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Abstract

In many high-energy storage rings the beam chamber is connected

to a separate pump chamber by a metallic wall with many holes or

slots which permit passage of the rest gas. In LEP, the pump chamber

contains a metallic \negstrip" pump, and thereby becomes a coax-

ial transmission line. Also in LHC, a coaxial line is formed by the

\liner" and the surrounding cold vacuum chamber which it shields

from heating by synchrotron radiation. Since the phase velocity of

electro-magnetic �elds in a coax line is close to light velocity, the

�elds will be almost in synchronism with the particle beam. This

will cause coherent coupling of the �elds of the beam and the pump

chamber, which may result in a large resistive impedance and could

lead to instability, loss of beam energy, and excessive heating of the

chamber walls. Here we estimate the rate of �eld buildup analytically,

and in a subsequent report we will compare these results with numer-

ical computations using 3-D computer codes. The results are tested

for diagnostic purposes on a \slot coupler" with short and wide holes

designed to extract energy e�ciently.
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1 Introduction

In many high-energy storage rings the beam chamber is connected to a separate

pump chamber by a metallic wall with many holes or slots which permit passage

of the rest-gas to be pumped out. In LEP, the pump chamber contains a metallic

\negstrip" pump, which forms a coaxial transmission line with the surrounding

chamber.

Also in LHC, a coaxial line will be formed by the \liner" and the surrounding

cold vacuum chamber which it shields from heating by synchrotron radiation.

Since the phase velocity of electro-magnetic �elds in a coaxial line is close to

light velocity, they will be almost in synchronism with the particle beam. This

will cause coherent coupling of the �elds of the beam and the pump chamber,

which may result in a large resistive impedance and could lead to instability, loss

of beam energy, and excessive heating of the chamber walls. Here we estimate

the rate of �eld buildup analytically, and in a subsequent report we will compare

these results with numerical computations with a 3-D computer code. The results

are tested for diagnostic purposes on a \slot coupler" with short and wide holes,

designed to extract energy e�ciently.

The calculation of the coupling impedance of holes and slots has been pursued

vigorously in recent years, in particular for the vacuum chamber liners of the LHC

and the former SSC project. Based on a variety of methods, the results are now

usually expressed in terms of the polarizabilities and the susceptibilities of a

particular hole shape. For circular or elliptical holes, analytic expressions can be

derived, while for other shapes numerical estimates are available. Also the e�ects

of the wall thickness can be included by de�ning inside and outside polarizability

and susceptibility. The e�ect of a large number of holes has been estimated and

it was shown that periodic disposition of the holes can lead to a large, coherent

buildup of losses. For the LHC liner, the slots in each section will therefore be

disposed irregularly (\randomly"). In the LEP vacuum chamber, the pumping

slots are regularly spaced, but grouped in sections with di�erent lengths varying

from 3 to almost 12 m.

Here we estimate the rate of �eld buildup analytically, and in a future report

we will compare these results with numerical computations. The results are also

tested on a \slot coupler" with short and wide holes, designed to couple e�ciently

to the beam chamber for diagnostic purposes.

Our model consists of a beam pipe of radius s1 coupled to a coax of inner

radius s2, outer radius s3 by a regular array of M elliptical slots of semi-major

axis a and semi-minor axis b. The wall thickness of the coupling slot is L and

each slot is separated from the previous one by a distance �. The geometry is

shown in Fig. 1.

The goal of the calculation is to predict the buildup of the TEM mode in the

coax which is in synchronism with the beam bunch travelling at v = c. We neglect

all modes in both the beam pipe (waveguide) and coax which travel with v 6= c,
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Figure 1: Slots in separating wall between beam and pump chamber in LEP

although we recognise that some of these could build up at particular resonant

frequencies. We also consider bunch lengths greater than the slot dimensions, so

that the standard electric polarizability and magnetic susceptibility can be used,

but we do include a wall of �nite thickness. We also neglect attenuation due to

wall dissipation in the coax.

2 Source Field in the Waveguide

The source bunch density is assumed to be

~�(x; y; z; t) = Q�(x)�(y)~g(z � ct) (1)

where ~g(u) is the bunch shape. With

f(k) =

Z
duejku~g(u) (2)

we can write the charge density in the frequency domain (without a tilde �) as

�(x; y; z; k) = Qf(k)�(x)�(y)e�jkz: (3)

To return any quantity to the time domain one simply multiplies by ejkctdk=2�

and integrates over k.

For a Gaussian bunch of rms length �, we have

~g(u) =
1

�
p
2�
e�u

2=2�2 (4)

and thus

f(k) = e�k
2�2=2: (5)

In the frequency domain, the waveguide �eld in the vicinity of a slot is given

by
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E1 = Z0H1 =
QcZ0

2�s1
f(k)e�jkz ; (6)

where s1 is the distance from the beam to the coupling slot.

3 Coax Field

We write the longitudinal electric �eld component in the form

E2z =

Z
dqe�jqzB(q)

F0(Kr)

F0(Ks3)
; (7)

where

F0(u) = Y0(u)J0(Ks2)� J0(u)Y0(Ks2) (8)

and where

K2 = k2 � q2: (9)

Here r is the radial variable with respect to the coax center, s2 and s3 are the

inner and outer radii of the coax respectively, and the integration contour in the

q plane passes below the poles on the negative real axis and above the poles on

the positive real axis.

Because the integrand in (7) is not singular at K = 0, a coax without holes

is only able to propagate a TEM mode, which contains no z-component of the

electric �eld. But the holes will produce a perturbed TEM mode, which will

now be obtained by constructing the r-component of the electric �eld, and then

evaluating the contribution from the singularity at K = 0.

In the vicinity of the hole at r = s3, the radial electric �eld corresponding to

(7) is

�E2r � E2 =
Z
dqe�jqzB(q)

jq

K

F 0

0(Ks3)

F0(Ks3)
: (10)

The perturbed TEM mode corresponds to q ' k or K ' 0. Using

Y0(v) '
2

�
(ln

v

2
+ 
) as v! 0 (11)

we can evaluate (10) for z > 0 (after a hole) by closing the contour in the lower

half plane, thus enclosing the pole at q = k. Near K = 0 we write

1

K

F 0

0(Ks3)

F0(Ks3)
' 1

(q2 � k2)s3 ln(s3=s2)
(12)

so that

E2 = Z0H2 =
�B(k)

s3 ln(s3=s2)
e�jkz : (13)
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for the increment to the TEM coax mode travelling in synchronism with the beam

when it passes the hole at z.

In order to �nd B(q), we evaluate the inverse transform of (7) at r = s3,

obtaining

B(k) =
1

4�2s3

Z
hole

dSE2z(s3; k)e
jkz: (14)

We now replace the hole geometry shown in Fig. 2 by the symmetric (in the

electrostatic potential) and asymmetric geometries shown in Fig. 3. The integral

over dS in (14) can then be written in terms of the electrostatic polarizability

and magnetic susceptibility (for the corresponding magnetic �eld decomposition)

as

B(k) =
jk

8�2s3

h
(E1 � E2)�s � (E1 + E2)�a

� Z0(H1 �H2) s + Z0(H1 +H2) a

i
ejkz (15)
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Figure 2: Symmetric geometry for hole
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Figure 3: Asymmetric geometry for hole
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where the subscripts s, a stand for symmetric and antisymmetric. Using E1 =

Z0H1 in (5) and E2 = Z0H2 in (13) we eventually obtain

B(k) =
jk

8�2s3

h
� E1( out � �out) + E2( in � �in)

i
ejkz (16)

where1

�in = �s + �a ; �out = �s � �a

 in =  s +  a ;  out =  s �  a

)
: (17)

Using (13) we �nally have

�E2 =
jk

8�s22(ln s3=s2)

h
� E1�out + E2�in

i
; (18)

where

� �  � �: (19)

4 Buildup of TEM Field in the Coax

We can use (18) to determine the buildup of E2 as the bunch passes each slot.

Assuming E2 = 0 before the �rst slot, we can solve (18) as

E2

E1

=
�out

�in

h
1 � e�jm�k�

i
; (20)

where

� =
�in

8�s23�ln(s3=s2)
: (21)

Obviously, the introduction of damping in the coax will eventually cause the

exponential to die out, leaving a constant �eld amplitude in the coax proportional

to the source �eld.

To see what happens in the time domain we use (7) to write

~E2 =

Z
dk

2�
ejkct

�out

�in

QcZ0

2�s1
f(k)e�jkz(1 � e�j�kz); (22)

where we write z = m�. Using (1), this becomes

~E2 =
�out

�in

QcZ0

2�s1

h
~g(z � ct)� ~g((1 + �)z � ct)

i
; (23)

with the source �eld in the time domain being

~E1 =
QcZ0

2�s1
~g(z � ct): (24)

1See R.L. Gluckstern and J.A. Diamond, IEEE Transactions on Microwave Theory and

Techniques, 39 No. 2, p. 274 (1991).
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Writing � = z � ct as the longitudinal coordinate in the system travelling with

the bunch, we �nd

~E2 =
�out

�in

QcZ0

2�s1

h
~g(�)� ~g((1 + �)� + �ct)

i
(25)

which suggests that the e�ect of the holes is to generate a pulse receding slowly

with velocity ' �c.

We can also calculate the power 
ow in the coax. In the time domain, this is

Z
E2H22�rdr =

Q2c2Z0

(2�s1)2

 
�out

�in

!2
1

4�2

Z
dkf(k)ejkct�jkz(1 � e�j�kz)�

Z
dk0f(k0)ejk

0ct+jk0z(1� ej�k0z): (26)

Taking
R
1

�1
dt to obtain the energy leads to

W

Q2
=

cZ0

(2�s1)2
�out

�in

1

�

Z
dkf2(k)(1� cos �kz): (27)

For the Gaussian bunch this becomes

W

Q2
=
cZ0

2�

 
�out

�in

!2 �
s3

s1

�2

ln

�
s3

s2

�
1

�
p
�

h
1� e�(�z=2�)2

i
; (28)

corresponding to the expression for the loss factor in the standard literature. For

small � the loss factor is then expected to be proportional to the square of the

number of slots.

Before presenting some numerical applications, we should emphasise that the

analytic estimate in (28) is valid only as long as the wavelength (or bunch length

�) is larger than the slot dimensions (a, b, L, �).

If this is not the case, one expects resonant behaviour in the coupling slots,

and the approximations used in the derivations break down.

5 Numerical Applications

5.1 Slot Coupler

The slots are aligned so that the long dimension is perpendicular to the beam

axis. We will use the published tables2 for elliptical slots to calculate �in and �out
for this example. The slot geometry corresponds to

a = 10mm ; b = 2mm ; L = 2mm

p =
a� b
a+ b

=
2

3
;
L

a
= 0:2 ;

L

b
= 1:0

9>=
>; (29)

2B. Radak and R.L. Gluckstern, IEEE Transactions in Microwave Theory and Techniques,

43 No. 1, p. 194 (1995).
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We then need �in, �out,  xx;in and  xx;out.

Tables 1, 32 allow us to interpolate in p to �nd

3�in

2�ab2
' 0:78 ;

3�xx;out

2�a3
' 0:31 (30)

Tables 2,42 allow us to interpolate in p to �nd

ln
�out

�0

' �1:9 ; ln �xx;out

�xx;0

= �0:65 (31)

where
3�0

2�ab2
=

1

E(1� b2=a2) =
1

E(:96)
= 0:95 (32)

and
3�xx;0

2�a3
=

1 � b2=a2
K(1� b2=a2)E(1� b2=a2) =

:96

3:02 � 1:05
= 0:49: (33)

This leads to the values

3�in

2�ab2
' 0:78 ;

3�xx;in

2�ab2
= 7:82 (34)

3�out

2�ab2
= 0:14 ;

3�xx;out

2�ab2
= 6:4: (35)

Using 2�ab2=3 = 84 mm3, we have

�in = 66 mm3 ; �xx;in = 660 mm3 (36)

�out = 12 mm3 ; �xx;out = 540 mm3 (37)

 in = 590 mm3 ;  xx;in = 530 mm3: (38)

The guide and coax geometry is taken to be

s1 = 16 mm ; s2 = 1 mm ; s3 = 5 mm ; � = 10 mm ; � = 70 mm (39)

and we �nd from (21) that3

� = 0:0066: (40)

According to (28), the asymptotic loss factor is

W

Q2

�����
1

= 8� 108
volts

coulomb
: (41)

Half this value is reached when

�z

2�
=
p
ln 2 or z ' 250� = 18 meters: (42)

3This value of � implies that the TEM mode in the coax travels with the reduced velocity

(1� 0:0066)c because it is loaded by the periodic slots.
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5.2 LEP slots

The elliptical slots are here aligned along the beam axis, and the slot geometry

is

a = 10 mm ; b = 5 mm ; L = 5 mm; (43)

where we use b = 5 mm instead of b = 4:5 mm to allow us to use the entries in

Tables, 1, 2, 5, 62. If we ignore any high frequency e�ects, we �nd

�in = 4:3 mm3 ; �yy;in = 5:1 mm3 (44)

�out = 0:64 mm3 ; �yy;out = 0:98 mm3 (45)

 in = 0:8 mm3 ;  out = 0:34 mm3: (46)

The guide and coax geometry is taken to be

s1 = 60 mm ; s2 = 15 mm ; s3 = 20 mm ; � = 25 mm ; � = 10 mm (47)

and we �nd from (21) that

� = 1:6� 10�6: (48)

According to (28), the asymptotic loss factor is

W

Q2

�����
1

= 5 � 109
volts

coulomb
(49)

Half this value is reached when

�z

2�
=
p
ln 2 or z = 106� = 104 meters: (50)

Obviously, any section of reasonable length will give much lower values of W=Q2.

But the entire calculation for the LEP slots should not be taken at face value

because a 10 mm bunch has important high frequency components which are

likely to have resonant behaviour. This is being investigated presently with the

use of 3-D computer codes, whose results can also be compared with the analytic

work presented here in the long wave length region.

6 Conclusions

Energy is lost coherently by a beam coupled to a coaxial transmission line such

as formed by the neg-strips in the pump chamber of LEP, or the liner inside

the vacuum chamber in LHC. The buildup rate of the loss depends on the size,

shape, and number of holes in the separating walls. Here we derive analytical

expressions valid in the long wave length limit applicable to long bunches in LHC,

while the higher frequency region more important for the short bunches in LEP

will have to be treated numerically.
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