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Stability of the quantum supermembrane
in a manifold with boundary
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Abstract

We point out an effect which may stabilize a supersymmetric membrane
moving on a manifold with boundary, and lead to a light-cone Hamiltonian
with a discrete spectrum of eigenvalues. The analysis is carried out explic-
itly for a closed supermembrane in the regularized SU (N) matrix model
version.
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1. In ref. [1] it was shown that the light-cone Hamiltonian of the eleven dimensional

supermembrane theory [2] has a continuous spectrum. The proof was given for membranes

moving in eleven-dimensional Minkowski space-time. It is important to investigate whether

this instability persists if the manifold has a boundary. In particular, recent results in

string dualities [3] indicate that the strong coupling limit of ten-dimensional heterotic

string theory is described by an eleven-dimensional theory compactified on S1/Z2 = I (I

is the unit interval). It is plausible that the eleven-dimensional supermembrane theory on

the orbifold R10 × I may be of relevance to this theory. Another view is to regard the

membrane states just as solitonic objects which need not to be quantized in order to have

a description of gravitons (see e.g. [3-5]). In either case, it would be desirable to identify

possible stable membrane states, which are not protected topologically.

The relevance of the present results to M-theory on S1/Z2 is nevertheless unclear (for

a review on M-theory, see ref. [6]). In particular, we do not know whether the boundary

conditions for the membrane wave function that will be used here can be consistently

implemented in this theory. In conventional quantum field theory, a boundary in space-

time requires imposing (e.g. Dirichlet or Neumann) boundary conditions on the fields, to

prevent momentum and quantum information from leaking out from the physical space.

In particular, a wave function with quantum mechanical probabilistic interpretation must

vanish at the boundary. This is the assumption that will be made here for the membrane

wave function. In the orbifold S1/Z2, however, the only restriction is that wave functions

are Z2-invariant, modulo a suitable action on the internal quantum numbers. But they

are generally not required to vanish at the fixed points; one is essentially dealing with a

compact space, where the states which are not invariant under the action of the discrete

group have been projected out from the Hilbert space. Thus the only direct implication of

the present results to a supermembrane moving on R10×S1/Z2 is perhaps the observation

that its instabilities are all caused by modes whose associated wave functions do not vanish

at the fixed points. In other words, the spectrum of the supermembrane is discrete upon

the restriction to the Hilbert space of membrane states with nodes at the fixed points.

At long wavelengths, the dynamics of the supersymmetric membrane is dictated by

the action of [2] (recent discussions on different aspects of membranes and five-branes can

be found in refs. [7,8]). Classically, the presence of a boundary in the space may appear

to have no influence in solving the instability problem, since the wave function could leak

out to infinity along one of the remaining Minkowski spatial directions. Fortunately, this

is not what happens in the quantum theory: we shall see that the boundary modifies the
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asymptotic zero-point energy of oscillators which are transverse to the potentially danger-

ous direction, in such a way the resulting motion of the membrane modes are confined

(analogue to the Casimir effect which stabilizes the bosonic membrane).

We start with the example which in ref. [1] was used to illustrate the instability of the

supermembrane. The Hamiltonian is

H = 1
2

(
−∆ + x2y2 x+ iy
x− iy −∆ + x2y2

)
. (1)

The quantum mechanical system we want to consider is governed by the Hamiltonian (1)

and, in addition, we put an infinite barrier at xy = 0, the accessible space being defined

by xy ≥ 0. This breaks supersymmetry explicitly. (The breaking may also be regarded

as “spontaneous”, if the condition ψ(0) = 0 is interpreted as a physical restriction on the

Hilbert space. It is also possible to define the system (1), including the infinite potential

barrier, as a limit of a supersymmetric quantum system, i.e. with H = 1
2
{Q,Q†} ).

Following [1], we consider the wave packet

ψt(x, y) = χ(x− t)ϕ0(x, y)ξF , ξF =
1
√

2

(
1
−1

)
, (2)

which is designed so as the wave packet may escape along the potential valley at y = 0.

Here χ(x) is a smooth function with compact support, and the spinor ξF is chosen to give

a maximal negative contribution to the energy of the wave packet, i.e.

ξT
FHξF = HB −

1
2x , HB = − 1

2∆ + 1
2x

2y2 .

We would like to study the motion of χ in the ground state of ϕ0(x, y). ϕ0(x, y) represents

oscillations of the y-coordinate at fixed x about the bottom of the potential valley:

H2ϕ0 = E0ϕ0 , H2 ≡ − 1
2

∂2

∂y2
+ 1

2
x2y2 , (3)

where H2 is viewed as an operator on Hy = L2(R, dy) . This is the equation of the

harmonic oscillator. In the absence of a boundary, the ground state energy is E0 = 1
2 |x|,

which would just cancel against the fermionic contribution, and the motion for χ would be

unbounded. Because of the wall, ϕ0 must satisfy the boundary condition ϕ0(y = 0) = 0.

The wave-function of the ground state is

ϕ0(x, y) =

√
2

π1/4
|x|3/4y exp(− 1

2 |x|y
2) , (4)
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with a zero-point energy E0 = 3
2 |x|. Consequently, we have for χ

lim
t→∞

(ψt,Hψt) =

∫
dxχ∗(x)

(
− 1

2∂
2
x + |x|

)
χ(x) , (5)

which implies that the motion is bounded, and that the spectrum of H is discrete (from eq.

(5) it can be explictly proven that Tr e−tH <∞, e.g. using the “sliced bread inequalities”

[9]).

This mechanism relies on the uncertainty principle; the zero-point energy increases as

the classically accessible region for the particle is squeezed. Clearly, a similar effect holds

for more general boundaries, for example, a boundary of the form −1 ≤ y ≤ 1 would also

increase the zero-point energy of ϕ0.

2. Let us consider a quantum system governed by the following Hamiltonian (analogue to

eq. (3))

H2 = − 1
2

∂

∂yi

∂

∂yi
+ 1

2(zTz)ijy
iyj , i, j = 1, ..., n , (6)

where z is an n×n antisymmetric real matrix. For n > 2 the matrix zTz will in general not

be diagonal. By a suitable SO(n) rotation M , ui = Mijy
j , we can take the Hamiltonian

to the form

H2 = − 1
2

∂

∂ui

∂

∂ui
+ 1

2w
2
i uiu

i . (7)

First, let us investigate the effect of a wall at ui = 0, i = 1, ..., n, on the zero-point energy

of this system. The eigenvalue equation is decoupled, and the result is similar to the

example of the previous section,

E0 =
3

2

∑
i

wi . (8)

Next, suppose that we change the orientation of the wall, which we now place at yi = 0.

Finding the ground state energy of this system is a complicated problem, and perhaps not

solvable by analytic methods. But there is a generic feature which can be stated as follows.

Theorem 1. Let a quantum mechanical system be described by the Hamiltonian (7) with

a potential barrier yi ≥ 0, i = 1, ..., n, with yi = M ′iju
j. Then, for all M ′ ∈ SO(n) and

all wi ∈ R, wi 6= 0, its ground state energy is greater than the ground state energy of the

similar system without walls.

A simple proof is as follows. Locally, the eigenvalue equation for both systems is the

same, the difference being that in one of them there is the additional requirement that the

wave function vanishes on the boundary. From the standpoint of the system without walls,
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these wave functions are just particular solutions with nodes at yi = 0. By the oscillation

theorem of quantum mechanics, the expectation value of the energy on any of these states

(in particular, on the normal state of the system with the walls) must be greater than the

ground-state energy. Intuitively, the presence of the wall, irrespective of the orientation,

reduces the classically allowed region; by virtue of the uncertainty relation, the ground

state energy must increase.1

The basic property that will be used in the next section is contained in the following

theorem, which is a generalization of the former to the case when the boundary is imposed

in terms of a Fourier-like transform.

Theorem 2. Same as theorem 1, but now the potential barrier is X(σ) ≥ 0 , X(σ) =∑
i uifi(σ), where the fi(σ) represent a set of orthonormal functions on some space.

Consider the function X(σ) ≡ 0. Because of orthonormality, this corresponds to the

choice ui = 0 for all i. Thus, at the point ui = 0, i = 1, 2..., the eigenfunctions of the

system with walls must have a node. On the other hand, the system without walls is a

collection of decoupled harmonic oscillators. The ground state is just the direct product

of the ground states of individual oscillators, and it does not have any node. Therefore its

energy must be lower, as stated above.

3. By expanding the coordinates in a complete orthornormal basis of functions Y A(σ) on

the membrane, X(σ) =
∑

A XAYA(σ), and similarly for the fermionic variables and the

momenta, the light-cone gauge Hamiltonian takes the form [10]

H =
1

2
PAµ PµA +

1

4
fABEf

E
CDX

A
µ X

B
ν X

C
µ X

D
ν −

1

2
ifABCX

A
µ θ

Bγµθc , (9)

where µ, ν = 1, 2, ..., 9 and fABC are the structure constants of the group of area-preserving

diffeomorphisms of the parameter manifold. Here θAα , with α = 1, ..., 16, are real SO(9)

spinors. The classical instabilities occur along the Cartan directions, where the potential

vanishes. For concreteness, we will consider the case of spherical or toroidal membranes,

where the group can be regarded as SU(N), with N → ∞. The generalization to other

1 For certain configurations of wi, the statement is perhaps rather obvious. If w1 is the lowest

frequency, we write H2 = H ′2 +H ′, H ′2 = − 1
2
∂
∂ui

∂
∂ui

+ 1
2
w2

1uiu
i, H ′ = 1

2

∑n

i=2
(w2

i −w
2
1)u2

i . Since

H ′ > 0, the ground-state energy of H2 satisfies E0 >
3
2
nw1, which is sufficient to demonstrate

the theorem for those frequencies satisfying 3
2nw1 >

1
2

∑
i
wi, or w1 > (3n − 1)−1

∑n

i=2
wi. For

other frequencies H ′ cannot be ignored, since (w2
i − w

2) will not be small for all i.
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compact Lie groups should be straightforward. It is convenient to split off the coordinates

XA
µ into the form XA

µ → (Ziµ, Y
I
µ ) where indices i, j, k = 1, ..., N − 1 correspond to the

Cartan directions, and I, J = N, ...,N2 − 1 label the remaining directions. Upon gauge

fixing, where Y I9 is removed, only a residual invariance under the Cartan subgroup remains,

and the Hamiltonian takes the form [1]

H = H1 +H2 +H3 +H4 , (10)

H1 = −
1

2

(
∂

∂Zk

)2

−
1

2

(
∂

∂Zka

)2

, H2 = − 1
2

(
∂

∂Y Ia

)2

+ 1
2 (zTz)IJY

I
a Y

J
a , (11)

H3 = − 1
2 iθ

I
(
zIJγ9 + zaIJγa

)
θJ , (12)

zaIJ = ZakfkIJ , Zk = Zk9 , a = 1, ..., 8 .

H4 is not important in the analysis of stability, and here it will not be considered (as

in [1], all terms in H4 vanish in the asymptotic region). The eigenvalues of zIJ are the

(non-vanishing) roots of the Lie algebra of SU(N), and can be expressed in terms of the

eigenvalues iλm, iλam, λm ∈ R, m = 1, ..., N of Z and Za. The following relations will be

useful:

det z =
N∏

m<n

(λm − λn)2 = det Ω , tr Ω = 2
N∑

m<n

(λm − λn) , Ω ≡
√
zTz . (13)

Now we consider the wave-packet which in R11 causes a instability (representing a

mode escaping along the potential valley). This has the form

ψt(Z,Za, Y
I
a ) = χ(Z − tV, Za)φ0(Z, Y Ia )ξF(Z,Za) , (14)

Vmn = i
[

1
2 (N + 1)−m

]
δmn . (15)

The fermionic variable has the ground state energy

H3ξ = −8
∑
m<n

ωmnξ , (16)

where

ωmn =
√
λ2
mn + (λamn)2 , λmn = λm − λn . (17)

As far as the fermionic ground state energy is concerned, the presence of a boundary, e.g.

of the type Y I8 ≥ 0, is irrelevant (H3 does not even depend on Y Ia ). The derivation of (16)

is identical to the derivation of ref. [1], so it will not be reproduced here.
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Now we determine the zero-point energy of H2 (see eq. (11)). Denote by UIa the basis

in which H2 is diagonal, where UIa is related to the Y Ia by an orthogonal transformation,

UIa = MIJY
J
a .

Let us first investigate the effect of a “boundary” imposed in terms of UI8 , UI8 ≥ 0 for all

I. In this case the eigenstates of H2 can be explicitly constructed, being a straightforward

extension of the quantum mechanical systems considered in the previous sections. The Ua

with a = 1, ..., 7 will give a contribution to the zero-point energy proportional to 7
2 tr Ω,

whereas the contribution of U8 will be proportional to 3
2 tr Ω. Explicitly,

H2φ0 = 5
(
tr Ω

)
φ0 , (18)

where φ0 is given by (cf. eq. (4))

φ0(Z, Y Ia ) = const.(det Ω)5/2

(∏
I

UI8

)
exp

(
−

1

2
ΩIJY

I
a Y

J
a

)
. (19)

The potential for χ arises from the contribution of H2 and H3 to the total energy:

(H2 +H3)ψt = 2

N∑
m<n

(5|λmn| − 4ωmn)ψt . (20)

For large t (see eqs. (14), (15)),

λmn = (n−m)t+O(1) , (21)

and ωmn → |λmn|. As a result we get

lim
t→∞

||(H2 +H3)ψt|| = tr Ω =

(
2

N∑
m<n

(n−m)

)
t .

Thus χ cannot move off to infinity; the system can only execute a finite motion in the Z

direction. The theorem 1 states that the same conclusion applies when the boundary is

imposed in terms of the coordinate Y I8 , i.e. Y I8 ≥ 0, related by an orthogonal rotation to

the UI8 . By theorem 2, the motion of χ will also be finite when the boundary is imposed

in terms of the physical coordinate X8(σ), i.e. X8(σ) ≥ 0 for all σ.

Nevertheless, for this system with a single wall, the spectrum will be continuous in

virtue of the fact that there is still a direction along which a mode can leak out to infinity.
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This is the direction orthogonal to the wall, say, orthogonal to the hyperplane Y8 = 0.

Indeed, for large values of Z8, the boundary has no effect in the oscillators transverse to

this direction. To see this explicitly, we gauge away Y8 (instead of Y9) and consider a similar

wave packet with χ(Z8− tV ). Then H2 only involves coordinates which are unbounded, so

that its ground state energy is 4 tr Ω, which in the asymptotic region cancels against the

fermionic contribution. To eliminate the possibility of infinite motion in this direction, we

generalize the above discussion by adding an extra wall. In particular, systems with either

an extra boundary component, such as 0 ≤ Y8 ≤ 1, or a boundary in another direction,

e.g. Y8, Y7 ≥ 0, do not have that possibility of leakage. The motion in all Cartan directions

is finite and the spectrum of eigenvalues must therefore be discrete.

It may seem counterintuitive that the inclusion of a boundary in a single dimension

can stabilize the supermembrane. What happens is that all the coordinates couple to the

same matrix (zTz)IJ . A change of the zero-point energy of a single coordinate modifies

the total zero-point energy of H2 by a numerical factor; it no longer cancels against the

fermionic contribution and a confining potential for χ is generated. The discussion can

be formally generalized to the continuum, by using a framework recently introduced in

ref. [11].

4. So far our discussion has only included spherical and toroidal membranes. A similar

analysis applies for open membranes of cylindrical topology. Indeed, the basis functions

are essentially equivalent to those of the torus [12], YK(σ) = eik1σ1+ik2σ2 , K = (k1, k2),

σ1,2 ∈ [0, 2π). By making use of ’t Hooft’s twist matrices [13], it is possible to construct

exactly N2− 1 traceless independent matrices TK , satisfying an algebra which approaches

the Lie algebra of SU(N), as N →∞.

An open supermembrane with boundary components living on the boundary of the

manifold R10 × I, perhaps of relevance to the strong coupling limit of heterotic string

theory, is likely to have a discrete spectrum as well (in the restricted Hilbert space of

membrane wave functions which vanish at the space-time boundary). The only difference

lies on the dynamics of the membrane boundary, represented by closed strings propagating

in R10, but this dynamics should not spoil stability.

Another question concerns the dependence of the eigenvalue spectrum of the Hamil-

tonian on the membrane topology. The analysis using the regularized Hamiltonian does

depend on the properties of the specific Lie group, such as roots and structure constants.

However, it is believed that the Poisson algebra of functions on a manifold that is a regular
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coadjoint orbit of some group G can always be approximated by SU(N), with possible re-

strictions to some subalgebra (see e.g. refs. [12,14]). Some dependence of the spectrum on

the topology is expected, given that different membrane topologies should in fact represent

inequivalent quantum states. In the eleven dimensional theory on R11 there is no coupling

parameter that can suppress higher topologies. On the other hand, in the compactified

theory, by combining the membrane tension T3 and the size R11 of the eleven dimension,

it is possible to define an adimensional coupling parameter g2 = T3R
3
11 (which in the stan-

dard correspondence with heterotic superstring theory is in turn related to the dilaton field

[3]). The way the D-2-brane is quantized in type IIA superstring theory suggests that a

consistent quantization of the eleven dimensional membrane may require including states

associated with higher topologies. Adding small handles should not considerably increase

the mass, since the cost of energy is proportional to the membrane area. Just as would

be the case for a Ramond-Ramond soliton of type IIA string theory, for g2 = O(1) the

low-energy excitations of the membrane should be generically constituted of both oscilla-

tion modes and tiny handles. In this case a more adequate formalism may rather involve

a suitable quantization of the world-volume field theory [15]. While the D-brane picture is

not justified in extrapolating from from weak to strong string coupling, where the eleven

dimension emerges, it is indicative in discriminating the relevant degrees of freedom in the

various limits of the product T3R
3
11 (see also ref. [8]).

5. A priori, possible unbroken supersymmetries do no imply a relation between the

zero-point energies of H2 and H3. Note that what is calculated here is just the zero-

point energy of H2 + H3 for the particular decomposition of the trial wave function (14)

(in the quantum subsystem H ≡ H2 + H3, with zIJ fixed, the presence of a boundary

breaks supersymmetry). Although our analysis does not therefore exclude the existence

of a set of normalizable eigenvectors of H with zero eigenvalue (representing a massless

multiplet in the supermembrane spectrum), there are several reasons to expect that the

ground state in the stabilized theory will be massive. As in the D = 10 superstring theory,

in supermembrane theory the existence of a massless multiplet seems to be ascribed to

a complete cancellation of the bosonic and fermionic ground state energies [16]. In the

R10 × S1/Z2 orbifold compactification, half of the supersymmetries remain, but in the

present context they could be broken because of the boundary conditions. Just from the

zero-mode structure, a contingent unbroken supersymmetry, together with the discreteness

of the spectrum, could be used to argue that there is a unique ground state, constituted
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by the eleven dimensional supergravity multiplet [17]. Unfortunately, the general ground-

state wave functional is not known, so it is not presently possible to determine whether the

boundary condition is eliminating a square-integrable massless state. (The structure of the

equation QΨ = 0 actually suggests that there cannot be any normalizable massless state in

supermembrane theory [10], but the problem is still open). For compactifications in more

complicated topologies, say T 2/Z2, the generic situation is that there is no solution to a

differential equation that is everywhere non-vanishing. From this point of view, demanding

the wave functional to have nodes at the fixed points seems less restrictive. Clearly, further

work is needed. In particular, it would be of interest to identify the membrane topologies

which can lead to a non-vanishing Witten index, which seems to be computable in the

regularized low N theory.

The author wishes to thank L. Alvarez-Gaumé, I. Bars, H. Nicolai, P. Townsend, and

A. Tseytlin for useful comments.
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