the diffraction cone (in this model it is determined by $S(t)$, see Fig. l. 13 a). $\bar{R}^{\boldsymbol{\varepsilon}}$ is significantly smaller than the characteristic distances over which there is a variation in $S(t)$, consequently in this type of model the increase in cross-section will be faster than for the simple eikonal estimates.
2. The real part of the scattering amplitude must be positive when $S \rightarrow \infty / 14 /$. This can also be seen from (1.22). Consequently if experimentally $\operatorname{Re} A<0$, then for higher values of S it should tend to zero. From (1.22) it follows that this point corresponds to the minimum of the total cross-section. Experimentally, $\rho=\frac{\operatorname{Re} A}{\operatorname{Jm} A}$ tends to zero for $p p-s c a t t e r i n g$ at $S \sim 500(G e V)^{2 / 17 /(s e e ~ F i g . ~ 1.16) . ~}$
3. Crossover: The phenomenon known as "crossover" is that the differential cross-sections $\frac{d \sigma}{d t}(\pi-p), \frac{d \sigma}{d t}\left(K^{-} p\right), \frac{d \sigma}{d t}(P p)$ at which t $\left(t=t_{0}, t_{0} \sim 0.1-0.2(\mathrm{GeV} / \mathrm{c})^{2}\right)$ cross over (see Fig. 1.17) with $\frac{d \sigma}{d t}\left(\pi^{+} p\right), \frac{d \sigma}{d t}\left(K^{+} p\right), \frac{d \sigma}{d t}(p p)$, respectively. The explanation of this is as follows : the difference in cross-sections $\left(\Delta(a b)=\frac{d \sigma}{d t}(a b)-\frac{d \sigma}{d t}(\overline{a b})\right.$ is determined by the interference of the contributions of Reggeons of a positive and negative signature (the first give an identical contribution to the scattering cross-section of particles and antiparticles, the contributions of the second are distinguished by the sign).

This is

$$
\begin{equation*}
\Delta(a \sigma)=R_{e} P(s, t) R^{*}(s, t) \tag{1.27}
\end{equation*}
$$

where $P(S, t)$ is the contribution of the vacuum Reggeon (P) and the vacuum cot (the contribution of the remaining Reggeons can be disregarded for sufficiently large S). $R(S, t)$ is the contribution of non-vacuum Reggeons with a negative signature (ρ for $\Delta\left(\pi^{ \pm} p\right)$ and basically for $\Delta(K \pm p)$ and $\Delta\left(P^{ \pm} p\right)$ and of the cur of the type in Fig. l.Il, where α is the non-vacuum Reggeon. The tendency to zero of $\Delta(a b)$ at $t=t_{0}$ is due to the fact that $R\left(S, t_{0}\right)=0$ owing to compensation of the Reggeon contribution and first order cut $/ 18 /$, i.e. compensation of the contributions of the diagrams
shown in the figures type 1.18. As the graph 1.18 b falls more slowly with an increase in small t than graph 1.18 a, it is clear that for a certain small t this compensation is possible. It follows from the condition that this occurs at $t_{0} \sim 0.1-0.2(\mathrm{GeV} / \mathrm{c})^{2}$, that the contribution of the diagram of Fig. 118 b must be increased approximately twice in comparison with the eikonal contribution, i.e. it must be approximately $50-60 \%$ of the contribution of the Reggeon for $S=100 \mathrm{GeV}^{2}$.
4. Dips. A negative contribution and the different dependence on t of the exchange of a Reggeon and leads to the fact that the differential cross-section must have a minimum ("dip") at a certain value of small t. These "dips" are in fact observed (see Fig. l. $19 \mathrm{a}, \mathrm{b}$ and Table 2). An explanation of the minimum in the reactions $\pi^{ \pm} \boldsymbol{p}, K \bar{p}, \bar{p} p \quad$ for $t \sim-0.6(\mathrm{GeV} / \mathrm{c})^{2}$ (which disappears at high energies) consists in the fact that the contribution of $R^{-}(S, t)$ (see above) tends to zero in this point owing to compensation of the graphs 1.18 a and 1.18 b . The fact that this occurs in a slightly different point for small t, is due to the fact that this minimum occurs in an amplitude with a reversal of helicity. Let us note that in those reactions where the contribution of non-vacuum poles is small ($K^{+} p$ and $p p$, for example), such ${ }^{3 /}$ type of minimum does not exist (see, for example, $/ 19 /$ and Table 2) and on the contrary in thos reactions where only the exchange of a non-vacuum Reggeon is possible it is present (see $\pi{ }^{-} p \rightarrow \pi^{0} 0_{n}$ in Fig. 1.19a). The minimum at $t=-1.3(\mathrm{GeV} / \mathrm{c})^{2}$ in the $\mathrm{pp}-$ scattering can be explained concellation between by the fact that there is ontwal feduction of the contributions of cut the pomeron and the due to the exchange of two P. The correct position of the minimum is obtained from an eikonal estimate

Abstract

of the contribution of the cut (i.e. $10-15 \%$ for $t=0$). However this evaluation cannot reproduce the trend of the differential cross-section.

5. The cut gives a contribution for $t=0 / 13 /$ in such reactions as $\pi_{p} \rightarrow A_{2} p, \pi_{p} \rightarrow \rho p$, i.e. in the reactions of type $0^{-} N \rightarrow 1^{-}\left(2^{+}\right) N\left(0,1,2^{+}-\gamma^{P}\right)$. As has already been pointed out, the contribution of all known Reggeons tends to zero at $t=0$ in these reactions. In addition in such reactions as $\mu p \rightarrow \pi^{+} n, p n \rightarrow n p$ and others one can clearly see from experiment a peak linked with the exchange of a π-meson (characteristic $\Delta t \sim m_{\pi}^{q}$). However the contribution of the $\boldsymbol{\|}$-exchange must disappear in these reactions at $t \rightarrow 0$ (since the contribution of the Π-meson in the $N \bar{N} \frac{\text { diminishes as }}{\text { system }}$ $\bar{u}_{\gamma_{5}} u \sim \sqrt{-t} \quad$ when $/ t \rightarrow 0$). Consequently, the absence of a minimum at $t=0$ in these reactions may be explained only by benfors of the type πP ($P=$ vacuum pole, see Table I), which may have a different cut contribution parity and not tend to zero at $t \rightarrow 0$. In $t^{\prime \prime \prime} s$ case, the must be taken to be 1.5-2 times greater than for the eikonal estimate /20/.
6. One of the most interesting predictions linked with the cuto
presence of σ_{n} as function of the number of particles n we should observe for large energies characteristic minima for $n=N_{2} 2 N$, $3 N$ etc. $/ 21,22 /$ (see Fig. 1.20 a, $\mathbb{N}=$ multiplicity of the particles in the fluctuation corresponding to one Reggeon). In reality the graph of Fig. 1. 10 corresponds to the fluctuation of Fig. 1.12 in which on the average $2 \mathbb{N}$ particles are produced etc. If in each fluctuation the particles are distributed according to Poisson's law, then the dependence of Fig. 1.20 a
is obtained. For present-day energies the peaks overlap (since $N \leq \sqrt{2 N}$, where $\sqrt{2 N}$ is the width of the peak), and consequently the mits must lead to a dependence of σ_{n} on \boldsymbol{n} which is wider than for the Poisson distribution. Such a widening is observed in fact in the experiments $/ 23 /$, and for its explanation cuts it is sufficient to suppose the branching contribution obtained from the eikonal estimate /24/.

7. The cut leads to a strong dependence of the average number

 of $\boldsymbol{\Pi}$-mesons $\left(\left\langle\boldsymbol{R}_{\bullet}\right\rangle-\right.$) for a given number of $\pi^{-}\left(\boldsymbol{n}_{-}\right)$on $\boldsymbol{n} \boldsymbol{R}_{2}$ even if in one fluctuation (one Reggeon) π and π° are produced independently /25/. In reality in each fluctuation the average number of π^{0} is equal to the average number of π^{-}(see Fig. 1.20 c), but the average number of π^{*}, produced by q fluctuations, is equal to Q N, because the function $\left\langle n_{0}\right\rangle$ - will have small steps in the regions of $n=q$. For present-day energies the dependence will be $\left\langle n_{0}\right\rangle=n_{-}$ up to the time when all of the peaks in σ_{n} are overlapping. The experimental results can be explained if use is made of the eikonal /25/ cutfor estimating the contribution.
8. If we consider the reactions of the inclusive type (for example anything
$P+P \rightarrow P+P$, whilst measuring the protons with longitudinal momenta, close to the momentum of an incident particle $\left(x=\frac{q_{l}}{p} \rightarrow 1, \quad q_{L}=\right.$ longitudinal moment $u^{\prime m}$ of the particle being recorded, P is the pulse of the incident hadron), then for an increase in
the longitudinal momentum of the recorded particle the multiplicity of all particles produced in this reaction should increase $/ 26 /$. In reality if for small q^{\perp} a contribution is given to this process by the graph of 1.21 a , then, as q^{\perp} increases the contribution of the
increases (their contribution falls more slowly as q^{\perp} increases) and the graphs of type Fig. 1.21 b and c become substantial. However the number of particles which correspond to these is equal to 2 N and 3 N etc. $N=a \ln S^{\prime}$ is the multiplicity of particles in the processes of Fig. 1.21 a.

To sum up, we may say that a sufficiently large number of characteristic features of the processes at high energies are linked with the presence of multi-Reggeon exchange and, if we speak of figures, the correct evaluation of the value of this exchange is given by the eikonal multiplied by a coefficient of $1-2$. In other words, the contribution of the graphs of type Fig. 1.11 is small at high energies.

Results of the latest development of the theory $/ 22,27 /$

Abstract

It is a well known fact that the total cross-sections of hadrons at comparatively small energies fall rapidly as the energy increases, whilst at large energies the total cross-sections are practically independent of energy (in any case, the drop or increase of total cross-sections at $S>50(G e V)^{2}$ is much slower than their decrease at $S<50(\mathrm{GeV})^{2}$. The problem of the constancy of total cross-sections at high energies is one of the most interesting problems in the theory of complex angular moment ${ }^{a}$. At first sight it is solved very simply: for this one has only to assume that there exists a Reggeon with $\alpha(0)=1$ (the vacuum Reggeon or Pomeranchuk pole). However a Reggeon introduced in this manner has certain characteristics which are not at all simple. First of all there are no particles (more precisely, no particles have yet been found), which would lie on a trajectory corresponding to this Reggeon. Indeed the trajectory itself is somewhat unusual, in any case, $\alpha^{\prime} p \sim 0.2-0.3(\mathrm{GeV} / \mathrm{c})^{-2}$, whilst α^{\prime} of all remaining Reggeons is of the order of $0.6-1(\mathrm{GeV} / \mathrm{c})^{2}$. We are certain that all the remaining trajectories exist, since if the resonances with high spins did not lie on these trajectories (i.e. if their spin did not depend on the momentum transfer small t), then the exchange of a resonance would lead to an increase in cross-section (S^{j-1}, where j is the resonance spin) which would be faster than follows from the Froissard bound ($\sigma \leq \ln ^{2} \mathrm{~S}$). For the vacuum trajectory such an argument does not (probably) exist. In this way the vacuum trajectory has been introduced only to explain the constancy lurned out of the crossmections. But it has \wedge that it is not so easy to ensure the constancy of the cross-sections, even if it 18 assumed that a Pomeranchuk pole exists. Already ten years ago it was shown

that the emission of particles from a vacuum Reggeon leads to an increasing section in contradiction with the Froissard condition $/ 28 /$. The only solution was to assume that the vertex of hadron emission from P disappears at $\left(K_{i}\right)^{2} \rightarrow 0$ (see γ in Fig. 1.22 a). In this way it was clear that the constancy of cross-sections imposed many conditions on the interaction of particles and Reggeons, and right up to recent times it was not clear what this full list of conditions was. By all appearances, these conditions have now been formulated /2-7/. However before enumerating them, let us dwell on the so-called entanced "enhanced" graphs (see for example Fig. l. 22 b). To this, corresponds a fluctuation of the type shown in Fig. 1.22 c , in which the second "bunch" of partons is emitted by a particle which is slow in comparison with the incident particle. These graphs provide basically a contribution which, as before, has a factorization characteristic, and they determine the true behaviour of the scattering amplitude at large S, which differs from $S^{\alpha / p}(t) \quad / 12,29 /$. The results of works $/ 22,27 /$ can be formulated in the following manner. To ensure that the total hadron cross-sections at high energies areconstant, it is essential that :

1) the cross-sections of all hadrons are equal to each other at $s \rightarrow \infty$. This means, for example, that $\sigma_{\pi p}=\sigma_{p p}=\sigma_{p d}$ must be equal and so on. This condition provides a theoretical criterion, as to the energies at which the asymptotic nature occurs.
2) The processes of diffraction dissociation, i.e. the processes in which a resonance or group of particles is produced (see Fig. 1.23 a) owing to the exchange of a vacuum pole, should varish generally speaking, in accordance with $\left(q^{\perp} \vec{e}\right)$, where \vec{e} is a vector
(tensor) of polarization of the resonance (of the group of particles), and in accordance with $\left(q^{\perp}\right)^{2}$ for emission of a particle with zero vanishing
from
fore spin. The cause of this can easily be understood the parton diagram, since the particles "a" and "c" are described by different wave functions, which are orthogonal to each other at $q^{\perp} \rightarrow 0$. This occurs in a similar manner to the disappearance of the break up ten cross -section of the deuteron at $q^{\perp} \rightarrow 0$ (see Fig. 1.23 c), since it is proportional to

$$
\begin{aligned}
& =\int_{q_{1} \rightarrow 0} \psi_{d}\left(\vec{r}_{1}-\vec{r}_{2}\right) \psi_{p p}\left(\vec{r}_{1}-\vec{r}_{2}\right) d\left(\vec{r}_{1}-\vec{r}_{2}\right)=0,
\end{aligned}
$$

$\Psi_{p p}, \Psi_{d}$ are the wave functions of two free nucleons coupled in the deuteron.
3) All the vertices of emission of a vacuum Reggeon from other Reggeons of type $n P \rightarrow m P, n P+R \rightarrow m P+k R, n R \rightarrow m P+k R(k \neq 0)$ etc. (see Fig. 1.24) must disappear at $K^{\perp} \rightarrow 0$ (K^{1} is the momentum over the vacuum Reggeon, P designates a vacuum Reggeon, R is a nonvacuum Reggeon). For example $\gamma_{p p p}=g_{P P P}\left(K_{1}^{\perp}, K_{2}^{\perp}\right), \gamma_{R P R}=g_{R P R}\left(K_{1}^{\perp}, K_{q}^{\perp}\right)$ etc.
4) As has already been pointed out, the vertex of emission of any hadron from a vacuum pole should be vanishing when $K_{i}^{\perp} \rightarrow 0$. For example j_{12} in drawing 1.22 a should be proportional to $\left(K_{1}^{\perp} K_{2}^{\perp}\right)$

In this way, the vacuum pole should have such a high symmetry that at zero momenta it should not interact with anything, except for the
vertices of type $a \alpha \rightarrow P$ and $R R \rightarrow P \quad$ (a is particle) - see Fig. l. $24 \mathrm{f}, \mathrm{g}$, i.e. it will provide a contribution only to the processes of elastic particle-and Reggeon-scattering.

The purpose of the following chapters is to discuss how it is possible to prove experimentally that all the above-mentioned consequences are accomplished. As present-day energies are far from asymptotic ($\sigma_{\pi p} \neq$ Gpp), the question of an experimental separation of the various contributions is not so easy and unambiguous. Subsequently we shall examine in greater detail how the asymptotic characteristics of the vacuum pole can develop at the attainable energies. It is clear that clarification of this question is the most important problem from the standpoint of the present-day theory of hadron interaction at high energies.

II. Elastic scattering in the region of Coulomb
 interference and the diffraction peak

Abstract

It is a well known fact that the measurement of the dependence of the elastic differential cross-section on \boldsymbol{C} in the region of Coulomb interference enables a determination to be made of the real part of the forward scattering amplitude. Consequently this discussion here will concern only the reason why these results are interesting.

The contribution of a pomeron to the forward scattering amplitude is purely imaginary, but the exchange of several pomerons produces in the amplitude also a real part. At high energies the contribution cuts
of pomeron $\quad \rho=\frac{K_{e} A(O)}{\operatorname{Im} A(0)}$ is approximately equal to

$$
\begin{equation*}
\rho \approx \frac{\pi}{2} \cdot \frac{1}{\sigma_{t}} \frac{d \sigma_{t}}{d \ln s} \tag{2.I}
\end{equation*}
$$

In the derivation of expression (2.I) use has been made only of cuts
the fact that both the pomeron and all pomeron have a positive signature and are located, at $t=0$, a point $j=I$. It is also assumed that the contributions of other features to G_{E} and to ρ are not substantial. As has already been mentioned, at a high energy $G t$ should increase, approaching a constant maximum (see introduction). In accordance with (2.I), $\rho>0$ actually diminishes.

For a finite energy, there are corrections to (2.I), which take into account the detailed structure of multi-pomeron exchanges, and
the cut
not only the position of d-plane. In addition, there are the contributions of the non-pomeron exchanges. These, apparently, contribute substantially to ρ for $\boldsymbol{p} \boldsymbol{\rho}$ - scattering in the energy region $10-30 \mathrm{GeV}$. In any case, in this region $\rho p p<0$, and osponewin S tends to zero as the energy increases. However, already at the Serpukhov energies ($\mathrm{E}<60 \mathrm{GeV}$) departures occur from this simple dependence / $30 /$ and a tendency arises for Ppp to pass through zero at a finite energy (Fig. I.16). Passing is through zero essential, since at $\mathrm{E}<70 \mathrm{GeV} \rho_{\text {Ppro }}$, and in the asymptotic region $\rho>0$. However, generally speaking it is difficult to say at precisely what energy $\boldsymbol{\rho}=0$ and in what manner $\boldsymbol{\rho}$ behaves in the vicinity of this energy. The answers to these questions depend on the structure cut of the contributions of the various pomeron and on the relationship of the value of these contributions and of the contributions of the non-pomeron features. Experiments on the CERN colliding beams $/ 31 /$ indicate that P pp passes through zero at $E_{l a b}=250 \mathrm{GeV}$. Recent measurements by the Soviet/American group in Batavia/17/ show that $\boldsymbol{\rho} \boldsymbol{P} \boldsymbol{p}$ increases from -0.156 ± 0.012 at $\mathrm{E}_{\mathrm{lab}}=51.5 \mathrm{GeV}$ to $+0.039 \pm 0.012$ at $\mathrm{E}_{\mathrm{lab}}=393 \mathrm{GeV}$ and passes through zero at $\mathrm{E}_{\text {lab }}=280 \pm 60 \mathrm{GeV}$ (Fig. I.16). If the dispersion relations are correct and the fomeranchuk theorem is right, these results confirm the increase in σ_{t} ($p p$) discovered at CERN, at least up to 2000 GeV , and contradict the constant nature of Gt (pp), starting from 120 GeV . Figure 2.I shows also the values of $\rho \rho \rho$ at $E<70 \mathrm{GeV} / 32 /$. It is obvious that these agree well with $\rho \boldsymbol{\rho} \boldsymbol{p}$.

It appears that the measurements of ρ for $\overline{\boldsymbol{\rho} \boldsymbol{\rho}}$ - scattering are no less interesting, even at $\mathrm{E} \leqslant 60 \mathrm{GeV}$. The reason is as follows. If we judge from the energy behaviour of Ge (pp) and then 66 (pp), are/among the non-pomeron contributions to the amplitude of $p p$ and $\bar{p} \rho$ - scattering the greatest contributions are those of the $\boldsymbol{\omega}$ - Reggeon and $\boldsymbol{\rho}^{\prime}$ - Reggeon, coupled with en \mathcal{f} - meson (see Table 1). At $\quad t=0 \alpha_{\omega}^{4}(0) \approx \alpha_{p}(0) \approx \frac{1}{2} \quad$ (here $\mathcal{L}(\boldsymbol{E})$ is the Reggeon trajectory). The signs of the of these Reggeons, apparently, are such that their contributions to $\sigma \in(p p)$ subtract each other whilst their contributions to $\sigma \in(\bar{\rho} p)$ add of the residues of ρ^{\prime} and $\boldsymbol{\omega}$ - Reggeons is one of the consequences of the hypothesis of exchange degeneration (see for example $/ 19 /$, in accordance with which the trajectories and residues of Regge poles of various signatures are equal to each other. The signature of ρ^{\prime} is positive also in accordance with (I.11) $P_{p}(t=0)=i-1$, whereas ω is negative and $\boldsymbol{Q} \omega=i+1$ (in this it has been considered that $\left.\alpha_{\omega}(0)=\sigma_{\rho} \rho(0)=\frac{1}{2}\right)$. Consequently in the case of the $P P$ - interaction, which contains the remainder of $\rho^{\prime}-\boldsymbol{W}$ (see Table II), the imaginary part of the non-pomerandere contributrons is zero, whereas for $\overrightarrow{P P}$ - scattering, which contains the sum of $\boldsymbol{P}^{\prime}+\boldsymbol{\omega}$, the non-pomeron contribution to the imaginary part is great. It is precisely this which explains that in the interval $E=10-70 \mathrm{GeV} \sigma_{t}(\rho p)=\operatorname{const}$, whereas G_{t} (p̈p) varies very significantly. But then in the real part of the amplitude of forward scattering, the situation is the reverse: the contributions of ω and P^{\prime} to add $P \rho$ and the contributions to are reduced. Consequently it may be expected that the contribution of pomeron benching to will be of significance at energies lower than $\rho p \rho$. A measurement at $11.9 \mathrm{GeV} / \mathrm{c}$ gives $\boldsymbol{\rho} \boldsymbol{\rho} \boldsymbol{p}=-0.006 \pm 0.034$ with a systematic
error of $\pm 0.06 / 33 /$.

In the case of $\mathrm{K}^{+} \mathrm{p}$-scattering, the situation is very similar to that of $\rho \boldsymbol{p}$ - and $\overline{\boldsymbol{p}} \boldsymbol{\rho}$-scattering. Here also the non-pomeron subtract each other contributions to $\sigma\left(K_{0}^{*}\right)$ sabra and me may expect their mutual subtraction also in
 begins to increase at a much earlier time than $\sigma \in(p p)$, and that there are very few data for $\boldsymbol{\rho} \boldsymbol{\operatorname { K } \pm \rho} \mathrm{at}$ high energies. Here it is interesting to note that the recent measurement of $\rho_{K}-\rho$ at $P_{K}=10 \mathrm{GeV} / \mathrm{c} / 34 /$ shows that $\rho_{x \rho}>0$ and apparently, depends weakly on the energy in the range $p=1 * 10 \mathrm{GeV} / \mathrm{c}$ (Fig. 2.2). It is precisely these features which are expected for the contribution of two-pomeron exchange. It should, incidentally, be noted that a recent measurement at $14 \mathrm{GeV} / \mathrm{c}$, reported to the conference at Aix-enProvence $/ 35 /$, gave a value of $\rho_{K^{-}} \boldsymbol{P}<0$. Apparently the situation requires further experimental study. In oruer to demonstrate what value of ρ may be given by pomeron and what value by non-pomeron poles, Figures 1.16 a and 2.2 show the curves for the dependencies of $\quad \rho_{\rho P} \quad \rho_{\rho \rho}$ and $\rho_{K}+\rho$, PK -p on S^{*}. These curves have been computed in the simple model, where account has been taken of a pomeron, two-pomeron tran ans ρ^{\prime} and ω

$$
\begin{equation*}
A(O, S)=i S\left(D-\frac{C}{R^{2}+\alpha_{0} e_{n} S}\right)+\left(P_{P} \cdot \mp P_{\omega} \lg _{\omega} \sqrt{S} .\right. \tag{2.2}
\end{equation*}
$$

[^3]The contribution of the cult (coefficient C) has been chosen in such a u 'as to describe the increase in ρp (or $K^{+} p$)-cross-sections (see Fig. 2.3) observed experimentally, at $S>100 \mathrm{GeV}^{2}\left(S>20 \mathrm{GeV}^{2}\right.$), the residue P^{\prime} and $\boldsymbol{\omega}$ was determined from the remainder of the cross-sections $\quad \sigma(\rho, P)-\sigma(\bar{P} P))=-2 \operatorname{quct}(\sqrt{S}, \dot{\sigma}(\pi ; \rho)-\sigma(x+\rho)=2 g a(\sqrt{s})$, whereas the real part of the forward scattering amplitude, occurring cuts as a result of cutoning, has been found by (2.1). As has already been stated, in the $\overline{\rho P}-$ and K^{*} / \boldsymbol{R} interactions, $\operatorname{ReA}(0)$ occurs only on account of cuts \quad consing. Consequently $\rho \bar{P} P, \rho_{K} \rho$ are small (of the order of $+0.04-+0.03$) and decrease slowly as S increases. At the same time $\rho_{P P}$ and $\rho K^{+} \rho$ are negative right up to $S \sim 1000$ GeV^{2}, and are determined by the contribution of non-pomeron poles, which decreases as a power ins ($1 / \sqrt{5}$) as the energy increases. As can be seen from drawings $I .16$ and 2.2 even such a simplified model agrees poorly with experiment (when $S>20 \mathrm{GeV}^{2}$). This is due to the fact that in the case where there is an exchange degeneration, the relation (2.1) unambiguously links $\operatorname{Re} A(0, s)$ in $\bar{\rho} \rho\left(K^{-} \rho\right)$ -interactions with the speed of the increase in total $\rho P\left(K^{+} \rho\right)$ -cross-sections (irrespective of the parametrization of the cut contribution). Of course, the curves given must not in any way be considered as precise quantitative predictions, but they give a representation of the scale of the real part occurring as a result of cuto required pomeron and of the accuracy when measuring it.

In the $\mathcal{H}^{ \pm} \boldsymbol{\rho}$-system the increase in total cross-sections has not yet been discovered ${ }^{*}$). It is possible that the measurements of

[^4]To resume，it can be said that a precise measurement of the real part of the forward scattering amplitudes will enable our views of the multi－pomeron exchanges to be made clearer from the quanta－ dative stand－point（and perhaps the qualitative stand－point）．In particular，it will be possible to verify whether in fact $\sigma \in$（ $p p$ ） and $G_{E}\left(K^{+} P\right)$ increase owing to a reduction in the contributions or in fact whether some other mechanism is at work．

In addition，it will be possible to verify in a more reliable manner the reduction in the contributions of P^{\prime} and ω to $G \in$（ $P P$ ） and to $G_{t}\left(K^{+} \rho\right)$ ．The point is that P^{\prime} and ω snake a $\frac{\text { contribution }}{\text { a }}$ to $G t$ and to ρ of the same order，whereas the branching contri－ bution to ρ is less than to σt ．If，therefore，the overall contribution of P^{\prime} and ω to $G \in(P P)$ and to $G \in\left(K^{+} P\right)_{\text {by }}$ in fact non－vanishing and is reduced by the addition with a bran ing contri－ bution（such a reduction，of course，is possible only in a finite range of energies），then in $\rho^{\prime} \rho P$ and in $\rho K P$ there will be no $\sqrt{\text { additional }}$ reduction，at least at this energy．In this way，if ρ^{\prime} and ω do not completely cancel each thar s $P P$ and $\rho K^{-} P$ should contain negative terms which diminish like a power in S as the energy increases． The assumption of the total cancellation the from p^{\prime} and
ω is one of the consequences of the hypothesis of exchange degeneracy，which is closely linked with the idea of duality（see for example／19／）．A verification of the extent to which exchange is degeneracy is true interesting for an understanding of the characteristics of many hadron processes．

Let us point out further, that although ρ and $\sigma \in$ are linked by a dispersion relation, in the conditions where only a limited energy range is accessible for study, measurements of ρ provide information independent of the measurements of σt.

A further remark can be made in relation to the theoretical accuracy of the measurement of ρ. Usually the accuracy of determining ρ is generally restricted by the indeterminacy of

Bethe

the phase. In the difference of cross-sections of particles and anti-particles on the proton, many indeterminacies are eliminated /37/. The theoretical error for the real part of the crossing-symmetric amplitude, which precisely contains a contribution of pomeron cut oneng sharply diminishes.

In order to find ρ, as we know, it is sufficient to know only the dependence of the elastic cross-section on t in the range of Coulomb interference. Indeed a measurement of the absolute value of the differential cross-section of ρP and $\bar{P} P$-scattering in this field, as can be seen from the scattering example at low energies /38/, enables also the contribution of spin correlations to the crosssection of forward elastic scattering to be found.

Single-pomeron exchange does not give rise to correlations owing to the positive parity of the pomeron and factorization of its contribution. Two-pomeron exchange also does not give this contribution owing to the identicality of the pomerons. However, in the three-pomeron system (Fig. I. 15 d) there are states which give a spin correlation, in forward scattering, of the type $\mid \vec{\sigma}_{1 /} \vec{\sigma}_{21}$, where the transversality

42

is determined in relation to the momenta of the initial fast particles. At a very high energy, the value of this spin correlation diminishes $\sim(\operatorname{Ln} 5)^{-5} \quad$ in amplitude $\left(\sim(\ln S)^{-10}\right.$ in cross-section see Introduction for further details). As for the value of this at a finite energy, it is difficult to say anything definite. Probably at $E \geq 10 \mathrm{GeV}$, it is less than the experimental error. But even a Iimitation to the contribution of spin correlation may be important for theory. Let us note that the contribution to spin correlation is given by another configration of pomerons than to \boldsymbol{G}_{k} and $\boldsymbol{\rho}$ Consequently the information which may be given by a measurement of this correlation is completely independent of the information obtained when measuring the total cross-section, and the real part of the amplitude of forward scattering.

Let us turn now to elastic scattering outside the region of Coulomb interference. Here one of the most interesting questions is the shrinkage of the diffraction cone. Single-pomeron exchange gives rise to shrinkage universal naxnowis of the cone, identical "or all reactions which contain it. An exchange of several pomerons as a result of non-factorizability complicates the picture and makes it non-universal. But it does not contribute any differences to the behaviour of the cone f r particle and anti-particle scattering. If account is taken of the contribution of more distant, non-pomeron features, the behaviour of the cone becomes different for all reactions. However these contributions as a power in s
should diminish as the energy increases.
shrinkage
Experimentally, a of the cone is observed in pp-and $\mathrm{K}^{+}{ }_{\mathrm{p}}$-scattering. In $\pi^{+}{ }_{\mathrm{p}}$-scattering the cone, apparently, also shrinks, but much more slowly. In $\pi-p$ - and $K-p$-scattering the shrinkage shrinkage has not been detected, but in the $\bar{p} p$ the cone even widens out/II/. On the other hand, there are indications that also in $\pi^{-},{ }^{*} K=, \quad \bar{p}$-scattering on the proton, it is possible to detect shrinKage a mon of the cone if we confine ourselves to an examion of fairly small t (for example $|t| \leqslant 0.1 \mathrm{GeV}^{2}$) and sufficiently high energies $E \geqslant 20-30 \mathrm{GeV} / 8 /$. A comparison of elastic pp-scattering in conventional accelerators and colliding beams shows that the contribution of non-pomeron features to the differential cross-section apparently dies away (for small t) at $E \sim 30-50 \mathrm{GeV}$. It may therefore be expected that at a high energy, the differential cross-sections of pp - and $\overline{\mathrm{p}} \mathrm{p}$-interactions are similar, so that it will also be Shrinkage of the cone in $\bar{p} p-s c a t t e r i n g$. In possible to detect a naxpowng of the cone in $\bar{p} p$-scattering. In this way, a comparison of the behaviour of the diffraction cone in various reactions, particularly for particles and anti-particles, at $E>30 \mathrm{GeV}$, should provide important and interesting results.

Another interesting problem is the so-called kink in the diffraction peak, recently discovered in $p p$-scattering in colliding beams ($\mathrm{E}_{\text {lab }} \geqslant 250 \mathrm{GeV}$)/39/. It is seen in the fact that at (t) $\sim 0.13 \mathrm{GeV}^{2}$ there is a change in the progression of the differential peak, so that the slope in a peak measured at $(t)<0.13 \mathrm{GeV}^{2}$, is approximately greater by $2 \mathrm{GeV}^{-2}$ than the slope measured at (t) > $0.13 \mathrm{GeV}^{2}$. The nature of the kink is not clear, although a great number of possible explanations have already been put forward. In effect, all of these explanations can be broken down into three groups. In one of these it is assumed that for some reasons or other the

reduction due to

the vacuum Reggeon sharply changes the rate of the drop as the momentum transfer grows at $t \sim t_{0}=-(0.1-0.15)$ $(\mathrm{GeV} / \mathrm{c})^{2}$. In another, the variation in the slope is linked with a more complex dependence than the linear dependence of the trajectory of the vacuum pole on t (naturally, for explaining the experiment it is necessary that $\alpha(t)$ should change rapidly at $t \sim t_{0}$). The third group includes the attempts to explain the character of cuts the behaviour of the differential cross-section by the contribution. Let us go into greater detail into all of the abovementioned possibilities. We shall first of all examine whether the behaviour of the residue should be in any way unusual, in order to explain the experimental data. It appears not. For this, it is sufficient to assume that the scattering amplitude

$$
\begin{equation*}
A(s, t)=G_{p}^{2}(t) e^{-\alpha \rho} \epsilon_{n} s / s_{0}|t| \cdot S, \tag{2.3}
\end{equation*}
$$

where $G_{p}(t)$ is the electrical form factor (Fig. 2.5). Let us note that the expression (2.3) arises in a natural manner, for example,
 computed according to (2.3), is fitted with two exponents, as is done by the experimenters - see Fig. 2.6), the difference in their slopes is $\Delta B=2.4$ (experimentally $\Delta B=2$, see review $/ 15 /$). However, for this it is necessary to assume $\alpha^{\prime} p=0.125$ (where $S_{0}=I \mathrm{GeV}^{2}$), which is considerably less than the experimental value $\alpha_{p}^{\prime} \sim 0.3(\mathrm{GeV} / \mathrm{c})^{-2}$. Of course we can pose $\alpha_{p}^{\prime}=0.3(\mathrm{GeV} / \mathrm{c})^{-2}$, but then in order to have agreement with the experiment it is necessary to consider $S_{0}=50 \mathrm{GeV}^{2}$. In this way the kink at $\mathrm{t}_{\mathrm{o}} \sim-0.13\left(\frac{\mathrm{GeV}}{\mathrm{c}}\right)^{2}$ appears strange only from the point of view of simple parametrization
$g(t)=e^{-R 2}|t|$. The basic qualitative consequence of this type of explanation is the fact that in other reactions, generally speaking, there will not be any kink in the diffraction cone or it will appear to be completely different from that in the pp. For example Fig. 2.7 shows

$$
\begin{equation*}
\frac{d \sigma(\pi, p)}{d t}=G_{\pi}^{2}(t) G_{\rho}^{2}(t) e^{-2 \alpha \rho \ln s / t)} \tag{2.4}
\end{equation*}
$$

where the electromagnetic form factor of a π-meson $G_{\pi}(t)$ is taken in the form of $\sqrt{G_{p}(t)}$ (this behaviour of $G_{\pi}(t)$ agrees both with the simple considerations of the non-relativistic quark model, and with experimental data for $G_{\pi}(t) / 42 /$). It can be seen from Fig. 2.7 that the kink in the diffraction peak at πp may be at $t=-0.22$ $(\mathrm{GeV} / \mathrm{c})^{2}$, whilst $\Delta \mathrm{b}=1.7(\mathrm{GeV} / \mathrm{c})^{-2}$. However the idea that only the behaviour of the residues is responsible for the kink which is observed contradicts the experimental data in respect of the dependence of the slope of the diffraction cone on energy. It is a known fact that the slope at small $t \quad\left(|t|<0.1(G e V / c)^{2}\right)$ varies with an increase in $\ln s$ with $\alpha^{\prime} \rho_{1}=0.28(\mathrm{GeV} / \mathrm{c})^{-2}$ whereas intermediate increase in $\ln S$ with $\alpha p_{1}=0.28(\mathrm{GeV} / \mathrm{c})^{-2}$, whereas at t values
vallit $(0.15 \leqslant|t| \leqslant 0.5) \alpha_{p_{2}}^{\prime} \sim 0.1(\mathrm{GeV} / \mathrm{c})^{-2}$ (see for example $/ I I /)$. On the contrary, it may be assumed that the entire kink is explained only by the variation in $\alpha^{\prime} p$. In effect, $\Delta b=2\left(\alpha_{p}^{\prime} p_{1}-\alpha_{p_{2}}^{\prime}\right) e_{2} S=2,4$ at the ISR energies. The idea why such a rapid variation in $\alpha p(t)$ should be possible was proposed in $/ 43 /$. It is that the large contribution to $\alpha^{\prime} p(t)$ should be given by two- π-meson exchanges, which owing to the smallness of the mass of a pion lead to the small but quickly varying part in $\alpha^{\prime}(t)$, the value of which depends only on the cross-section of $\sigma_{\pi} \pi$ at large energies. Computation of the graphs of the type shown in Fig. 2.8 a leads to $/ 43 /$:
$\alpha_{p}(t)=1+\alpha_{0}^{\prime} t-\frac{\sigma \sqrt{j} \pi}{32 \sqrt{2}} h_{1},(t)^{2}$,
where

$$
\begin{align*}
h_{1}(t) & =-\frac{t}{\pi}\left[-\frac{8 \mu^{2}}{t}-\left(1-\frac{\alpha \mu^{2}}{t}\right)^{3 / 2} \ln \frac{\sqrt{1-\left(\frac{t}{\mu^{2}}\right)^{2}}+1}{\sqrt{1-\left(\frac{t}{\mu}\right)^{2}}+1}+\right. \tag{2.5}\\
\left.-\ln \mu^{2}\right] & =-\frac{t}{\pi} \cdot \begin{cases}\ln \left(-\frac{m^{2}}{t}\right) & (-t)\left\langle 84 \mu^{2}\right. \\
\cos \frac{m^{2}}{\mu^{2}}-\frac{8}{3} ; & (-t)<4 \mu^{2},\end{cases}
\end{align*}
$$

$/^{u}$ is the mass of the pion, m is the $n t$ on mass. Fig. 2.9 shows the pp -scattering cross-section determined by $\alpha_{p}(t)$, calculated in accordance with (2.5) where $\sigma \pi \pi$ was taken as 16 mb (Fig. 2.9 a) and 32 mb (Fig. 2.9 b), $\alpha_{0}^{\prime}=0.21(\mathrm{GeV} / \mathrm{c})^{-2}, b_{0}=7.44(\mathrm{GeV} / \mathrm{c})^{-2}$. The cross-section $\frac{d \sigma}{d t}=A e^{-b|t|}$, where $b=b_{0}+2 d^{\prime}|t| \ln S$ in accordance with (2.5). The curve in Fig. 2.9 b quite well describes the experiment and gives $\Delta \boldsymbol{b}=1.75(\mathrm{GeV} / \mathrm{c})^{-2}$, which is very close to that discovered in the experiment. However $\sigma_{\pi \pi}$ obtained from the factorized states $\left(\sigma_{\pi J}=\frac{\sigma \pi \pi}{\sigma p p}\right)$ is 16 mb. Consequently it is quite possible that the nature of this characteristic behaviour of the cone consists in taking into account both effects: The exponential character of the behaviour of the residues and the presence of two $-\pi$ -meson exchange in the trajectory of a vacuum Reggeon.

On the other hand, it appears more natural to explain the observed change in the slope of the diffraction cone by taking into account the contribution of cuts (ie. the sum of the graphs in 2.8 b and 2.8 c). cuts In effect, the contribution of falls more slowly as t increases, than the contribution of the pole, and consequently at large t the slope should be smaller. Let

$$
\begin{equation*}
A(c, t)=g^{2}\left(l^{R^{2} t}-c l^{\frac{p^{2} t}{2}}\right), \tag{2.6}
\end{equation*}
$$

then $\frac{\frac{d \sigma}{d t}}{\frac{d \sigma}{d t / t=0}}=\frac{1}{(1-c)^{2}}\left(e^{+R^{2} t}-c e^{+\frac{p^{2} t}{2}}\right)^{2}$,
whilst the slope

$$
\begin{equation*}
b=\frac{d \ln \frac{d \sigma}{d t}}{d t}=\frac{2 R^{2}\left(1-\frac{c}{2} e^{-R^{2} t / 2}\right)}{\left(1-c \varepsilon^{-R 2} t / 2\right)} \tag{2.8}
\end{equation*}
$$

It can be seen from (2.8) that f increases as $|t|$ rises until culs are equal $\left(1=c l \frac{-R^{2} t_{0}}{2}\right)$, and then " b " begins to fall. In this way, allowance for outs leads to an increase in the slope and only at large $|t|$ to a drop. Furthermore, $t=t_{0}$ is usually linked with the position of a minimum in $\frac{d \sigma p p}{d t}$ at $t=-1.3\left(\frac{\mathrm{GeV}}{c}\right)^{2}$ and therefore in the region of t which is of interest to us the contribution of increases the slope /44/. However the latter argument only applies in the case if it is taken into consideration that the cut character (i.e. the graphs of the type shown in Fig. 2.8 c). In effect, we know that at present day energies (for which $\sigma_{\pi p} \neq \sigma_{p p}$) the contribution of the graphs should be great (see for example Fig. 2.8 d). But the enthanced $\begin{gathered}\text { entanced } \\ \text { entaphs fall rapidly as }|t| \text { increases }\end{gathered}$ (faster than the non-enhanced graphs) and therefore cannot have an affect on the position of the minimum at $t=-1.3(\mathrm{GeV} / \mathrm{c})^{2}$. For small t, the graphs of the type shown in Fig. 2.8 d are substantial, and they may lead to a reduction in the contribution of the pole at (t_{0}) $=0.1(\mathrm{GeV} / \mathrm{c})^{2}$. In this case it is easy to obtain agreement with experiment. For example the cross-section of the form

$$
\begin{equation*}
\frac{d \sigma}{d t} \frac{d \sigma}{d t / t=0)}=e^{22 t}\left[\left(1-0,58 \cdot e^{-\frac{11}{2} t}\right)^{2}+0,87 e^{-11 t}\right] \tag{2.9}
\end{equation*}
$$

satisfactorily describes all the qualitative changes in the experimental
cross-section (see Fig. 2.10). Of course, in expression (2.9) the contribution of the real part or of other spin amplitudes is too great in comparison with the imaginary part of the amplitude (the first term in (2.9)). Neverthe 在s, the expression (2.9) shows that this explanation is also possible in principle. In this way, summing up,
it may be said that on the one hand the kink detected in the diffraction cone is not very surprising from the view point of present day views on the interaction of hadrons at high energies, and on the other hand the precise cause of it is still not known and additional measurements are necessary in various reactions and at different energies. We should also point out that if the kink is linked with $\alpha_{p}(t)$, then its character is identical in all reactions, whilst measurement of the
$\frac{\text { diference }}{\text { ope }} \Delta \&$ falls as the energy decreases (at $S=52 \mathrm{GeV}^{2} \Delta G=0.65$ $(\mathrm{GeV} / \mathrm{c})^{-2}$ instead of $\Delta b=1.75(\mathrm{GeV} / \mathrm{c})^{2}$ at ISR energies $(S=2300$ GeV^{2}). Present day experimental information on this phenomenor is very scanty. It is known from experiment simply that there is a kink in pp -scattering at ISR energies, and that apparently it does not exist in $\pi \vec{\rho}$-scattering at $14 \mathrm{GeV} / 15 /$ and that it does exist in K^{-}p-scattering at $10 \mathrm{GeV} / \mathrm{c} / 34 /^{\mathrm{C}}$. At the present time there are no other experiments in which the scattering has been measured with sufficient accuracy either at $(t)<0.1 \mathrm{GeV}^{2}$, or at $(t)>0.1 \mathrm{GeV}^{2}$. A comparison of the results of the various experiments points, however, to a possible existence of a kink at other energies /46/.

In order to understand the nature of the kink it is necessary to ascertain to what extent it is universal (i.e. how it develops during the scattering of various particles) and how it behaves as the energy varies. For this purpose fairly accurate measurements of the elastic scatterings of different particles are required in an energy range of $30-400 \mathrm{GeV}$ (between the previous accelerator energies and the ISR energies) and at (t) from $\sim 0.05 \mathrm{GeV}^{2}$ to $\sim 0.2 \mathrm{GeV}^{2}$, so that it would be possible to determine the slope at $(t)<0.13 \mathrm{GeV}^{2}$ and $(\mathrm{t})>0.13 \mathrm{GeV}^{2}$ with an accuracy of at least $\sim \pm 0.5 \mathrm{GeV}^{-2}$.

III. Inclusive spectra in the three-Reggeon region

In recent years inclusive reactions have attracted an increasing attention from both theoreticians and experimenters. There are many reviews (for example $/ 15 /$) containing discussions of experimental results and physics problems related to inclusive reactions. Here we shall discuss only those aspects which have a direct bearing on the proposed experiment to study the three-pomeron vertex. But first of all let us examine one kinematic relation.

Let there be two particles having momenta of ρ_{1}, p_{2} and masses of m_{1}, m_{2} which collide, forming two other particles (or groups of particles) having momenta of P_{3}, P_{4} and masses of m_{3}, m_{4} (Fig. 3.1). Let us examine this process in the rest system of particle I which we shall denote as the laboratory system. Then we can write the relations :

$$
\begin{align*}
& s=\left(p_{1}+p_{2}\right)^{2}=m_{1}^{2}+m_{2}^{2}+2 m_{1} E_{2}, \\
& m_{3}^{2}=\left(p_{1}+p\right)^{2}=m_{1}^{2}+2+2 m_{1} p_{0}, \\
& m_{7}^{2}=\left(p_{2}-\eta\right)^{2}=m_{2}^{2}+E-E E_{2} p_{0}+2 / p_{2} / \varepsilon_{m}, \tag{3.1}
\end{align*}
$$

where $q=p_{3}-p_{1}=p_{2}-p_{4} \quad$ is a four-momentum transfer, q_{0} and q_{11} are the time and longitudinal (along $\overrightarrow{p_{2}}$) components, $t=Q^{2}$. For a large energy $E_{2} \approx\left|\overrightarrow{p_{2}}\right|$ and $S \approx 2 m_{1} E_{2}$ so that

$$
\begin{align*}
q_{0} & =\frac{m_{3}^{2}-m_{1}^{2}-t}{2 m_{1}}, \\
q_{1}-q_{0} & \approx \frac{m_{4}^{2}-m_{2}^{2}-t}{2 E_{2}} \approx \frac{m^{2}-m_{2}^{2}-t}{3} \cdot m_{1} \tag{3.2}
\end{align*}
$$

If t is fixed, then

$$
\begin{equation*}
t=q^{2}=-(q-q)\left(p+q_{0}\right)-\theta_{1}^{2} \approx-\bar{q}^{2}\left(\pi p u m^{2} / 2<1\right) . \tag{3.3}
\end{equation*}
$$

Let us note that in the laboratory system

$$
\begin{equation*}
Z_{1}-\hat{S}_{1}, Q_{n}=\theta_{0}-\eta_{3}+m_{3}-m \text {, } \tag{3.4}
\end{equation*}
$$

where T_{3} is the kinetic energy of particle 3. Let us introduce also the value $x=\frac{2 p_{3} c \|}{\sqrt{s}}$, where $P_{3 c \|}$ is the longitudinal (in direction of $\vec{P}_{2 C}$) component of the momentur of particle 3 in the centre-of-mass system. By carrying out the Lorentz transformation, it is easy to find that for a high energy

$$
\begin{equation*}
\cdots x a x_{1}-g^{2}+\frac{r_{2}^{2}-m^{2}-2}{3} \approx \frac{m^{2}+n^{2}+2 \pm}{s} \tag{3.5}
\end{equation*}
$$

Frequently; use is also made of more precise relations:

$$
\begin{align*}
& t \simeq-q q^{2} /|x|-(1-|x|)\left(\frac{m_{3}^{2}}{|x|}-m_{1}^{2}\right) \tag{3.3a}\\
& 1-1 x \left\lvert\, \simeq \frac{m_{3}^{2}}{s}+\frac{2 q_{1}^{2}}{\mid x / 5}-\frac{m_{3}^{2}}{s}\left(1-\frac{2}{|x|}\right)\right. \tag{3.5a}
\end{align*}
$$

We see that at a high energy the longitudinal and transverse components Q (or P_{3}) have a substantially different kinematic meaning. q_{\perp}^{2} determine the value of t, since $q_{\prime \prime}$ and q_{0} determines the masses of the final particles. It is clear (3.3) is correct in any frame of reference which moves with (or against) the momentum \vec{p}_{2}.

Let us now return to the inclusive processes. Let a fast initial particle A collide with a proton of the target which is stationary in the laboratory system, thus giving rise to a stream of fast particles, and that a recoil proton is emitted at a small momentum. We shall be interested in the kinematic configuration, when this process can be described by Reggeon exchange. The amplitude of this process is expressed by the diagram in Pig. 3.2.

In elastic or quasi-elastic scattering all large energies in the reactions have the same order of magnitude. The contribution of a Reggeon contains, as we know, the factor $\left(\frac{S}{S_{0}}\right)^{\alpha(t)}$, where $S_{0} \approx I G e V^{2}$. If, however, the invariant mass M of the stream of fast particles is great in comparison with the usual masses, than there are, in the reaction generally speaking several independent large energies, and the situation becomes complicated. A theoretical analysis shows in this case the single-Reggeon contribution to the
 can be explained in various ways, for example, on the basis of representation of a multi_peripheral model or by introducing complex angular momenta in multi-particle amplitudes. However, here we shall not go into the detail of the theory but shall use the result obtained.

In order, now, to obtain the cross-section of the inclusive reaction

$$
\begin{equation*}
A+P \longrightarrow P+\cdots \tag{3.6}
\end{equation*}
$$

we must summate the square of the amplitude modulus of Fig. 3.2 and integrate over the quantum numbers and momenta of the fast particles of the stream and summate over their number, which is shown schematically in Fig. 3.3a. It can easily be seen that the upper block in Fig. 3.2 can be considered as the interaction amplitude of particle A with Reggeon α with the formation of real particles . With this the approach,/upper part of Fig. 3.3 a contains the total cross-section of Reggeon interaction with particle A. The optical theorem links the total cross-section with the absorption part of the forward scattering amplitude, which corresponds to the diagram infig. 3.3b.

Generally speaking, the amplitude of the inclusive process may contain several different single-Reggeon contributions of the type in Fig. 3.2. In this case, there appear in the crosssection interference terms which correspond to the fact that the Reggeons in the left and right-hand sides of Fig. 3.3 a , b may be different.

Let us now note that the square of the mass of the stream M^{2} plays the same part as the square of the total energy in the cms of S for the usual elastic. amplitude. It is, therefore, natural to expect that at large $\frac{M^{2}}{S_{0}}$ the amplitudes of the interaction of Reggeons with a particle, in turn, are determined thy the sum of the single-Reggeon exchanges. Then we come to diagram 3.3c, which is called the three-Reggeon diagram. Its contribution to the inclusive cross-section is described by formula /48/

$$
\begin{aligned}
\rho_{T R}^{\alpha \alpha \beta} & =\left(E{\left.\frac{d^{3}}{d^{3}}\right)_{T R}^{\alpha \alpha \beta}=\frac{1}{16 \bar{\eta}^{2}} \cdot \frac{1}{s} a_{\alpha}^{2}\left(q_{L}^{2}\right) \cdot /_{\alpha}\left(q_{L}^{2}\right)^{2} \cdot\left(\frac{s}{M^{2}}\right)^{2 \alpha\left(-q_{L}^{2}\right)}}^{(3.7)}\right. \\
& \times q_{\alpha \alpha \beta}\left(q_{L}^{2}\right) \cdot \varepsilon_{13}(0) \cdot\left(\frac{\mu^{2}}{S_{0}}\right)^{\rho(0)}
\end{aligned}
$$

where E and p are the energy and recoil proton momentum, \boldsymbol{a}_{α} and b_{β} are the vertices of Reggeon coupling with the particles, $\eta_{\alpha}\left(q_{\perp}^{2}\right)$ is the signature factor $\begin{gathered}\text { The value } g_{\alpha \alpha \beta}, ~\end{gathered}$ describes a three-Reggeon vertex. The factor $\frac{1}{S}$ is linked with the flow of initial particles. The contributions of the interference terms, where all three Reggeons are different, also are of a form similar to (3.7). In expression (3.7) instead of $-q_{\perp}^{2}$ one often writes t. However, at $\frac{S}{M^{2}} \gg 1$, where this expression was in fact obtained, small t and q_{\perp}^{2} practically coincide (see (3.3)), so that if their difference is taken into account, accuracy will be exceeded. If, however, we use (3.7) for the finite
values of $\frac{S}{M^{2}}$, then t contains the contribution of the longitudinal and time components and it becomes important as to which variable should be used. It is, however, clear that the question of how to write the asymptotic formula in the non-asymptotic region can only be answered on the basis of a more complete theory or experimental data. However, as has already been pointed out, the transverse and longitudinal components of the momentum transfer have, at a high energy, a substantially different meaning. This is once again shown in formula (3.7) where the trajectory and vertices at $S \gg M^{2} \gg S_{0}$ depend on q_{\perp}^{2}, whereas $\frac{M^{2}}{S} \approx \frac{q_{\mu}-q_{0}}{m p}$ (see (3.2)). In addition the permissible range of variation in t depends on M^{2} and $S\left(t<t_{\min }\right)$. For an insufficiently high resolution this may lead to an erroneous reduction in the cross-sections at $\sqrt[5 m a l l]{t}$. Consequently we consider it more reasonable to use precisely q_{\perp}, and not t.

Using the variable \boldsymbol{x}, equatio (3.7) assumes the form $(\operatorname{see}(3.5)):$

$$
\begin{align*}
\rho_{R R}^{\alpha i \beta}= & \left.\frac{1}{10 \pi_{1}^{2} S_{0}} \cdot g_{\alpha \alpha \beta}\left(Q_{1}^{2}\right) \cdot \alpha^{2}\left(q_{1}^{2}\right) \cdot\left(\eta_{\alpha} \rho_{1}^{2}\right)\right)^{2} \cdot \theta(\sigma) x \\
& x\left(\frac{S}{S_{0}}\right)^{\beta(0)-1}(1+x) \cdot \beta(0)-2 \alpha\left(-q_{1}^{2}\right) \tag{3.7a}
\end{align*}
$$

In this way, the energy dependence of the inclusive wosssection in the three-Reggeon region at $\boldsymbol{x}=$ const is determined by the sum of the Reggeon contributions (more precisely, the upper Reggeons in Fig. 3.3c). Here the non-pomeron contributions, for which $\beta(0)<1$, decrease as a power of

Formaily equations (3.7) and (3.7a) can be used when

$$
\begin{equation*}
\frac{q_{1}}{M^{2}}>1, \mu^{2} S_{0}>1, q_{1}^{2} \approx m^{2} \quad ; \quad \frac{i .}{S_{0}} \geqslant \frac{1}{1+2} 2=2 \tag{3.8}
\end{equation*}
$$

We shall discuss the experimental situation below but it is already clear from (3.8) that in order to determine the threemReggeon contribution to the inclusive cross-section much greater energies are required than for observing the Reggeon behaviour of two-particle amplitudes, where only $\frac{S}{S o} \gg 1$ is required (let us recall that $\left.S_{0} \approx I \operatorname{GeV}^{2}\right)$

The conditions of (3.8) show also that in the three-Reggeon range, the value of x should be close to $-1 . \quad \therefore \quad x \rightarrow-1$, the in-
goes as a power
elusive cross-section banaras oxpontially, and it may either decrease or increase. But even if the cross-section increases, it remains, of course, limited, since in the physical region $1+x>\frac{2\left(m^{2}+q_{1}^{2}\right)}{5}$.

Of special interest is the case where all three Reggeons are pomerons. In accordance with (3.7n) the three-pomeron contribution to the inclusive cross-section is oi the form :

$$
\begin{equation*}
\rho_{p p}=Q\left(q_{1}^{2}\right) \cdot(1+x)^{-1+2 \alpha_{p}^{\prime} ?^{2}} \tag{3.9}
\end{equation*}
$$

where use was made of the expansion of the trajectory of the pomeron $\alpha p\left(-q_{1}^{2}\right)=1-\alpha^{\prime} p q_{1}^{2} \quad$ at $\operatorname{small} q_{1}^{2}$.

In order to obtain the contribution of the inclusive threepomeron crossmsection to the total cross-section of interaction it is necessary to integrate $\rho_{r p}$ in the three-Reggeon region over the recoil proton momenta. The invariant phase volume can be conveniently integrated over the azimuthal angle and expressed by the variables x and $q_{1}^{2}($ at $|x| \approx 1)$.

$$
\int \frac{d^{3} p}{E} \approx \pi \int d^{\prime}=d^{\prime} 2
$$

If $G(0) \neq 0$, then at $S \rightarrow \infty$ the three-pomeron contribution to the total cross-section increases in accordance with $\sim G(0) \ln \ln S$. If the three-pomeron contribution remained limited at $S \rightarrow \infty$, then its increase might have been compensated by the reduction in the contribution from other kinematic regions and the total crosssection might have remained constant. But since it increases in unlimifed an manner, it cannot in any way be compensated. In this way, if the total cross-section is asymptotically constant, then $G(0)=0$, i.e. $g_{p p p}(0)=0$, where gppp is the vertex of coupling of the three-pomeron. This result is important not only for the behaviour of inclusive cross-sections, but also for understanding cut the structure of pomeron and the trajectory of the pomeron $/ 14 /$, since its verification is very interesting.

The study of the three-Reggeon region is generally very interesting since it provides substantially new information concerning the trajectories and other properties of Reggeons. But the study of the three-pomeron contribution is of particular importance. As has been explained, it is expected that $\operatorname{gppp}(0)=0$. However, pomeron may imitate the effective three-pomeron coupling with $\operatorname{gPPp}(0) \neq 0$. The three-pomeron region may prove responsible for the main part of the observed increase in the cross-sections of

$$
K^{+} p \text { and } p p \text {-interaction } / 15,49,50 / \text {, and it may determine }
$$ the energy behaviour of the correction in scattering on a deuteron $/ 50,51 /$ etc. A more detailed discussion of the contribution of

ouls

will be found below.

Let us examine the experimental situation. The investigation of three-pomeron contribution has hitherto been made only in the
$p+p \rightarrow p+\ldots$ reaction on the CERN colliding beams and in $p+p \rightarrow p+\boldsymbol{x}$ and $\pi \mp p \rightarrow x+p$ at Batavia. At CERN the measurements of the inclusive cross-section have been carried out at four ISR energies $|t| \gg 0.15 \mathrm{GeV}^{2}$ and $|\boldsymbol{x}|$ up to unity, but with an error of $\Delta x \sim 0.01-0.02 / 52-54 /$. The measurements at Batavia were carried out by various groups with different methods $/ 23,53,55-57 /$. They cover a wide range of S and t. The absolute cal ibration of the cross-sections in these measurements however is apparently of a preliminary nature (the error in the absolute normalization is $\leqslant 30 \%$).

Figures 3.4-3.6 show the existing experimental data for proton spectra obtrined at Batavia and CERiv for small q_{\perp}^{2}. Here it should be noted that the drop in cross-section observed in Fig. $3.5 f$ at $t \sim 0.03-0.05 \mathrm{GeV}^{2}$, may obviously be linked with the fact that in this case, for a large part of the interval over \mathbb{M}^{2} there was the inequality $|t| \leqslant\left|t_{\min }\right|=m^{2} M^{4} / S_{2}$ (and such events were kinematically prohibited). This situation once again points to the fact that it is preferable to make the search for spectra at small truinfers and non-asymptotic energies as a function of q_{\perp}^{2} (which may be vanishing) and not as a function of t.

In order to describe the existing ISR spectra it was sufficient to take into account two Reggeons: the Pomeranchuk pole P witt $\alpha_{p}(0)=1$ and the Regge pole R with $\alpha_{R}(0)=1 / 2 / 50,55 /$. This pole provides an effective description for the contributions of P^{\prime}, ω and otner Reggeons, which it has not yet been possible to break down. The contribution of the terms which describe the interference of P and R is apparently small and it can be disregarded. In this way, in the inclusive crosssection there remain the terms $P P P, R R P, P P R$ and $R R R$, where the first two symbols correspond to the lower Reggeons and the third symbol to the upper Reggeon in Fig. 3.30^{*}. In this examination we
foolinc rox fro
have disregarded the contributions of the poles lying to the
left in the j-plane. However as shown by the model calculations /59/, at small q^{8} the contribution of the π-pole is quite substantial. For example at $x \leqslant 0.8$ the contribution of $\pi \pi P$ is equal to the contribution of $R R P$ at $P_{\perp}^{2} \leqslant 0.2 \mathrm{GeV}^{2}$.

As follows from an analysis of recent measurements at Batavia of the $p+n \rightarrow x+p$ reaction/60/ (which was isolated in a study of the $p+d \rightarrow x+p$ process), the inclusive cross-sections of this reaction should be described well by the contribution of the π-pole (term $\pi \pi P$) (see Fig. 3.7). As the role of the $\pi \quad$-exchange sharply increases at small $q_{\perp}^{2}\left(\rho_{\pi \pi \rho} \sim \frac{-t}{\left(t-\mu \frac{\ell}{\pi}\right)^{2}}(1-x)\right)$, its contribution must be taken into account even when analyzing the data for the $A+P \rightarrow x+P$ spectra at not too small $1-|x|((1-|x|) \geqslant 0.05)$ and fairly small q_{1}^{2} (less than or of the order of several hundred the GeV^{2}).

The ISR data at $S \geqslant 1000 \mathrm{GeV}^{2}$ within the limits of measurement accuracy $(\sim 20 \%$) do not depend on energy at a fixed x (see Fig. 3.8). In accordance with (3.7 a), this means that they are sensitive only to the term PPP and RRP. The three-Reggeon description is us able at $|x| \geqslant 0.8 / 50 /$. In the interval $0.8<|x|<0.9$ the main contribution is $R R P$, which slowly decreases for $|x| \rightarrow I$. For $|x| \geqslant 0.95$ it is the contribution of PPP which begins to play the main role, which increases at $|\boldsymbol{x}| \rightarrow I$. A comparison of ISR data Let us note that in the theory with the asymptotically constant total cross-section the vertices $g_{P P R}(0), g_{P R P}(0), g_{R P R}(0)$ should also vanish, when p is a true pomeron.
and previous accelerator data indicates the important part played by the non-scaling $\sim 1 / \sqrt{5}$ of the term RRR $/ 50 /$. This confirmation agrees with the Batavia results $/ 55 /$ (see Fiğ. 3.9, 3.10). Here we should stress the particular importance of the experimental determination of the term $R R R$, and its dependence on q_{\perp}^{2} in the region of small momentum transfers. We shall note first of all that the contribution of this term at small $q_{\perp} \quad$ to the spectrum $\rho_{R R R} \sim$ $\frac{1}{\sqrt{1-|x|}} \frac{1}{\sqrt{5}}$ actually increases at $|x| \longrightarrow l$, which complicates isolation of the effective contribution of PPP. Furthermore the size of $\rho_{\text {RRR }}$ is very substantial, for example, when calculating the contributions of the spectra to the total cross-sections and for checking the various laws of the sums for the inclusive cross-sections.

As far as the $P P R$ term is concerned, there
-abstantial
data relating to such values of S and X where the spectra are not sensitive to the $P P R$ contrikut, which at small q_{\perp}^{2} is proportional to $S^{-1 / 2}(1+x)^{-3 / 2}$. An indirect representation of this term can be obtained in the following manner/50/. Extrapolation to the "infinite energy" of the missing mass spectra in the $p+p \rightarrow p$ + WiN reaction at $\mathrm{E}<30 \mathrm{GeV}$ makes it possible to find the "cross-section" of pomeron scattering on a proton σP_{P} at $M^{2} \leqslant 6 G e V^{2}$. The same cross-section from the ISR data at $\mathbb{N}^{2}=50 \mathrm{GeV}^{2}$ and $100 \mathrm{GeV}^{2}$ agrees with the fact that $\sigma_{p_{\boldsymbol{p}}}=$ const at $M^{2}>\sigma \mathrm{GeV}^{2}$ (see Fig. 3.11). As the variation in σp_{p} at large \mathbb{M}^{2} is determined by the term $P P R$ this indicates that the erfective vertex of PPR is not great. Io isolate directly this term we need measurements of the inclusive spectra at $(1+x) \leqslant 0.05$ (i.e. for small ${ }^{-t}$ at recoil proton momenta of $P_{\mathrm{II}} \leqslant 45 \mathrm{geV}$) and $100 \mathrm{GeV}^{2} \leqslant S \leqslant 1000 \mathrm{GeV}^{2}$ (i.e. at the initial energies \mathbb{E} in the $50-500 \mathrm{GeV}$ range).

Let us now turn to the term PPP. The ISR data at
$|t| \geqslant 0.15 \mathrm{GeV}^{2}$ can be described, by assuming both $\operatorname{Gppp}(0) \neq 0$, and $G_{p p p}(t) \sim+\ell^{A t} / 50 /$. However, the data of Batavia, obtained in a bubble chamber at $|t| \geqslant 0.05 \mathrm{GeV}^{2}$, which are normalized to the ISR data, show clearly that $\operatorname{Gppp}(0) \neq 0$. A comparison of the Batavia and ISR data also points to the fact that the slope $\operatorname{Gppp}(t)$ at $|t|<0.1(G e V / c)^{2} \quad$ is possibly greater than at $|t|>$ $0.1(\mathrm{GeV} / \mathrm{c})^{2} / 23 /$. This change in the slope may have the same nature as in elastic pp -scattering (see section II). It would be very interesting to study this question in greater detail, having progresicd into the region of smaller q_{1}^{2}. If subsequent investigations show that $G p p p(0)$ is really non-vanishing, it will mean that either the total cross-section cannot be asymptotically constant, cut or that pomeron branching is a substantial contribution, imitating the three-pomeron term. In the second case, the question arises as to how to distinguish the effective three-pomeron term from the true one. As the need to review the nature of the pomeron has not been proved yet, we shill start here from the second possibility cut. and discuss in greater detail the contribution of

From the derivation of the expression for the three-pomeron term, it is clear that its contribution to the inclusive cross-section occurs on account of the diffraction dissociation of the incident particle A with the excitation of very large masses M (by the exchange of one pomeron). Consequently the varishing of the threepomeron vertex at $\vec{q}_{\perp}=0$ denotes that at $\vec{q}_{\perp}=0$ the amplitude of diffraction dissociation must vanish, at least, for the case of excitation of fairly large masses. But this in turn means that at $\vec{q}_{\perp}=0$ the vertex which links a pomeron with the particle A and with the state with the large mass \mathbb{M} vanishes (see Fig. 3.2).

As a result, at $\vec{q}_{\perp}=0$ the diffraction excitation of the state with large masses occurs only on account of the exchange of two or more pomerons (Fig. 3.12). Unlike single-pomeron exchange, which at $\vec{q}_{\perp}=0$ is asymptotically constant, the contribution of multi-pomeron exchange decreases as a certain power of $\ln S$. This power is smallest for two-pomeron exchange, and it may be expected that it is

dominating

 precisely this contribution which is already at energies which are not very great. Then the inclusive cross-section at a high energy and $M^{2}=$ const, $\vec{q}_{\perp}=0$ is determined by the diagram of Fig. 3.13 (instead of diagram 3.3b for the single-pomeron exchange) and we obtain (instead of a constant)$$
\begin{align*}
& g_{s}^{2}-0, M^{2} \text { const . } \tag{3.10}
\end{align*}
$$

In this way, when taking into account cuts the inclusive crosssection at $\vec{q}_{\perp}=0$ is non-vanishing, even if gppp $\quad(0)=0$. At first sight the two-pomeron exchange my arem the singlepomeron exchange the rate with energy. In reality, the situation is not so simple. In effect, the experiments are set up at a small, but finite, \mathbf{q}_{\perp}^{Q}, where the sincle-pomeron contribution is always non-vanishing and always decreases with energy. This decrease is as a power in $s\left(\sim s^{-2 \alpha^{\prime} p} q_{\perp}^{2}\right)$, but at a small q_{\perp}^{2} and in a finite range of energies it is difficult to distinguish it from the logarithmic. Consequently, in order to clarify what exchange is fundamental at $q_{\perp}^{2} \rightarrow 0$, it is necessary to study not only the energy dependence of the inclusive cross-section (at constant q_{\perp}^{2} and Mi^{2}), but also the variation in this dependence at $q_{\perp}^{2} \rightarrow 0$.

> If the main exchange remains the single-pomer exchange
(i.e. $\left.g_{\operatorname{ppp}}(0) \neq 0\right)$, then

$$
\begin{equation*}
\left.H^{2} \frac{d^{2} \sigma}{d Q^{2} d H^{2}}=\text { const } \cdot e^{-\left(p^{2}+2 \alpha^{\prime}\right.} \sin s\right) q^{2} . \tag{3.1Ia}
\end{equation*}
$$

If, however, $\operatorname{gppp}(0)=0$ and the single-pomeron contribution dies away at $q_{\perp}^{2} \rightarrow 0$, then for the purposes of the evaluation the cross-section may be written in the form

$$
\begin{align*}
& \left(M^{2} \frac{\alpha^{2} \sigma}{\alpha q_{1}^{2} \sigma M^{2}}\right)_{3 \rho}^{e H f}=B_{q_{1}^{2}}^{2} e^{-\left(R^{2}+2 \alpha_{p}^{\prime} \ln s\right) q_{1}^{2}}-\frac{C_{q_{1}^{2}}^{2} e^{-\left(R_{2}^{2}+e^{2} \alpha_{1}^{\prime} G_{n} s\right) q_{1}^{2}}}{\left(1+\frac{2 \alpha_{1}^{2}}{R_{1}^{2}} l_{n} s\right)^{2}}+ \tag{3.IIb}\\
& +\frac{\left.D^{-\left(R_{j}^{2}+\alpha_{\rho}^{\prime}\right.} \ln s\right) q_{1}^{2}}{\left(1+\frac{2 \alpha_{p}^{\prime}}{R_{1}^{2}} \ln s\right)^{4}},
\end{align*}
$$

where B, C, D are constant coefficients, R, R_{1}, R_{2}, R_{3} are certain characteristic radii. Both the coefficients and the radii, generally speaking, are different and vary with M^{2}. In (3.IIb) the first and third terms describe the contributions of a pomeron and auts, Ind the second term describes their interference. It is obvious that (3.IIa) has a simple energy dependence, which varies steadily as q_{\perp}^{2} decreases. In (3.IIb) both the energy dependence and its variation with $\quad q_{\perp}^{Q} \quad$ have a more complex form.

Let us examine the structure of the expression (3.IIb) more closely. Por any energy and sufficiently small $q_{\perp}^{\mathcal{I}}$ the main factor is the contribution. But if we fix this value q_{1}^{2} and increase the energy, then the main contribution is that of the pole. However, when the energy increases further, again it is the contribution which is the main contribution. If the coefficient D is sufficiently great, then at a finite energy $M^{2} \frac{d^{2} \sigma}{d q_{1}^{2} d M^{2}}$ decreases steadily with an increase in $q_{\perp}^{\mathbf{2}}$, although in (3.IIb) there are terms which increase at small q_{1}^{2}. However with an increase in S, there appears, in the angular distribution, a maximum. It occurs at $q_{\perp}^{2}=0$ and with the increase in S at first moves towards large values of q_{\perp}^{2} and then again goes towards $q_{\perp}^{2}=0$.

At a very large energy the position of the maximum almost coincides with the maximum of the pomeron contribution, i.e. it is situated at $q_{\perp}^{2} \leqslant \frac{1}{R^{2}+2 d^{\prime} p \ln S}$. The possible absence of a maximum at a finite energy is assisted also by the negative sign of the interference term (if it is in fact negative).

cut

The contribution also leads to a variation in the dependence on X. If, when there is only the contribution of a pomeron $(1+x) \frac{d^{2} \sigma}{d x d q_{\perp}^{2}} / q_{1}^{2}=0 \xrightarrow[s \rightarrow \infty]{\rightarrow \text { const, then when the eut }}$ is taken into account terms appear which contain expressions of the type

$$
\left(1+\frac{2 \alpha^{\prime}}{R^{2}} \ln \frac{1}{1+x}\right)^{-1}
$$

An explanation of the properties of these terms calls for/analysis of the structure of the top block in Fig . 3. 33 . for example, the diagram of Fig. 3.14 a give a contribution which does not depend on energy but decreases awording $\operatorname{lon}\left(\ln \frac{1}{1+x}\right)^{4}$, whilst the diagram of Fig . $3.14 b$ gives a slower decrease at $X \rightarrow-1$, but contains
decrease with S
however a $\mathrm{at} \mathrm{S} \rightarrow \infty, \mathrm{X}=\mathrm{const}$. Apparently, for the break-down of the contributions of t pole and it is necessary to have a full analysis of the dependenc es of the inclusive cross-section on M^{2} (or x), tor q_{1}^{2}) and s. Unfortunately we know very little at present of the structure or

cuts

and cannot give any substantiated knowledge at all about the radii and coefficients in expression (3.IId). As a simple qualitative illustration let us examine more closely the corresponding to the graph in $1 \mathrm{ig} .3 .12,3.14 \mathrm{a}$ and the interference of this cut wing with the single-pomeron term (Fig. 3.2, 3.14b). The contribution of these diagrams depends only on q_{1}^{2} and $(1+x)$
and leads to a cross-section

$$
\begin{align*}
& (1+x) \frac{d^{2} \sigma}{d x d q_{1}^{2}}=B\left[q_{2}^{2} e^{-\left(\dot{x}_{x}^{2}+2 \dot{\alpha}_{p}^{\prime} \dot{e n}_{n} \frac{1}{1+x}\right) q_{L}^{2}},\right. \tag{3.12}
\end{align*}
$$

We select the relationships between the radii in (3.12) starting from an eikonal approximation, which, although not true, nevertheless may, clearly , be used for rough qualitative evaluations

$$
R_{7}^{2}=6 \mathrm{GeV}^{-2}, R_{5}^{2}=5 \mathrm{GeV}^{-2}, R_{6}^{2}=R_{j}^{2}=4 \mathrm{GeV}^{-2} \text {. }
$$

For $\alpha^{\prime} p$ let us take the present-day value of cut $/ 17 / \alpha^{\prime} \rho=0.3 \mathrm{GeV}^{-2}$, and let us take the relative value of the contribution d equal to I (variant I) for $I / 2$ (variant II). The value $d=1$ exceeds several times the value of the contribution usually obtained in the eikonal model.

In connection with this, let us point out that we are discussing the theory with asymptotic constant total cross-sections

[^5]```
(equal to each other), when the contribution of the precise
(asymptotic) pomeron vanishes for inelastic processes at \(q_{\perp} \rightarrow 0\).
Consequently, in the evaluation used for \(d\) account has been taken
 curs
also of those which are responsible for the fact that
at present-day energies the total cross-sections are markedly dif-
ferent from each other. A real evaluation of the contribution of
 cut
is the value
```

$$
d \sim \frac{\sigma_{c o}^{t o t}-\sigma_{e x p}^{t o t}}{\sigma_{e x p}^{t o t}}
$$

Taking as $\sigma_{\infty}^{\text {tot }}$ the cross-section of the pp-interaction $\left(\sigma_{\infty}^{\text {tot }}=\sigma_{P P}^{\text {tot }}\right)$, and a.s $\sigma_{e x}^{\text {tot }}-\sigma_{\pi P}^{\text {tot }}$, we obtain

$$
d \sim \frac{\sigma_{\rho p}^{t_{0} t}-\sigma_{\pi \rho}^{t_{0} t}}{\sigma_{\pi i}^{t, t}} \sim 1 .
$$

Figure 3.15 shows graphs which demonstrate the expected dependence for model (3.12) of

$$
(1+x) \frac{d^{2} \sigma}{d x d_{1}^{2}} \text { on } q_{1}^{2}
$$

for two values of $x$ and two values of the parameter $d$. As is seen at $d=\frac{1}{2}$ and $(1+x)=0.1$, in the region of $q_{1}^{2}<0.05 \mathrm{GeV}^{2}$ a marked reduction in the slope of the curve (II) is observed, whereas at $(1+x)=0.01$, curve II has a maximum in the region of $q_{\perp}^{2} \approx 0.06$ $G e V^{2}$ and the cross-section at zero differs by $25 \%$ from the maximum. But here too it is not easy to note a drop, since it occurs in a very narrow region of $q_{1}^{2}<(0.03-0.04) \mathrm{GeV}^{2}$. If, however, the
cut contribution (and we do not know this precisely) is greater (curve $I, ~ d=1$ ), then it will be extremely difficult to note a variation in the slope at $q_{\perp}^{2} \rightarrow 0$ in the interval $0.05>1+x>0.02$. For this it is necessary to make measurements with an accuracy of
the order of $0.1 \%$ in the region of $q_{\perp}^{2}<0.02 \mathrm{Gev}^{2}$. Nevertheless, the dependence of the value

$$
F(x)=(1+x) \frac{d^{2} \sigma}{d x \alpha_{1}^{2}} / q_{2}^{2}=0
$$

on $(1+x)$ is fairly strong. As $(1+x)$ varies from 0.05 to 0.02 $F(x)$ decreases by $40 \%$ (irrespective of the value of $d$, since at $q_{\perp}^{2}=0$ in formula (3.12) there remains oniy the cuhs contribution).

It should be remembered, however, that the evaluations made were obtained in a very primitive concrete model and provide only a qualitative representation of the possible scale of anticipated effects. In this way, even in the model case (3.12) it is not easy to detect a decrease in the pole contribution at $\boldsymbol{q}_{\perp}^{2} \rightarrow 0$. The strongly screens this effect, displacing the maximum of the cross-section towards smaller $q_{\perp}^{2}$ and blurring it. In the real case, the situation is even more complicated by the presence of nonpomeron contributions, which cause additional distortion to both the angular and energy dependences.

In order to note the reduction in the single-pomeron contribution at $q_{\perp}^{2} \rightarrow 0$, measurements of the inclusive cross-sections are $\frac{\text { required in the range }}{*} q_{\perp}^{9}<0.05 \mathrm{GeV}^{2}$ with a resolution of
${ }^{*}$ Of course, at particularly small $I+x$, which are attainable at very high energies, the maximum for $q_{\perp}^{\ell}$ will nevertheless appear. For example, the curves $I(d=I)$ at $I+x(I)=I .8 \times 10^{-3}$ and $I+x(I)$ $=0.7 \times 10^{-4}$ coincide with the curve $I I(d=I / 2)$ at $I+x(I I)=0 . I$ and $\left.I+x^{(I I}\right)=0.01$ respectively.
$\Delta q_{\perp}^{2}<0.01 \mathrm{GeV}^{2}$ and an accuracy not worse than $1-2 \%$. Consequently it is particularly important to investigate the dependence

$$
(1+x) \frac{d^{2} \sigma}{d x c d q_{1}^{2}}
$$

on $x$ and on the energy in as wide as possible a range and with the best possible resolution. For a more reliable separation of the nonpomeron contributions which decrease $\sim 1 \sqrt{5}($ or $\sqrt{1+x})$, it is necessary to make measurements not only at the ends of the interval, but also in as large as possible a number of points inside it for a more accurate determination of the pattern of the energy dependence.


#### Abstract

Finally, let us discuss yet one possible feature of inclusive cross-sections, which is required in an experimental check. If the cross-sections ${ }^{i{ }^{i}}$ determined by the three-pomeron contribution, then it satisfies the condition of factorization for the incident particle $A$, i.e. the equality for the inclusive cross-sections of two partioles $A$ and $B$ on a proton is fulfilled


$$
\begin{equation*}
\sigma_{t}^{\alpha} \cdot E \frac{d^{3} \sigma^{4}}{d^{3} P}=\frac{i}{\sigma_{t}} \cdot E \frac{\sigma^{3} S^{B}}{d^{3} P} \tag{3.13}
\end{equation*}
$$

where $\boldsymbol{\sigma}_{t}^{A}$ and $\boldsymbol{\sigma}_{\boldsymbol{t}}^{\boldsymbol{B}}$ are the total scattering cross-sections of $A$ and $B$ on any (but identical) target. When calculating the contributions culs of and non-pomeron terms, the cross-sections, generally speaking, should not be factorized. However, experimentally factorization is efected in a number of cases with satisfactory accuracy even when there are no grounds for describing the cross-sections by the contribution of one Reggeon. The nature of this phenomenon is not clear and requires detailed study. A check of factorization is particularly important in the region of small $q_{\perp}^{2}$, since in this

```
case in the theory with the asymptotically constant total cross-
section the contribution of the true Pomeranchuk pole to the
spectra tends to zero (~q\mp@subsup{q}{\mathcal{L}}{\prime}}\mathrm{) and at large }S\mathrm{ , when the secondary
poles die away, investigations are in fact made only of the contri-
 cuts
bution of the pomeron (
```

In order to check factorization we need the inclusive crosssections of the interaction of the various incident particles with a proton of the target in conditions of $\mathrm{S} \gg \mathrm{m}^{2} \gg \mathrm{~S}_{0} \approx I \mathrm{CeV}^{2}$. cut If the pomeron is factorized, the value of the inclusive cross-sections of the various particles enables a more reliable separation of the three-pomeron contribution (although this is in fact the effective one).

If it proves possible to make measurements down $|t| \sim 10^{-4}$ $\mathrm{GeV}^{2}$, then, generally speaking, it is possible to note electromagnetic corrections owing to excitation of an incident particle by the Coulomb field of the proton in the target. A corresponding contrioution to the inclusive cross-section is determined by the diagram of Fig. 3.16, which is similar to diagram 3.3 b , but with replacement or the Reggeons by photons. At $S \rightarrow \infty$ and $x \rightarrow-1$ this contribution is equal to
where $\sigma_{t}^{\gamma A} \quad$ is the total cross-section of photo-absorption of the incident particle $A$. Let us remember that $|t| \geqslant|t|_{\min }=m^{2}\left(M^{2} / S\right)^{2}$. The corrections owing to interference of the Coulomb amplitude with
the powerful hadronic amplitude in the region indicated are not substantial. If particle $A$ is a proton then at $M^{2} \gg m^{2}$

$$
\theta \frac{1}{2,} \approx 1 \cdot 10^{-4} \frac{t^{2}}{1+1} \frac{5}{1+1} \mathrm{mb} /(\mathrm{GeV})^{4} \quad \text { (3.14a) }
$$

The behaviour of the Coulomb term at $x \rightarrow-1$, obviously almost coincides with the behaviour of the three-pomeron term (see (3.9) ). As must be the case, as the photon spin is equal to 1 , so is the pomeron spin too equal to $l\left(a t q_{\perp}^{2}=t=0\right)$.

If the incident particle is a proton, the cross-section of photo-absorption is, of course known by means of direct measurement. But a target made up by $\pi$-or $\boldsymbol{K}$-mesons is clearly not accessible in the immediate future. In these conditions, a study of the inclusive cross-sections at very small $|t|$ might be an irreplaceable source of information concerning hadron photo-absorption. If the three-pomeron term does in fact die away at $q_{\perp}^{2} \rightarrow 0$, the Coulomb term may possibly be noticeable already at $|t|$ in the interval $10^{-4}-10^{-3} \mathrm{GeV}^{2}$.

## IV. Diffraction excitation of resonances

As was discussed in the previous section, the condition of asymptotic constancy of the total cross-sections requires that the pomeron, at $Q_{\mathbb{L}}^{\mathscr{2}}=0$, cannot transform the particle into a state with a great mass $M$, i.e. for single-pomeron exchange the upper block in Fig. 3.2 should tend to zero at $\vec{q}_{1}=0$. It may however be shown that an even stronger assertion is correct, namely: at $\vec{q}_{1}=0$ the pomeron should not transfom the particle into any other state, even with a limited mass $/ 27,64 /$.

As a result, at $\vec{q}_{1}=0$, the pomeron may provide a contribution only to elastic scattering of the particles.

In quantum mechanics there is a similar phenomenon /27/. If the coupled quantum-mechanics system (for example a deuteron) is scattered at a zero angle by a potential of a very large radius, then there cannot in this case be any rearrangement of the internal wave function of the deuteron, since only elastic scattering is possible, but not its decay or excitation.

In the relativistic theory, a similar interpretation can be given to the disappearance of the single-pomeron contribution at $\vec{q} \perp=0$, if the fast hadrons are considered as coupled states of a system of partons with definite internal wave functions /4/.

[^6]should decrease with energy, and at a high energy the angular distribution should have a maximum and disappar at zero angle.

As described in the previous chapter, single-Reggeon contributions to excitation of the states with a large mass $M$ are determined by the value $\mathrm{S} / \mathrm{M}^{2}$. This means that the Reggeon condition smaller $S$
is established for small masses at for the large masses. It is expected that the decrease in the contributions from cuts will, onding for small masses at a lower energy. Consequently, at the diminution in crossmection zero angle for small excited masses probably occurs earlier than for large ones.

The spectra of diffraction dissociation in the region of small masses $M$, measured at energies of up to 40 GeV , strongly depend on the mass and have sharply expressed peaks, which correspond to the states with definite values of $\mathcal{J} P$. It is natural first of all to study the excitation of these states, which occurs with great intensity. We shall, in fact, discuss this later in this section. states We shall talk of these staies as resonances, although in reality it will be unimportant for us whether these are true resonances or, in fact, kinematic reinforcements which have specific quantum numbers.

Let us examine briefly what sort of states these are.

In the spectrum of diffraction dissociation of the proton, the most intense is the overlapping state of $N$ (1470) with $\mathcal{J} P^{P}=1 / 2^{+}$, $N$ (1520) with $y^{P}=3 / 2^{-}$and a peak at $\mathbb{M} \approx 1700 \mathrm{MeV}$, which is formed
by several resonances which lie close to each other. The states with even greater masses are not so sharply distinguishable.

In the dissociation spectra of the $\pi$-meson, the peaks $A_{1}$ $\left(M \approx 1100 \mathrm{HeV}, y^{P}=1^{+}\right)$and $A_{2}\left(M \approx 1300 \mathrm{HeV}, y^{P}=2^{+}\right)$which overlap are clearly visible. Somewhat less visible is the peak $A_{3}$ ( $M \approx$ $1600 \mathrm{HeV}, \mathrm{y}^{\ell}=2^{-}$). Similar states are visible during dissociation of the $K$-meson. This is a peak in the $Q$-region ( $M \approx 1300 \mathrm{MeV}, \mathrm{y}^{P}=1^{+}$), a resonance $K$ (1420) with $\boldsymbol{y} \boldsymbol{P}=\boldsymbol{2}^{+}$and an $\angle$-region (1700-I800 MeV ) with preferential values of $\boldsymbol{y}^{\boldsymbol{P}}=\mathcal{L}^{-}$.

For the majority of the resonances, the tendency to zero of the single-pomeron contribution at $\mathbb{Z} \boldsymbol{\ell}=0$ is the result of the assumption concerning the asymptotic constancy of total cross-sections. However for some boson resonances, this effect may be the consequence of simpler causes. Thus, in the case of the dissociation $\pi \rightarrow A_{2}$ or $K \rightarrow K(1420)$ the pomeron cannot give a contribution at $\vec{q}_{\perp}=0$, owing to conservation of parity. In effect, the pomeron has a positive parity and as a result of the factorization of the single-pomeron contribution, the vertex $\pi A_{2} P$, after it been multiplied polarization $A_{2}$, must be pseudo-scalar. But at a zero angle, when all the momenta have identical directions, there are not enough vectors for constructing a pseudo-scalar. For Fermion resonances, this prohibition does not arise, since in constructing the vertex it is possible to use the pseudo-scalar $G_{\|}$. (Let us remember that as already discussed in the Introduction, the longitudinal and transverse components of the momenta, polarization vectors etc. are included in the Reggeon vertices and amplitudes separately).

Thus, at $\vec{q}_{\perp}=0$ the contribution to the diffraction excitation of resonances may provide only multi-pomeron exchanges, ie. inf (see Fig. 3.12). The slowest to decrease with energy is the cut contribution of two-pomeron breathing and consequently it may be expected that it is precisely this contribution which is the main one. As has already been said in the Introduction, two-pomeron contribution to the elastic amplitudes decreases in accordance with $\sim \frac{1}{\ln S}$. In the case of diffraction dissociation, the disappearance of the inelastic pomeron vertices at a zero transverse momentum of the pomeron leads to a more rapid decrease in the contribution of two-pomeron exchange, $\sim \frac{y}{\left(\mathrm{H}_{3}\right)^{2}}$. This fact has already been used in (3.11 b).

Since the excited resonances have a specific value of spin and parity, the question arise: as to the spin structure of the amplitude. In all cases which are of practical interest, the two-pomeron contribution at a zero angle has (taking into account the identicality of the pomerons) the same spin structure, which is attainable kinematically for the single-pomeron contribution. More concretely, this means that at $\vec{q}_{1}=0$ the helicity is conserved in each vertex of the diagram in Figure 3.12 in particular, whereas the spin correlations between the vertices are non-existent. For example, in the reaction $\pi p \rightarrow A_{1} p$, at $\vec{q}_{1}=0$ the two-pomeron contribution to the amplitude is proportional to $e_{\|}\left(\vec{e}\right.$ is the polarization vector of the resonance $A_{1}$ in its rest system), i.e. at a zero angle the two-pomeron exchange may excite $A_{1}$ only in the state with zero helicity, as in the case of the incident $\pi$-meson. The helicity of the proton in this case, is, of course, conserved. A variation in the helicity of the resonance in comparison with the helicity of the initial particle may occur at $\vec{q}_{1}=0$ only with a simultaneous variation in the helicity of the proton, ie. these
terms in the amplitude describe, in substance, the usual spin correlations. For example for $\pi p \rightarrow \mathcal{A}_{1} p$ they are proportional to
$[\vec{e} \times \vec{\delta}]_{11}$. The spin correlations occur only during the exchange of three or more pomerons (Fig. 4.1), as also in the case of elastic pp -scattering (see section II). Even the configuration of the three pomerons, which leads to spin correlation, is the same as in pp -scattering. Correspondingly the correlation amplitude at $S \rightarrow \infty$ also decreases $\sim(h s)^{-5}$, as in pp -scattering (in this case the properties of the inelastic pomeron vertices do not accelerate the decrease in amplitude with energy).

We see that the spin correlations fall more rapidly than the terms which conserve helicity. In practice this means that if the spin resonance is greater than the spin of the initial particle, then at a large energy and at a zero angle the resonance must be excited in the aligned state with the same helicity as in the initial particle. This anticipated result does not contradict the experimental data for the reactions $\quad \pi \rho \rightarrow A_{1} p / 65 /$ and $p p \rightarrow N(1700) p^{/ 66 /}$ at former accelerator energies.
cuts
In this way, the contribution of pomeron to the diffraction excitation of resonances at a finite energy, as in the inclusive cross-section, may imitate the single-pomeron contribution at
$\vec{q}_{1}=0$, even if the true single-pomeron contribution in this case tends to zero. Consequently a check of the expected properties of the true single-pomeron contribution should bc mode for resonances precisely in the same way as in the inclusive case (see discussion
in connection with expressions(3.11b) and (3.12)). When the energy is increased in the angular distribution a dip must occur at $q_{1}^{2}=0$, which will become deeper as the energy increases.

Generally speaking, the dip in the cross-section at $q_{1}^{2}=0$ could occur also on account of the large value of the amplitudeswith spin rotation, which die away at $\vec{q}_{\perp} \rightarrow 0$ in a purely kinematic manner. For example, in the reaction $\pi \rho \rightarrow A_{1} p$, spin flip of $A_{1}$ is possible (production of $A_{1}$ with a non-zero helicity) as well as that of a proton. However, the effect of the spin rotation of $A_{l}$ does not give a contribution to the element of the spin density matrix $\rho_{\infty}$ (in the system of the $S$-channel helicity). Consequently, in $\rho_{\infty}$ the masking effects may be linked only with the proton spin rotation and they may apparently be evaluated from the data for elastic
$\pi p-s c a t t e r i n g$ at the same energies and momentum transfers. The corresponding data $/ 68 /$ for $\pi p-s c a t t e r i n g$ at energies of up to 25 GeV indicate that the witribution of amplitude with proton spin rotation is not great for pomeron exchanges. In contradistinction to this, in the charge exchange reaction $\pi^{-} \boldsymbol{p} \rightarrow \pi^{0} n$ (exchange of a $\boldsymbol{\rho}$-Reggeon) the spin rotation gives a large contribution and gives
rise to a minimumferossmesection small $\frac{\text { st }}{\text { at }} / 69 /$. Let us point out that we may eliminate completely the effects due to the spin rotation of the target, by studying the production of resonances on a ${ }^{4}$ He nucleus.

In addition, the reactions of resonance production on helium have also other advantages:
I) $\quad \frac{a \sqrt{a}}{d t}\left(\pi+H e-A_{2}+H \epsilon\right) \sim t \quad($ for $\sqrt{t})$

$$
\frac{d \sigma}{d t}\left(\pi+H e-A_{2}+H e\right) \sim t \quad(\text { for } \sqrt{t})
$$

the cut even taking into account (on account of the zero spin of ${ }^{4} \mathrm{He}$ ), which may increase the accuracy of isolating the $A_{1}$ resonance in the $3 \mathbb{J}_{\text {-system }}$;
2) owing to the fact that the isotopic spin ${ }^{4} \mathrm{He}$ is equal to zero, in the reactions of the production of $G$-odd resonances by pions on ${ }^{4} \mathrm{He}$ there are no contributions of $\rho, \omega, A_{2}, A_{1}, B$ trajectories, which simplifies isolating the contribution of the pomeron.

Let us examine more closely what dependence on $q_{\perp}^{2}$ and $s$ should be expected for the value

$$
\rho_{00} \frac{d \sigma}{d t}\left(\pi+4 / t e-A_{1}+\text { the }\right)
$$

where there are no masking effects linked with spin rotation. For the sake of illustration, let us take a model which allows for the diffraction cut excitation of $A_{I}$ by one pomeron (Fig. 3.2) and by two-pomeron (Fig. 3.12). In this case the production amplitude of $A_{1}$ (with a zero $S$-channel helicity) by a single pomeron decreases in accordance with $q_{1}^{2}$ at $q_{1} \rightarrow 0^{*}$. But, accordingly, the cross-section of the single-pomeron exchange

$$
\begin{equation*}
\rho_{00} \frac{d \sigma^{(1)}}{d q_{1}^{2}}=\text { const} \cdot \varepsilon_{1}^{4} e^{\left.-\left(k^{t}+2 \alpha_{p}^{\prime} t_{n} s\right)_{m_{1}}^{2}\right) q_{1}^{2}} . \tag{4.I}
\end{equation*}
$$

The amplitude, however, which corresponds to two-pomeron will not disappear at $q_{1}=0$, but on the other hand decreases with energy proportional to

$$
\left(1+\frac{2 \alpha}{R_{1}^{2}} \frac{1}{C_{m_{1}}} \frac{m_{4}^{2}}{m_{1}}\right)^{2}
$$

[^7]As a result wel obtain

We should notice an interesting feature of expression (4.2) compared with (3.12). Owing to the fact that the contribution of the pole decreases here in accordance with $q_{1}^{4}$ (see 4.1), the interference term (the product of the two terms in square brackets of (4.2)) is more substantial than it was in $(3.12)^{*}$. Consequently there is now cut a region where the contributions of the pole and will compensate each other (the expression in square brackets in (4.2) tends to ze+u) and the value foo will have a dip.

This dip will occur at $q_{1}^{2}$ of the order of several tens of $\mathrm{GeV}^{2}$ and only at a sufficie.. ily high energy when in a certain region of $q_{1}^{2}$, the cut contribution becomes less than the pole contribution which is shown schematically in Fig. 4.2.

At small $q_{1}^{2}$ the predominates, and then as $q_{1}^{2}$ grows the contribution of the pole becomes substantial. At $q_{1}^{2}=q_{11}^{2}$ these contributions become equal and a dip is observed. Between $q_{11}^{2}$ and $q_{31}^{2}$ a single pomeron exchange dominates, leading to a maximum at

$$
q_{21}^{2}=\frac{2}{p^{2}+2 \alpha_{p}^{2} \operatorname{en} \operatorname{sim}_{4}^{2}}
$$

[^8](see (4.1)). And finally at $q_{1}^{2}=q^{2} \frac{1}{31}$ there is again a dip, over which there is again a predominance of the cut contribution, which decreases more slowly as $q_{1}^{2}$ increases $\left(\frac{q_{1}}{2}{ }^{2}\right.$ in the exponent of the second term in expression (4.2)).

As the energy increases the position of the first $\operatorname{dip}\left(q_{1}^{2}\right)$ and of the maximum $\left(q_{21}^{2}\right)$ will move to the left $\left(q_{11}, q_{21} \rightarrow 0\right)$, and the position of the second $\operatorname{dip}\left(q_{31}^{2}\right)$ - to the right (Fig. 4.2 b ).

All of this is clearly visible from diagram 4.3, which contains the results of calculations in accordance with formula (4.2). Just as in the previous example (3.12), the relationships between the radii were selected on the basis of an eikonal approximation:
$R^{2}=6 \sqrt{3} 6^{-2}, R_{r}^{2}=R_{3}^{2}-7 / 36^{-2}, \alpha_{p}^{\prime}=0,3 \sqrt{0} 6^{-2}$ whereas the relative size of the ing contribution $\alpha$ was assumed to be equal to $1,1 / 2,1 / 4$.

## cut

In the case where the contribution is great (Fig. 4.3 a , $\alpha=1$ ), the characteristic dependence of $\rho_{00} \frac{d \sigma}{d q_{2}^{2}}$ on $q_{1}^{2}$, which is coupled with the vanishing of the pole contribution at $q_{1}^{2} \rightarrow 0^{1}$, does virtually not appear. The interference of the cut with the pole leads only to an increase in the slope of the curve as the energy increases. But this increase in the slope can easily be taken as the shrinkage
usual of the diffraction cone.

At a smaller cut minimum occurs, already starting at $S=100 \mathrm{GeV}^{2}$, whereas the shrinkage of the cone as a result of interference corresponds to an increase in $R^{2}$
by $5 \mathrm{GeV}^{-2}$ with a change in energy from $\mathrm{S}=100 \mathrm{GeV}^{2}$ to $\mathrm{S}=800 \mathrm{GeV}^{2}$. However it should be stressed that in the model of (4.12) only the imaginary part of the production amplitude $A_{I}$ is taken into account. The real part of this amplitude does not vanish and at $S \simeq 100 \mathrm{GeV}^{2}$ it may fill in the dip, either reducing it considerably or even removing it totally. But as the real part decreases more rapidly as the energy increases, at $S=800 \mathrm{GeV}^{2}$ the dip will still be present (the dotted line shown in Fig. 4.2 b and c ). The development of the minimum with an increase in energy may occur roughly as in elastic pp-scattering at $-t \approx 1.3 \mathrm{GeV}^{2} / 15 /$.

The model examined is, of course, of a particularly qualitative nature and demonstrates only the approximate scale of the effects expected. It also shows the degree of theoretical indeterminacy of our predictions. However one prediction remains valid irrespective of the value of the contribution, namely: the decrease in the differential cross-section

$$
\frac{d \sigma}{d q_{1}^{2} / q_{1}^{2}=0}
$$

as the energy increases in the theory with the asymptotically constant total cross-section.

The behaviour described for the angular distribution is expected for the $\pi p \rightarrow A_{1} p, \pi_{p} \rightarrow A_{3} p$ reactions, but also for the corresponding $K$-meson reactions and for reactions of the $p p \rightarrow N p$ type. These are the reactions in which the single-pomeron contribution at $\quad \vec{q}_{\mathbf{1}}=0$ is not prohibited on kinematic grounds.
group
Recently a Soviet/American/in Batavia obtained preliminary results on the measurement of the diffraction excitation of nucleon resonances
in the energy range $175-400 \mathrm{GeV}$ and at $0.01</ \mathrm{t} /<0.05(\mathrm{GeV} / \mathrm{c})^{2}$ /70/. It appeared that, within the limits of fairly large errors, the cross-sections of the diffraction excitation of resonances do not depend on energy and their values are close to the corresponding values obtained at energies of below $30 \mathrm{GeV} / 71 /$. The dependence on $t$ for excitation cross-sections $N$ (1470) in the range of energies and momentum transfers studied did not, within the limits of error, change in comparison with the data at lower energies /71/. Let us note, however, that the accuracy of these measurements is still not high enough.

As has been mentioned above, the situation is different in the
 the production of $A_{2}$ with zero helicity may be caused only by $t$ -channel exchange with a non-natural parity (the states with $P=(-1)^{\text {y }}$ have a natural parity, and those with $P=(-1)^{y+1}$ have a natural parity). But this contribution to the amplitude is provided only by the non-pomeron terms (ithe $\eta$-Reggeon) and decreases as a power of the energy. But the pomeron terms at $\vec{q}_{1}=0$ can excite $A_{2}$ only with a single helicity and with simultaneous rotation of the proton helicity, i.e. owing to spin correlations. Consequently, for diffraction excitation of $\mathrm{A}_{2}$ at a zero angle an exchange is required of not less than three pomerons (Fig. 4.l), and the cross-section of this process decreases with energy in accordance with $\sim\left(\ln _{n} s\right)^{-10}$.

Of course we are not able to compare at a finite energy the culs contributions of the different A rapid reduction in any contribution at a high energy by itself does not mean that it is small at finite energies. However, the experiment shows that already at energies of $\sim 10 \mathrm{GeV}$ resonances with a high spin are excited at
small angles in the aligned state $/ 65,66 /$, i.e. already at such energies the spin-correlation terms are small. Consequently we may naturally expect that at these energies the cross-section of the $\pi p \rightarrow A_{2} p$ process already falls at $\quad \vec{q}_{2} \rightarrow 0$, although in the excitation of other resonances this drop is still not visible. It is, for example, a fact that at an energy of $E=40 \mathrm{GeV}$ the angular distribution of the $\pi \rho \rightarrow \Lambda_{2} \rho$ reaction has a sharp maximum at $|t| \sim 0.1 \mathrm{GeV}^{2}$ and falls at $|t| \rightarrow 0$, whereas in the $\pi p \rightarrow \mathcal{A}_{1} p$ and $\pi p \rightarrow A_{3} p$ reactions the cross-sections increase rapidly and steadily as $|t|$ falls to $|t| \sim 0.04 \mathrm{GeV}^{2}$ (see Fig. 4.4) /67/. (We should note that here $|t|$ coincides in practice with $q_{1}^{2}$ ). Unfortunately, unlike other resonances, the appearance of a minimum in the angular distribution of $t$ diffraction excitation $\pi \rightarrow A_{2}$ at $q_{\downarrow}^{2} \rightarrow 0$ only indicates the small value of the spin-correlation terms and does not give any non-trivial intormation concerning the single-pomeron contribution. Another reason for studying the inelastic diffraction processes is the following. Generally speaking it is possible to construct theories in which the total cross-section is asymptotically non-constant, but only slowly falls or increases with $S$. If in the asymptotic form the total cross-section varies fairly slowly, it is difficult in experiments to distinguish it from total/ the asymptotically constantlcross-section * Experimentally, the case of the asymptotically constant total cross-section is isolated as a

* The increase in the total cross-sections of $\mathrm{pp}-$ and $\mathrm{K}^{+} \mathrm{p}$-interactions observed in the experiments in all variants of the theory (irrespective of the assumed asymptotic behaviour of $\boldsymbol{\sigma}$ tot ) is linked with a decrease in the contribution of vacuum The true asymptotic increase $/ 72 /$ (or drop /73/) of the total crossmsection
(* contd.)
may appear only in the region $R^{2}$ ens, $\because 1$. The parameter $R$ is expressed by $\alpha \rho$ and the three-pomeron vertex (which is non-vanishing, if the total cross-section is asymptotically nonconstant). From modern experimental data the condition arises of $\ln S / S_{0}>100$. It is precisely in this region that the so-called enforced cut enforced becomes substantial (see for example Fig. 4.5).
result of the vanishing of the single-pomeron contribution to the inelastic processes at $q^{\boldsymbol{1}}=0$ (see Introduction). As a result, the processes of diffraction production of resonances (particle groups) at a zero angle occur as a result of the exchange of at least two pomerons. The cross-section of these processes in the energy range
$\frac{\alpha_{0}^{\prime} e_{n}^{3}}{R_{0}^{2}} 1 \quad$ should fall in accordance with $\sim \frac{\left(1+\alpha, \alpha_{e}^{2}, R_{0}^{2}\right)^{4}}{( }$ In all other cases, in this range, the single-pomeron contributions do not vanish at $\mathcal{Q}^{\mathcal{1}}=0$ and the diffraction dissociation at a zero angle is not qualitatively different from elastic diffraction scattering. In particular, if the reduction in the negative contribution from the cross-section, it s. Juld lead both to an increase in the cross-section of the forward diffraction dissociation in roughly the same energy region and roughly to the same increase as a square of the total crosssection (since $\left.\quad \frac{d \sigma}{d t} /_{t=0} \approx(\operatorname{Im} A)^{2} \sim \sigma_{\text {zot }}^{2}\right)$.

In this way, we may expect that if the total cross-section is asymptotically constant, the cross-section of the $\pi+P \rightarrow A_{1}+P$ forward process will decrease in the energy range $S>400 \mathrm{GeV}^{2}$. As a result of the higher power of the logarithm $\left(\sim \frac{1}{(\ln s)} 4\right)$ this effect in the inelastic processes may possibly occur even at lower energies. In the cases involving an asymptotically non-constant total cross-section in this same energy range an increase of the following type may be expected ${ }^{*}$ )

$$
\frac{d \sigma}{d q_{1}^{2}} / q_{1}=0\left(a-\frac{b}{1+\frac{\alpha_{0}^{\prime}}{} \ln s / m^{2}} \frac{R_{0}^{2}}{}\right)^{2}
$$


#### Abstract

Measurements of the slopes of the cross-sections of the inelastic diffraction processes at $q^{\text {sud }}$ and of the energy dependence of these slopes is of particular interest. Thus, the measurement in the range of small $q^{12}$ of the slope of the $\pi p \rightarrow A_{1 p}$ cross-section assists thexplanadion of the nature of the $A_{1}$ resonance (in particular, the question as to whether it is in fact a resonance or a kinematic reinforcement). In addition, information concerning the values of the slopes of the crosssections of inelastic diffraction processes is necessary for carrying out calculations of the contributions offthese processes to the total cross -sections of the $P P^{-}, \Pi^{ \pm} P^{-} K^{ \pm} P$-interaction and verification of compliance with the various sum rules for cross-sections.


[^9]The study of the diffraction excitation of resonances at high energies and small $|t|$ is a fairly complicated problem. It imposes severe requirements on the resolution of the equipment. For example in order to see the shape of the peak in the mass spectrum, it is necessary to have a forward mass resolution of $\Delta \mathrm{m}^{2}<0.1 \mathrm{GeV}^{2}$. At $S \sim 1000 \mathrm{GeV}^{2}$, this means that for the recoil proton $\left.\Delta / \sim=T\right) \leq 10^{-4}$ (see (3.2) and (3.4)). In order to obtain such a high angle resolution it is necessary to fix with a high degree of accuracy the emission angle of the recoil proton in relation to the incident beam: $\Delta \varphi \sim 2 \mathrm{mrad}$ at $\boldsymbol{P} \approx 90^{\circ}$ and $T \sim 1 \mathrm{MeV}$. In addition, in order to separate the overlapping resonances and remove the possible influence of the background on the angular distribution at $q_{L}^{2} \rightarrow 0$, it is necessary to isolate the state with specific quantum numbers. This can be done by means of phase analysis of the final fast particles A phase analysis is necessary also in order to determine the helical state of the resonance. In this way it is necessary to detect not only the slow recoil proton but also some fast particles. The situation is to some extent simplified by the fact that for all of the resonances of interest to of docay us there are modes/into three charged particles, so that there is no need to restore the kinematics of the neutral particles.

Above we have discussed the diffraction production of Reggeons cuts
(by the exchange of a pomeron and pomeron is also interesting to examine the production of resonances caused by other exchanges, and examine more closely those basic qualitative consequences resulting from the theory of complex momenta, which are obtained for this type of process. This question was examined in
detail in the communications by Kajdalov/74/. Let us enumerate some of the consequences formulated therein of the theory of complex momenta and the relations of 1.1 , which should be experimentally checked at small $t$.

$$
\begin{aligned}
& \text { I) In the } \quad \begin{array}{l}
\pi / R / V-\{f(A, Y, N, N \\
f\left(A_{2}, f, N \sim N\right.
\end{array} \quad \text { reactions } \\
& \rho_{00} \frac{d \sigma}{d t} \sim t \quad \text { at } t \rightarrow 0(t \ll \mu 2) \text {, }
\end{aligned}
$$

where $P_{\infty}$ is an element of the spin density matrix of the vector (tensor $\left(2^{+}\right)$) particle.
2) In the reactions involving the production of two pseudo-scalar mesons the $\quad \pi(K) N \rightarrow \pi \pi(K \pi, \eta \pi, K \bar{K}) N \quad$ differential cross-section should be vanishing when $t=\left(P_{N}-P_{N^{\prime}}\right)^{2} 0$ and the angle in the centre of mass system of two mesons between the momentum of one of them and the direction of the momentum of the initial meson tends to zero (or $\pi$ )


Let us point out that the corrections to these predictions (without daking into account electromagnetic effects) decrease exponentially in accordance with $\sim 1 / 5 \gamma(\gamma \dot{\sim} 1)$ as the energy increases.

As was discussed in the previous section in connection with inclusive crossmections, if it were possible to carry out measurements of resonance production up to $|t| \sim 10^{-4} \mathrm{GeV}^{2}$, then it would be possible to isolate the contribution of the Coulomb excitation of resonances (Fig. 4.6) and determine from it the photo-absorption cross-section by $\pi$ - and $K$-mesons in the resonance region.

## V. Doublv inclusive spectra and double-Reggeon processes

In this section we shall study the doubly inclusive reac- tions

$$
\begin{equation*}
A+P \rightarrow A+P+\cdots \cdot \tag{5.1}
\end{equation*}
$$

in which a small recoil proton and a weakly deflected initial particle are observed, and in addition other particles are formed. We shall be interested in the case where this process is described by the doubleReggeon contribution (Fig. 5.1).

But before discussing it in greater detail we shall again have to concern ourselves with kinematic relationships.

Let us assume that two particles with momenta of $P_{1}, P_{2}$, and masses $m_{1}, m_{2}$ collide and are transformed into three particles (or three groups of particles) with momenta of $P_{3}, P_{4}, P_{5}$ and masses of $m_{3}, m_{4}, m_{5}$ (Fig. 5.2). We shall examine the kinematics of this reaction in the laboratory $\operatorname{system}\left(\overrightarrow{p_{1}}=0\right)$, assuming that $q_{1}^{2}$ and $q_{2}^{2}$ are limited.

In accordance with the equalities (3.1) we obtain

$$
\begin{align*}
& S=\left(p_{1}+p_{2}\right)^{2} m_{1}^{2}+m_{2}^{2}+a_{2} E_{2} \\
& m_{3}^{2}=\left(p_{2}+q_{1}\right)^{2}=r_{1}^{2}+q_{1}^{2}+2 n+4 n  \tag{5.2}\\
& m_{4}^{2}=\left(p_{2}-q_{2}\right)^{2}=r_{2}^{2}+q_{2}-2 E_{2} q_{0}+2\left(p_{2}\right) \cdot q_{1},
\end{align*}
$$

In addition, we insert the values of $S_{3}$ and $S_{4}$, which can be considered as the square of the invariant mass of the system of final particles, which remains after exclusion of particle 3 or 4, respectively. Then

$$
\begin{align*}
& S_{4}=\left(p_{3}+p_{5}\right)^{2}=\left(Q_{2}+p_{1}\right)^{2}=q_{2}^{2}+m_{1}^{2}+2 m_{1} q_{20}  \tag{5.3}\\
& S_{3}=\left(p_{4}+\rho_{5}\right)^{2}=\left(-q_{1}+p_{2}\right)^{2}-q_{1}^{2}-2 E_{2} q_{10}+2 \beta_{2} \theta_{11}+m_{2}^{2}
\end{align*}
$$

We shall now find the components of the momentum transfers. In this we shall consider that the initial energy is very great and all the masses are limited so that $\frac{m_{i}^{2}}{5} \ll 1, \frac{q_{i}^{2}}{5} \ll 1$. The values of $S_{3}$ and $S_{4}$ will be regarded as great and the relations of $\delta_{3}=\frac{S_{3}}{S}$ and $\delta_{4}=\frac{S_{4}}{S}$ shall be accurately calculated. Then from (5.2) and (5.3) we shall obtain expressions for the time and longitudinal components $q_{1}$ and $q_{2}$ :

$$
\begin{gather*}
q_{11}-q_{10}=\delta_{5} \cdot m_{1}, \\
q_{20}=\frac{s_{1}-m_{1}^{2}-t_{2}}{2 m_{1}}, \frac{\varepsilon_{20}}{E_{2}}=\delta_{4},  \tag{5.4}\\
q_{20}-q_{211}=\frac{m_{1}}{q_{2}}\left(m_{2}^{2}-m_{2}^{2}+t_{2}-m_{2}^{2} \delta_{4}\right),
\end{gather*}
$$

whereas the transverse components are determined from the equalities

$$
\begin{align*}
& t=q_{1}^{2}=\frac{\vec{q}_{11}^{2}+\delta_{3}\left(m_{3}^{2}-m_{1}^{2}+m_{1}^{2} \delta_{3}\right)}{1-\delta_{3}},  \tag{5.5}\\
& t_{2}=q_{2}^{2}=-\frac{\vec{q}_{21}^{2}+\delta_{4}\left(m_{4}^{2}-m_{2}^{2}+m_{2}^{2} \delta_{4}\right)}{1-\delta_{4}}
\end{align*}
$$

The momentum transfers must satisfy the condition

$$
\begin{equation*}
m_{5}^{2}=\left(q_{2}-q_{1}\right)^{2} \tag{5.6}
\end{equation*}
$$

from which we obtain

$$
\begin{align*}
& m_{5}^{2}+\vec{p}_{51}^{2}=\delta_{3} \delta_{4} s+\delta_{3}\left(t_{1}-t_{2}-m_{3}^{2}\right)+  \tag{5.7}\\
& +\delta_{4}\left(t_{2}-t_{1}-m_{4}^{2}\right)-\delta_{4}^{2} m_{2}^{2}-\delta_{3}^{2} m_{1}^{2}
\end{align*}
$$

At a high energy, the main term in the right-hand part of the equality (5.7) is the first one. Since $\vec{p}_{5 \perp}^{2}=\left(\vec{q}_{2 \perp}-\vec{q}_{1 \perp}\right)^{2}$, as the energy increases $\vec{p}_{5 \downarrow}^{2}$ remains restricted if $q_{1}^{2}$ and $q_{2}^{2}$ are fixed. Consequently $\delta_{3} \delta_{4} \sim \frac{m_{5}^{2}}{5}$, i.e. as the energy increases at least one of the $\delta_{i}$ should fall if $m_{5}^{2}$ is restricted. If $S_{3}$ and $S_{4}$ are identical in magnitude, then $\delta_{3} \sim \delta_{4} \sim \frac{m_{5}}{\sqrt{s}}$ and the equality (5.7) can be further simplified :

$$
\begin{equation*}
r_{3}^{2}+\vec{\rho}_{5 L}^{2}=\delta_{3} \delta_{4} s=\frac{S_{5} S_{4}}{S} . \tag{5.7a}
\end{equation*}
$$

It is this relation that we shall use in future.
If we insert as in the usual inclusive processes (in the c.m.s.)

$$
\begin{equation*}
x_{3}=\frac{2 p_{3 c / 1}}{\sqrt{5}}, x_{4}=\frac{2, p, 4}{\sqrt{5}}, \tag{5.8}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
1-\left|x_{3}\right|=\delta_{3} ; 1-\left|x_{4}\right|=\sum_{2} . \tag{5.9}
\end{equation*}
$$

(ci. (3.5) at $m_{4}^{\mathbf{2}} \rightarrow S_{3}$ ). The sign of $x_{i}$ is determined on the basis of which of the momenta is considered to have a positive direction. Although the determination (5.8) for $\boldsymbol{x}_{\boldsymbol{i}}$ contains the momenta in the c.m.s., we see from (5.9) and (5.4.) that at a high energy $x_{i}$ can easily be expressed by the momenta in the laboratory system. Here, $\left|x_{3}\right|$ is determined by the energy and emergence angle of the recoil particle 3

$$
1-\left|x_{3}\right|-\delta_{5}=\frac{\left|\overrightarrow{B_{3}}\right| \cdot \cos \varphi-\vec{J}_{3}+m_{1}-m_{1},(5.10)}{m_{r}}
$$

but $\left|\boldsymbol{x}_{4}\right|$ depends only on the fraction of energy lost by the fast incident particle

$$
\begin{equation*}
1-x_{2},=\delta_{4}=\frac{E_{2}-E_{x}}{E_{2}} . \tag{5.11}
\end{equation*}
$$

In these equalities $\left|\overrightarrow{P_{3}}\right|$ and ${ }_{3}$ are the momentum and kinetic energy of particle $3, \varphi$ is its angle of emission in relation to the momentum of initial particle 2 , and $\mathrm{E}_{2}$ and $\mathrm{E}_{4}$ are the total energies of particles 2 and 4.

Let us now return to the doublereggeon process (Fig. 5.1). As far as the theory is concerned, the first to point to the existence of such processes were Ter-Martirosyan and Kibble /75/. They have also recently been discussed in papers/76/.

> The amplitude corresponding to the diagram of Fig. 5.1 contains the Reggeon multipliers

$$
\left(1-(x, 1)^{-\alpha\left(-q_{1+1}^{2}\right)}\left(1-\mid x_{-1}\right)^{-\infty\left(-q_{21}^{2}\right)}\right.
$$

and the "amplitude" of the conversion of two Reggeons into the particles
produced system
of the . In order to obtain the cross-section of the doubly inclusive reaction (5.1), as in the case of the normal inclusive reaction, we shall summate and integrate over the variables linked with the particles of the (fig. 5.3a and b; cf. Fig. 3.3a and b). The inclusive cross-section will be expressed by the "cross-section" $\sigma_{\alpha \beta}$ of the interaction of two Regreons (more precisely the crosssection of the conversion of Reggeons into the usual particles).

$$
\begin{aligned}
& \text { If } \\
& \therefore, \therefore M^{2},
\end{aligned}
$$

then we can use relation (cf. formula (5.7a))

$$
\begin{equation*}
M^{2}=s\left(1-\left|x_{p}\right|\right)\left(1-\left|x_{A}\right|\right) \tag{5.13}
\end{equation*}
$$

At large $M^{2}$ the Reggeon cross-section $\sigma_{\alpha \beta}$ may also be described by the sum of the Reggeon contributions, and the doubly inclusive cross-section is fully defined by the three-Reggeon vertices. It may be expected that at small $M^{2}$ the cross-section $\sigma_{\alpha \beta}$, like the cross-sections of interaction of the usual particles, is basically described by the contributions of the resonances permissible in accordance with the quantum numbers.

Let us examine, for example, the expected behaviour of the interaction cross-section of two pomerons. It is clear that the system of normal particles which is produced should also have vacuum quantum numbers. This is already possible for two $\boldsymbol{\pi}$-mesons in the $S$-state, so that the cross-section is non-vanishing at $M^{2}>4 \mu^{2}$. However, the cross-section will obviously remain small until the resonance region is reached. The resonances (or intensifications) in the two-pomeron system should have a zero value for the baryon number, strangeness and isospin, a positive charge parity (and G -parity) and the natural values of spin and parity. In this way the following states appear permissible: $\varepsilon\left(J=0+M^{2} \approx 0,5\left(\sqrt{3} 6^{2}\right)^{2}\right.$,

$$
\begin{aligned}
& S^{*}\left(J^{\circ}=0, M^{2} \sim^{2}(136)^{2}\right),\left(J^{2}=2^{+}, M^{2}=1,6(136)^{2}\right) \text { and } \\
& f^{\prime}\left(J^{0}=2^{+}, M^{2}=2,3(136)\right. \text {. No suitable resonances with a high mass }
\end{aligned}
$$ have yet been discovered. Thus, the pomeron-pomeron cross-section will obviously be relatively large at $\mathbb{M}$ from $\sim 0.3 \mathrm{GeV}^{2}$ to $2.5 \mathrm{GeV}^{2}$. It is probable that the cross-section will be largest in the region of the $f$-resonance. At $M^{2} \geqslant 2.5 \mathrm{GeV}^{2}$ it begins to diminish, approaching a constant value which is determined by the three-pomeron vertex which is included in the usual inclusive cross-sections.

The possible trend of the pomeron-pomeron cross-section $\sigma_{p p}$ as a function of $M^{2}$ is shown in drawing 5.4. Of course, the relative height of the various peaks, shown in the diagram, is based only on conjectures, and not on any precise knowledge. Apart from the resonances, the cross-section may display an $S$-wave enhancement in the two- $\pi$-meson system at small $M^{2}$ (dotted line in Fig. 5.4). This enhancement called Deck effect, which is clearly observed in the inelastic diffraction processes.


#### Abstract

It is possible to describe in a similar way the expected behaviour of other Reggeon-Reggeon cross-sections. But however likely such descriptions may appear, they are only hypotheses. Consequently any experimental information concerning the interaction of Reggeons would be very interesting.


Let us consider at what energies we should search for doubleReggeon processes. In order to be able to apply the Reggeon description the following conditions are necessary

$$
\begin{equation*}
\left(1-\left|x_{0}\right|\right) \ll 1,\left(1-\left|-x_{A}\right|\right) \ll 1 . \tag{5.14}
\end{equation*}
$$

In addition to enable the usual particles to be produced, the following conditions should be achieved

$$
\begin{equation*}
s\left(1-\mid x_{p}\right) \mid\left(1-/ x_{4} / i=m_{0}^{2} .\right. \tag{5.15}
\end{equation*}
$$

Here $m_{0}^{2}$ is the production threshold of the normal particle system with the appropriate quantum numbers. However, as has already been said, the cross-section probably becomes pronounced only in the resonance region. Consequently, in (5.15) it is necessary to replace $m_{o}^{2}$ by the square of the resonance mass. This value coincides in magnitude with
$S_{0} \approx I G e V^{2}$. In this way, we obtain

$$
\begin{equation*}
\frac{S}{S_{0}} \geqslant \frac{1}{\left(1-\left(x_{p} \mid\right)\left(1-1 x_{A} /\right)\right.}, \frac{i}{1-\left(x_{p i} j\right.}>1, \frac{1}{1-1 x_{A}} \gg 1 . \tag{5.16}
\end{equation*}
$$

These conditions are reminiscent of the conditions of (3.8) required for applicability of the three-Reggeon formula in the single-particle inclusive process. As in that case too, the necessary energy is substantially greater than the energy required for observing the Reggeon process in two-particle reactions. For example, if we take $\left(1-\left|x_{p}\right|\right) \sim\left(1-\left|x_{A}\right|\right) \sim 0.1$ (this corresponds to $E \sim 5 \mathrm{GeV}$ for a two-particle reaction on a proton), then in accordance with (5.16), $\mathrm{S} \geqslant 100 \mathrm{GeV}^{2}$, i.e. $\mathrm{E} \geqslant 50 \mathrm{GeV}$. However, already at $\mathrm{E} \leqslant 25 \mathrm{GeV}$ some attempts have been made to detect the double-Reggeon, and in particular the double-pomeron contribution.

In the reaction $\pi^{-} p \pi^{-}\left(\pi^{+} \pi^{-}\right)_{p}$ at $25 \mathrm{GeV} / 77 /$, it is clear that a double-Reggeon contribution has been discovered, in which a pomeron is linked with a proton, and the $\pi$-meson with a Reggeon with $\alpha(0)=\frac{1}{2}$.

In the $\pi^{+} p \rightarrow \pi^{+}(\pi \pi)_{p}^{0}$ reaction at 8 and $16 \mathrm{GeV} / \mathrm{c} / 78 /$ it has generally not been possible to isolate the double-Reggeon contribution owing to strong overlapping with the contributions of other mechanisms.

In the $p p \rightarrow p(\pi \pi)_{p}^{0} \quad$ reaction at 12 and $24 \mathrm{GeV} / c^{/ 79 /}$ an $S$-wave peak have been discovered in the ( $\pi J$ ) o spectrum at $M_{\pi J}<0.6 \mathrm{GeV}$, which might be caused by double-pomeron contribution. However, having investigated the correlation of $\pi$-mesons with protons, the authors of this paper have come to the conclusion that
the peak is formed by the decay products of nucleon excited states. Only at $24 \mathrm{GeV} / \mathrm{c}$ is there some indication of the possibility of a small double-pomeron contribution. On the basis of the energy behaviour of the experimental data, the authors of paper $/ 7.9 /$ hope that the resonance contributions will cease to screen the doublepomeron contribution at $\mathrm{p}>50 \mathrm{GeV} / \mathrm{c}$.

This particular group studied the $p p \rightarrow$ pxp reactions at the same energies, where $x=\rho^{0}, \omega, \eta, f / 80 /$. The authors consider that their data may satisfactorily be described by the following double-Reggeon contributions: $\omega$ and $\pi$-Reggeons for production of the $\rho^{0}$-meson, $\rho-$ and $\pi$-Reggeons for the
$\omega$-meson, $A_{2}$ and $\boldsymbol{T}$-Reggeons for the $\eta$-meson. The production of the $f$-meson can clearly be better described by a superimposition of the contributions of $P+P^{\prime}$ and $P+P$, although within the limits of accuracy it may be described also by each of these contributions individually. It should, however, be noted that owing to the insufficient energy, the comparison of the experimental data was carried out with model expressions, which took into account in a randon manner the corrections to the Reggeon terms. Consequently the conclusion of the authors of paper $/ 80 /$ cannot be considered as completely verified. Their measurements fould continued intothe region of higher energies. In addition, the resonances were isolated only in accordance with the mass spectrum of the $\pi^{+} \pi^{-}$or $\pi^{+} \pi^{-} \pi^{\circ}$ system, whilst the background was removed by comparing with neighbouring regions. If a phase analysis is made of the meson system, it would help to reduce the background which is particularly high under the $f$-meson peak, and lower the requirements on accuracy when determining the mass. The $p p \rightarrow p p \pi^{+} \pi^{-}$reaction was studied

```
also in Batavia on a hydrogen bubble chamber of the NAL at 205 GeV/c
/81/. In this case it was also not possible to isolate unambiguously
the double-pomeron exchange owing to the large value of the contribu-
tions from the diffraction dissociation of nucleons in the event
observed with four tracks. As an upper evaluation of the double-pomeron
contribution to the total cross-section in the kinematic configuration,
when all of the effective masses of the \pi\rho -systems exceeded 2 GeV,
a value of 44 \pm 15 \mub}\mathrm{ was obtained.
 With an additional limitation on the mass of the \piN
-system, M}\mp@subsup{M}{\piJJ}{< < 0.6 GeV, the upper evaluation was of the order
of }9\textrm{mb}\mathrm{ . The estimates quoted are, apparently, very much over estimated.
Let us now consider a proposed experimental layout at a
large energy with detection of a slow recoil proton and a fast weakly
scattered particle A. We shall, for example, consider that the
transverse momenta }\mp@subsup{\vec{q}}{1\perp}{}\mathrm{ and }\mp@subsup{\vec{q}}{R\perp}{}\mathrm{ of the recoil proton and scattered
particle A are fixed, and also the value
```

$$
\delta_{\rho}=1-\left|x_{\rho}\right| \approx \frac{\rho_{\mu}-T_{p}}{m_{p}} .
$$

Each time we shall select the value $\delta_{A}=1-\left|x_{A}\right| \approx 1-\frac{E^{\prime}}{E} \quad$ (E and $E^{\prime}$ $=$ energy of particle $A$ before and after scattering), in order to keep the mass $M^{2}$ constant (see Fig. 5.1). Then we shall obtain for the cross-section

Here we have written out only the factors which depend on $\delta_{p}$, $S$ and $M^{2}$.

Before studying the dependence of the cross-section on $\delta_{p}$, let us briefly examine the possible values and measurement accuracy of $\delta_{p}$. Here we shall base ourselves on the INPI set up /1,38/. If the kinetic energy of the recoil proton $T_{p} \leqslant \quad 5 \mathrm{MeV}$, and its exit angle $\varphi$ varies from $\sim 90^{\circ}$ to $60^{\circ}$, then $\delta_{p} \leqslant 0.05$. The errors, which are equal to $\Delta T_{p}=40 \mathrm{keV}$ and $\Delta \varphi=2^{\circ} \approx 35 \mathrm{mrad}$,
might provide $\sim 10$ intervals of $\delta_{p}$, in which case the extreme values of $\delta_{p}$ would differ by about 10 times. This would give grounds for hoping for a precise separation of the various doublesituation fleggeon contributions. In reality, the porion is more complex, since it is necessary to take into account also the permissible values of $\delta_{A}=1-\left|x_{A}\right|$. In order to remain in the region of applicability of the Reggeon formulas, it is clearly necessary to take $\delta_{A} \leqslant 0.2$. as $\delta_{A} \cdot \delta_{p}=\frac{M^{2}}{S}$ we obtain $0.05 \geqslant \delta_{p} \geqslant$ $\frac{5 M^{2}}{S}$. When $M^{2}=0.6 \mathrm{GeV}^{2}$, i.e. for $\rho$ and $\omega$ resonances and with $S=200 \mathrm{GeV}^{2} \delta_{p}$ may vary only by three times: $0.05 \geqslant$ $\delta_{p} \geqslant 0.015$. For the $f$-resonance $\left(M^{2}=1.6 \mathrm{GeV}^{2}\right)$ the permissible interval is narrower still. But in any case it widens out with energy.

Let us also discuss the necessary accuracy when measuring the energy of particle $A$ after scattering. The relative measurement accuracy $\sqrt[\sim]{M^{2}}$ is composed of relative accuracies $\delta_{A}$ and $\delta_{p}$. For the INPI Sethe relative accuracy of $\delta_{p}$ is $\sim 0.1$ (at $\varphi \sim 70^{\circ}$ and $\varphi \sim 2^{\circ}$ ) and is determined basically by the error in measuring the angle. To ensure that the relative error of $\delta_{A}$ does also not exceed 0.1, it is sufficient to measure, in the conditions discussed, the finite energy of particle $A$ with an accuracy not worse than $0.5 \%$. This provides a value of $\frac{\Delta M^{2}}{M^{2}} \sim 0.2$ i.e. $\frac{\Delta M}{M} \sim 0.1(\Delta \Delta$ $\sim 100 \mathrm{MeV}$ at $\mathbb{M} \sim I \mathrm{GeV}$ ), which would, of course, be quite satisfactory.

Let us now consider the behaviour of the right-hand side of (5.17) in various cases. If we study the production of resonances $\rho, \omega$, and $f$, then in the conditions we are discussing it is probably sufficient to take into account the pomeron and Reggeons $p^{\prime}, \omega$, $\omega$ and $A_{2}$ for which $\alpha(0) \approx \quad \frac{1}{2}$.

[^10]and use the zero trajectories).

For the production of $\rho$ and $\omega$, one Reggeon must be of the non-vacuum type. In this case the right-hand side of (5.17) either decreases $\sim \delta_{p}$ at $\delta_{p} \longrightarrow 0$, if $\alpha(0)=\frac{1}{2}, \beta(0)$ $=1$, or increases $\sim \frac{1}{\delta_{p}}$, if $\alpha(0)=1, \beta(0)=\frac{1}{2}$. In this way for small $\delta_{p} \quad$ a configuration is determined in which the $\alpha$ Reggeon is/pomeron, and the $\beta$ Reggeon is a non-vacuum Reggeon ( $\rho$ or $\omega$ ). Here the cross-section decreases with the energy $\sim \frac{1}{S}$. Other double-Reggeon contributions (for example, $\rho$ and $\pi$ or $\omega$ and $\pi$, decrease with energy more rapidly, $\sim \frac{1}{S^{2}}$, but may have the same behaviour at $s=$ const, $\delta_{p} \rightarrow 0 . \quad \rho$ and $P^{\prime}$ contribute to the production of $f$.

If both Reggeons are identical, the right-hand side of (5.17) is constant at $\delta p \rightarrow 0, S=$ const. Here the cross-section either does not depend on energy, if both Reggeons are pomerons, or decreases according to $\sim \frac{1}{S}$ in the case of two $P^{\prime}$. If the Reggeons are different, then for small $\delta_{p}$ the case is again determined where $\alpha$ is a pomeron, and $\beta$ is $P^{\prime}$, so that the cross-section decreases in accordance with $\sim \frac{1}{S}$

When one of the Reggeons is a pomeron, then, as in the usual inclusive case, the case of small transverse momenta is of interest. Here also the vanishing of the single-pomeron term can be predicted, the out as in diffraction dissociation; but may again screen this effect so that it is necessary to study the change in the angular distribution with energy. For the second Reggeon it is not essential to have very small transverse momenta. But they should not be selected too large, for example $<0.1 \mathrm{GeV}^{2}$.

When both Reggeons are pomerons, the vertex which links them with the usual particles (see Fig. 5.1) should vanish with a decrease in the transverse momentum of any of the pomerons. The reason is as follows. The contribution of the double-pomeron process (Fig. 5.1) to the total cross-section decreases logarithmically with energy. However, if we sum the contributions of all the so-called multi-pomeron processes (Fig. 5.5), the total cross-section proves to increase with energy as a power in $S$, and the oxpor-law intiaz is proportional to the value of the pomeron vertex at zero transverse momenta of the pomerons. The exponential increase of the cross-section contradicts not only the assumption concerning the asymptotic constancy of the total cross-section, but also such general representations of modern theory, such as unitarity of the S-matrix and the analyticity of the amplitudes. There is only one case where there is no contradiction, namely when the vertex which links two pomerons with the particle is equal to zero at zero transverse momenta of both pomerons. (This question has already been discussed theoretically by Ter-Martirosyan in one of the previous schools $/ 3 /$ ). The vertex might vanish in accordance with $\sim\left(\vec{q}_{1 \perp} \vec{q}_{2 \perp}\right)$ or another law. Because of this it would be interesting to measure the dependence of the cross-section not only on $\vec{q}_{1 \perp}^{2}$ and $\vec{q}_{2 \perp}^{2}$, but also on the angle between $\vec{q}_{1 \perp}$ and $\vec{q}_{21}$, i.e. on the relative azimuthal angle of the recoil proton and the weakly deflected fast particle A.

We shall now attempt to evaluate the expected values of the cross-section of the double-pomeron process. The simplest solution is to do this at large $M^{2}$, when the pomeron-pomeron cross-section is constant, and does not depend on $M^{2}$. Then the double-inclusive crosssection is described by the diagram of Figure 5.6, where all Reggeons
are pomerons. This diagram is referred to as the double-three-Reggeon diagram (cf. Fig. 3.3c), and it is sometimes referred to as the "Beetle".

The contribution of this diagram to the double-inclusive cross-section can be subdlivided fachors
into the product of two corresponding to the upper and lower halves of the diagram in Figure 5.6 (see expression (5.12) and (5.13) at $\sigma_{\alpha \beta}=$ const.) .

Let us examine for comparison, the three-pomeron diagram of factors the type shown in Figure 3.3c. This also breaks down into one of which (from the lower half of the diagram) has the same structure
factors
as the in the diagram of Figure 5.6, whilst the other is
simply a constant of the pomeron link with particle $A$, which in turn factors
is one of the factors in the expression for the total interaction cross-section of particle A with any target. By accurately following factors
all of these factors, we arrive at a factorization formula which links the twice-inclusive cross-section with the single-inclusive and total cross-section. For example, in the case where particle $A$ is a proton, we obtain

$$
\begin{equation*}
\frac{d \sigma^{p p}}{d \vec{q}_{11} d x_{1} d^{\prime} \hat{q}_{2} d x_{2}}=\frac{d \sigma^{p p}}{d \vec{q}_{11} d x_{1}} \cdot \frac{d \sigma p p}{d \hat{q}_{2} d x_{2}} \cdot \frac{1}{\sigma_{r}^{p p}}, \tag{5.18}
\end{equation*}
$$

where $x_{p}=x_{1}, x_{A}=x_{Q}$. If the incident particle $A$ is not a proton, then in the right-hand part of (5.18) there occurs an additional factor multipliox

$$
\left(\sigma_{t c t}^{p_{A}},\left(\sigma_{t o t}^{p}\right)^{2}\right.
$$

where $\sigma_{\text {tot }}^{P A}$ is the total interaction cross-section of particle A with the proton. For the total cross-section of pp-scattering, we shall take the value of $G P P \equiv 40 \mathrm{mb}$. As for the three-pomeron contribution to the singly-inclusive cross-section, we shall now concern ourselves only with the contribution of the effective pomeron, and shall not separate the contribution of the true pomeron from its accompanying cur (5.18) we insert a phenomenological three-pomeron term which contain a vertex which is non-vanishing.

The processing of the inclusive proton spectra of the ISR, described in paper $/ 50 /$, shows that it is possible to have slightly different parameters for the effective three-pomeron contribution depending on the assumption concerning the size of the term PPR and on the slope of the pomeron trajectory. By using one of the parametrizations described in $/ 50 /$, and using (5.18), we obtain, for the doubleinclusive proton-proton cross-section

$$
\begin{align*}
& \frac{d \sigma p p}{d q_{12}^{2} d x_{1} d q_{24} d x_{2}} \approx \frac{q(4 \delta)\left((\beta)^{1}\right.}{\left(1-1 x_{1}\right) /\left(1-1 x_{2}\right)} \cdot e^{-3,5\left(q_{12}^{2}+q_{24}^{2}\right)}  \tag{5.19}\\
& x\left(1-1 x_{1} /\right)^{2 \alpha_{p}} q_{y_{y}}^{2}\left(1-\left(x_{2} /\right)^{2 \alpha_{1} o q_{2}}{ }^{2},\right.
\end{align*}
$$

where $q_{i \perp}^{2}$ is measured in $\mathrm{GeV}^{2}$. In order to understand what this expression denotes, we shall find a total doubly -inclusive crosssection in conditions of the experimental geometry. By again basing ourselves on the set up at LNPI $/ 4,38 /$, we may, at $S=800 \mathrm{GeV}^{2}$, pose $0<q_{1 \perp}^{2}<0.03 \mathrm{GeV}^{2}, 0.03<1-/ x_{1} /<0.05$. For $x_{2}$ and $g_{2 \perp}^{q}$ we shall take a wider range $0<g_{q \perp}^{2}<0.1 \mathrm{GeV}^{2}, 0.03<1-/ x_{2} /$ <0.1. If we now integrote over the angles and intervals indicated $g_{i \perp}^{2}$ and $x_{i}$, we obtain for the total cross-section of the
doubly -inclusive proton-proton reaction the value $\sim 0.15 \mathrm{mb}$. If for $g_{2 \perp}^{2}$ and $x_{2}$ the same region was selected as for $g_{2 \perp}^{2}$ and $x_{1}$ then we would obtain ~ 0.02 mb . When obtaining these estimates we can take into account sufficient accuracy only the first factor in (5.19), i.e. we may assume that $g_{i \perp}^{Q}=0$. Then integration over $g_{i \perp}^{2} \quad$ is simply reduced to a multiplication by $g_{i \perp}^{2}$ max. In this connection it should be pointed out that measurements of the inclusive cross- ${ }^{\text {sections }}$ were made in the region $0.15 \mathrm{GeV}^{2}<q_{\perp}^{2}<1 \mathrm{GeV}^{2}$. If at $g_{\perp}^{2}<0.1 \mathrm{GeV}^{2}$ the dependence of the three-pomeron contribution on $g_{\perp}^{2}$ becomes steeper (and this is possibly indicated by the measurements at Batavia $/ 23 /$ ), then the cross-section at $g_{\perp}^{2}=0$ is greater than would follow from the parametrization obtained in $/ 50 /$. In this case it is necessary to increase also the evaluations quoted here for the doubly -inclusive cross-section.

The small value obtained for the cross-section is partly due to the small value of the asymptotic pomeron cross-section in comparison with the cross-sections of normal particles (for example $\sigma_{p p} \approx 1 \mathrm{mb}$, $\sigma_{p p} \approx 40 \mathrm{mb}$ ), but it estencially accessible phase volume.

Thus we have obtained an evaluation for the anticipated value of the double-pomeron contribution in the region of large $M^{2}$, where the pomeron-pomeron cross-section is constant. However at $S \leqslant 800 \mathrm{GeV}^{2}$, this region is practically unattainable. In reality, it follows from
an analysis of the inclusive spectra $/ 50 /$, that the pomeron exchange can be isolated only at $(1-|x|) \leqslant 5.10^{-2}$, but for the constancy of the interaction cross-section of two pomerons it is necessary that the value of $M^{2}$ is greater than at least $4-5 \mathrm{GeV}^{2}$. Consequently, strictly speaking, the region in which formulas (5.18 and 5.19) can be applied begins at $S \geqslant 2000 \mathrm{GeV}^{2}$.

At energies of $S \leqslant 800 \mathrm{GeV}^{2}$ we may hope to measure the pomeron-pomeron cross-section only at small $\mathrm{M}^{2}$ in the region of resonances. As has already been explained, in this region $\mathrm{O}_{\mathrm{p}} \mathrm{p}$ clearly exceeds the asymptotic value (see Figure 5.4). Accordingly, the double-pomeron contribution to the doubly inclusive cross-section in this region is also greater than for large $M^{2}$. Thus, although at $S \leqslant=800 \mathrm{GeV}^{2}$ the region to which the above cross-section evaluations refer is unattainable, the evaluations nevertheless retain a meaning as the lower boŷdary of the anticipated cross-section.

The fact that at finite $M^{2}$ the double-pomeron contribution is greater than at large $M^{2}$, is clear if, for example, we take into account the correction to the pomeron-pomeron cross-section which arises from exchange of a Reggeon $P^{\prime}$ (Figure 5.7). It is in fact similar to the contribution examined in 5.6 , but is expressed by the vertex PPR, GPpR (in this case $R$ may correspond only to the Reggeon $P^{\prime}$ ) and contains a decrease according to $M^{2}$. The overall contribution of the diagrams of Figures 5.6 and 7 to the doubly inclusive proton-proton cross-section at $g_{1 \perp}^{2}=g_{2 \perp}^{2}=0$ is (see (5.19))

It is obvious that with the decrease in $M^{2}$, the right-hand part of (5.20) increases. However it is difficult to use this relation for numerical evaluation since we do not know the value of $g p p R$ We only know that

$$
\frac{g_{p p R}}{g_{e p p}} \leq 1.5 / 50 /^{\%}
$$

In addition, at small $M^{2}$ the expansion over the contributions of Reggeons cannot be used. Owing to this, it is not clear to what extent we may decrease $M^{2}$ in order to remain in the region of applicability of expression (5.20).

In order to obtain a more accurate representation of the resonance region, we shall use another approach. In accordance with the idea of duality (cf. for example the review of $/ 19 /$ ), the contribution of the resonances is described, on an average, by the sum of Reggeon exchanges (but not pomeron exchanges). If we apply this idea to the "reaction" $P P \rightarrow \pi \pi$, then we arrive at an examination of a single-pion Reggeized exchange (Figure 5.8). Accordingly for the amplitude of the two-pomeron contribution to the reaction $p p \rightarrow$ $P(\pi \pi) p$ we obtain the diagram of Figure 5.9 , and for the contribution to the cross-section of the doubly -inclusive process, the diagram of Figure 5.10.

Let us evaluate this contribution at $q_{1 \perp}^{2}=q_{2 \perp}^{2}=0$. We shall first examine the structure of the amplitude corresponding to the diagram of Figure 5.9. At values of $M^{2}$ which are not too large, the values of $\left|t_{\pi}\right|$ are also not too great. In these conditions we may use as the vertex linking the $\pi$-meson with the
$\pi$-Reggeon and pomeron the usual pion-pomeron vertex. Then, for example, the lower pomeron in Figure 5.9 contributes to the amplitude
the facior $i s^{\prime} g_{\pi p} a_{p}$. But the product $g_{\pi p} a_{p}$ is equal to the contribution of the pomeron to the total cross-section $\sigma_{T} \pi_{P}$. This contribution can be identified with $\sigma_{T} \pi_{P}$ at $E \sim 30$ GeV , where the total cross-section varies weakly and is approximately 24 mb (let us recall that we are using here not a true pomeron which strictly will work only at very large energies, but an effective pomeron which occurs at $E \geqslant 10 \mathrm{GeV}$ ). Furthermore, we shall use as the $\pi$-Reggeon propagator the usual pion propagator $\frac{1}{t \pi-\mu^{2}}$, where $\mu$ is the mass of the pion. In order to take into account the effect on ment-af the vertices and the propagator, which is introduced by being away shell from the mass surfae (i.e. the virtual exchange $\pi$-meson), we shall introduce the form factor $F\left(t_{\pi}\right)$. Let us point out that we have not introduced a specific dependence on $M^{2}$. This means that we do not, in reality, Reggeize the $\pi$-meson. In this connection let us point out that Reggeization is substantial only at $M^{2}>S_{0}$. At $M^{2} \leqslant S_{0}$ it practically does not change the result.

In order to obtain this evaluation it is necessary to use the fact that $a_{p} \approx a p^{\prime}$.

Thus we can write the amplitude for the diagram of Figure 5.9 in the following form :

$$
\begin{equation*}
A=(i s) \sigma_{T}^{\pi \rho} \cdot \frac{F\left(\sigma_{\pi}\right)}{\left.E_{0} \mu_{i}+i s "\right) s_{T}^{\pi p} .} \tag{5.21}
\end{equation*}
$$

For the contribution to the cross-section (Fig. 5.10) we obtain

$$
\begin{align*}
& \times\left(s^{\prime} s^{\prime \prime}\right)^{2}\left(\sigma_{r}^{\pi_{0}}\right)^{4} \cdot \frac{F^{2}\left(t_{\pi}\right)}{\left(t_{\pi_{T}} \mu^{2}\right)^{2}} . \tag{5.22}
\end{align*}
$$

Here $\frac{1}{25}$ describes the invariant flow of initial particles at high factor energy. The 3 is linked with the three possible charge states of the $\pi$-meson ( $\pi^{+}, \pi^{-}, \pi^{\circ}$ ) in the diagrams of factors Figures 5.9 and 5.10. The remaining factors in (5.22) which do not directly follow from (5.21), are the normal factors with normalization or phase space.

In the region of small values of $g_{i \perp}^{2}$ and $\left(1-\left|x_{i}\right|\right)$ which is of interest to us the following relation is correct :

$$
P_{s_{0} P_{+0}} \frac{d \sigma}{d^{3} \rho_{3} d^{3} f_{4}} \approx \frac{d \sigma}{d \vec{q}_{14} d x_{1} d \vec{q}_{2 s} d x_{2}}
$$

Integration in (5.22) can now be carried out conveniently in the centre-of-mass system of a pair of final pions. Then, neglecting the mass of the pion $\mu$, we obtain

$$
\begin{align*}
& x\left(s^{\prime} s^{\prime \prime}\right)^{2} \frac{F^{2}\left(t_{\pi}\right)}{t_{\pi}^{\frac{s}{\pi}}}, \tag{5.23}
\end{align*}
$$

where $K=\left|\vec{K}_{1}\right|=\left|\vec{K}_{2}\right| \approx \frac{M}{2} \quad . \quad \theta \quad$ is the angle between $\vec{K}_{1}$ and $\vec{q}_{1}$ (in fact at a large energy this is the angle between $\vec{k}$ and $\vec{p}_{1}$ ). The kinematics of the conversion of two particles into four leads, at large $s, S^{\prime}, S^{\prime \prime}$ and fixed $q_{i}^{2}, t_{\pi}$ to the relations

$$
\begin{equation*}
S^{\prime} s^{\prime \prime} \approx \frac{H^{2}}{H^{2}} \cdot \dot{u}_{t}^{a} ; t_{1}=-\frac{M^{2}}{2}(1-\cos \theta) \cdot K \cdot \cos \theta=\frac{a^{\prime} t}{N^{2}} . \tag{5.24}
\end{equation*}
$$

(Their derivation is similar to examination of the kinematic relationships for conversion of two particles into three, which was examined at the beginning of this section). Tntegration over the angle should be limited to the region $0<\cos \theta<1$. Let us explain this in greater detail for the case of two $\pi^{\circ}$-mesons. In readity, we are interested in the total amplitude of the process $p+p \rightarrow \pi^{0} \pi^{0}$. Obviously in view of identicality it is sufficient to examine the range of angles $0<\cos \theta<1$. It is precisely at such angles (angles which are not too large) that it is reasonable to describe the total amplitude by the contribution of the single-pion exchange. For charged pions, the range $-1<\cos \theta<0$ corresponds to another

We should point out here that the relation (5.21) which we in fact used, and the formulas (5.22), (5.23) based on it, are valid only for fairly large values of $S^{\prime}, S^{\prime \prime}\left(S^{\prime}, S^{\prime \prime}>S_{M}\right.$, where $S_{M}$ ~ $5-10 \mathrm{GeV}^{2}$ ). Consequently the calculations carried out by us are, strictly speaking, applicable only in the region $\left|t_{\pi}\right| \geqslant\left|t_{\pi}\right|_{\text {min }}$ $=S_{M}^{2} / S$, i.e. are not valid for very small $t_{\pi}$. However in future when carrying out the evaluations we shall not take this factor into account.
charged configuration of final particles. As we have already effected a summation over the charged configuration (the factor $\begin{gathered}\text { fiplier three (5.22) }\end{gathered}$ and in (5.23)), it is sufficient to take into account only the first range of angles. Let us point out that we take into account the diagrams of the type shown in Figure 5.10, but not the diagram with the cross as shown in 5.11. This is due to the fact that the mechanism of single-pion exchange is substantial only at relatively low angles of particle emergence whilst in the diagram of Figure 5.11 both in the initial and final states the process occurs at large angles.

If we insert the expression $F^{2}\left(t_{\pi}\right)=e^{b t_{\pi}} \quad$ for the form factor, the cross-section takes the form ${ }^{*}$ :

$$
\begin{equation*}
\frac{d \sigma^{2}}{d Q_{1}^{2} d x_{1}^{2} d q_{2}^{2} d x_{2}^{2}}=\frac{1}{\left(1-\left(x_{1}\right) /\left(1-1 x_{2}\right)\right)}\left(\frac{\hat{T}_{T}^{\pi}}{B \pi}\right)^{4} \cdot \frac{3}{4 \pi} T\left(\frac{B M^{2}}{2}\right), \tag{5.25}
\end{equation*}
$$

where $\quad J(z)=\frac{1}{Z^{2}} \int_{0}^{z-y} y^{2} d y$. At small $M^{2} J\left(\frac{b M^{2}}{2}\right) \approx \frac{b M^{2}}{6}$, at large $M^{2} J\left(\frac{B M^{2}}{2}\right) \approx \frac{8}{b^{2} M^{4}}$. This corresponds to the fact that the cross-section of the $P+P \rightarrow 2 \pi$ reaction increases at small $M^{2}$, and at large $M^{2}$ it decreases in accordance with $\sim \frac{1}{M^{4}} \quad$. At $M^{2}$
 we were to take account of Reggeization, the cross-section would drop slightly quicker as $M$ increased. However the position and value of

[^11]the maximum is only weakly affected by Reggeization, since the maximum is located at relatively small $M^{2}$.

For a numerical evaluation of the contribution of single-pion exchange, we shall take the value of $B=5.5 \mathrm{GeV}^{-2}$, which ensures a reasonable description of all the experimental data collected for the reactions $N N \rightarrow \pi N N, p n \rightarrow n p, \pi N \rightarrow 2 \pi N$ in the model of single-pion exchange $/ 83 /$. Inserting also $\sigma_{T}^{J_{p}}=24 \mathrm{mb}$, we may rewrite (5.24) in the form :

$$
\begin{equation*}
\left.\left(1-1 x_{1} /\right)\left(1-1 x_{2} /\right) \frac{d \sigma}{d q_{11}^{2}} \frac{d q_{2 L}^{2}}{d x_{1} d x_{2}} / q_{i 1}^{2}=0=0,6 \mathrm{mb} / G_{E} V^{4}\right)\left(\frac{S^{5} M^{2}}{2}\right) \tag{5.26}
\end{equation*}
$$

where $M^{2}$ is measured in $\mathrm{GeV}^{2}$. The right-hand part of (5.26) attains, at $\mathrm{M}^{2} \approx 0.53 \mathrm{GeV}^{2}$, a maximum value of $\approx 0.1 \mathrm{mb} /(\mathrm{GeV})^{4}$, after which it drops as $M^{2}$ increases. Thus, the greatest value of the right-hand side of (5.26) corresponds to the evaluation of (5.19), obtained at large $M^{2}$. Let us remember that in (5.26) account has been taken not only of the charged $\pi$-mesons but the neutral $\pi$-meson. If we confine ourselves only to the charged pions, it is necessary to multiply the right-hand side of (5.26) by $2 / 3$.

At first sight, the result of (5.26) may appear contradictory with (5.19). In reality, this is not so. In (5.26) account has been taken of only the cross-section of the "reaction" PP $\rightarrow 2 \pi$, which
attains a maximum and then drops as $M^{2}$ increases. But at the same

> At even
time the transition cross-section of $P P \rightarrow 4 \pi$ increases. After higher $M^{2}$
this cross-section also begins to decrease but the cross-section of $P P \rightarrow 6 \pi$ etc. increases, so that the total cross-section of pomeron-pomeron scattering is constant. (It is precisely in this way that the constancy of total cross-sections occurs in accordance with the multi-peripheral models). Thus, the cross-section of pomeronpomeron interaction at large $M^{2}$ is determined by the sum of the contribution of $\pi$-meson states (see Figure 5.12).

By reasoning further in this way, we arrive at the conclusion that also the effective pomeron itself is equivalent to the summation of the $\pi$-meson ladder diagrams of the type shown in Figure 5.12. We should also point out that as has already been shown by Boreskov, Kajdalov and Ponomarev (see for example $/ 84 /$ ), the model of the singlepion exchange reproduces well the fundamental features of the experimental data for proton spectra at $0.15 \leqslant q_{\perp}^{2} \leqslant 0.5 \mathrm{GeV}^{2}$ and gives, for a three-pomeron vertex $g_{p p p}\left(q_{\perp}^{2}\right)$, a value close to that found when processing the experimental data/50/.

The evaluation of (5.26) points to the fact that the pomeronpomeron cross-section may, possibly become constant (or more precisely almost constant) already at $\mathrm{M}^{2} \approx 0.5 \mathrm{GeV}^{2}$ and that the threshold reinforcement in it may not occur, or at least be relatively small.

As has already been said, it may be expected that the model of aingle-pomeron exchange describes the average trend of the crosssection in the resonance region of the values of $M^{2}$. But immediately
in the resonance peak the cross-section will increase. Let us briefly discuss the development of concrete resonances. The states $\mathcal{E}$ and $S^{\text {, if they in fact are resonances, will have large }}$ widths. Consequently they will, probably, develop weakly in the pomeron-pomeron cross-section.

The peak of the $f$-meson may be much more distinct. Its value is determined by the vertex which links the $f$-meson with two pomerons. We cannot evaluate this vertex. It is, however,

## arguments

possible to use the following manouros. By using dual models it is possible to find a "precise" vertex for linking $f$ with two $p^{\prime}$ -Reggeons (the authors are grateful to V. A. Kudryavtsev, who carried out these calculations). In the dual model this value is expressed by the linking vertex $\rho \mathbb{J} \mathbb{T}$, which obviously is linked with the life-time of the $\rho$-meson. On the other hand, we may consider the "reaction" $P^{\prime}+P^{\prime} \rightarrow 2 \pi$ in the model of the single-pion exchange. It so happens that the "precise" cross-section, integrated over the peak of the $f$-meson exceeds by several times the prediction of the single-pion exchange. Probably this statement is valid also for pomerons.

Finally let us examine the $f^{\prime}$-meson. It can be compared with a $f$-meson, if we use the quark model (see for example the Frankfurt lecture $/ 41 /$ ). From the point of view of the quark model the total cross-section of interaction of a non-strange quark (or anti-quark) with a proton is approximately $\frac{1}{2} \sigma_{T} T_{p} \approx 12 \mathrm{mb}$, and the interaction cross-section of a strange quark with a proton $\sigma_{T}^{K_{P}}-\frac{1}{2} \sigma_{T}^{J_{p}} \approx \quad 17 \mathrm{mb}-12 \mathrm{mb}=5 \mathrm{mb}$. In this way the effective pomeron is linked with a strange quark which is almost twice
as weak as the non-strange quark. But $f^{\prime}$ is almost completely composed of strange quarks, whilst $f$ is composed of non-strange quarks. If we describe the production of resonances of the diagram as shown in 5.9 (by replacing the $\pi$-meson pair by a quark-antiquark pair) then it is clear that the $f^{\prime}$-meson must be produced approximately four times weaker than $f$.


#### Abstract

In conclusion let us stress that here we have confined ourselves basically only to the discussion of contributions from double-pomeron exchange. In effect, as has been shown by the calculations we have made, and also by the experimental data which exist, the background contributions from non-pomeron exchanges and from diffraction dissociation of initial particles are quite significant, particularly in the energy range $S \leqslant 400 \mathrm{GeV}^{2}$, where the problem of separating the various contributions is fairly complex. Let us point, however, that in the region of the $f$-meson resonance the backgrounds from diffraction dissociation may prove to be less substantial.


Let us also make an evaluation of the lower boundary for the value of the cross-section of the doubly -inclusive process (5.1) in the region $\left|x_{A}\right|,\left|x_{p}\right| \rightarrow 1, q_{1 \perp}^{2}, q_{2 \perp}^{2} \rightarrow 0$. We are now speaking of the contribution of the purely electromagnetic process of Figure 5.13, where a central group of hadrons is produced in a collision of two gama quanta. The corresponding contribution to a cross-section of the process (5.1) for any charged particle A is of the form

$$
\begin{align*}
& \frac{d \sigma}{d q_{11}^{2} d q_{2 \alpha}^{2} d x_{4} d x_{\rho}}=\left(\frac{\alpha}{\pi}\right)^{2} \frac{1}{\left.\left(1-\mid x_{A} /\right)\left(1-\beta_{\rho}\right)\right)} \frac{q_{14}^{2}}{t_{1}^{2}} \frac{q_{2}^{2}}{t_{2}^{2}} \sigma_{\gamma r} \approx  \tag{5.27}\\
& \approx \frac{1,6 \cdot 10^{-9}}{\left(1-1 x_{4} /\right)\left(1-/ x_{r} /\right)}\left(\frac{\hat{q}_{11}^{2}}{t_{1}^{2}}\right)\left(\frac{q_{21}^{2}}{t_{2}^{2}}\right) \frac{\mu b}{G_{C} V^{4}},
\end{align*}
$$

where $\sigma_{\gamma \gamma}$ is the total cross-section of hadron generation in a $\quad \gamma \gamma \quad$-collision (by factorization

$$
\left.\sigma_{\sigma \alpha} \approx \frac{\sigma_{\gamma \rho}^{2}}{\sigma_{\gamma \gamma} \rho} \approx 0,3 \mu b\right)
$$

The cross section $\frac{d \sigma}{d q_{1 \perp}^{2} d q_{2 \perp}^{2} d x_{A} d x_{p}}$ is compared with the
evaluation of (5.19) only at $q_{1 \perp}^{2}, q_{R \perp}^{2} \sim 10^{-4} \mathrm{GeV}^{2}$.

## VI. SCATTERING ON A DEUTERON

Tests with a deuteron target are of interest for the following reasons.
I. In many cases the use of a deuteron is the only possible way of studying interactions with a neutron. This is the case, for example, for $K n^{-}$, $\bar{p} n$-scattering, as distinct from $p n$ -scattering, where it is possible to use a neutron beam.
2. The proton and neutron in the deuteron are weakly linked, so that the nuclear corrections are small (of the order of $10 \%$ ). Consequently, when studying the scattering of fast particles it is possible to ignore the interaction of a neutron and proton in a deuteron (impuise approximation). The corrections related to the processes in which the incident particle interacts with both nucleons (double rescattering) may be computed $/ 85-90 /$ by the inclusive scattering crosssections on one nucleon. Consequently the measurement of such corrections both for total and for differential cross-sections enables a check to be made of the correctness of our present concepts of the deuteron as a weakly linked system of nucleons. In this respect the most convenient incident particle is the $\pi$-meson, since as a result of charge symmetry $\sigma\left(\pi^{+} p\right)=\sigma\left(\pi^{-} n\right)$. Consequently by comparing the data for the $\pi^{+} d^{-}, \pi^{-} d-$ and the $\pi p^{-}, \pi^{+} p^{-}$ interaction we can determine unambiguously the contribution of double re-scattering in Jld -processes.
3. The deuteron is not only the simplest compound system, whose properties are interesting to investigate and which can be used
for obtaining neutron data, but it is also the simplest target
the
with isotopic spin equal to zero. Consequently it is interesting to examine the inclusive reactions on a deuteron (i.e. reactions of the type $a+d \rightarrow d+a l l$ the remainder, where $a$ is the incident particle), especially in the three-Reggeon region (see chapters II and III above), as in this case the value of the crosssection will be determined by the contributions of a slightly different combination of Reggeons (i.e. Reggeons with $T=0$, $p^{\prime}$ and $\omega$ ) in comparison with the inclusive cross-section on protons. In addition, the measurement of the difference in the differential cross-sections of $\pi^{+} d$ and $\pi^{-} d$ scattering enables a much more accurate determination of the electromagnetic corrections Bethe phase, /97/ and below).

Let us now turn to a more detailed evaluation of the necessary experimental accuracy and a discussion of the character of the data which can be obtained in deuteron target experiments.

## I. The deuteron as a neutron target at small $t$

We shall first examine the scattering of any fast particle (for example, a proton) on a deuteron in the region of Coulomb interference, which is the most interesting for the INPI set-up. In this region of momentum transfers

$$
\begin{equation*}
A_{p} a^{\prime}=\left(A_{p p_{1}}^{c}(t)+A_{p-p}\left(D_{1}, t\right)+A_{p n}(s, t)\right) S(t)+\Delta(s, t), \tag{6.1}
\end{equation*}
$$

where $A_{p p}^{C}, A p p$ are the amplitudes of the Coulomb and strong interactions of two nucleons (see Fig. $6.1 \mathrm{a}-\mathrm{c}$ ), $\Delta(\mathrm{s}, \mathrm{t})$ is the contribution of double re-scattering (Fig. 6.ld), $S(t)$ is the electro-
magnetic form factor of a deuteron derived from data on ed -scattering (more precisely $S(t)=\frac{G_{d}(t)}{G_{p}(t)}$, where $G d, G p$ is the electromagnetic form factor of the deuteron and electrical form factor of the proton). Below, we shall use in the evaluations

$$
\begin{equation*}
S(t)=e^{-a(t)} \tag{6.2}
\end{equation*}
$$

where $a=10(\mathrm{GeV} / \mathrm{c})^{-2}$. However it is important to point out here that in the region of small $|t| S(t)$ behaves more rapidly, and a better approximation is /92/

$$
\begin{equation*}
S(t)=b e^{-0,|t|}+(1-b) e^{-a_{2}|t|}, \tag{6.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \theta=0,40 \pm 0,01, \\
& a_{1}=(29,7 \pm 0,25)(\mathrm{GeV} / \mathrm{c})^{-2}, \\
& a_{2}=(5,63 \pm 0,06)(\mathrm{GeV} / \mathrm{c})^{-2} .
\end{aligned}
$$

The interference term in the pd-scattering is of the form :

$$
\begin{gather*}
B_{E} \sim A_{p p}(t) \sqrt{R}\left(A_{p p}(s, t)+A_{p n}(s, t)\right) S(t)+  \tag{6.4}\\
\left.\left.\cdot A_{t} A r \theta t\right)\right\} S(t)+\beta
\end{gather*}
$$

where $\beta$ is expressed by the total oross-section and Bethe phase (see below). From the data on pd -scattering we can attempt to determine ReApn (or $\rho_{p n}=\frac{\operatorname{Re} A \rho n}{J m A p n}$, see Fig. 2.1). This can be done either in the case when $\operatorname{Re} \Delta(s, t) \quad$ is small in comparison with $\operatorname{Re} A p p-\operatorname{Re} A p n \quad$, or when it is possible to distinguish the first term in (6.4) from the second as a function of $t$
$\Delta(s, t)$ depends on $t$ exactly as any strongly interacting amplitude (i.e. $\Delta(s, t) \sim e^{-b|t|}$, where $b \sim 4-6(\mathrm{GeV} / \mathrm{C})^{-2}$, whilst $S(t)$ falls more sharply in accordance with small $t$ (see (6.2) and (6.3)).

## gvaiuarton of $\operatorname{Re} \Delta(s, t)$

A contribution to $\Delta(s, t)$ is given by various processes
(see Fig. 6.1d) and the basic condition (linked with the fact that the deuteron should not collapse) is that $q^{2}$ (at $t=0$ ) should be smaller than $1 / R_{d}^{q} \quad\left(R_{d}\right.$ is the radius of the deuteron $\left.{ }^{*}\right)$. Since

$$
\begin{equation*}
g_{\min }^{2}=\left(\frac{x^{2}-n^{2}}{S}\right)^{2} m^{2} \tag{6.5}
\end{equation*}
$$

where $m$ is the mass of the nucleon, and $M$ is the mass of the system of particles produced in the intermediate state (Fig. 6.1) $\mathrm{m}^{2}=$ $\left(K_{1}+\cdots+k_{n}\right)^{2}$
, then

$$
\begin{equation*}
\frac{M^{2}-m^{2}}{S} \leqslant \frac{1}{R_{d m}} . \tag{6.6}
\end{equation*}
$$

* By $R_{d}$ we understand the radius which characterizes the reduction in the electromagnetic form factor of the deuteron $\left(S_{( }(t)=e^{-R_{d}^{\ell}|t|} \text {, i.e. } R_{d}^{\ell} \approx 10\left(\frac{G_{e V}}{c}\right) \quad\right)^{-2}$ or (6.2)) Thus, a specific $R_{d} \sim \frac{1}{\mu} \quad(\mu \quad$ is the mass of a $\quad \pi \quad$-meson) , which is considerably less than $R \simeq 1 / 2 \sqrt{m \varepsilon} \quad(\varepsilon$ is the binding energy of the deuteron). This comparison already shows that the deuteron cannot be represented as a very brittle system. Below we shall make considerable use of the fact that the radius of the deuteron ( $R_{d} \sim 1 / \mu$ ) is nevertheless considerably greater than the radius of the strong interactions of hadrons, which is of the order of
$1 / m \rho$
( $m \rho$ is the mass of the
$\rho$-meson).

For elastic and quasi-elastic processes (i.e. for processes in which a finite number (not depending on $S$ ) of particles with a small mass (for example with $M^{2}<M_{0}^{2}$, where $M_{0}^{2}=4-5 \mathrm{GeV}^{2}$ ) the condition of (6.6) is always fulfilled and the main contribution to double rescattering is given by the graphs with the exchange of two vacuum Reggeons (at a large total energy S). (see Fig. 6.2a). The real part of these graphs is small, since the exchange of a vacuum Reggeon gives a purely imaginary contribution ( $\alpha_{p}^{\prime}$ is small) and the overall real smallness of the contribution of figure $6.2 c$ to the part is

$$
\operatorname{Re} \Delta^{\prime} \sim \alpha^{\prime} \alpha_{R_{d \prime}^{2}}^{2} \operatorname{Im} \Delta \approx \dot{B}, 01, y_{m} \Delta \sim 0,0 \neq \mathrm{mb}
$$

(Im $\Delta \sim 4 \mathrm{mb}$ is from the experiment). Let us recall that the real part of the exchange of the vacuum pole is proportional to $\alpha^{\prime} p t . S^{\alpha} p(t)$. We shall note here that $/ 86 / *$

$$
\begin{equation*}
\left.\operatorname{Im} \Delta(s, t=0)=2 \int s, 4 q^{2}\right) \frac{d^{2} \sigma}{a q^{2} d l^{2}} d q^{2} \operatorname{cin}^{2} \tag{6.7}
\end{equation*}
$$

It can be seen from (6.6) that a contribution may be given to the rescattering by the processes in which many particles are produced (their number increases as $S$ grows), but $M^{2} / \mathrm{S}$ should be lower or of the order of $\frac{1}{R d m}$. As $m^{2} S / M^{2} \approx S_{C N} \gg m^{2}$,
the range of the large masses is described by the three-Reggeon limit. At an energy of $P_{\text {lab }}=100-400 \mathrm{GeV} / \mathrm{c} \mathrm{M}^{2}$ is not very great and as

From here onward $\quad \frac{d \sigma}{d q^{2} d M^{2}} \quad$ is $\frac{d \sigma(p p \rightarrow p x)}{d q^{2} d M^{2}} 2 \frac{d \sigma(p p \rightarrow n x)}{d q^{2} d M^{2}}$
(V. V. Anisovieh, I. G. Dakhno, Preprint IHEP STF-74-II). When deriving this formula it was assumed that the isotopic spin of the upper Reggeon was zero. This is clearly true for a very high energy.
the real part of the scattering amplitude increases as the energy decreases, generally speaking fe $\Delta^{\prime \prime}$ may be fairly large. The greatest contribution ${ }^{* *}$ is given in this case by the vertex $R R R$, which is great in comparison with present-day processing values for inclusive proton cross-sections $/ 50 /$ and which precisely reflects the growth in $\operatorname{Re} A_{N N}$ in the small energy region. It turns out that, having taken $G_{R R R}$ from $/ 50 /$, and $S(t)$ in the form of (6.2) we obtain

$$
\operatorname{Re} \Delta_{R P R} \leqslant\left(s / s_{0}\right)^{-1 / 2} \cdot 3 \mu b, S_{0}=1 G_{e V}{ }^{2}
$$

( $S=200 \mathrm{GeV}^{2} \Delta_{R R R} \leqslant 0.1 \mathrm{mb}$ ). This value is fully comparable with the difference $\operatorname{Re}_{e} A p p-\operatorname{Re} A_{p n}$ which we expect on the basis of the theory of complex momente, since $\operatorname{Re} A_{p p}-\operatorname{Re} A_{p n}$ is determined by the $\rho$-Reggeon, the contribution of which falls as the energy increases in accordance with $1 \sqrt{5}$ and in addition is suppressed in the nucleon system (see $/ 36 /$ ). The remaining contributions to $\operatorname{Re} \Delta$ are considerably smaller :

$$
\begin{aligned}
& R e \Delta_{P P R}<0,1 \text { rom, } R \in \Delta_{A R P} \simeq 0,1 \mathrm{mon}, \\
& R \in \Delta_{P R P} \leqslant 2 \cdot 10^{-2}=10 n
\end{aligned}
$$

```
**
Below, we shall use for the evaluations the analysis of the inclusive proton cross-sections on the basis of the Regge pole model, disregarding cuts保 contribution. With the present-day experimental accuracy the cuts
contribution of
```

(if $G_{P P P} \sim t$ at $\left.t=0\right)^{*}$. Thus, we cannot consider that $\operatorname{Re} \Delta$ is small, and the experiment to determine $R_{e} A p p-R_{e} A_{p}$, disregarding $\operatorname{Re} \Delta$, can be performed, relying solely on the fact that for some causes which we do not know $R_{e} A_{p n}-\operatorname{Re} A_{p p} \geqslant$ $0.3-0.4 \mathrm{mb}$. We can attempt to determine $R_{e} A_{p n}-A_{e} A_{p p} \equiv \delta$, using a different dependence on $t$ for the first and second terms in expression (6.1). As the Coulomb interference is great at small $t$ ( $|t|$ is $\left.\leqslant 0.01 \mathrm{GeV}^{2}\right)$, then for $A_{p n}, A_{p p}, \Delta(s, t)$, which depend on the momentum transfer approximately in accordance with $e^{-5|t|}$ (where $|t|$ is in $\left(G e V / c^{2}\right)$, we may use the linear expansion over $|t|$. $S|t|$ depends sharply on $t$ and for $|t| \leqslant 0.01$ ( $\mathrm{GeV} / \mathrm{c})^{2}$ it is necessary at least to take into account the quadratic term for $t$ (see (6.3)). In this way

$$
\begin{equation*}
\frac{d \sigma}{d t}=A_{p p}^{c}(t)\left(a+G t+c t^{2}\right) S t \tag{6.8}
\end{equation*}
$$

where

$$
a=\operatorname{Re} A_{p p}(s, 0)+\operatorname{Re} A_{p n}(s, 0)+\operatorname{Re} \Delta(s, 0),
$$

$b$ is determined by the dependence of the strong amplitudes on small t, whereas

$$
c=\left(\operatorname{Re} A_{p p}(s, 0)+\operatorname{Pe} A_{p n}(s, 0) i \frac{1}{2} \frac{d^{2} s(t)}{d t^{2}} / t=0\right.
$$

in particular for (6.3)

$$
c=\left(\operatorname{Re} A_{p p}+\operatorname{Re} A_{p n}\right) 190 \cdot \frac{G_{e v}{ }^{4}}{c}
$$

In determining $C$, we can determine $R_{e} A_{p p}+R_{e} A_{p n}$, not knowing the corrections from double re-scattering. In comparing $A$ and $C$, we

* If $G_{p p p} \neq 0$ at $t=0, \operatorname{Re} \Delta_{P P R} \preccurlyeq 0.15 \mathrm{mb}$.
can determine $\operatorname{Re} \Delta(S, O)$, which also is of interest (see below). In measuring the cross-section with an accuracy of up to $1 \%$, the term will be determined with an accuracy of not less than $20 \%$ at $|t| 0.01 \mathrm{GeV}^{2}$, and consequently it is possible to determine $\delta$ only in the case where

$$
\delta \sim R_{e} A_{p p}
$$

Thus the value anticipated in this way for $\delta\left(\delta \sim 0.1 R_{e} A_{p p}\right)$ can be determined only when the measurement accuracy of the cross-section is $0.1 \%$.

## 2. MEASUREMENT OF DOUBLE RE-SCATTERING

When measuring the scattering on a deuteron at small momentum transfers, it is possible to measure the correction from double re-scattering not only in the imaginary but also the real part of the scattering amplitude (see formulas (6.1), (6.4), (6.8)). Here it is best to use (as has already been pointed out above), the $\pi$-meson beam or make the assumption that $A_{p n}=A_{p p}$ at large energies. Various processes have essentially different contributions to $\operatorname{Im} \Delta$ and $\operatorname{Re} \Delta$. This can be seen even from the fact that a significant contribution to $J_{m} \Delta$ is given by the processes of the quasi-elastic type (6.2a), which have a contribution to $R_{e} \Delta$ which is so small that it can be ignored. The formulas which determine In $\Delta$ and $\operatorname{Re} \Delta$ have been written out below (see also $/ 86,88,90 /$ ),

$$
\begin{aligned}
& \operatorname{Im} A=2 \int_{0}^{-\infty} d t S(4 t) \frac{d \sigma_{M}}{d t}+ \\
& +2 \int_{M_{m N^{\prime}}^{2}}^{M_{0}^{2}} d M_{0}^{2} \int_{0}^{-\infty} d t \frac{d \sigma}{d t d M^{2}} S(4 t)
\end{aligned}
$$

$$
\begin{equation*}
+2 \int_{M_{0}^{2}}^{\infty} d M^{2} \cdot \int d t s(A t) \tag{6.9}
\end{equation*}
$$

$$
\begin{align*}
& P e \Delta=2 \int_{H_{a}^{2}}^{\infty} d M^{2} \int_{0}^{\infty} d t s(4 t) \cdot \operatorname{ctg} \frac{\pi \alpha_{L}}{2} . \\
& \left\{\left[\frac{1}{\sin \frac{\pi}{2}\left(\alpha_{i}-2 \beta_{7}^{7}\right)} \cdot \frac{d \sigma\left(\alpha_{i}, \beta_{7}\right)}{d t d M^{2}}-\frac{1}{\sin ^{\frac{\pi}{2}}\left(\alpha_{i}-2 \beta_{i}\right)} \cdot\right.\right. \tag{6.10}
\end{align*}
$$

For the designations see Fig. 6.2c. In (6.9) and (6.10) it was considered, for the sake of simplicity, that the Reggeon $\alpha$ has a positive signature. For the poles with a negative signature, the formulas vary insignificantly. In addition, we have written out in (6.10) only the contribution from the large masses, since the contribution to $R_{e} \Delta$ of the elastic and quasi-elastic processes is small (see above). The inclusive cross-section over the same poles can be written in the following form

$$
\frac{d \sigma}{d t d M^{2}}=\sum_{i, j}\left[\frac{d \sigma\left(\alpha_{i}, \beta_{-i}^{+}\right)}{d t+M^{2}}+\frac{d \sigma\left(\alpha_{i}, \beta_{2}\right)}{d t d M^{2}}\right]
$$

We see that $R_{e} \Delta$ gives us essentially new information concerning three-Reggeon vertices. The main advantage of determining $\boldsymbol{\Delta}$ at present is that the three-Reggeon PPP vertex determines the dependence of $\operatorname{Im} \Delta$ on energy. In order to determine Gppp(0) it is necessary to measure $I_{m} \Delta$ at various energies and isolate logarithmically the increasing term

$$
\begin{equation*}
\operatorname{Im} \Delta=d+c \text { Cn } s / m_{0}^{2}(N d m) \tag{6.11}
\end{equation*}
$$

where

$$
\begin{equation*}
c=\frac{1}{2} \geqslant G_{p, p, p}(0) / p_{d}^{2} . \tag{6.12}
\end{equation*}
$$

If $\operatorname{Gppp}(t)=\gamma^{t} \quad$ when $t \rightarrow 0$, then

$$
\begin{equation*}
c=\gamma \frac{\pi}{B} / R^{-} d, \tag{6.13}
\end{equation*}
$$

i.e. is considerably smaller than in the previous case. What should be the measurement accuracy of the total cross-section, for example, of pd -scattering, in order to determine $\Delta$ ? For this we will insert in (6.12) and (6.13) $G_{p p p}(0)$ and $\gamma \quad$ from the experimental inclusive spectrum of protons in accordance with the processing method $/ 50 /$. Then

$$
\begin{equation*}
\left.\Delta_{p, p}<0,1 \mathrm{mb} \text { En } S / \mathrm{H}_{0}^{2} / \mathrm{m} \mathrm{Pd}\right) \text {. for } \tag{6.12}
\end{equation*}
$$

This means that when $S$ varies from 20 to $200 \mathrm{GeV}^{2} \Delta$ ppp varies only by 0.23 mb . For (6.13) we have

$$
\Delta p, 0<1,510^{-2} \mathrm{mb} \text { cos } S / \pi_{0}^{2}(\cdots P d) \text {. }
$$

Consequently in order to notice this variation it is necessary to measure the cross-section of pd -scattering at least with an accuracy of $0.1 \%$. If the cross-section is measured with an accuracy of up to $1 \%$, then, quite obviously, we can measure only $G_{R R R}$, which generally speaking is extremely important, since after its measurement it is possible to isolate accurately the contribution of

PPP in the inclusive spectrum of the protons. Here it is convenient to use $\operatorname{Re}_{e} \Delta$, since, in fact, it is basically determined precisely by the contribution of $G_{R R R}$

$$
\begin{equation*}
R \in \Delta R R R=\frac{\pi}{R_{d}^{2}} G_{R R R}\left(s / s_{u}\right)^{-1 / 2}(1-x)_{N=X}^{1 / 2} \tag{6.14}
\end{equation*}
$$

(for this, use was made of the expression (6.2) for $S(t)$ ). From $/ 50 /$

$$
R_{e} \Delta_{R R R} \leq 3.0 \mu \delta / \sqrt{\frac{5}{S_{0}}}\left(\dot{S}_{0}=1 \mathrm{Gel}{ }^{2}\right)
$$

## 3. The deuteron as a target with an isotopic

spin equal to zero

When measuring inclusive cross-sections on a deuteron in the range $|x| \rightarrow 1$, it is possible to obtain information concerning the contribution of the different Regge poles, if we describe this inclusive cross-section by the frequently used formulas (see above under chapter 3). It is most interesting to determine the contribution of the PPR and RRR terms, since in this case a contribution is given only by the non-vacuum Reggeons with $I=0$ ( $\omega$ and $f$ ), as distinct from the inclusive process on the proton, where ( $\rho$ and $A_{2}$ ) Reggeons are also substantial. In addition, when comparing the cross-sections of the processes

$$
\begin{equation*}
a+d \rightarrow d+\ldots \tag{6.15}
\end{equation*}
$$

$$
\begin{equation*}
\cdot a+p \cdots-p+\cdots, \tag{6.16}
\end{equation*}
$$

it is possible to check the factorization relation

The relation (6.17) is valid only for $x \rightarrow 1$ in the range where the contribution is given only by the graph PPP . Consequently this, provided that (6.17) is properly fulfilled, will enable us to make a judgment concerning the size of the contributions of types RRR and PPR , the isolation of which is essential in order to determine $G_{p p p}$, and the study of this as a function of $t$ is indeed one of the fundamental tasks of the projected experiment.

## Let us now show that having measured the difference

$$
\Delta \alpha=\frac{\alpha \sigma^{-}\left(\pi^{-} d\right.}{d t}-\frac{d \sigma\left(\pi^{+} d\right),}{d t}
$$

it is possible to determine the relation of the real part to the imaginary part for a scattering amplitude of Td (Ord) with an accuracy of $\alpha / \sqrt{5 / S_{0}} / 91 /$.

In reality, at high energies

$$
\begin{equation*}
\left.\frac{d \sigma\left(r^{2} \alpha\right)}{d t}=/ A(+)^{2} \pm 2 R \in A^{(-2)} i^{*}(+), A^{(-)}\right) \tag{6.18}
\end{equation*}
$$

where $A^{(+)}$and $A^{(-)}$are the contribution of Reggeon or gammaquanta exchange with a positive or negative signature. It can be seen from (6.18) that

$$
\begin{equation*}
\Delta a=4 R_{e} A^{(-)} A^{(4)} . \tag{6.19}
\end{equation*}
$$

As the isotopic spin of the deuteron is equal to zero, a contribution to $A(-)$ is given only by the exchange of one photon (as we know, the photon has a negative signature and contains a state with $I=0$ ) or graphs of the type shown in Fig. 6.3b. As a $\gamma$ exchange gives terms of the order of $\alpha / t$ in the cross-section, and the graphs of Figure 6.3b give terms only of the order of $\alpha \ln \frac{1}{|t| R \Omega}$, which in reality are not great, we shall take into account only the exchange of Figure 6.3 a in $A(-)$. A contribution to $A(+)$ may, generally speaking, be given by the exchanges expressed in Figure 6.4. It should be pointed out that the graphs of Figures 6.4a-6.4f determine the real
contribution to the martel part of the scattering amplitude of strong
Jd -interaction and only the graph of Figure 6.4 g gives the electromagnetic corrections to it. But this graph has an order of
$\alpha / \sqrt{5} / s_{0}$, so that the contribution of $\omega$ and $\rho$ Reggeons falls with an increase in $S$. Finally, (6.19) can be rewritten in the following form /91/

$$
\begin{equation*}
-4 R e A_{c}^{\pi d}\left(A_{S}^{T d}+O(\alpha, \sqrt{s})\right) \tag{6.20}
\end{equation*}
$$

where $A_{c}{ }^{\pi d}$ is the contribution to the amplitude of photon exchange (Fig. 6.3b), equal to $\sim \frac{\alpha}{t} l^{i Y_{c c}}$, where $\mathscr{S}_{c c}$ is the Coulomb phase equal to $\alpha \ln t / \lambda \quad$. $A_{S}^{\pi d}$ is the amplitude of strong interaction. Thus, (6.20) enables a determination of $\operatorname{Re}\left(A_{s} \pi_{e}-i \mathscr{Y} c c\right)$ with an accuracy of $\alpha \sqrt{S}$. Returning to the contribution to the cross-sections of the $\pi^{+} d$-scattering of the interference terms of the $\alpha / t$ type (Coulomb interference), we have

$$
\begin{align*}
& \frac{d G\left(\pi^{+} d\right)}{d t}=2 / A_{c}^{\pi c} /\left(\operatorname{Re}\left(A_{s}^{\pi d(t)} e^{-i \varphi_{c c}}\right)+\right. \\
& +D_{c}\left(A_{s c}^{J a(-)} e^{\left.-i \mathscr{S}_{c c}\right)}\right. \tag{6.21}
\end{align*}
$$

where $\operatorname{Re}\left(A_{s}^{(+)} e^{-i \varphi_{c c}}\right)$ is determined from a measurement of $\Delta \alpha \quad$, and the contribution to $\left(\operatorname{Re}\left(A_{s C}{ }^{\pi d(-)} e^{-i \varphi_{C C}}\right)\right)$ is given by the graphs of the type shown in 6.3 b , bearing in mind that at high energies the main contribution fits the diagram of Figure 6.5 ab . The diagrams of Figure 6.5 a determine the so-called Bethe phase /93/, for which there is the generally accepted expression /94/.

$$
\begin{equation*}
P_{\theta}=\alpha\left(\ln \frac{1}{\mid t /\left(R_{t}^{2}+R_{e}^{2}\right)}-\gamma\right)=\alpha \ln \frac{12}{1 t / R^{2}} \tag{6.22}
\end{equation*}
$$

[^12]In this way, by measuring the differential cross-section of $\pi^{+} d$ and $\pi-\alpha-$ scattering in the region of Coulomb interference, it is possible to find with an accuracy of $\alpha / \sqrt{S / S_{0}}$ the correcBethe tions to the phase and determine how well the generally accepted formula agrees with experiment.

```
The questions touched upon in this lecture are now being subjected to intense experimental research. The authors hope that in the next volume of material for the present school they will be able to report some new experimental data.
```

The authors are grateful to V. N. Gribov, whose work was the theoretical basis of these lectures. The numerous discussions with him have also played a substantial part in preparing the lectures. The authors are also grateful to A. A. Vorob'ev and A. B. Kajdalov for some stimulating discussions.


$$
S \rightarrow{\underset{j}{0}}_{\substack{t \\ g_{1}}}^{\substack{t \\ t-\mu^{2}} S^{0}, \frac{g_{1} g_{2}}{t}}
$$

$$
\mathrm{Pa}{ }_{-}^{g_{1}}
$$

$$
j=1 \sim \frac{g_{1} g_{2}\left(P_{\alpha} P_{6}\right)}{t-\mu^{2}} \sim \frac{g_{1} g_{2}}{t \cdot \mu^{2}} S^{1}
$$

$g_{2} \quad$ b)


Fig. 1.1.


Fig. 1.2. Relation between spin and square of the mass for $\Delta, \wedge, \Sigma$ states.


## Fig. 1.3.

TableI


* $\sigma$ is the Reggeon signature, $I$ is isotopic spin, $S$ is strangeness, $B$ is the baryon number, $G$ is the parity equal to $C(-1)^{1}$, where $C$ is the charged parity, $P$ is the Reggeon parity, $P_{2}=\sigma P$.
** The Reggeon trajectories are reproduced from the data on particle scattering, with the exception of the values underlined. The latter, when drawn through the resonances shown in the table, proyided a straight line (the trajectory parameters were taken from $47 \%$.
*** $P$ is the vacuum Reggeon or Pomeranchuk pole (pomeron). It has been introduced to ensure the constancy of total cross-sections at S $\longrightarrow \infty$.

| :Reaction | Cegageons pro | General chargacteristics of $\frac{\partial}{d t}=A e^{-6 / t /}$ hehaviour |
| :---: | :---: | :---: |
| $p p-p p$ | $\rho+f-\omega+A_{2}-\rho$ | $\begin{aligned} & A=9-13, \text { cone shrinkage with } \alpha^{\prime} p=2=0.28^{*}, \\ & \text { minimum at } t=-13(\mathrm{GeV} / \mathrm{c})^{2} . \end{aligned}$ |
| $\bar{p} p-\bar{p} p$ | $\rho+f+\omega+A_{2}+\rho$ | $b=13-10$, cone widening, minimum at $t \sim=-0.6(\mathrm{GeV} / \mathrm{c})^{2}$. |
| $\kappa^{+} \rho \rightarrow K^{+} \rho$ | $p+f-w+A_{2}-\rho$ | $b=3-6$, cone shrinkage, no minimum at $t=-0.6(\mathrm{GeV} / \mathrm{c})^{2}$. |
| $K^{-} P \rightarrow K^{-} P$ | $p+f+\omega+A_{2}+p$ | $f=7$, the cone does not shrink, the minimum is at $t \sim-0.6(\mathrm{GeV} / \mathrm{c})^{2}$. |
| $\pi^{+} p \rightarrow \pi^{+} \rho$ | $p+f-\rho$ | $b=6-7$, cone narrowing, minimum at $t \sim-0.6(\mathrm{GeV} / \mathrm{c})^{2}$. |
| $\pi \sim \rho \rightarrow \pi i \rho$ | $\underline{\rho}+f+\rho$ | $\ell=7.5$, the cone does not shrink, minimum at $t \sim-0.6(\mathrm{GeV} / \mathrm{c})^{2}$. |
| $\pi{ }^{\prime} p \rightarrow \pi{ }^{\circ} \mathrm{C}$ | $\rho$ | $b=9$, minimum forward and at $t \sim-0.6(\mathrm{GeV} / \mathrm{c})^{2}$ 。 |
| $\pi^{+} p+\chi^{n}$ | $A_{2}$ | $b=5.5$ no minimum. |
| $\bar{x} \rho \rightarrow \pi^{0} \Delta^{++}$ | $\rho$ | $b=10$, minimum forward and at $t \sim-0.6(\mathrm{GeV} / \mathrm{c})^{2}$. |
|  | $A_{2}$ $T_{1}+A_{2}+\rho$ | Minimum forward. <br> Peak forward ("b" in the peak $\sim 40\left(\mathrm{GeV} / \mathrm{c}^{-2}\right)$. |
|  | $\pi_{1}+A_{2}+\rho$ $J_{1}+A_{2}+\rho$ | Peak forward ("f" in the peak ~ $40\left(\mathrm{GeV} / \mathrm{c}^{-2}\right)$. Peak forward. |
| $\underline{p}{ }_{\bar{\rho} p \rightarrow \Delta^{++} \Delta^{++}}$ | $\pi+A_{2}+\rho$ | $b=12$. |
| $\bar{J}_{\underline{\prime} \rho} \rightarrow \rho^{-} \rho$ | $\omega+\pi$ | $b=8$, minimum at $t \sim-0.6(\mathrm{GeV} / \mathrm{c})^{2}$. |
| $\pi N \rightarrow \omega N$ | $\rho$ | $b=3$, minimum forward. |
| $\gamma N \rightarrow \pi^{+} N$ | $\rho+\pi$ | Peak forward. A |
| $J_{1} p-A_{2 p}$ | E | Minimum forward $f=8$ 。 |
| $p n \rightarrow n p$ | $\rho+A_{2}+\pi$ | Peak forward, at $-\mathrm{t}=0-0.02(\mathrm{GeV} / \mathrm{c})^{2}$, " $b$ " in it 57.4, at large $t$, $b=4.3$. |
| $\pi^{+}{ }^{+}-\rho \vec{x}^{+}$ | $\Delta_{\delta}+N_{\alpha}+N_{\gamma}$ | $b=10-12$, minimum at $u=-0.19(\mathrm{GeV} / \mathrm{c})^{2}$. |
| $\pi \rho \rightarrow \rho \pi^{-}$ | $\Delta_{\delta}$ | $b=10-12 \text {, no minimum at } u \approx$ $-0.19 \cdot(\mathrm{GeV} / \mathrm{c})^{2}$ |

* For further details on cone shrinkage see Figures $1.4,1.5$ and 1.6 and also in the text.


## Table $3 a$

| Reggeon exchange | $n$ | $2-2 \alpha(0)$ |
| :---: | :---: | :---: |
| $P$ | 0.3 | 0 |
| Reggeon with $S=0$ | $1.3-2.3$ | 1 for $\rho_{2}, A_{2}$ <br> $1-1.4$ for $\omega$ <br> 2.0 for $\pi$ <br> 1.4 <br> Reggeon with $S=1$ <br> Fermion |

Values of $n$, taken from processing the dependence of the crosssections of varioys, reghqtions on $S$ according to the formula
$\sigma=$ Aplab $^{-n}$,
a) $n$ are reproduced, averaged over the total collectionof reactions with the exchange indicated.

## Table 3 b

| Reaction | g | rgy re $\mathrm{ab}^{\text {in } \mathrm{Ge}}$ | $n$ |
| :---: | :---: | :---: | :---: |
| $\pi^{-} \rho \rightarrow \mathcal{H}_{n}$ | $\rho$. | 5-50 | $\mathrm{I}, 12 \pm 0,03$ |
| $\pi^{+} p-\pi^{0} \Delta^{+*}$ | $\rho$ | 2-13 | $1,6 \pm 0,1$ |
| $T \rho-q n$ | $A_{2}$ | 6-50 | $\mathrm{I}, 35 \pm 0,04$ |
| $\pi^{+} \rho \rightarrow \square^{++}$ | $A_{2}$ | 2-19 | I,57 $\pm 0,15$ |
| $x^{+} P \rightarrow \alpha^{+*} \Delta^{++}$ | $\boldsymbol{J}$ | 4,6-16 | I,68 $\pm 0,08$ |
| $\rho \rightarrow \rightarrow \Delta^{++} \Delta^{-}$ | $\mathscr{T}$ | 3-30 | $1,45 \pm 0,22$ |
| $\bar{\rho} p \rightarrow \bar{\Delta}^{++} \Delta^{++}$ | $\pi$ | 3-6 | $1,09 \pm 0,10$ |
| $\sigma^{-} p \rightarrow \rho^{-} \rho$ | $\omega, \pi$ | 4-40 | I,87 $\pm 0,09$ |

Table $3 b$ gives a representation of the scatter of $n$ over the reactions with the exchange of strange meson Reggeons ( $2-2 \alpha(0)$, see Table 3a).


b)

IHEP V.N. Bologov et al.

- P. Astbury et al.
$\nabla$ E.H. Willen et al.
$\rho, \mathrm{GeV} / \mathrm{C}$

Fig. 1.4. Momentum dependence of slope parameters with the exchange of non-vacuum quantum numbers in the $t$ channel.
a) Reaction of charge exchange $\pi^{-} p \longrightarrow \pi^{\circ} n$ ( $0.15 \leqslant-t \leqslant 0.5(\mathrm{GeV} / \mathrm{c}) 2$ ). The straight line corresponds to the formula $b=(4.2 \pm 0.9)$
$+(2.1 \pm 0.3) \ln S\left(5-\right.$ in $\left.G e V^{2}\right)$.
b) Charge exchange reaction $K-p \rightarrow \bar{K}^{\circ} n$ $\left(-t \geq 0.2(\mathrm{GeV} / \mathrm{c})^{2}\right)$. The straight line corresponds to the formula $b=(4.7 \pm 0.5)$ $+(0.8 \pm 0.4) \ln S / S_{0}\left(S_{0}=10 G \mathrm{eV}^{2}\right)$.

c) Reaction $\mathbb{T}^{-} \vec{p} \rightarrow n_{0} n_{g \gamma}\left(0.2 \leq-t \leq 1.0(G e V / c)^{2}\right)$. The straight line corresponds to the formula $b=(3.7 \pm 0.6)+(0.9 \pm 0.4) \ln S / \mathrm{So}_{0}\left(50=10 \mathrm{GeV}^{2}\right)$.


Fig. 1.5. Parameter of the slope in pp-scattering of $b$ at $|t| \leqslant 0.12(\mathrm{GeV} / \mathrm{c})^{2}$ as a function
of $S$. The straight line corresponds to $B(\mathrm{~S})=$ $b_{0}+2 \alpha^{\prime} \ln \mathrm{s} / \mathrm{so}_{0}$
$\left(b_{0}=8.23 \pm 0.27, \alpha^{\prime}=0.278 \pm 0.024(\mathrm{GeV} / \mathrm{c})^{-2}\right)$.


Fig. 1.6. Compilation of slope parameters in various elastic reactions at $-\bar{t}=0.2(\mathrm{GeV} / \mathrm{c})^{2}$.


Fig. 1.7.


Fig. 1.8.


Table 5

|  | Momentum, $\mathrm{GeV} / \mathrm{c}$ |  |  |
| :---: | :---: | :---: | :---: |
|  | 6-10 | 10-14 | 14-28 |
| $R_{1}=\frac{\sigma\left(\rho \rho-\rho^{0} \rho^{i}\right.}{\sigma\left(\rho \rho-\rho^{0}(\rho \pi)\right.}$ | $0,053 \pm 0,014$ | 0,035 $\pm 0,014$ | $0,055 \pm 0,024$ |
| $R_{2}=\frac{\sigma(p p-p p)}{\sigma(p p-p(p \pi r \pi))}$ | $0,064 \pm 0,007$ | 0,051 $\pm 0,008$ | $0,060 \pm 0,009$ |
| $k_{3}^{+}=\frac{\sigma\left(\pi^{+}+p-\pi^{+}, \varepsilon\right)}{\sigma\left(\bar{\pi}^{+} p-\tilde{\pi}^{+}(p \sqrt{\pi})\right.}$ |  | $0,061 \pm 0,006$ | $0,063 \pm 0,003$ |
|  |  | $0.052 \pm 0.005$ | $0,059 \pm 0,005$ |



Fig. 1.9a. Polarization in the $\pi^{-} p \rightarrow \pi_{0} n$ reaction at $5 \mathrm{GeV} / \mathrm{c}$.


Fig. 1.9b. Energy dependence of the half-difference of the polarizations $\Delta \mathscr{P}=\mathcal{P}\left(\pi^{+} \rho\right)-\mathcal{P}(\pi-\rho)$ in $\pi \pm \rho$ scattering at $-t=0.2 \mathrm{GeV}^{2}$. The data were taken from the report of L. Van Rossum (International Seminar on Binary Reactions of Hadrons at High Energies, Dubna, 1971). The main contribution to the value $\Delta \mathcal{P}$ is given by the Pomeranchuck pole interference with the $\rho$ trajectory.


Fig. 1.10 .


Fig. 1.11.


Fig. 1.12.


Fig. 1.13.


Fig. 1.14.


Fig. 1.15.


Fig. 1.16a. Relationship between the real and imaginary parts of the amplitude of forward PP -scattering, Ppp.


Fig. 1.16b. Relationship between the real and imaginary parts of the amplitude of forward pp-scattering Ppp, measured by the Soviet/American group. The curves are calculations of Ppp from the dispersion relationships on the following assumptions:
I. $G_{T}(P p)$ and $\sigma_{T}(\bar{p} p)$ increase according to $0.49 \ln 9(5 / 122)$;
II. $\sigma_{T}(p p)$ is constant at $E>120 \mathrm{GeV}$ and equal to 38 mb ;
III. $\sigma_{T}(P P)$ become constant and equal to 44.2 mb at
$E>2000 \mathrm{GeV}$.



Fig. 1.18.


Fig. 1.19a. Angular distribution of the cross-section of the charge exchange $\pi-p \rightarrow \pi^{\circ} n$.


Fig. 1.19b. Dependence of the differential cross-section of pp-scattering on $t$ at 4 ISR energies.


F1g. 1.20 .


Fig. 1.21.


Fig. $l_{0} 22$.

a)

\&)

c)

Fig. 1.23 .


Fig. 1.24.


Fig. 2.1.
Relationship between the real and imaginary parts of the amplitude of pn-forward scattering at $\mathrm{E}<70 \mathrm{GeV}$.


Fig. 2.2. Relationship between the real and imaginary
parts of the amplitudes of $k^{-} p$ and $k^{+} p$-forward scattering.


Fig. 2.3a. Total cross-section of pp-interaction at high energies.


Fig. 2.3b. Behaviour of the total cross-sections of $\bar{p} p, k \pm p$ at $\mathrm{E} \leqslant 60 \mathrm{GeV}$ 。


Fig. 2.4a. Relationship between the real and imaginary parts of the amplitude of $\pi \pi^{-p}$-forward scattering.


Fig. 2.4b. Relationship between the real and imaginary parts of the amplitude of $\pi^{+} p-f o r w a r d$ scattering.


Fig. 2.5. $\frac{d 6 p p}{d t}$, analyzed in accordance with the formula $\frac{d 6 p p}{d t}=G_{p}^{4}(t) \ell^{-2 \alpha /|t| l n} s / s_{0}$,
where $G_{p}(t)$ is the electrical form factor of the proton.


Fig. 2.6. Experimental data for $\frac{d 6 p p}{d t}$, taken from $39 /$.


Fig. 2.7. $\frac{d \sigma \pi \rho}{d t}$ constructed in accordance with the formula $G \frac{2}{\pi}(t) G \rho^{2}(t) l^{-2 \alpha^{\prime}|t| l n} s / s_{0}$


Fig. 2.8.


Fig. 2.9a. Dependence of $\frac{d \sigma}{d t}$ on $t$, calculated in accordance with formula (2.5) at $6 \pi \pi=16 \mathrm{mb} \pm 5 \%$.


Fig. 2.9b. Dependence of $\frac{d 6_{p p}}{d t}$ on $-t$ calculated in accordance with formula (2.5) at $8 \pi \pi=32 \mathrm{mb} \pm 5 \%$.



Fig. 3.1.


Fig. 3.2.

a)

b)

c)

Fig. 3.3 .


Fig. 3.4e. Invariant cross-sections of the $p p \rightarrow p X$ process as a function of $\mathrm{M}^{2}$ at $\mathrm{S}=556 \mathrm{GeV}^{2}$ and $\overline{\mathrm{t}}_{\mathbf{-}}=$ $-0.056 \mathrm{GeV}^{2} / 547$ and at $\mathrm{S}=551 \mathrm{GeV}^{2}$ and $\overline{\mathrm{t}}=$ $-0.15 \mathrm{GeV}^{2} / 56$. The curves indicate the fesults of analysis in accordance with 50 , $52 \%$.


Fig. 3.4b. Results of some new experiments shown in drawing $3.4 \mathrm{b-c}$ taken from the review by D.W.G.S. Leith (SLAC-PUB-1330 (T/E) October 1973). these data point to a possible flattening out or even a drop in the inclusive crosssection as a function of $\rho_{L}$ when there is a reduction in $P_{\perp}^{2}$ if the excited masses $M$ are small. These results are to some extent preliminary. They do not agree with the results of other experiments (see for example Fig. 3.6, Fig. 3.5) since the situation requires more accurate experimental details.


Fig. 3.4 c .


Fig. 3.4d.


Fig. 3.5. Invariant cross-section of the pp-pX process as a function of $t$ fig ${ }^{2}$ ififerent cross-sections of $\mathrm{M}^{2}$ at $205 \mathrm{GeV} / \mathrm{c}$. The straight lines correspond to the analysis in the form of $A_{\exp }(\operatorname{in} t)$.
a) $\mathrm{M}^{2}<5 \mathrm{GeV}^{2}$,
$b=9.1 \pm 0.7 \mathrm{GeV}^{-2}$.
b) $5 \leqslant \mathrm{M}^{2}<10 \mathrm{GeV}^{2}$,
$b=8.0 \pm 1.1 \mathrm{GeV}^{-2}$.
c) $10 \leqslant \mathrm{M}^{2}<25 \mathrm{GeV}^{2}$,
$b=6.1 \pm 0.7 \mathrm{GeV}^{-2}$.
d) $25 \leqslant \mathrm{M}^{2}<50 \mathrm{GeV}^{2}$,
$b=5.8 \pm 0.7 \mathrm{GeV}^{-2}$.
e) $50 \leqslant \mathrm{M}^{2}<100 \mathrm{GeV}^{2}$, $b=5.8 \pm 0.6 \mathrm{GeV}^{-2}$.


Fig. 3.6. Inclusive cross-section db/dt of 胡e $a_{2}$ function of $t$ for two intervals ${ }_{2}$ over M2: $\mathrm{M}^{2} \leqslant 10 \mathrm{GeV}^{2}$ and $10<\mathrm{M}^{2}<40 \mathrm{GeV}^{2}$.


Fig. 3.7. Batavia data for proton spectra in the $\quad$. The straight lines coffrgpond to the contribution of JTTP $/ 58$.


Fig. 3.8. Inclusive cross-sections of protons in the $\mathrm{pp} \rightarrow \mathrm{pX}$ reaction at $\mathrm{P}_{\perp}=0.8 \mathrm{GeV} / \mathrm{c}$ for 3 ISR energies .



Fig. 3.10. Comparison of proton 959 gra as functions of $X$ at $\sqrt{S}=3969 V^{\prime}$ (ISR) and at $\sqrt{5}=6.7 \mathrm{GeV}^{639}$ (PS, CERN).


Fig. 3.11. Total interaction cross-section of a $\quad \begin{aligned} & \text { proton with a pomeron at } t=-0.15 \mathrm{Gev}^{2} / 62 / .\end{aligned}$


Fig. 3.12 .


Fig. 3.13.


Fig. 3.14 .


Fig. 3.15. $\begin{aligned} & \text { Expected behaviour of the value }(1+x) \frac{d 6^{2}}{d \times d g^{5}} \\ & \text { in the three. Reggeon region }(x \rightarrow-1)\end{aligned}$ model which takes into account the exchange of pomeron (Fig. 3.36) and two-pomeron cut (Fig. 3.14a, b, formula (3.12)). The curves I are calculated on the assumption that the relative contribution of the cut $\mathrm{d}=1$; curves II: $\mathrm{d}=1 / 2$.


Fig. 3.16 .


Fig. 4.1.


Fig. 4.2.

b)


Fig. $4.3 \mathrm{a}, \mathrm{b}$.


Fig. 4.3. Expected dependence on $q_{\perp}^{2}$ of an element of the density matrix $p_{00} \frac{d \sigma}{d q^{2} y^{4}}$ (in the system of S-channel helicity) for the reaction $\pi+H e \rightarrow A_{1}+4 \mathrm{He}$ in a model which takes into account the exchange of a pomeron, and twopomeron cut (4.2.);
a) relative value of the cut contribution $d=1$; b) $d=1 / 2$; c) $d=1 / 2$. The continuous lines correspond to the contributions only of the imaginary part of the production amplitude $A_{1}$ in the cross-sections.
The dashed lines represent the expected poo $\frac{d G}{d q}$ taking into account both the imaginary and real parts of the amplitude.


Fig. 4.4. Differential corss-sections of the diffraction excitation of a pion in the system of $3-x \pi$ mesons with $\mathrm{t}_{7}^{+}$uantum figures $1_{S}^{+} O\left(A_{1}\right)$ and $2_{b}^{+} 1\left(A_{2}\right)$.


Fig. 4.5 .


Fig. 4.6.

Fig. 5.1.


Fig. 5.2.

a)

b)

Fig. 5.3.


Fig. 5.4.


Fig. 5.5.


Fig. 5.6.


Fig. 5.7.


Fig. 5.8.


Fig. 5.9.


Fig. 5.10.


Fig. 5.11 .


Fig. 5.12 .


Fig. 5.13.


Fig. 6.1.


Fig. 6.2.


Fig. 6.3.


Fig. 6.4.


Fig. 6.5.

1. A.A. Vorob'ev et al. Preprint $\operatorname{FrI}-429$, Leningrad, 1972.
2. V.N. Gribov. "Questions of Blementary Particle Physics", Erevan, pp. 178, 204 and 373, 1962.
K.A. Ter-Martirosyan. "Interaction at high energy", Preprint ITEP-417, 1967.
V.N. Gribov. Lectures on the theory of complex moments, Khar'kov, FTI AN SSSR, 1970.
3. I.T. Dyatlov. Material for the Fifth Winter School of the FTI on Nuclear Theory and High Energy Physics, Part I, p. 94, Leningrad, 1970.
K.A. Ter-Martirosyan. Material for the Sixth Winter School of the FTI on Nuclear Theory and High Energy Physics, Part II, p.334, Leningrad, 1971.
4. V.N. Gribov. Material for the Eighth Winter School of the LNPI on Nuclear Physics and Elementary Particles, Part II, p. 5, Leningrad, 1973.
5. A.A. Ansel'm. Loc. cit. p. 37.
6. R.P. Feyman. "Proton-Hadron Interactions", W.A. Benjamin, Inc. 1972.
7. D.R.O. Morrison. "Review of quasi two-body reactions", ITP-71--66E, Kiev, 1971.
8. Yu.M. Antipov et al. Nucl. Phys., B57, 333 (1973).
9. D.W.G.S. Leith, SLAC-PUB-1141, October 1972.
10. V.A. Kudryavtsev, E.M. Levin, A.A. Shchipalin. Ya. F., 9, 1274, 10, 148 (1969).
11. G.Giacomelli. "Rapporteur's talk at the 16-th International Conference on High-Energy Physics", Batavia, September 1972.
12. V.N. Gribov. ZhETF, 53, 654 (1967).
13. V.N. Gribov. Ya. F., 5, 197 (1967).
14. V.N. Gribov, A.A. Migdal. Ya. F., 8, 1002, 1213 (1968).
15. Ya.I. Azimov, V.A. Khoze. Material for the 8-th Winter School of the LNPI on Nuclear Physics and Elementary Particles, Part II, 101, Leningrad, 1973.
16. K.A. Ter-Martirosyan. "Binary reactions of hadrons at high energies", p.466, Dubna, 1972.
17. V. Bartenev et al. Preprint NAL-PUB-73/73-EXP. 7100. 036., Phys. Rev. Lett., ( to be publ.).
18. A.B. Kajdalov. Ya. F., 10, 619 (1969).
19. E.N. Levin. UFN, III, 29 (1973). Material for the Fifth Winter School of FTI on Nuclear Physics and High-Energy Physics, Part I, 114, Leningrad, 1970.
20. A.B. Kajdalov, B.M. Karnakov. Ya. F., I, 1147 (1968).
M.H. Ross, P.S. Henyey, G.L. Kane. Nucl. Phys., B23, 269 (1972).
21. V.A. Abramovskij, O.V. Kancheli. ZhETF (Letters), 15, 559 (1972).
22. V.A. Abramovskij, V.N. Gribov, O.V. Kancheli. Ya. F., 18, 595 (1973).
23. M. Jacob. Preprint TH-1683-CERN, 1973, TH-1570-CERN, 1972, TH-1639-CERN, 1973.
24. K.A. Ter-Martirosyan. Phys. Lett., 44B, 377 (1973).
25. E.M. Levin, M.G. Ryskin. ZhETF (Letters), 18, 654 (1973).
26. V.A. Abramovakij, O.V. Kancheli, S.G. Matinyan. Phys. Lett., 36B, 565 (1971).
27. V.N. Gribov. Ya. F., 17, 603 (1973).
28. K.A. Ter-Martirosyan. ZhETF, 44, 341 (1963).
K.A. Verdiev, O.V. Kancheli, S.G. Matinyan, A.M. Popova, K.A. Ter-Martirosyan. ZhETF, 46, 1700 (1964).
29. V.N. Gribov, I.Ya. Pomeranchuk, K.A. Ter-Martirosyan. Phys. Lett., 9, 369 (1964), 12, 153 (1964).
30. G.G. Beznogikh et al. Phys. Lett., 39B, 411 (1972).
31. U. Amaldi et al. Phys. Lett., 43B, 231 (1973).
32. G.G. Beznogikh et al. Nucl. Phys., B54, 97 (1973).
33. K.J. Foley et al. Phys. Rev. Lett., 19, 857 (1967).
34. J.R. Campbell et al. Nucl. Phys., (to be publ.), CERN/D.Ph/II/ Phys. 73-21.
35. U. Amaldi. Rapporteur's talk at the 2-nd Aix-en-Provence Intern. Conf. on Elementary Particles, September 1973.
36. K.A. Ter-Martirosyan. Material for the Sixth Winter School on Nuclear Theory and on High-Energy Physics, Part I, p. 155, Leningrad (1971).
37. V.B. Kopeliovich, Ya. F. 18, 406 (1973).
38. A.A. Vorob'ov et al. Phys. Lett., 41B, 639 (1972).
39. G. Barbiellini et al. Phys. Lett., 39B, 663 (1972).
40. E.M. Levin, L.L. Frankfurt, UFN, 94, 243 (1968).
41. L.L. Frankfurt. Material for the 4th Winter School on Nuclear Theory and High Energy Physics, Part I, p. 226, Leningrad, 1969.
42. C.N. Brown et al. Phys. Rev. Lett., 26, 991 (1971).
43. A.A. Ansel'm, V.N. Gribov. Phys. Lett., 40B, 487 (1972).
44. K.A. Ter-Martirosyan. Phys. Lett., 41B, 621 (1972).
45. A.R. Dzierba et al. Phys. Rev., 70, 725 (1973).
46. R.A. Carrigan. Phys. Rev. Lett., 24, 168 (1970).
47. E.I. Berger, G.C. Fox. Nucl. Phys., B26, 1 (1971). G.E. Hita. Rev. Mod. Phys., 4l, 669 (1969). P.D.B. Collins. Phys. Rept., $\frac{1 \mathrm{C}}{70}$, N4 (1971). D.V. Shirkov. UFN 102, 98 (1970).
G. Gidal. Preprint LBL-352, September 1971.
48. L. Caneschi, A. Pignotti. Phys. Rev. Lett., 22, 1219 (1969).
49. A. Capella, Min-Shih Chen. Preprint SLAC-PUB-1252, May 1973.
D. Amati, L. Caneschi, M. Ciafaloni. Preprint CERN-TH-1676, 1973.
50. A.B. Kajdalov, V.A. Khoze, Yu.F. Pirogov, N.L. Ter-Isaakyan. Phys. Lett., 45B, 493 (1973).
A.B. Kajdalov. Material for the 8th Winter School of the LNPI on Nuclear and Elementary Particle Physics, Part II, p. 83, Leningrad, 1973.
51. C. Quigg, L. 工. Wang. Phys. Lett., 43B, 314 (1973).
52. M.G. Albrow et al. Nucl. Phys., B51, 388 (1973), B54, 6 (1973).
53. T.C. Sens. Invited report to the Conference on Recent Advances in Particle Physics, USA, 1973.
54. M.G. Albrow et al. CERN Preprint, September 1973, Submitted to Nucl. Phys.
55. F. Sannes et al. Phys. Rev. Lett., 30, 766 (1973).
K. Abe et al. Paper submitted to the APS Meeting, Berkeley, 1973.
```
56. L. F'Oa. Rapporteur's talk at the 2-nd Aix-en-Provence Int.
 Conf. on Elementary Particles, Aix-en-Provence, 1973.
57. F.C. Winkelman et al. Preprint LBL-2113, }1973
58. S.J. Barish et al. Preprint AHL/HEP-7338, 1973.
59. K.G. Boreskov, A.B. Kajdalov, L.A. Ponomarev. Lectures to the
 ITEF School of Physics, 1973.
60. M. Bishari. Preprint LBL-2066, UC-34d, 1973.
61. E.L. Berger. Preprint CERN TH-1737-CERN.
 M. Jacob. Lecture at 1973 CERN/JINR School of Physics, 1973.
62. A.B. Kajdalov, Yu.F. Firogov, N.I. Ter-Isaakyan, V.A. Khoze.
 Letters to the ZhETF, 17, 626 (1973).
 J.V. Allaby et al. Nucl. Phys., B52, 316 (1973).
64. H.D.I. Abarbanel, V.N. Gribov, O.V. Kancheli. Preprint NAL-THY-
 76, August 1972.
 H.D.I. Abarbanel, S.D. Ellis, M.V. Green, A. Zee. Preprint NAL-
 THY, April 1972.
65. G. Ascoli et al. Phys. Rev. Lett., 26, 929 (1971).
66. J.W. Lamsa et al. Nucl. Phys., B37, 364 (1972).
 J.V. Beaupre et al. Nucl. Phys., B47, 51 (1972).
67. Yu.M. Antipor et al. Nucl. Phys., B63, 153 (1973).
68. F.Halzen, C. Michael. Phys. Lett., 36B, 367 (1972).
 A. de Lesquen et al. Phys. Lett., 40B, 277 (1972).
 G. Cozzika et al. Phys. Lett., 40B, 281 (1972).
69. V.N. Bolotov et al. Ya. F. 18, 1046 (1973).
70. B.Bartenev et al. (to be published).
71. J.V. Allaby et al. Nucl. Phys., B52, 316 (1973).
 E.W. Anderson et al. Phys. Rev. Lett., 16, 855 (1966).
 R.M. Edelstein et al. Phys. Rev., 5D, 1073 (1972).
72. A.A. Migdal, A.M. Polyakov, K.L. Ter-Martirosyan. "Theory of
 interacting pomeron", Preprint L.D. Landau Inst. for
 Theor. Phys., Ya. F. (in course of publication), 1974.
 H.D.I. Abarbanel, G.F. Chew, M.I. Goldberger, L.M. Saunders.
 Phys. Rev. Lett., 26, 937 (1971).
74. A.B. Kajdalov. Lectures at the First School of Physics of ITEF,
 1973.
```

75. K.A. Ter-Martirosyan. Report to the Second International Conference on High Energy Physics, Geneva, 1962, ZhETF, 44, 341 (1963).
T.W.B. Kibble. Phys. Rev., 131, 2282 (1963).
76. D.Z. Freedman, C.E. Jones, F.E. Low, J.E. Joung. Phys. Rev. Lett., 26, 1197 (1971).
K.A. Ter-Martirosyan, Yu.M. Shabel'skij. Letters to the Zh. E.T.F., 15, 154 (1972).
77. R. Lipes, G. Zweig, W. Robertson. Phys. Rev. Lett., 22, 433, (1969).
78. J.V. Beaupre et al. Nucl. Phys., B46, 1 (1972).
79. U. Idschok et al. Nucl. Phys., B53, 282 (1973).
80. V. Blobel et al. Preprint DESY 73/37, August 1973.
81. M. Derrick et al. Submitted to Phys. Rev. Lett., 1974.
82. A.B. Kajdalov, K.A. Ter-Martirosyan. Nucl. Phys. (to be publ.), 1974.
83. K.G. Boreskov, A.B. Kajdalov et al. Ya. F., 15, 361 (1972); 17, 1285 (1973).
84. K.G. Boreskov, A.B. Kajdalov, L.A. Ponomarev. Lectures to the First School of Physics of the ITEF, 1973.
85. R.J. Glauber. Phys. Rev., 100, 242 (1955).
86. V.N. Gribov. ZhETF, 88, 892 (1968).
87. O.V. Kancheli, S.G. Matinyan. Ya. F., 11, 1305 (1970).
88. V.V. Anisovich. Material for the Eighth Winter school of the IINP on Nuclear and Elementary Particle Physics, Part I, p. 51, Leningrad, 1973.
89. J. Pumplin, M. Ross. Phys. Rev. Lett., 21, 1778 (1968).
90. V.N. Gribov, E.M. Levin. Ya. F., (in course of publication), 1974。
91. V.B. Kopeliovich. Ya. F., 18, 408 (1973).
A.A. Kondratyuk, V.B. Kopeliovich. Ya. F., 13, 600 (1971).
92. V.M. Kolybasov, M.S. Marinov. UFN, 109, 137 (1973).
93. H. Bethe. Ann. Phys., (N.Y.), 3, 190 (1958).
94. G.B. West, D.R. Yennie. Phys. Rev., 172, 1413 (1968)。

[^0]:    *) V.N. Gribov participated actively in the discussions of all fundamental questions discussed in this paper.

[^1]:    * V. N. Gribov participated actively in the discussions of all fundamental questions discussed in this paper.

[^2]:    *There is an indication that when there is a limitation of the range to $|t|<0.1$ and energies to $S>40 \mathrm{GeV}^{2}$ in these reactions the cone also will bemaneo /8/.
    shrink

[^3]:    * Similar curves for $\rho_{K} \pm_{\boldsymbol{p}}, \rho_{K} \pm_{\boldsymbol{n}}$ have been communicated in papers by K. A. Ter-Martirosyan $/ 36 /$, where an examination was made of a more realistic model and during the fitting of the expertmental results no conditions of exchange degeneration were imposed.

[^4]:    * Recent measurements carried out in the NAL bubble chamber (D. Bogert et al.) at $205 \mathrm{GeV} / \mathrm{c}$ give for $\sigma_{\ell}(\boldsymbol{T} \boldsymbol{p})$, a value of $24 \pm 0.5 \mathrm{mb}$.

[^5]:    * Here we have taken account of the fact that the proton may consist of partons (quarks) and that part of the proton radius ( $\sim$ half) corresponds to the small probability of collection of partons after backecattering on to a proton. But the second part of the radius relates to the vertex of parton interaction with a pomeron. If is precisely this part of the radius which is determined by the eikonal approximation.

[^6]:    Thus, the single-pomeron contribution to diffraction dissociation should disappear $\vec{q}_{1}=0$ for any excited mass $M$. Consequently, as in the three-pomeron case, which was discussed above, the cross-section of diffraction dissociation in a state with any given mass at $\vec{q}_{1}=0$

[^7]:    * We have no other vector which has a non-zero transverse component by which it would be possible to multiply $\vec{q}_{1}$, in order to obtain a scalar.

[^8]:    In (3.12) both the contribution of the single-pole and the contribution of the interference terms to the cross-section decreases in accordance with $\sim q_{4}^{4}$. This occurs as a result of averaging for polarization of the beam particles which is not present in (4.2).

[^9]:    * We eikonal

    In approximation in the theory with the asymptotically non-constant total cross-section, the cross-section of the forward process

    $$
    \pi+\rho \rightarrow A_{1}+p_{2} \text { increases by } 5-12 \% \text { as } s \text { increases from } 100
    $$ to $800 \mathrm{GeV}^{2}$.

[^10]:    (For the evaluation we shall consider the transverse momenta to be small

[^11]:    * A similar evaluation was obtained also by A.B. Kajdalov and K.A. Ter-Martirosyan/82/.

[^12]:    (the latter equality forming part of the potential approach), whilst the diagrams of Figure 6.5b give the corrections.

