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ABSTRACT

In order to obtain a local description of the short-distance physics of fractionally quantized Hall

states for realistic (e.g. Coulomb) interactions, I propose to view the zeros of the ground state

wave function, as seen by an individual test electron from far away, as particles. I then present

evidence in support of this interpretation, and argue that the electron e�ectively decomposes

into quark-like constituent particles of fractional charge.
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It is a great pleasure to thank the organizers, but in particular Professor Alberto Devoto

from the University of Cagliari, for inviting me to the 3rd Chia Meeting on Common Trends in

Condensed Matter and High Energy Physics

1 Introduction

When asked what happens in a superconductor on a very naive level, most learned physicists

would answer that electrons form pairs which then condense into a superuid. Very few,

however, could o�er an equally insightful explanation of the fractional quantum Hall e�ect. One

might say that two-dimensional electrons in a strong perpendicular magnetic �eld condense into

an incompressible quantum uid described by an ingenious wave function due to Laughlin, but

all of us would probably agree that such an explanation falls short of the simplicity Bardeen,

Cooper and Schrie�er could o�er.

In this lecture, I will attempt to make up for this de�ciency. I will argue that electrons in

fractionally quantized Hall uids e�ectively decompose into smaller, quark-like particles, which

then bind together to form|electrons.

This is not to say that electrons cease to be the fundamental degrees of freedom in these

systems|a quantum mechanical description of all the electrons in the liquid is as complete as

any description can be|but rather that the hierarchy of e�ective �eld theories is reversed.

While we usually assume that constituent particles are more fundamental than composite

particles|quarks are thought as more fundamental than hadrons in the standard model, or

electrons as more fundamental than Cooper pairs in superconductors|fractionally quantized

Hall liquids provide us with an example where the composite particles, the electrons, are funda-

mental while the smaller constituent particles, which I call quantum Hall quarks, are �ctitious

or e�ective degrees of freedom induced by the surrounding electron condensate.

I wish to address myself to a general audience without detailed knowledge of quantized Hall

uids, and will begin with a review of the long distance physics.

2 Laughlin's theory of the long distance physics

Most of our understanding of the fractionally quantized Hall e�ect is based on a highly original

trial wave function for the ground state proposed by Laughlin 1:

	m(z1; z2; :::; zN) =
NY
i<j

(zi � zj)
m

NY
i=1

e�
1

4
eBjzij

2

: (1)

This wave function describes a circular droplet of an incompressible electron uid in a strong

perpendicular magnetic �eld B. The fact that all the electrons live in the lowest Landau level

constrains the wave function to an analytic function in the complex particle positions z = x+iy

times a Gaussian; the Jastrow factor
Q
(zi�zj) raised to an odd integer powerm very e�ectively

suppresses unwanted con�gurations in which electrons come close to each other.
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The Landau level �lling fraction is de�ned as

� �
@N

@N�
; (2)

where N is the number of electrons and N� the number of Dirac ux quanta through the liquid.

The latter is equal to the number of zeros of the wave function 	(z1; z2; :::; zN) seen by an

individual test electron with coordinate z1 while all the other electron coordinates z2; :::; zN are

held at �xed positions. For the Laughlin state (1) above, such a test electron will see m zeros at

the positions of each other electron, and no additional zeros elsewhere. This implies � = 1=m.

The elementary excitations, quasiholes and quasielectrons, correspond to additional zeros

which are not attached to electrons, or of de�cits of zeros in given regions, respectively. Laugh-

lin's explicit trial wave function for the quasi-hole is given by

	�
m (z1; z2; :::; zN) =

NY
i=1

(zi � �) 	m(z1; z2; :::; zN) : (3)

It is immediately obvious that m quasiholes at the same point � amount to a true hole in the

liquid, which has charge +e; the convention here is e > 0. The quasihole charge is therefore

e=m. There is a similar trial wave function for the quasielectron, which involves derivatives in

the zi's.

The experimentally observed plateaus in the Hall resistivity around �lling fractions 1=3 and

1=5 are due to localization by impurities of all the quasiparticles present to account for the

excess density, which then cease to contribute to the transport properties.

The trial wave function (1) is actually a rather good approximation to the exact ground

state of two dimensional electrons with Coulomb interactions in the lowest Landau level; at

� = 1
3 , a numerical comparison for 6 electrons on a sphere yields 2

h	m=3 j 	exact i = 0:9964 : (4)

The reason for this remarkable agreement, or more generally for the success of Laughlin's
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Figure 1: Pseudopotentials for (a) which the Laughlin 1/3 state is exact (b) a Coulomb interaction projected

onto the lowest Landau level.

theory, is that it captures the correct long distance physics. The essential physics contained in

the trial wave function (1)|in fact the only physics except for the magnetic �eld|is that the

electrons become superfermions for m = 3; 5; :::etc. The notion of superfermions makes sense

in two space dimensions only. It means that the phase picked up by the wave function when

one electron encircles another is not 2�, as Fermi statistics requires it, but an odd multiple

2�m, which is consistent with Fermi statistics as well. The fractional quantum numbers of the

quasiparticles, for example, are a direct consequence of the superfermions.

Before closing this review, I would like to point out a technical detail 3 which will ease the

exposition in the following chapter. In the lowest Landau level, any two-body potential can be

parameterized by a discrete set of pseudopotentials Vl, which denote the energy cost of having

relative angular momentum l between two particles. The Laughlin 1/3 state is the exact ground

state of a model Hamiltonian where only the pseudopotential V1 > 0 while all the other Vl = 0

for l = 3; 5; :::etc., as shown in Figure 1a. The reason for this is simply that the superfermions

have|it follows directly from their de�nition|no amplitude to be in a state of relative angular

momentum l = 1.

3 Quantum Hall quarks and the short distance physics

Now imagine we adiabatically deform the set of pseudopotentials shown in Figure 1a into the

corresponding set for Coulomb interactions shown in Figure 1b. Then the ground state will

evolve from a Laughlin 1=3 state into the exact Coulomb ground state at � = 1
3. We know from

the overlap (4) that the state cannot change very much, and from the correctness of Laughlin's

theory that the long distance physics cannot change at all|the changes must occur at short

distances. The superfermions must evolve into approximate superfermions, that is, particles

which look like superfermions from far away, yet are di�erent from the exact superfermions

contained in Laughlin's trial wave function.

To elucidate this notion, consider once more the zeros of the wave function as seen by an

individual test electron z1 while all the other electron coordinates z2; :::; zN are �xed. The exact
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Figure 2: Zeros of 	Coul:(z1; z2; :::; zN) as seen by an individual test electron z1. The zeros denoted by crosses

stem from a Jastrow factor and coincide with the electron positions z2; :::; zN, while those denoted by dots are

in general very complicated functions of all the electron coordinates in the vicinity. Also shown is an isolated

zero not associated with any electron, which corresponds to a quasihole excitation.

Coulomb ground state is of the general form

	Coul:(z1; z2; :::; zN) =
NY
i<j

(zi � zj) P (z1; z2; :::; zN)
NY
i=1

e�
1

4
eBjzij

2

: (5)

The Jastrow factor must be present since 	Coul:(z1; z2; :::; zN) is antisymmetric; P (z1; z2; :::; zN)

is, in general, a complicated symmetric polynomial. A cartoon of the zeros of 	Coul: in a given

region, as seen by a test electron from far away, is shown in Figure 2. There are three zeros

associated with each electron: one of them (denoted by a cross) stems from the Jastrow factor

in (5) and coincides with the electron coordinate zi; the other two (denoted by dots) stem from

the polynomial P (z1; z2; :::; zN) and are, in general, very complicated meromorphic functions of

all the electron coordinates in a range which depends on the range of the interaction potential.a

In the limit of the minimally short ranged potential shown in Figure 1a, the positions of these

two zeros depend only on the coordinate of the electron they are associated with|in fact,

they coincide with this coordinate: P (z1; z2; :::; zN) becomes a Jastrow factor squared, and the

general ground state (5) the Laughlin 1/3 state.

The reason the test electron must be far away is that the positions of the zeros associated

with each electron depend on the position of the other electrons nearby. If we were to pick an

electron nearby as a test electron, the zeros seen in this region would be those seen by another

test electron from far away if the test electron nearby would not exist. The positions of the

zeros would therefore depend on which of the electrons nearby we were to pick as a test electron.

If we, however, choose an electron far away as the test electron, the positions of the zeros in

the region nearby will not depend on our choice and an interpretation of the zeros as particle

coordinates, as I will advocate below, is conceivable.

aThe corresponding observation for mixing with higher Landau levels has been made by Halperin 4; my

considerations here, however, only involve the lowest Landau level.
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This brings me to the heart of the matter. In order to provide a local description of the short

distance physics of fractionally quantized Hall uids, I propose to view the zeros associated with

the electrons as particles. The electron e�ectively decomposes into three smaller constituent

particles,b

e� ! udd (6)

where the u and d particles, or quantum Hall quarks, are the zeros due to the Jastrow factor and

the polynomial P (z1; :::; zN), respectively, as shown in Figure 2. The d particles are equivalent

to quasiholes, in the sense that a quasihole is nothing but an isolated d. The charge of the d

must therefore be equal to the charge of the quasihole, which we know to be +1=3. Since the

vacuum or ground state is neutral on a level on which the quasihole assumes this charge, the

total charge of the udd composite must be zero, which implies that the charge of the u is �2=3.

Most of the remainder of this talk is devoted to motivating and elucidating this idea. To

begin with, I will use the hierarchy of quantized Hall uids 3;5;6 to establish an interpretation

of the quasiparticles in quantized Hall uids as particles.

4 Particle interpretation of quasiparticles and the hierarchy

The quasiparticle excitations of quantized Hall liquids, quasielectrons and quasiholes, were orig-

inally conceived as vortices 1, and are adequately interpreted as such when a plateau in the Hall

resistivity results from their localization by disorder. There are situations, however, where an

alternative interpretation as quantum mechanical particles is not only possible, but inevitable.

The hierarchy of quantized Hall states provides us with an example: the quasiparticles them-

selves condense into a Laughlin-Jastrow type uid, and it is necessary to assign a wave function

to them in order to describe this condensation.cMore precisely, we write an [m;+p] state, that

is a p daughter state of quasihole excitations of an m parent state, as 7;8

	[m;+p] (z1; :::; zN) =
Z
D[�; ��] �m (��1; :::; ��N1

) �

�

N1Y
k<l

(�k � �l)
1

m

N1Y
k=1

e�
1

4m
eBj�kj

2

N1Y
k=1

NY
i=1

(zi � �k) �

� 	m(z1; :::; zN) (7)

with the quasiparticle wave function

�m (��1; :::; ��N1
) =

N1Y
k<l

(��k � ��l)
p+ 1

m

N1Y
k=1

e�
1

4m
eBj�kj

2

(8)

and N1 = N=p. The �rst two factors in the second line of (7) serve to normalize the quasiparticle

Hilbert space. The fact that we have to integrate over the quasiparticle coordinates to obtain

bThe idea illustrated here for � = 1=3 generalizes in an obvious way to � = 1=m.
cAn alternative approach to hierarchical Hall states in terms of \composite fermions" has been proposed 9;

there is good reason to believe, however, that the explicit wave functions motivated by this notion are, in fact,

hierarchy wave functions in disguise 8.
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a wave function for electrons is entirely consistent with their nature as quantum mechanical

particles, as quantum mechanical degrees of freedom always have to be integrated out with

a wave function as a measure whenever we wish to calculate a meassureable quantity (e.g. a

transition probability).

The explicit trial wave function (7), and its cousin for the [m;�p] state in which quasi-

electrons rather than quasiholes condense, are excellent approximations to the exact Coulomb

ground states; at � = 2
5
, the overlap for 6 electrons on a sphere is d

h	[3;�2] j 	exact i = 0:9995 ; (9)

a number which compares favorably even with the Laughlin 1/m states.

It is perhaps worth noting that we may assign a wave function for an isolated quasiparticle

as well. Speci�cally, we may write

	�
m(z1; z2; :::; zN) =

Z
D(�; ��) ��(��) e�

1

4m
eBj�j2

NY
i=1

(zi � �) �

� 	m(z1; z2; :::; zN) (10)

with a wave function for a charged particle localized in a magnetic �eld as the quasihole wave

function:

��(��) = e�
1

4m
eBj���j2 e+

1

4m
eB(�������) : (11)

This wave function is, after performing the integration, equivalent to (3); the only virtue it

bears is that it suggests the possibility of interpreting the quasihole as a quantum mechanical

particle.

The particle nature of the quasiparticles leads us to the question of their origin, to the

question of where new particles of fractional charge may come from. The answer is the obvious

one, and this is precisely why it is so hard to swallow: The charges of the quasiparticles are

parts of electron charges, and the quasiparticles themselves are parts of electrons. In order for

quasiparticle excitations to exist, the vacuum or ground state must contain them already in

a con�ned phase|the vacuum must be a phase in which pieces of electrons bind together to

form electrons. e

5 Induced dynamics and scattering in Monte Carlo time

Particle physicists usually establish the existence of new particles by observing them as reso-

nances in scattering experiments. This is not possible for quantum Hall quarks, once because

the kinetic energy of all the particles involved is quenched due to Landau level quantization,

dStrictly speaking, I have only been able to compute this number without the long distance normalization

factor j�k � �lj
2=m in (7) and (8) or with a factor j�k � �lj

2 instead; the results are 0.999546 and 0.999543,

respectively 8.
eThe possibility of an interpretation along these lines has been suggested by Wilczek. 10
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and a concept of time does consequently not exist, but even more profoundly so because we

invoke quantum Hall quarks to describe the vacuum, which trivially excludes the possibility of

scattering experiments.

Fortunately, there is a way around these problems. While we do not have a concept of

real time, we can perform a Monte Carlo simulation and monitor scattering events as particle

con�gurations evolve in Monte Carlo time. Let me briey review the technique: a Monte

Carlo simulation is a numerical method to approximate an integral over many variables with

a probability � as a measure. Instead of integrating over the variables directly, we interpret

them as dynamical variables, and let them evolve in Monte Carlo time. This concept of time

is discrete; at each step we randomly pick one of the variables, and de�ne a new con�guration

by randomly choosing a new value for this variable according to a certain distribution, which is

usually taken as a Gaussian centered at the present value. Finally, we randomly decide whether

to update the con�guration or not according to probabilities proportional to the measure � for

the new and for the present con�guration, respectively. The desired integral is obtained by

averaging the integrand (not including the measure) over a long span in Monte Carlo time; the

approximation becomes exact as this span tends to in�nity.

In our case, the Monte Carlo variables are the electron coordinates zi, and the measure � is

the probability j	Coul:(z1; :::; zN)j
2. A snapshot of a typical Monte Carlo con�guration including

all the zeros or quantum Hall quarks, is shown in Figure 3a. Only the electron coordinates, or

u quantum Hall quarks, are truly dynamical variables in Monte Carlo time; the dynamics of

the remaining zeros, or d quantum Hall quarks, is induced through the surrounding electron

condensate. This, however, does not emerge from Figure 3a, nor does it ever manifest itself as

we follow the evolution of this con�guration on a continuous time scale|that is, a time scale

on which all the variables evolve simultaneously.

Let us now look at a particular scattering event, as shown in Figure 3. In this event, two

electrons scatter o� each other, and interchange one of their constituent particles: two electron

coordinates happen to come very close to each other, and remain unchanged for a number

of Monte Carlo steps, while the con�guration of the additional zeros associated with them

evolves with the surrounding electron liquid; this con�guration will, in general, have changed

signi�cantly by the time the two electrons separate again. Thus there is a �nite amplitude for

zeros to get interchanged|the zeros are indistinguishable when interpreted as particles, and

scatter into each other as identical particles do in quantum mechanics.

This thought experiment does not only motivate the possibility of quantum Hall quarks,

but in my opinion also shows the necessity for invoking them: for what other framework could

describe objects which scatter into each other like identical particles if not the framework of

identical particles? Moreover, it nicely illustrates the underlying reason why it is possible for

these �ctitious or induced degrees of freedom to become particles: induced and fundamental

degrees of freedom are locally equivalent, in the sense that no local experiment, and in particular

no scattering experiment, is capable of resolving the di�erence. fThis is precisely the reason why

fNote that this ambiguity in interpretation, the ambiguity between �ctitious and fundamental degrees of

freedom, exists for scattering experiments performed on hadrons as well.
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Figure 3: Electron{electron scattering in Monte Carlo time for an exact Coulomb ground state at � = 1=3

: a) two electron coordinates (or u quantum Hall quarks) happen to come very close to each other. b) the

surrounding electron con�guration evolves in Monte Carlo time, and with it the con�guration of the zeros (or

d quantum Hall quarks) of the two electrons close to each other. c) the two electrons separate again, having

interchanged one of their constituent particles.
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Figure 4: Quasihole-quasielectron pair created by removing a d-particle from the vacuum in a given region and

placing it somewhere else.

it is perfectly reasonable to invoke quantum Hall quarks in order to provide a local description

of fractionally quantized Hall uids at short distances.

6 Quantum Hall quarks and quasiparticles

As already mentioned in chapter 3, the d particle is equivalent to a quasihole excitation, in

the sense that a quasihole is nothing but a d in isolation. To see this, we just need to perform

another Monte Carlo experiment with an exact quasihole for Coulomb interactions at some

location �, and we will �nd that the position of the zero associated with the quasihole does not

exactly coincide with the position �, but rather depends on all the electron coordinates in the

vicinity, as indicated in Figure 2. Moreover, we will �nd that this zero has a �nite amplitude to

get interchanged with other zeros or d particle in the liquid as electrons scatter o� the quasihole

in Monte Carlo time.

This thought experiment is very instructive, since it illustrates the precise sense in which the

exact quasihole for realistic interaction potentials di�ers from Laughlin's trial wave function (3).

This di�erence has troubled me for many years, as it is known from numerical studies 2 that the

quasihole expands in size as the interactions get softer, while the Landau level quantization for

the quasihole (10,11) seems to indicate that Laughlin's trial wave function is the only possible

form with the correct quantum numbers if we assume that the zero is distinguishable in the

sense of having no amplitude to get interchanged with another zero.

The equivalence of con�ned and isolated zeros can also be deduced from the fact that a

quasihole-quasielectron pair is created by removing a zero from the vacuum in a certain region

and placing it into another region, as illustrated in Figure 4. This observation immediately

suggests a possible application for a quantitative version of this theory. It would enable one

to calculate quasiparticle energies from the local �eld con�gurations for the quasihole and the

quasielectron, and therewith calculate them for the �rst time: for all the previous evaluations of
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these energies, which numerically compare �nite systems with and without excitations, amount

strictly speaking to measurements.

7 Delusion of composite fermions

I would like to pause briey now to rectify a misconception, which is important because it has

spread so widely over the literature. This misconception is the notion of \composite fermions",

de�ned 9 as \an electron bound to a ux tube" or \the composite of an electron and an even

number of ux quanta". It is the main point of this lecture to illustrate that the electron itself

becomes a composite particle, a bound state of a u with an even number of d particles, which

implies that nothing is bound to electrons.

Let me explain once more why this must be so. An isolated ux tube or quasihole is a

particle, is a piece of an electron. This ux tube or zero in the wave function is equivalent to the

other ux tubes or zeros in the condensate, to those associated with the electrons. Therefore the

interpretation for the isolated and con�ned ux tube must be the same, and both are particles,

both are pieces of electrons. It clearly does not make sense to think of composites which are

formed by binding pieces of electrons to electrons; the correct interpretation is that pieces of

electrons bind to other pieces of electrons, and that the electron itself becomes the composite

particle.

8 Conclusions

Most of what I have explained in this lecture concerns the ground state or vacuum of frac-

tionally quantized Hall uids. The concept of quantum Hall quarks has some applications to

quasiparticle excitations, as we have seen in chapter 6, but is not nearly as important in de-

scriping them as Laughlin's theory of the long distance physics, while excitations are all that

matters to experiments performed on quantum Hall systems. The real signi�cance of the anal-

ysis presented here lies in the general message we can learn from it, and the potential relevance

of this message to other systems, in particular to the vacuum of our universe, the ground state

which supports all the elementary particles known to us as excitations.

This general message is that the particles we see or detect as excitations above a certain

vacuum may not be contained in this vacuum on a fundamental level, and might possibly be

pieces of larger particles invisible to us. The degrees of freedom we perceive as fundamental

may in fact be �ctitious or induced, and fractional quantum numbers|but in particular the

fractional charges of quarks in quantum chromodynamics|may arise through a mechanism

related to the one responsible for quantum Hall quarks. If we speci�cally imagine an observer

who lives in a quantized Hall uid and consists of quasiparticles, this observer would never see

electrons, but only �ctitious particles of fractional charge, and would naturally be inclined to

accept those as fundamental. Note in particular that scattering experiments, both the ones

performed by this observer as well as the ones performed by us in particle accelerators, are
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incapable of resolving the ambiguity between induced and fundamental degrees of freedom.

In this spirit, I wish to express my hope that condensed matter and high energy physics

may never cease to exchange inspiration.
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