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ABSTRACT

We consider a class of four parameter D = 4, N = 2 string models, namely

heterotic strings compactified on K3×T2 together with their dual type II part-

ners on Calabi-Yau three-folds. With the help of generalized modular forms

(such as Siegel and Jacobi forms), we compute the perturbative prepoten-

tial and the perturbative Wilsonian gravitational coupling F1 for each of the

models in this class. We check heterotic/type II duality for one of the mod-

els by relating the modular forms in the heterotic description to the known

instanton numbers in the type II description. We comment on the relation of

our results to recent proposals for closely related models.
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1 Introduction

Recently, accumulating evidence for the existence of various types of strong–weak cou-

pling duality symmetries was gathered, such as S-duality of the four-dimensional N = 4

heterotic string [1, 2, 3] and string-string dualities between the heterotic and type II

strings [4, 5, 6]. The string-string duality between four-dimensional strings with N = 2

space-time supersymmetry [6] is of particular interest, since N = 2 strings exhibit a very

rich non-perturbative structure which, in the point particle limit, contains [7] the non-

perturbative effects of rigid N = 2 gauge theories [8]. Furthermore, the N = 2 strings

are “half way” in between the well controlled N = 4 models and the phenomenologically

interesting, but much less understood N = 1 string-string dualities [9].

The N = 2 string-string duality between heterotic strings on K3×T2 and corresponding

type II strings on a suitably chosen Calabi–Yau three-fold has been successfully tested

[6],[10]–[15] for models with a small number of vector multiplets. Most of these tests were

based on the comparison of lower order gauge and gravitational couplings [16, 17, 18]

of the perturbative heterotic string with the corresponding couplings of the dual type II

string in some corner of the Calabi–Yau moduli space. One key point in establishing the

string-string duality between heterotic and type II N = 2 strings is the appearance [19]

of certain modular functions in the low-energy effective action of these theories.

To be more specific, the discussion so far was essentially limited to models with number

of massless Abelian vector multiplets NV = 3 and NV = 4. For the rank four case,

NV = 4, one is dealing with the heterotic S-field, with two T2 moduli T and U plus the

graviphoton. The perturbative heterotic vector multiplet couplings are given in terms of

modular functions of the perturbative T -duality group SO(2, 2; Z). Due to the required

embedding of this T -duality group into the N = 2 symplectic transformations it follows

[16, 17] that the heterotic one-loop prepotential must obey well-defined transformation

rules under this group. In addition it was shown in [18] that the one-loop prepotential can

be expressed in terms of the coefficients of the q expansion of certain modular forms. This

heterotic S-T -U model is supposed [6] to be dual to the type II string compactified on the

Calabi–Yau space P1,1,2,8,12(24) with h1,1 = 3, h2,1 = 243. In fact, it was shown for this

example that the perturbative heterotic prepotential and the function F1 (which specifies

the non-minimal gravitational interactions involving the square of the Riemann tensor)

agree with the corresponding type II functions in the limit where one specific Kähler class

modulus of the underlying Calabi–Yau space becomes large. A set of interesting relations

between certain topological Calabi–Yau data (rational and elliptic instanton numbers)

and various modular forms has emerged when performing these tests [18, 15].
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It is clearly an interesting problem to extend this kind of discussion to N = 2 string

models with a larger number of vector multiplets,NV > 4. It is the purpose of this paper

to compute the heterotic one-loop couplings as well as to discuss the heterotic/type II

string-string duality for these type of N = 2 string models, where we will concentrate on

the particular case NV = 5. Whereas the heterotic moduli T and U are related to the

compactification from six to four dimensions on T2, the additional vector fields originate

from the ten-dimensional gauge group E8 × E8 which survive after the compactification

on K3. Usually the corresponding complex moduli are called Wilson lines; in case of

NV = 5 we denote the single Wilson line vector multiplet by V . The corresponding class

of theories is called S-T -U-V models.

The classical moduli space as well as the classical T -duality transformations for het-

erotic string compactifications with Wilson line moduli were derived in [20, 21, 22]. For

p non-vanishing Wilson lines the classical moduli space is locally given by the coset
SO(2,2+p)

SO(2)×SO(2+p)
, and the T -duality group is given by SO(2, 2 + p,Z). Together with the

dilaton S-field moduli space one therefore deals at the classical level with the special

Kähler spaces SU(1,1)
U(1)

⊗ SO(2,2+p)
SO(2)×SO(2+p)

, and the corresponding classical N = 2 prepotential

can be easily constructed [23, 24, 16]. At the heterotic one-loop level the effective action

is given in terms of automorphic functions of the duality group SO(2, 2 + p,Z), which

are functions of T , U and the Wilson line moduli [25, 22]. One generically encounters

singularities at those points in the moduli space where certain perturbative BPS states

become massless. (The automorphic functions can be constructed as infinite sum over

the perturbative BPS spectrum.)

In this context it is important to realize that one encounters a very special situation in

the presence of a single Wilson line V only, i.e. NV = 5. In this case, as it was observed

in [22], the classical T -duality group SO(2, 3,Z) is isomorphic to Sp(4,Z), which has

a standard action on the Siegel upper half plane H2. The corresponding automorphic

functions of Sp(4,Z) are just given by the Siegel modular forms, which are directly

associated to genus two Riemann surfaces. In the limit of vanishing Wilson line, V → 0,

the genus two Riemann surface degenerates into the product of two T2, and the Siegel

modular forms approach the SO(2, 2,Z) modular functions of the S-T -U model in this

limit.

In our paper we will show how the heterotic one-loop prepotential and the gravitational

F1-function for a class of N = 2 models with NV = 5 can be constructed in terms of Siegel

modular forms, Jacobi forms and ordinary (functions of τ only) modular functions. The

models we are investigating are characterized by the embedding of the SU(2) instanton
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numbers into the heterotic gauge group E
(1)
8 × E

(2)
8 . We discuss the corresponding dual

type II Calabi-Yau compactifications with h1,1 = 4 and find in this way the relation

between the relevant modular forms and the rational Calabi-Yau instanton numbers.

This relation will be shown to be satisfied for a particular example based on the Calabi-

Yau space P1,1,2,6,10(20), recently discussed in [26].

Our paper is organized as follows. In the next section we define the class of models, that

we will be investigating in the following, together with their massless spectrum. The

models are discussed from the heterotic as well as from the dual type II point of view. In

particular we discuss the points in the classical moduli space where extra states become

massless. The various enhancement loci are given in terms of Humbert surfaces in the

classical moduli space and are related to specific Siegel modular form such as C30(T, U, V )

and C5(T, U, V ). In section three we present the construction of the supersymmetric index

for the N = 2 models with one Wilson line. In 3.1. we first review the computation [18] of

the supersymmetric index of the S-T -U model. This construction can be nicely extended

to the case NV = 5 by a well defined “hatting” procedure of Jacobi functions, which

describes the transition of going from Jacobi forms to ordinary modular forms. The

physical interpretation of the hatting procedure is just the gauge symmetry breaking

SU(2) → U(1) by turning on the Wilson line V . In section four we use the results of

the previous chapter to write down the heterotic one-loop prepotential as a power series

expansion in terms of hatted Jacobi functions. Comparing with the corresponding type

II prepotential we relate the Calabi-Yau instanton numbers to the coefficients of the

heterotic power series expansion. Using the known rational instanton numbers for the

dual Calabi-Yau P1,1,2,6,10(20) we show that this relation holds for this specific example.

In section five we compute the one-loop heterotic function F1 in terms of the Siegel forms

C30 and C5. A summary concludes the main body of the paper. In appendix A we review

some interesting properties of Siegel and Jacobi modular forms. We also provide more

details of the hatting procedure and its relation to theta functions and lattices, which is

used to construct the supersymmetric index and the heterotic one-loop prepotential in

the presence of a Wilson line V . In appendix B we show in some detail the computation

of an integral which is needed for the computation of F1.

During the process of finishing our calculations and writing up our results, some re-

lated work appeared in [27]. In [27] a four parameter model based on the Calabi-Yau

P2,2,3,3,10(20) is discussed. We will make further comments on [27] in our paper. It is worth

noting that recently the Siegel modular forms proved to be relevant for the computation

of the non-perturbative elliptic genus of four-dimensional N = 4 strings [28].
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2 N = 2 four parameter string models

In the following, we will discuss a class of heterotic 4 parameter N = 2 models, obtained

by compactifying the E8 × E8 string on K3× T2. The four moduli comprise the dilaton

S, the two toroidal moduli T and U as well as a Wilson line V . We will refer to these

models as S-T -U-V models. Any of the S-T -U-V models in the class we will consider

here has a dual type IIA description. Two such duals type II models have been recently

discussed in the literature. The first one [26] consists of a type IIA compactification on

the Calabi–Yau three-fold P1,1,2,6,10(20) with h1,1 = 4, h2,1 = 190 and consequently Euler

number χ = −372. This model has a Higgs transition [26] to the well known type IIA

compactification on P1,1,2,8,12(24) with h1,1 = 3, h2,1 = 243 and χ = −480, the so-called

S-T -U model [6]. The next 4 parameter model, discussed by Kawai in [29, 27], is based

on the Calabi–Yau P2,2,3,3,10(20) with h1,1 = 4, h2,1 = 70 and χ = −132. Finally we

will discuss two 4 parameter models with h1,1 = 4, h2,1 = 214, χ = −420 and h1,1 = 4,

h2,1 = 202, χ = −396 respectively; the corresponding Calabi-Yau spaces were discussed

in [30, 31]. Any of the S-T -U-V models considered here can be truncated to the 3

parameter S-T -U model upon setting V → 0. Note that this is a truncation as far as

the vector moduli sector is concerned; in the hyper moduli space one has to move to a

generic point in the course of the Higgs transition [26].

The perturbative heterotic N = 2 models we will consider in the following will be

constructed as follows. Following [6, 30, 32], we start with a compactification of

the heterotic E
(1)
8 × E

(2)
8 string on K3 with SU(2) bundles with instanton numbers

(d1, d2) = (12 − n, 12 + n). For 0 ≤ n ≤ 8, the gauge group is E
(1)
7 × E

(2)
7 , and the

spectrum of massless hypermultiplets follows from the index theorem [33, 6] as

1

2
(8− n)(56,1) +

1

2
(8 + n)(1,56) + 62(1,1). (2.1)

For the standard embedding, n = 12, the gauge group is E
(1)
8 × E

(2)
7 with massless

hypermultiplets

10(1,56) + 65(1,1). (2.2)

These gauge groups can be further broken by giving vevs to the charged hypermultiplets.

Specifically, E
(2)
7 can be completely broken through the chain

E7 → E6 → SO(10) → SU(5)→ SU(4)→ SU(3)→ SU(2)→ SU(1), (2.3)

where SU(1) denotes the trivial group consisting of the identity only. In the following, we

will concentrate on the cases where we break E
(2)
7 either completely or down to SU(2).
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On the other hand, E(1)
7 can be perturbatively broken only to some terminal group G

(1)
0

that depends on n (see [30] for details); e.g. for n = 4 this group is given byG
(1)
0 = SO(8).

For n = 8 it is G
(1)
0 = E8. It is only for n = 0, 1, 2 that E

(1)
7 can be completely broken.

Finally, when compactifying to four dimensions on T2, three additional vector fields arise,

namely the fields S, T and U .

Let us first discuss in slightly more detail the class of models where E(2)
7 is completely

broken. We will call, as it will be plausible in the following, these models the “S-T -U”

class of models. In the dual type II description the corresponding Calabi-Yau spaces are

given by elliptic fibrations over the Hirzebruch surface Fn. (For n = 2 the corresponding

Calabi-Yau is given by P1,1,2,8,12(24).) The models with n = 0, 1, 2 all contain NV =

h1,1 + 1 = 4 Abelian vector multiplets, the fields S, T , U plus the graviphoton, and

in addition NH = h2,1 + 1 = 244 neutral hypermultiplets. In fact, at the heterotic

perturbative level all three models are the same; the models with even n = 0, 2 are even

identical at the non-perturbative level.

For n > 2 both NV and NH increase (see the chain in the first column of table A.1

in [30]). However, suppose that G
(1)
0 could be completely broken and that dim(G

(1)
0 )

hypermultiplets could be made massive by some mechanism, such that the spectrum

would be given by NV = 4, NH = 244 for all n. Then it is natural to conjecture that all

models are perturbatively equivalent; moreover we conjecture that the models with even

respectively odd n are non-perturbatively equivalent.

Now let us come to the models with unbroken SU(2)(2). The corresponding Hodge

numbers are given in the second column of table A.1 in [30]. The universal vector fields

are now given by S, T , U and V , where the Wilson line V is in the Cartan subalgebra

of SU(2)(2). The commutant of SU(2)(2) in E(2)
7 is SO(12)(2). Then, it follows from the

index theorem that the charged spectrum consists of 1
2
(8 − n) 56 of E

(1)
7 , as well as of

1
2
(8 + n) 32 of SO(12)(2) plus 62 gauge neutral moduli.

As for the S-T -U models, it is only possible to perturbatively higgs the E
(1)
7 × SO(12)(2)

completely for n = 0, 1, 2. Thus, these heterotic models will have a massless spectrum

comprising NV = 5 vector multiplets, S, T , U , V plus the graviphoton, as well as

NH = (
1

2
(8 + n)32− 66 +

1

2
(8− n)56− 133 + 62 = 12d1 + 71 = 215− 12n (2.4)

neutral hyper multiplets. Note that, unlike for the S-T -U models with NH = 244, the

number of hypermultiplets now depends on n. Furthermore, as we will discuss, for the

four parameter models also the vector multiplet couplings are sensitive to n already at

the perturbative level.
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In the dual type IIA description, based on compactifications on 4 parameter Calabi–Yau

three-folds Xn, the Euler numbers are χ(Xn) = 2(h1,1 − h2,1) = 24n − 420 and Hodge

numbers are given by h1,1 = NV − 1 = 4, h2,1 = NH − 1 = 214 − 12n. The n = 2

Calabi–Yau three-fold X2, for instance, is given by the space P1,1,2,6,10(20) of [26]. The

Calabi–Yau spaces X0 and X1 and are given in [30, 31].

For n > 2 E
(1)
7 can only be higgsed to G

(1)
0 in a perturbative way and hence NV > 5.

However, suppose again for the moment that G(1)
0 can be completely broken by some

mechanism, and that dim(G(1)
0 ) massless hypermultiplets could disappear. Then NV = 5

and the number of massless hypermultiplets is given by eq.(2.4). This would imply that

on the dual type IIA side there exist Calabi–Yau spaces Xn with χ(Xn) = 24n− 420 for

0 ≤ n ≤ 8 and n = 12. In fact, for n = 12 a candidate Calabi–Yau really exist, namely

the n = 12 Calabi–Yau space X12 is given by the space P2,2,3,3,10(20) of [29, 27]. Note

that X12 and the n = 2 space X2 = P1,1,2,6,10(20) both directly show the same K3 fibre

P1,1,3,5(10). Futhermore, this also holds for X0 and X1 [30].

In summary, we will focus our proceeding discussion on the cases n = 0, 1, 2, 12 where the

Hodge numbers of the corresponding Calabi-Yau space are summarized in the following

table.

- X0 X1 X2 X12

−χ 420 396 372 132

h2,1 214 202 190 70

At the transition point V = 0, the U(1) associated with the Wilson line modulus V

becomes enhanced to an SU(2). Let N ′V = 2 and N ′H denote the number of additional

vector and hyper multiplets becoming massless at this transition point. Then

1

2
(N ′H −N

′
V ) = 6n+ 15 . (2.5)

This will prove to be a useful relation later on. It follows from the fact that the Euler

number of the Calabi–Yau space χ(Xn) and of the S-T -U models (χ = −480) differ by

2(N ′H −N
′
V ) = χ(Xn) + 480.

In addition to the V = 0 locus of gauge symmetry enhancement, there are also the en-

hancement loci (such as T = U), associated with the toroidal moduli T and U , already
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known from the S-T -U model. All these loci correspond to surfaces/lines of gauge sym-

metry enhancement in the heterotic perturbative moduli space H2 = SO(3,2)
SO(3)×SO(2)

and

have a common description as follows.

Consider the Narain lattice Γ = Λ ⊕ U(−1) of signature (3, 2), where U(−1) denotes

the hyperbolic plane

 0 −1

−1 0

, and where Λ = U(−1)⊕ < 2 >=



0 −1 0

−1 0 0

0 0 2


in a basis which we will denote by (f2, f−2, f3); we will use the coordinate z = iT f−2 +

iUf2 − iV f3 in Λ⊗C. Note here that the perturbative moduli space SO(3,2)
SO(3)×SO(2)

, which

is a hermitian symmetric space, has a representation as a bounded domain of type IV,

that is, as a connected component of D = {[ω] ∈ P(Γ ⊗ C)|ω2 = 0, ω · ω̄ > 0} =

Λ⊗R + iC(Λ) ⊂ Λ⊗C, where C(Λ) = {x ∈ Λ⊗R|x2 < 0} (this last condition ensures

again that 2ReT ReU − 2(ReV )2 > 0; the connected component can then be realised as

D+ = Λ⊗R + iC+(Λ) ,where C+(Λ) denotes the future light cone component of C(Λ)).

Now in the basis ε1 = f−2 − f2, ε2 = f3, ε3 = f2 − f3, Λ is equivalent to the intersection

matrix A1,0 =



2 0 −1

0 2 −2

−1 −2 2


associated to the Siegel modular form C35 of [34]. To

each element εi, which squares to 2, is associated the Weyl reflection si : x→ x−(x ·εi)εi.

The fixed loci of these Weyl reflections give the enhancement loci [25]. As these reflection

planes are given by planes orthogonal to the elements εi, this gives rise to the following

loci: the orthogonality conditions (aε1 + bε2 + cε3)εi = 0 yield c = 2a, b = c and

a = 2(c− b). Since a, b and c are related to T , U and V by a = iT , b = iT + iU − iV and

c = iT+iU , as can be seen by comparing aε1 +bε2 +cε3 = a(f−2−f2)+bf3 +c(f2−f3) =

af−2+(c−a)f2+(b−c)f3 with z = iT f−2+iUf2−iV f3, the above orthogonality conditions

result in the enhancement loci T = U ,V = 0 and T − 2V = 0. Note that these are the

conditions for enhancement loci related to C35 = C30 · C5 (cf. appendix A). Also note

that the locus T − 2V = 0 locus goes over into the locus T − U = 0 under the target

space duality transformation [20] T → T + U + 2V, U → U, V → V + U . Thus, the

enhancement lines of the S-T -U model have become the Humbert surfaces H4 and H1

(cf. the discussion about rational quadratic divisors given in ch. 5 of [18] (s = 1) as well

as in [34]).

Furthermore, 2 for the K3-fibre P1,1,3,5(10) of Xn, one finds that (cf. [26] for n = 2) in the

2Note that, since the heterotic perturbative gauge group is reflected, on the dual type IIA side, in the
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basis j1, j3, j4 (where we denote the intersections of the CY divisors with the K3 (J2) by

small letters) the intersection form is given by



2 1 4

1 0 2

4 2 6


, which is equivalent (over Z)

to −Λ under the base change f2 = j1− j3, f−2 = j3 and f3 = 2j1− j4. The enhancement

loci will become the conditions t3 = 0 resp. t4 = 0 for the Kähler moduli on the type II

side (cf. section 4).

3 The supersymmetric index

It was shown in [38, 39] that threshold corrections in N = 2 heterotic string compactifi-

cations can be written in terms of the supersymmetric index

1

η2
TrRF (−1)F qL0−c/24q̄L̃0−c̃/24 . (3.1)

This quantity is, as shown in [18], also related to the computation of the perturbative

heterotic N = 2 prepotential. In the next subsection we will first review the computation

of the index (3.1) for an S-T -U model. In the following subsection, we will then discuss

its computation in an S-T -U-V model.

3.1 The S-T -U models

For the S-T -U model with instanton number embedding (d1, d2) = (0, 24), the supersym-

metric index (3.1) was calculated in [18] and found to be equal to

1

η2
TrRF (−1)FqL0−c/24q̄L̃0−c̃/24 = −2iZ2,2

E4E6

∆
, (3.2)

where Z2,2 denotes the sum over the Narain lattice Γ2,2, Z2,2 =
∑
p∈Γ2,2 q

p2
L
2 q̄

p2
R
2 , and where

E4E6

∆
=
∑
n≥−1 c̃STU(n)qn. Here the subscript on the trace indicates the Ramond sector as

right-moving boundary condition; F denotes the right-moving fermion number, F = FR.

Let us recall how this expression came about. First, one can reduce (3.1) to
1
η2TrR(−1)F qL0−c/24q̄L̃0−c̃/24, where the contributions are weighted with ±2πi depending

on whether a BPS hyper or vector multiplet contributes. The expression resulting from

(monodromy invariant part of the) Picard group of the generic K3 fibre of the Calabi-Yau [35, 36], the

discussion presented here agrees precisely with the one of [37] concerning the zero divisor of the period

map for the (mirror of the) K3. D+ can be matched with the domain of the period map Φ(z).
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the evaluation of the trace consists of the product of three terms, namely of Z2,2/η
4,

of the partition function for the first E(1)
8 in the bosonic formulation (leading to the

contribution E4/η
8) and of the elliptic genus for the second E

(2)
8 containing the gauge

connection on K3.

This last quantity decomposes now additively (taking into account the appropriate

weightings) into contributions from the following sectors, namely: 1) the (NS,R) sec-

tor, which we will also denote by (NS+, R), 2) the “twisted” sector (NS−, R), where

a factor (−1)FL is inserted in the trace (this contribution is weighted with (-1)) and

3) the (R,R) sector, which we will also denote by (R+, R). Since we are using the

fermionic representation for E
(2)
8 , we decompose the fermionic D

(2)
8 ⊂ E

(2)
8 , so that

each of these contributions splits again multiplicatively into a free D(2)
6 part and into

a D2 part, to be called D
(2)
2 K3, containing the gauge connection A1 which describes

the corresponding gauge bundle on K3. The corresponding contributions are summa-

rized in the following table, where we also indicate the connection to the generic elliptic

genus Z(τ, z) = TrR,Ry
FL(−1)FL+FRqLo−c/24q̄L̃o−c̃/24 = 6

θ2
2θ

2
4

η4

θ2
3(τ,z)

η2 − 2
θ4
4−θ

4
2

η4

θ2
1(τ,z)

η2 , where

y = e[z] = exp2πiz (cf. [40, 41]).

Tr D6 K3D2

(NS+, R)
θ6
3

η6 −2
θ4
4−θ

4
2

η4

θ2
3

η2 = q
1
4Z(τ, τ+1

2
)

(NS−, R)
θ6
4

η6 2
θ4
2+θ4

3

η4

θ2
4

η2 = q
1
4Z(τ, τ

2
)

(R+, R)
θ6
2

η6 2
θ4
3+θ4

4

η4

θ2
2

η2 = Z(τ, 1
2
)

(R−, R)
θ6
1

η6 = 0 6
θ2
2θ

2
3θ

2
4

η4·η2 = 24 = Z(τ, 0)

Now recall that E4 and E6 have the following θ-function decomposition

2E4 = θ6
2 · θ

2
2 + θ6

3 · θ
2
3 + θ6

4 · θ
2
4

2E6 = −θ6
2(θ4

3 + θ4
4) · θ2

2 + θ6
3(θ4

4 − θ
4
2) · θ2

3 + θ6
4(θ4

2 + θ4
3) · θ2

4 ; (3.3)

the θ2
i contributions (i = 2, 3, 4) are due to the SO(4) piece in the fermionic decomposition

of E8 ⊃ SO(12) × SO(4). Hence the sum of the three non-vanishing terms in the table

precisely leads to (3.2).

On the other hand, in the case of a general (d1, d2) embedding (using now a fermionic

representation for both E8’s), one first has to decompose the D
(1)
2 K3D(2)

2 part into
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D
(1)
2 K3 × D

(2),free
2 + D

(1),free
2 × K3D(2)

2 , where the factors in each summand are now

in different, and hence commuting, E8’s. Furthermore, since the rudimentary K3 gauge

bundles are structurally completely the same as before, the amount of contribution re-

alised by them can - by comparison with the “complete” K3 bundle considered above -

be read off from the R− sector. Note that Z(τ, 0) is the Witten index, which gives the

Euler number of K3 resp. the second Chern class of the relevant vector bundle.

This results in a contribution proportional to

1

∆
(
d1

24
E6 · E4 + E4 ·

d2

24
E6) =

1

∆
E4E6 =

∑
n≥−1

cSTU (n)qn , (3.4)

so that the result is independent of the particular instanton embedding.

3.2 The S-T -U-V models

In the presence of a Wilson line, which we will take to lay in the second E
(2)
8 , the

symmetry between the two E8’s is broken and thus, contrary to the 3 parameter case,

the prepotential will already depend perturbatively on the type (d1, d2) of the instanton

embedding (we take d2 ≥ d1).

The supersymmetric index (3.1) will now have the form

1

η2
TrRF (−1)FqL0−c/24q̄L̃0−c̃/24 = −2iZ3,2(τ, τ̄ )F (τ ) , (3.5)

where Z3,2 denotes the sum over the Narain lattice Γ3,2, Z3,2 =
∑
p∈Γ3,2 q

p2
L
2 q̄

p2
R
2 . The

presence of the Wilson line in E
(2)
8 has the following effect on the θ2

i pieces appearing in

the decomposition (3.3) of E4 and E6

2 ̂E4,1(τ, z) = θ6
2 ·

̂θ2
2(τ, z) + θ6

3 ·
̂θ2

3(τ, z) + θ6
4 ·

̂θ2
4(τ, z) , (3.6)

2 ̂E6,1(τ, z) = −θ6
2(θ4

3 + θ4
4) · ̂θ2

2(τ, z) + θ6
3(θ4

4 − θ
4
2) · ̂θ2

3(τ, z) + θ6
4(θ4

2 + θ4
3) · ̂θ2

4(τ, z) ,

where

̂θ2
1(τ, z) = θ2(2τ )− θ3(2τ ) ,

̂θ2
2(τ, z) = θ2(2τ ) + θ3(2τ ) ,

̂θ2
3(τ, z) = θ3(2τ ) + θ2(2τ ) ,

̂θ2
4(τ, z) = θ3(2τ )− θ2(2τ ) (3.7)

are the two SU(2) characters of the surviving A1 when written in the boundary condition

picture instead of the usual conjugacy class picture. We refer to appendix A.4 and A.5

for description and interpretation of the hatting procedure.
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The replacementE4 → Ê4,1, in particular, amounts to replacing the E8 partition function

PE8 = P
E

(0)
7
·P

A
(0)
1

+P
E

(1)
7
·P

A
(1)
1

with P
E

(0)
7

+ P
E

(1)
7

. This precisely describes the breaking

of the E(2)
8 to E(2)

7 × U(1) when turning on a Wilson line.

Thus, the effect of turning on a Wilson line can be described as follows. Introducing

An(τ ) =
1

∆

(
d1

24
E6 · Ê4,1 + E4 ·

d2

24
Ê6,1

)
, (3.8)

it follows that turning on a Wilson line results in the replacement

Z2,2 → Z3,2 ,

1

∆

(
d1

24
E6 · E4 + E4 ·

d2

24
E6

)
→ F (τ ) = An . (3.9)

(The first few expansion coefficients of A0, A1, A2 and A12 are listed in the second table

in appendix A.6.) The product Z3,2An transforms covariantly under modular transfor-

mations, since F (τ ) has weight −21
2
. (Recall that E4E6

∆
has weight -2.)

The occurence of modular forms F (τ ) of half-integral weight is naturally understood by

realising that the present case (of s = 1 Wilson lines turned on) interpolates between the

s = 0 and s = 8 cases of [18], where the relevant modular forms E4E6/∆ (s = 0) and

E6/∆ (s = 8) are of weight −2 and −6, respectively.

4 The perturbative prepotential for the S-T -U-V models

In this section we discuss the relation between the type II and the heterotic prepotentials

for the S-T -U-V models, that is between rational instanton numbers on the type II side

and Siegel modular forms on the heterotic side. The appearance of Siegel modular forms

in the context of threshold corrections in the presence of Wilson lines was first pointed

out in [22].

As discussed in the previous section, the supersymmetric index is given in terms of

F (τ ) = An =
∑

N∈Z,Z+3
4

cn(4N)qN . (4.1)

As explained in appendix A, the modular function An(τ ) is in one-to-one correspondence

with the index-one Jacobi form with the same expansion coefficients cn(k, b) = cn(4k −

b2): An(τ ) = ̂An(τ, z), An(τ, z) = 1
∆(τ )

(
d1

24
E6(τ ) · E4,1(τ, z) + E4(τ ) · d2

24
E6,1(τ, z)

)
=∑

k,b cn(4k − b2)qkrb.3

3An(τ, z) can be eventually seen as the order s expansion coefficient of a Siegel modular form

Fn(T, U, V ), again with identical expansion coefficients. Specifically, the index-one Jacobi form An(τ, z)

is the order s expansion coefficient of the Siegel form 1
132(−E4E6 + (31 · 123 − 11 · 122n)C10).

11



The expansion coefficients cn(4N) of F (τ ) govern the perturbative, i.e. 1-loop, corrections

to the heterotic prepotential F het
0 [18]. For the class of S-T -U-V models considered here,

the perturbative heterotic prepotential is given by

F het
0 = −S(TU − V 2) + pn(T, U, V )−

1

4π3

∑
k,l,b∈Z

(k,l,b)>0

cn(4kl − b2)Li3(e[kiT + liU + biV ]),

(4.2)

where e[x] = exp2πix. The first term −S(TU − V 2) is the tree-level prepotential of

the special Kähler space SO(3,2)
SO(3)×SO(2)

; pn(T, U, V ) denotes the one-loop cubic polynomial

which depends on the particular instanton embedding n. The condition (k, l, b) > 0

means that: either k > 0, l, b ∈ Z or k = 0, l > 0, b ∈ Z or k = l = 0, b < 0 (cf. [18]). It

is shown in appendix B how the worldsheet expansion coefficients cn(4N) turn into the

target-space coefficients cn(4kl − b2) appearing in the prepotential.

Next, consider truncating an S-T -U-V model to the S-T -U model by setting V = 0.

Then, the sum over b in (4.2) yields independently from n the coefficients of the 3

parameter model,

cSTU(kl) =
∑
b

cn(4kl − b2) , (4.3)

as it can be checked by explicit comparison. Therefore the prepotential (4.2) truncates

correctly to the prepotential for the S-T -U model.

The (Wilsonian) Abelian gauge threshold functions are related (see [16] for details)

to the second derivatives of the one-loop prepotential h(T, U, V ) = pn(T, U, V ) −
1

4π3

∑
(k,l,b)>0 cn(4kl − b2)Li3(e[kiT + liU + biV ]). At the loci of enhanced non-Abelian

gauge symmetries some of the Abelian gauge couplings will exhibit logarithmic singular-

ities due to the additional massless states. First consider ∂T∂Uh. At the line T = U one

U(1) is extended to SU(2) without additional massless hypermultiplets. It can be easily

checked that, as T → U ,

∂T∂Uh = −
1

π
log(T − U) , (4.4)

as it should. The Siegel modular form which vanishes on the T = U locus and has

modular weight 0 is given by C
2
30

C5
12

. It can be shown that, as V → 0,

C2
30

C5
12

→ (j(T )− j(U))2 , (4.5)

up to a normalization constant. Hence one deduces that

∂T∂Uh = −
1

2π
log
C2

30

C5
12

+ regular. (4.6)
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On the other hand, at the locus V = 0, a different U(1) gets enhanced to SU(2)(2), and

at the same time N ′H hyper multiplets, being doublets of SU(2)(2), become massless.

Using eq.(2.5), N ′V = 2 and that cn(−1) = −N ′H, cn(−4) = N ′V , it can be checked that,

as V → 0,

−
1

4
∂2
V h =

3

2π
(2 + n) logV = −

1

π
(1−

1

8
N ′H) logV . (4.7)

Observe that the factor (1− 1
8
N ′H) is precisely given by the N = 2 SU(2) gauge β-function

coefficient with N ′H/2 hypermultiplets in the fundamental representation of SU(2). The

Siegel modular form which vanishes on the V = 0 locus and has modular weight 0 is

given by C5
C

5/12
12

. It can be shown that, as V → 0,

C5 → V (∆(T )∆(U))
1
2 , (4.8)

So we now conclude that

−
1

4
∂2
V h =

3

4π
(2 + n) log

(
C5

C5/12
12

)2

+ regular. (4.9)

Let us now compare the heterotic models with the corresponding type II models on the

Calabi–Yau spaces Xn. The cubic parts of the type II prepotentials of X0, X1 and X2

are given in [26, 31] and can be written in an universal, n-dependent function as follows:

F II
cubic = t2(t

2
1 + t1t3 + 4t1t4 + 2t3t4 + 3t24)

+
4

3
t31 + 8t21t4 +

n

2
t1t

2
3 + (1 +

n

2
)t21t3 + 2(n + 2)t1t3t4

+ nt23t4 + (14− n)t1t
2
4 + (4 + n)t3t

2
4 + (8− n)t34. (4.10)

We believe that this expression is also valid for Xn with n > 2, in particular also for

the Calabi–Yau model X12. Note that for t4 = 0, F II
cubic precisely reduces to the cubic

prepotential of the S-T -U models [42, 31]. In order to match (4.10) with the cubic part

of the heterotic prepotential given in (4.2), we will perform the following identification

of type II and heterotic moduli (which differs from the one given in [26])

t1 = U − 2V, t2 = S −
n

2
T − (1−

n

2
)U,

t3 = T − U, t4 = V , (4.11)

which is valid in the chamber T > U > 2V . Then, (4.10) turns into

F II
cubic = −F het

cubic = S(TU − V 2) +
1

3
U3 + (

4

3
+ n)V 3 − (1 +

n

2
)UV 2 −

n

2
TV 2 . (4.12)
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Note that using the heterotic moduli the prepotential is independent of n in the limit

V = 0.

Next, let us consider the contributions of the world sheet instantons to the type II

prepotential of a 4 parameter model. Generically, they are given by

F II
inst = −

1

(2π)3

∑
d1,...,d4

nrd1,...,d4
Li3(

4∏
i=1

qdi) . (4.13)

The nrd1,d2,d3,d4
denote the rational instanton numbers. The heterotic weak coupling limit

S → ∞ corresponds to the large Kähler class limit t2 → ∞. In this limit, only the

instanton numbers with d2 = 0 contribute in the above sum. Using the identification

kT + lU + bV = d1t1 + d3t3 + d4t4, it follows that (independently of n)

k = d3 ,

l = d1 − d3 ,

b = d4 − 2d1 . (4.14)

Then, (4.13) turns into

F II
inst = −

1

(2π)3

∑
k,l,b

nrk,l,bLi3(e
−2π(kT+lU+bV )) . (4.15)

Comparison with (4.2) shows that the rational instanton numbers have to satisfy the

following constraint

nrk,l,b = nr(4kl − b2) (4.16)

as well as

nrk,l,b = −2cn(4kl − b2) . (4.17)

Note that the constraint (4.16) is non-trivial. We conjecture that an analogous constraint

has to hold for an arbitrary number of Wilson lines after the proper identification of T

and U . Also note that cn(0) = χ(Xn) and racall that cn(−1) = −N ′H, cn(−4) = N ′V .

For concreteness, let us now check above relations for the 4 parameter model of [26],

which has a dual type II description based on the Calabi–Yau space X2 = P1,1,2,6,10(20).

Using the instanton numbers given in [26]4, it can be checked that both (4.16) and (4.17)

for c2 indeed hold, as can be seen from the second table in appendix A.6 and the table

given below.

4We are grateful to B. Andreas and P. Mayr for providing us the higher instanton numbers which are

not given in [26].
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d1 d3 d4 k l b N = 4kl − b2 nd1,0,d3,d4

0 0 3 0 0 3 -9 0

0 1 0 1 -1 0 -4 -2

0 0 2 0 0 2 -4 -2

1 0 0 0 1 -2 -4 -2

1 0 4 0 1 2 -4 -2

0 0 1 0 0 1 -1 56

1 0 3 0 1 1 -1 56

1 0 1 0 1 -1 -1 56

1 0 2 0 1 0 0 372

2 1 3 1 1 -1 3 53952

2 1 4 1 1 0 4 174240

The truncation to the three parameter Calabi–Yau model is made by setting V = 0. The

instanton numbers nrk,l of the S-T -U model are then given by [26]

nrk,l =
∑
b

nr(4kl − b2) , (4.18)

where the summation range over b is finite. For example, nr1,0 = −2+ 56+ 372+ 56−2 =

480 [26].

5 The heterotic perturbative Wilsonian gravitational coupling F1

5.1 BPS orbits

An important role in the computation of the Wilsonian gravitational coupling F1 is played

by BPS states [43, 44, 18, 14],

F1 ∝ logM , (5.1)
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where M denotes the moduli-dependent holomorphic mass of an N = 2 BPS state. For

the S-T -U-V models under consideration, the tree-level mass M is given by [25, 29, 45]

M = m2 − im1U + in1T + n2(−UT + V 2) + ibV . (5.2)

Here, l = (n1,m1, n2,m2, b) denotes the set of integral quantum numbers carried by the

BPS state. The level matching condition for a BPS state reads

2(p2
L − p

2
R) = 4nTm+ b2 . (5.3)

Of special relevance to the computation of perturbative corrections to F1 are those BPS

states, whose tree-level mass vanishes at certain surfaces/lines in the perturbative moduli

space H2 = SO(3,2)
SO(3)×SO(2)

. Note that the condition M = 0 is the condition (see appendix

A.1) for a rational quadratic divisor

Hl = {

 iT iV

iV iU

 ∈ H2|m2 − im1U + in1T + n2(−UT + V 2) + ibV = 0} (5.4)

of discriminant

D(l) = 2(p2
L − p

2
R) = 4m1n1 + 4n2m2 + b2 . (5.5)

Consider, for instance, BPS states becoming massless at the surface V = 0, the so-called

Humbert surface H1 (cf. appendix A.1). They lay on the orbit D(l) = 1, that is, on the

orbit nTm = 0, b2 = 1. On the other hand, BPS states becoming massless at T = U ,

the Humbert surface H4, lay on the orbit D(l) = 4, that is, they carry quantum numbers

satisfying nTm = 1, b2 = 0 [25].

5.2 The coupling F1 in the S-T -U model

The perturbative Wilsonian gravitational coupling for the S-T -U model is given by5 (in

the chamber T > U)

F1 = 24Sinv −
bgrav

π
log η(T )η(U) +

2

π
log(j(T )− j(U)) . (5.6)

Using that [16]

Sinv = S̃ +
1

8
L ,

S̃ = S −
1

2
∂T∂Uh , L = −

4

π
log(j(T )− j(U)) , (5.7)

5The dilaton is defined to be S = 4π/g2 − iθ/2π.
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it follows that F1 can be rewritten as

F1 = 24S̃ −
1

π

[
10 log(j(T )− j(U)) + bgrav log η(T )η(U)

]
. (5.8)

The perturbative gravitational coupling is related to the perturbative Wilsonian coupling

by

1

g2
grav

= <F1 +
bgrav

4π
K = 12(S + S̄ + VGS) + ∆grav . (5.9)

This relates the Wilsonian gravitational coupling F1 to the supersymmetric index, that

is to ∆grav = − 2
4π
Ĩ2,2 [14], where [18]

Ĩ2,2 =
∫
F

d2τ

τ2

[
Z2,2

E4E6

η24
(E2 −

3

πτ2

)
− c̃1(0)

]
. (5.10)

It follows from (5.9) that

F1 = 24S −
2

π

∑
r>0

c̃1(−
r2

2
)Li1

= 24S̃ −
1

π

[
10 log(j(T )− j(U)) + bgrav log η(T )η(U)

]
, (5.11)

where the coefficients c̃1 are given by [18]

E2E4E6

∆
=
∑

c̃1(n)qn , ∆ = η24 . (5.12)

Here, we have ignored the issue of ambiguities in (5.11) linear in T and in U .

5.3 The coupling F1 in the S-T -U-V models

The classical moduli space of a heterotic S-T -U-V model is locally given by the Siegel

upper half plane H2 = SO(3,2)
SO(3)×SO(2)

. Because of target space duality invariance, one has

to consider modular forms on H2, i.e. Siegel modular forms (cf. appendix A).

The Siegel modular form which vanishes on the T = U locus and has modular weight 0

is given by
C2

30

C5
12

. It can be shown that, as V → 0,

C2
30

C5
12

→ (j(T )− j(U))2 , (5.13)

up to a normalization constant. On the other hand, the Siegel modular form which

vanishes on the V = 0 locus and has modular weight 0 is given by C5
C5/12

12

. It can be shown

that, as V → 0,

C5 → V (∆(T )∆(U))
1
2 , (5.14)
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up to a proportionality constant. Finally, the Siegel form C12 generalises ∆(T )∆(U), that

is

C12 → ∆(T )∆(U) (5.15)

as V → 0.

Then, in analogy to (5.6), the perturbative Wilsonian gravitational coupling for an S-T -

U-V model is now given by (in the chamber T > U)

F1 = 24Sinv −
bgrav

24π
log C12 +

1

π
log
C2

30

C5
12

−
1

2π
(N ′H −N

′
V ) log

(
C5

C5/12
12

)2

. (5.16)

Here, N ′V and N ′H denote the vector and the hyper multiplets which become massless at

the V = 0 locus. Since at V = 0 there is a gauge symmetry restoration U(1) → SU(2),

we have N ′V = 2.

The invariant dilaton Sinv is given by [16]

Sinv = S̃ +
1

10
L ,

S̃ = S −
4

10
(∂T∂U −

1

4
∂2
V )h , (5.17)

where the role of the quantity L is to render Sinv free of singularities. Using eqs.(4.6)

and (4.9), it follows that

S̃ = S +
1

5π
log
C2

30

C5
12

−
3

10π
(2 + n) log

(
C5

C5/12
12

)2

+ regular (5.18)

and, hence,

L = −
2

π
log
C2

30

C5
12

+
3

π
(2 + n) log

(
C5

C5/12
12

)2

. (5.19)

It follows that the Wilsonian gravitational coupling (5.16) can be rewritten into

F1 = 24S̃ −
1

π

[19

5
log
C2

30

C5
12

+
bgrav

24
log C12

+
(
−

72

10
(2 + n) +

1

2
(N ′H −N

′
V )
)

log

(
C5

C5/12
12

)2 ]
. (5.20)

Now recall from (2.5) that N ′H −N
′
V = 12n + 30. Inserting this into (5.20) yields

F1 = 24S̃ −
1

π

[19

5
log C2

30 +
3

5
(1− 2n) log C2

5

]
. (5.21)

Note that the log C12 terms have completely canceled out!
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Now consider the perturbative gravitational coupling, which is again related to the per-

turbative Wilsonian coupling by

1

g2
grav

= <F1 +
bgrav

4π
K = 12(S + S̄ + VGS) + ∆grav , (5.22)

where this time ∆grav = − 2
4π
Ĩ3,2 with

Ĩ3,2 =
∫
F

d2τ

τ2

[
Z3,2An

(
E2 −

3

πτ2

)
− dn(0)

]
. (5.23)

Here, we have introduced

Bn(τ ) = E2An =
12− n

24

E2E6Ê4,1

∆
+

12 + n

24

E2E4Ê6,1

∆
=

∑
N∈ZorZ+3

4

dn(4N)qN .

(5.24)

The world-sheet integral (5.23) can be evaluated using the techniques of [38, 18, 29, 27,

45]. A more detailed discussion can be found in appendix B. Then we find from (5.22)

that

F1 = 24S −
2

π

∑
(k,l,b)>0

dn(4kl − b2)Li1

= 24S̃ −
1

π

[19

5
log C2

30 +
3

5
(1− 2n) log C2

5

]
. (5.25)

Here, we have again ignored the issue of ambiguities linear in T , U and V . Equation

(5.25) gives a highly non-trivial consistency check on (4.2) and on (5.23). Namely, it

yields, using the product expansions for C5 and C30 given in [34] (cf. appendix A.3),

dn(N) = −
6

5
Ncn(N)−

19

5
f ′2(N)−

3

5
(1− 2n)f(N) , (5.26)

where N = 4kl − b2 ∈ 4Z or 4Z + 3. As a matter of fact, (5.26) is equivalent to the

following set of non-trivial relations

d(1)
n (N) = −

6

5
Nc(1)

n (N)−
19

5
f ′2(N)−

3

5
f(N) ,

d(2)
n (N) = −

6

5
Nc(2)

n (N)−
1

5
f(N) , (5.27)

where we have decomposed An(4τ ) and Bn(4τ ) into

An(4τ ) =
∑

N∈4Zor 4Z+3

c(1)
n (N)qN − 6n

∑
N∈4Zor 4Z+3

c(2)
n (N)nq

N ,

Bn(4τ ) =
∑

N∈4Zor 4Z+3

d(1)
n (N)qN − 6n

∑
N∈4Zor 4Z+3

d(2)
n (N)qN . (5.28)
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In order to show that (5.27) really holds, consider introducing [27]

Ẑ =
1

72

(E2
4Ê4,1 − E6Ê6,1)

∆
,

JC =
2E6Ê6,1

∆
+ 81Ẑ , (5.29)

as well as

Z̃(τ ) = Ẑ(4τ ) = 2
∑

N∈4Zor 4Z+3

f(N)qN , (5.30)

J̃C(τ ) = JC(4τ ) =
∑

N∈4Z,4Z+3

cJ(N)qN = 2q−4 − 14q−1 + 65664q3 + 262440q4 + · · · .

Then, it can be verified that

f ′2(N) =
1

2
cJ(N) + 6f(N) . (5.31)

One also has [27]

ΘqEm =
m

12
(E2Em − Em+2) , m = 4, 6

ΘqÊm,1 =
2m− 1

24

(
E2Êm,1 − Êm+2,1

)
, m = 4, 6

ΘqẼm,1 =
2m− 1

6

(
Ẽ2Ẽm,1 − Ẽm+2,1

)
, m = 4, 6 (5.32)

where

Ẽ2(τ ) = E2(4τ ) ,

Ẽm,1(τ ) = Êm,1(4τ ) , (5.33)

and where Θq = q d
dq

. Then, using (5.31) as well as (5.32), it can be shown that (5.27)

indeed holds.

6 Conclusions

In this paper we have computed the perturbative threshold corrections, i.e. the one-loop

prepotential and the one-loop gravitational coupling F1, forD = 4, N = 2 heterotic string

models compactified on K3×T2 as a function of the toroidal moduli T , U and the single

Wilson line V . The considered chain of models with generic Abelian gauge group U(1)5 is

characterized by the embedding of the SU(2) instanton numbers (d1, d2) = (12−n, 12+n)

into E
(1)
8 × E

(2)
8 . At special points in the classical moduli space SO(3,2)

SO(3)×SO(2)
/Γ, where
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Γ = SO(3, 2,Z) is the classical T -duality group, the Abelian gauge group U(1)5 can be

enhanced. The enhancement loci correspond to the Humbert surfaces in the classical

moduli space. The one-loop prepotential and the function F1 can be expressed in terms

of a set of very beautiful modular functions, namely the Siegel and Jacobi modular

forms. The construction of the supersymmetric index as a power series in the parameter

q = e2πiτ involves a so-called hatting procedure, which describes the transition of going

from Jacobi forms to ordinary modular functions. The physical interpretation of the

hatting procedure is just the turning on of the Wilson line modulus V . If follows that

the one-loop prepotential is given in terms of the same expansion coefficients as the

supersymmetric index.

For the S-T -U-V class of heterotic string models the spectrum (the number of massless

hyper multiplets) and the perturbative threshold corrections explicitly depend on the

particular instanton embedding, parametrized by the integer n. This situation is in

contrast to the three parameter S-T -U class of models, where the spectrum and the

perturbative couplings do not depend on n. In this case the models with n = 0, 2 are

even equivalent at the non-perturbative level. A priori, four-parameter models with gauge

group U(1)5 are obtained for the cases n = 0, 1, 2 only. In perturbation theory, E
(1)
8 can

only be broken to some group G
(1)
0 for n > 2. However, we believe that our results also

remain valid if there were a mechanism to get rid of the gauge group G
(1)
0 as well as of

dim(G(1)
0 ) hypermultiplets (leaving 215−n massless hyper multiplets). In fact, for n = 12

our results perfectly agree with the recent results of [27].

Besides the heterotic construction and the heterotic perturbative couplings, we also dis-

cussed the corresponding dual type II string models on Calabi–Yau three-folds Xn with

Hodge number h1,1 = 4 and Euler number χ = 24n − 420. For n = 0, 1, 2 these Calabi–

Yau spaces are known and can be explicitly constructed. For n = 2 there is a Higgs

transition [26] to the three parameter Calabi–Yau P1,1,2,8,12(24); the possibility of this

Higgs transition reflects itself in a consistent truncation V → 0 of the S-T -U-V vec-

tor couplings to the corresponding couplings in the S-T -U models. If the “complete”

gauge symmetry breaking to U(1)5 on the heterotic side could be realized for n > 2, it

would predict the existence of new Calabi–Yau spaces Xn. Since the truncation V → 0

to the perturbative couplings of three-parameter model consistently works for all n, we

conjecture that all Calabi–Yau spaces Xn, if existent, allow for a Higgs transition to the

three parameter Calabi–Yau spaces. Specifically for n even, the relevant three parameter

Calabi–Yau space should be based on the elliptic fibration over the Hirzebruch surface

F2 (or F0), whereas for n odd the three parameter Calabi–Yau should be given by the

elliptic fibration over F1. The possibility of having Calabi–Yau spaces Xn with n > 2 is
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in fact supported by the known existence of the n = 12 Calabi–Yau P2,2,3,3,10(20) [27].

Clearly, it would be very interesting to extend these results to models with a larger num-

ber of Wilson lines. Finally, it would be very interesting to see if there is any relation

between the perturbative N = 2 couplings, considered here, and the non-perturbative

N = 4 supersymmetric index of [28], where the Siegel modular forms also play a promi-

nent role.
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A Modular forms

A.1 On Siegel modular forms

Here we review some properties of Siegel modular forms. A more detailed account can

be found in [46].

The classical moduli space of a heterotic S-T -U-V model is locally given by the Siegel

upper half plane H2 = SO(3,2)
SO(3)×SO(2)

(note the exceptional isomorphism SO(5) = B2 =

C2 = Sp(4), here in a noncompact formulation). The standard action of Sp(4, Z) on an

element τ of the Siegel upper half plane H2 is given by

M →M · τ = (aτ + b)(cτ + d)−1 , (A.1)

where

τ =

 τ1 τ3

τ3 τ2

 =

 iT iV

iV iU

 , M =

 a b

c d

 ∈ G = Sp(4, Z) , (A.2)

and where det Imτ = ReTReU − (ReV )2 > 0. Note that a, b, c and d denote 2 × 2

matrices. A Siegel modular form F of even weight k transforms as

F (M · τ ) = det(cτ + d)kF (τ ) (A.3)

for every M ∈ G = Sp(4, Z), whereas a modular form of odd weight k transforms as

F (M · τ ) = ε(M)det(cτ + d)kF (τ ) . (A.4)
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Here ε : G → G/G(2) = S6 → {±1} is the sign of the permutation in S6. G(2) denotes

the principal congruence subgroup of level 2.

The Eisenstein series are given by

Ek =
∑

det(cτ + d)−k . (A.5)

Now, recall that the usual modular forms of Sl(2,Z) are generated by the (normalized)

Eisenstein series E4 and E6. These are related to the two modular forms E12 and ∆ of

weight 12 by

aE3
4 + bE2

6 = (a+ b)E12 ,

E3
4 − E

2
6 = α∆ , (A.6)

where ∆ = η24 is the cusp form, and where a = (3 · 7)2, b = 2 · 53, c = a+ b = 691, α =

26 · 33 = 1728.

Similarly, the ring of Siegel modular forms is generated by the (algebraic independent)

Eisenstein series E4, E6, E10, E12 and by one further cusp form of odd weight C35, whose

square can again be expressed in terms of the even generators. Alternatively, instead of

using E10 and E12, one can also use the cusp forms C10 and C12.

A Siegel cusp form is defined as follows. Since a modular form f is invariant under the

translation group U = {

 1 b

0 1

 ∈ G}, where the integer valued 2× 2- matrix b is sym-

metric, it has a Fourier expansion F =
∑
M a(M)e2πitrMτ . Here, the summation extends

over all symmetric half-integral 2 × 2-matrices (that is, over symmetric matrices which

have integer valued diagonal entries and half-integer valued off-diagonal entries). The

Fourier coefficient a(M) depends only on the class of M under conjugation by Sl(2,Z),

and it is zero unless M is positive semidefinite.

Now, consider the Siegel operator Φ which, to every Siegel modular form F with Fourier

coefficients a(M), associates the ordinary SL(2,Z) modular form ΦF with Fourier coef-

ficients a(n) = a(

 n 0

0 0

). This yields a surjective homomorphism of graded rings of

modular forms. The forms in the kernel are the cusp forms. Thus, identities between

ordinary modular forms lead to Siegel cusp forms, as follows:

E4E6 = E10 → E4E6 − E10 =: pC10 ,

aE3
4 + bE2

6 = cE12 → aE3
4 + bE2

6 − cE12 =: α2ab

c
C12 , (A.7)
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where p denotes a normalisation constant given by p = 210·35·52·7·53
43867

. We will drop this

normalisation constant in the following, for notational simplicity.

Next, consider restricting the Siegel modular forms to the diagonal D = {

 τ1 0

0 τ2

}
(corresponding to the embedding SO(2,2)

SO(2)×SO(2)
→ SO(3,2)

SO(3)×SO(2)
). Then, interestingly,

Ek

 τ1 0

0 τ2

 = Ek(τ1)Ek(τ2) . (A.8)

Specifically

E4 → E4(τ1)E4(τ2) ,

E6 → E6(τ1)E6(τ2) ,

C10 → 0 ,

C12 → ∆(τ1)∆(τ2) . (A.9)

More precisely, one finds that, up to a normalisation constant, C10 → τ 2
3 ∆(τ1)∆(τ2) as

τ3 → 0.

Now, consider the behaviour on D of the odd generator C35. Since C35 is a more com-

plicated object, one first reexpresses its square in terms of the other, even generators.

Namely, by using the results in [46], one finds that

α2C2
35 =

1

33
C10 [ 224 · 315C5

12

−213 · 39C4
12(E3

4 + E2
6 )

+ 33C3
12(E

6
4 − 2E3

4E
2
6 − 214 · 35E2

4E6C10

−2233952E4C
2
10 + E4

6 )

+211 · 36C2
12C10(37E4

4 + 5 · 7E4E
2
6 − 2123353E6C10)

+ 32C12C
2
10(−E7

4 + 2E4
4E

2
6 + 21133 · 5 · 19E3

4E6C10

+2203653 · 11E2
4C

2
10 − E4E

4
6 + 243352E3

6C10)

+ 2 · C3
10(−E

4
4E6 − 21134E5

4C10 + 2E3
4E

3
6

+2113452E2
4E

2
6C10 + 2203754E4E6C

2
10 − E

5
6

+2313955C3
10)] . (A.10)
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Thus, on the diagonal D, C35 = 0 as well as

α2C
2
35

C10
= α2[α2C5

12 − 2C4
12(E3

4 + E2
6 ) +

1

α2
C3

12(E6
4 − 2E3

4E
2
6 + E4

6 )]

= C3
12[α

4C2
12 − 2α2C12(E3

4 + E2
6 ) + (E3

4 − E
2
6 )2]

= C5
12

(α2C12 − (E3
4 − E

2
6 ))2 − 4α2C12E2

6

C2
12

= C5
12(j(τ1)− j(τ2))2 = (η2(τ1)η2(τ2))60(j(τ1)− j(τ2))2 , (A.11)

where j(τ ) = E3
4/∆. Then, using C5 and C30, which are related to the forms already

defined by C10 = C2
5 and C35 = C30C5, respectively, it follows that

α2C2
30 → ∆5(τ1)∆5(τ2)(j(τ1)− j(τ2))2 (A.12)

on the diagonal D.

A rational quadratic divisor of H2 is, by definition [34], the set

Hl = {

 iT iV

iV iU

 ∈ H2|in1T + im1U + ibV + n2(−TU + V 2) +m2 = 0} , (A.13)

where l = (n1,m1, b, n2,m2) ∈ Z5 is a primitive (i.e. with the greatest commom divisor

equals 1) integral vector. The number D(l) = b2−4m1n1+4n2m2 is called the discriminant

of Hl. This divisor determines the Humbert surface HD in the Siegel three-fold Sp4(Z) \

H2. The Humbert surface HD is (the image in Sp4(Z) \ H2 of) the union of all Hl of

discriminant D(l). Each Humbert surface HD can be represented by a linear relation in

T , U and V . For instance, the divisor of C5 is the diagonal H1 = {Z =

 iT 0

0 iU

 ∈
Sp4(Z) \ H2}. Similarly, the divisor of the Siegel modular form C30 is the surface H4 =

{Z =

 iT iV

iV iU

 ∈ Sp4(Z) \ H2|T = U}. The divisor of the Siegel modular form C35,

on the other hand, is the sum (with multiplicity 1) of the surfaces H1 and H4.

A.2 On Jacobi forms

A Siegel modular form F (T, U, V ) of weight k has a Fourier expansion with respect to

its variable iU

F (T, U, V ) =
∞∑
m=0

φk,m(T, V )sm , (A.14)
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where s = e[iU ], e[x] = exp2πix. Each of the φk,m(T, V ) is a Jacobi form of weight k

and index m [47]. That is, for each

 a b

c d

 ∈ Sl(2,Z) and λ, µ ∈ Z

φk,m(
aT − ib

icT + d
,

V

icT + d
) = (icT + d)ke2πim

c(iV )2

icT+d φ(T, V ) ,

φk,m(T, V + λT + µ) = e−2πim(λ2iT+2λiV )φk,m(T, V ) . (A.15)

A Jacobi form φk,m(T, V ) of index m has in turn an expansion

φ(T, V ) =
∑
n≥0

∑
lεZ

c(n, l)qnrl , (A.16)

where q = e[iT ], r = e[iV ]. Of special relevance are the Jacobi forms φk,1 of index 1. The

summation in l extends in the usual case, and for the generators introduced above, over

4n− l2 ≥ 0; for the forms divided by ∆, 4n− l2 ≥ −1 or − 4, depending on whether the

form is a cusp form or not. Furthermore

c(n, l) = c(4n− l2) . (A.17)

Consider, for instance, the Eisenstein series, which have the expansion

Ek(T, U, V ) = Ek(T )−
2k

Bk

Ek,1(T, V ) s+ O(s2) . (A.18)

Here, the Bk denote the Bernoulli numbers. Thus, for instance,

E4 = E4 + 240E4,1s+ · · · ,

E6 = E6 − 504E6,1s + · · · . (A.19)

The Jacobi forms E4,1(T, V ) and E6,1(T, V ) of index 1 have the expansion (the expansion

coefficients are listed in the first table of appendix A.6)

E4,1 = 1 + (r2 + 56r + 126 + 56r−1 + r−2)q

+ (126r2 + 576r + 756 + 576r−1 + 126r−2)q2 + · · · ,

E6,1 = 1 + (r2 − 88r − 330− 88r−1 + r−2)q

+ (−330r2 − 4224r − 7524 − 4224r−1 − 330r−2)q2 + · · · . (A.20)

Note that Ek,1 → Ek as V → 0.
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Similarly, the cusp forms C10(T, U, V ) and C12(T, U, V ) have the expansion

C10(T, U, V ) = φ10,1(T, V )s+O(s2) ,

C12(T, U, V ) = ∆(T ) +
1

12
φ12,1(T, V )s+O(s2) , (A.21)

where

φ10,1 =
1

144
(E6E4,1 − E4E6,1)→ 0 ,

φ12,1 =
1

144
(E2

4E4,1 − E6E6,1)→ 12∆ . (A.22)

Here, we have indicated the behaviour under the truncation V → 0. The Jacobi forms

φ10,1 and φ12,1 of index 1 have the following expansion (the expansion coefficients are

listed in the first table in appendix A.6)

φ10,1 = (r − 2 + r−1)q + (−2r2 − 16r + 36− 16r−1 − 2r−2)q2 + · · · ,

φ12,1 = (r + 10 + r−1)q + (10r2 − 88r − 132− 88r−1 + 10r−2)q2 + · · · . (A.23)

A.3 Product expansions

The Siegel modular forms C5 and C30 = C35/C5 have the following product expansion [34]

C5 = (qrs)1/2
∏

n,m,l∈Z
(n,m,l)>0

(1− qnrlsm)f(4nm−l2) ,

C30 = (q3rs3)1/2(q − s)
∏

n,m,l∈Z
(n,m,l)>0

(1− qnrlsm)f
′
2(4nm−l2) , (A.24)

where the condition (n,m, l) > 0 means that n ≥ 0,m ≥ 0 and either l ∈ Z if n+m > 0,

or l < 0 if n = m = 0. The coefficients f(4nm − l2) and f ′2(4nm − l2), which are listed

in the first table in appendix A.6, are defined as follows [34]. Consider the expansion of

φ0,1 :=
φ12,1

∆(T )
=
∑
n≥0

∑
lεZ

f(n, l)qnrl , (A.25)

where the sum over l is restricted to 4n − l2 ≥ −1. Then, f(N) = f(n, l) if N =

4n − l2 ≥ −1, and f(N) = 0 otherwise. The coefficients f ′2(N) are then given by

f ′2(N) = 8f(4N)+(2
(
−N

2

)
−3)f(N)+f(N

4
). Here, (D

2
) = 1,−1, 0 depending on whether

D ≡ 1 mod 8, 5 mod 8, 0 mod 2.
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Using the product expansions (A.24), we can perform a check on the expansion (A.21)

of C10 = qrs
∏

(1− qnrlsm)2f . Namely, consider the term in C10 with n = m = 0, l = −1.

It gives rise to qsr(1− r−1)2 = qs(r− 2 + r−1), which indeed matches the q-term of φ10,1.

Similarly, we can perform a check on (A.12). Setting r = 1 in (A.24), we see that

the m = 0-terms have f ′2(0) = 60, and thus they match ∆5/2(T ) = η60 occuring in

C30 ∝ ∆5/2(T )∆5/2(U)(j(T )− j(U)). The sum over l for the terms with m = n = 1, on

the other hand, yields f ′2(4) + 2(f ′2(3) + f ′2(0)) = 196884, which matches the q-term in

the expansion of j − 744 = q−1 + 196884q + · · ·.

A.4 Theta functions and Jacobi forms

The standard Jacobi theta functions are defined as follows (z = iV )

θ1(τ, z) = i
∑
n∈Z

(−1)nq
1
2

(n−1
2

)2

rn−
1
2 ,

θ2(τ, z) =
∑
n∈Z

q
1
2

(n−1
2

)2

rn−
1
2 ,

θ3(τ, z) =
∑
n∈Z

q
1
2
n2

rn ,

θ4(τ, z) =
∑
n∈Z

(−1)nq
1
2
n2

rn . (A.26)

It is useful to introduce

θ0,1(τ, z) = θ3(2τ, z) =
∑
n∈Z

qn
2

rn ,

θ1,1(τ, z) = θ2(2τ, z) =
∑
nνZ

q(n−1
2

)2

rn−
1
2 (A.27)

as well as

θev(τ, z) = θ0,1(τ, 2z) =
∑

n≡0(2)

qn
2/4rn ,

θodd(τ, z) = θ1,1(τ, 2z) =
∑

n≡1(2)

q(n−1
2

)2

rn−
1
2 . (A.28)

Next, consider setting z = 0. The θi(τ, 0) will be simply denoted by θi, whereas the

θi(2τ, 0) will be denoted by θi(2·) (i = 1, . . . 4). It is well known that θ1 = 0 and that

θ4
3 = θ4

2 + θ4
4 as well as θ2θ3θ4 = 2η3. Also

E4 =
1

2

(
θ8

2 + θ8
3 + θ8

4

)
,

E6 =
1

2

(
θ4

2 + θ4
3)(θ4

3 + θ4
4)(θ4

4 − θ
4
2)
)

=
1

2

(
−θ6

2(θ4
3 + θ4

4)θ2
2 + θ6

3(θ4
4 − θ

4
2)θ2

3 + θ6
4(θ4

2 + θ4
3)θ2

4

)
. (A.29)
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Additional useful identities are given by

2θ2(2·)θ3(2·) = θ2
2 ,

θ2
2(2·) + θ2

3(2·) = θ2
3 ,

θ2
3(2·) − θ2

2(2·) = θ2
4 ,

2θ2
2(2·) = θ2

3 − θ
2
4 ,

2θ2
3(2·) = θ2

3 + θ2
4 ,

θ2
4(2·) = θ3θ4 . (A.30)

Now consider Jacobi forms f(τ, z) =
∑

n≥0
l∈Z

c(4n − l2)qnrl of weight k and index 1. The

following examples provide useful identities between Jacobi forms of index 1 and Jacobi

theta functions

φ10,1 = −η18θ2
1(τ, z) ,

φ12,1 = 12η24 θ
2
3(τ, z)

θ2
3

+ (θ4
4 − θ

4
2)[−η18θ2

1(τ, z)] (A.31)

as well as

E4,1 =
1

2

(
θ6

2θ
2
2(τ, z) + θ6

3θ
2
3(τ, z) + θ6

4θ
2
4(τ, z)

)
, (A.32)

E6,1 =
1

2

(
−θ6

2(θ4
3 + θ4

4) θ2
2(τ, z) + θ6

3(θ4
4 − θ

4
2) θ2

3(τ, z) + θ6
4(θ4

2 + θ4
3) θ2

4(τ, z)
)
.

A Jacobi form of index 1 has the following decomposition [47, 29, 27]

f(τ, z) = fev(τ )θev(τ, z) + fodd(τ )θodd(τ, z) , (A.33)

where

fev =
∑

N≡0(4)

c(N)qN/4 ,

fodd =
∑

N≡−1(4)

c(N)qN/4 . (A.34)

Consider, for instance, E4,1. It has the decomposition [27]

E4,1 ev = θ7
3(2·) + 7θ3

3(2·)θ4
2(2·) ,

E4,1 odd = θ7
2(2·) + 7θ3

2(2·)θ4
3(2·) . (A.35)
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Furthermore one has (with θev ≡ θev(τ, z) and θodd ≡ θodd(τ, z))

θ2
1(τ, z) = θ2(2·)θev − θ3(2·)θodd ,

θ2
2(τ, z) = θ2(2·)θev + θ3(2·)θodd ,

θ2
3(τ, z) = θ3(2·)θev + θ2(2·)θodd ,

θ2
4(τ, z) = θ3(2·)θev − θ2(2·)θodd . (A.36)

Next, consider the elliptic genus Z(τ, z) of K3, which is a Jacobi form of weight 0 and

index 1, given by [41]

Z(τ, z) = 2
φ12,1

∆
= 24

θ2
3(τ, z)

θ2
3

− 2
θ4

4 − θ
4
2

η4

θ2
1(τ, z)

η2
. (A.37)

It has the decomposition

Zev = 24
θ3(2·)

θ2
3

− 2
θ4

4 − θ
4
2

η4

θ2(2·)

η2
= 20 + 216q + 1616q2 + · · · ,

Zodd = 24
θ2(2·)

θ2
3

+ 2
θ4

4 − θ
4
2

η4

θ3(2·)

η2
= 2q−

1
4 − 128q

3
4 − 1026q

7
4 + · · · . (A.38)

Now we introduce the hatted modular function ̂f(τ, z) as

̂f(τ, z) = fev(τ ) + fodd(τ ) . (A.39)

Hence the hatted modular function corresponds in an one-to-one way to the index 1

Jacobi form. In particular, the Jacobi form f(τ, z) and its hatted relative ̂f(τ, z) possess

identical power series expansion coefficients c(N):

f(τ, z) =
∑
n,l

c(4n − l2)qnrl, ̂f(τ, z) =
∑

N∈4Zor 4Z+3

c(N)qN/4 . (A.40)

Note that an ordinary modular form (that is a form not having any z-dependence), if

occuring as a multiplicative factor in front of a proper Jacobi form, is left untouched by

the hatting procedure (A.39). Thus, for instance,

Ê4,1 =
1

2

(
θ6

2
̂θ2

2(τ, z) + θ6
3

̂θ2
3(τ, z) + θ6

4
̂θ2

4(τ, z)
)

(A.41)

=
1

2

(
θ6

2[θ2(2·) + θ3(2·)] + θ6
3[θ2(2·) + θ3(2·)] + θ6

4[θ3(2·) − θ2(2·)]
)
,

Ê6,1 =
1

2

(
−θ6

2(θ4
3 + θ4

4) ̂θ2
2(τ, z) + θ6

3(θ4
4 − θ

4
2) ̂θ2

3(τ, z) + θ6
4(θ4

2 + θ4
3) ̂θ2

4(τ, z)
)
,

and similarly

Ẑ = Zev + Zodd = 24
θ2(2·) + θ3(2·)

θ2
3

− 2
(θ4

4 − θ
4
2)

η4

(θ2(2·)− θ3(2·))

η2
. (A.42)
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Furthermore, consider introducing

f̃ = f̂(4·) =
∑

N∈4Zor 4Z+3

c(N)qN . (A.43)

Note that f̃ is the Γ0(4) modular form of half-integral weight k − 1/2 associated to a

Jacobi form of weight k and index 1 [47].

A.5 Lie algebra lattices and Jacobi forms

The relation between Lie algebra lattice sums (see e.g.[48, 49]) and Jacobi forms will be

established in three steps. We start by reviewing the well known relationship between the

Lie algebra lattice E8 and the Eisenstein series E4. Then we go on showing the relation

between the Lie algebra lattice E7 and the Jacobi Eisenstein series E4,1. Finally, we will

relate the processes of splitting off an A1 and the hatting procedure. This will explain

the relation between turning on a Wilson line and the hatting procedure.

First the relation between the Eisenstein series E4 and the partition function of the E8

lattice Λ = {x ∈ Z8 ∪ π + Z8|(x, π) ∈ Z} is well known (π = (1/2, · · · , 1/2) ∈ Z8) and

reads

E4 =
∑
x∈Λ

q
1
2
x2

=
1

2
(θ8

2 + θ8
3 + θ8

4) . (A.44)

Because of the lattice relation ΛE8 = Λ
D

(0)
8

+ Λ
D

(S)
8

, this also shows that the fermion-

ically computed partition function P
D

(0)
8

+ P
D

(S)
8

of E8 is identical to the bosonically

computed one, if one recalls the relation between the bosonic conjugacy class picture and

the fermionic boundary condition picture

P
D

(0)
n

=
θn3 + θn4

2
=
NS+ +NS−

2
,

P
D

(V )
n

=
θn3 − θ

n
4

2
=
NS+ −NS−

2
,

P
D

(S/C)
n

=
θn2
2

=
R+

2
. (A.45)

Now consider the Jacobi form E4,1(τ, z) =
∑
c(4n − l2)qnrl. Since the expres-

sion
∑
x∈Λ q

1
2
x2
r(x,π) has the correct weights (and truncation), and since the space

in question is one–dimensional, this represents E4,1. If one considers the l = 0

resp. l = 1 sector, one finds
∑

(x,π)=0 q
1
2

(x,x) =
∑
n c(4n)qn =

∑
N≡0(4) c(N)qN/4 resp.∑

(x,π)=1 q
1
2

(x,x) =
∑
n c(4n − 1)qn =

∑
N≡−1(4) c(N)q

N+1
4 , i.e. E4,1ev =

∑
(x,π)=0 q

1
2
x2

and
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E4,1odd = q−1/4∑
(x,π)=1 q

1
2
x2

=
∑

x∈− π2 +Λ

(x,π)=0

q
1
2
x2

. Thus,

E4,1 ev =
E8∑

(x,π)=0

q
1
2
x2

=
E7∑
x∈(0)

q
1
2
x2

= P
E

(0)
7

,

E4,1 odd =
E8∑

x∈−π
2

+Λ

(x,π)=0

q
1
2
x2

=
E7∑
x∈(1)

q
1
2
x2

= P
E

(1)
7

, (A.46)

where the lattice sums P
E

(i)
7

=
∑
x∈(i) q

1
2
x2

run over vectors within the conjugacy class (i).

Besides this lattice theoretic argument, this can also be checked explicitely

E4,1 ev = θ3
3(2·)(θ4

3(2·) + 7θ4
2(2·)) = θ3(2·)θ

2
3(2·)(θ4

4(2·) + 8θ4
2(2·))

= θ3(2·)
θ2

3 + θ2
4

2
[θ2

3θ
2
4 + 2(θ2

3 − θ
2
4)2] = θ3(2·)[θ

6
3 + θ6

4 −
θ2

3θ
2
4

2
(θ2

3 + θ2
4)]

= θ3(2·)
1

2
[θ6

3 + θ6
4] + θ2(2·)

1

2
θ6

2 = P
E

(0)
7

; (A.47)

similarly E4,1 odd = P
E

(1)
7

.

The last relation in (A.47) follows by noting the following lattice decomposition of P
E

(0)
7

:

P
E

(0)
7

= P
D

(0)
6
·P

A
(0)
1

+P
D

(S)
6
·P

A
(1)
1

. Here one uses the following lattice sums for A1, which

has the root lattice Λ
(0)
A1

=
√

2Z and two conjugacy classes:

P
A

(0)
1

=
A1∑
x∈(0)

q
1
2
x2

=
∑
n∈Z

qn
2

= θ3(2·) ,

P
A

(1)
1

=
A1∑
x∈(1)

q
1
2
x2

=
∑
n∈Z

q(n−1/2)2

= θ2(2·) . (A.48)

Thus we get that

2Ê4,1 = θ6
2[θ2(2·) + θ3(2·)] + θ6

3[θ2(2·) + θ3(2·)] + θ6
4[θ3(2·) − θ2(2·)]

= θ6
2 ·

̂θ2
2(τ, z) + θ6

3 ·
̂θ2

3(τ, z) + θ6
4 ·

̂θ2
4(τ, z)

= 2(P
E

(0)
7

+ P
E

(1)
7

) , (A.49)

which also holds, as is easily seen, in the dehatted version. Now we understand that the

breaking of E8 to E7 by turning on a Wilson line, i.e. the splitting off of an AWilson
1 ,

precisely corresponds to the replacement of E4 by the hatted modular function Ê4,1.

On the other hand, note that the truncation V → 0

E4,1(τ, 0) = E4 = (E4,1)evθ3(2·) + (E4,1)oddθ2(2·) (A.50)
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reflects the decomposition of E8 ⊃ E7 ×A1

PE8 = P
E

(0)
7
· P

A
(0)
1

+ P
E

(1)
7
· P

A
(1)
1

. (A.51)

Let us again demonstate the hatting procedure by considering the Wilson line breaking

of D2 = A1×AWilson
1 to A1. The lattice decomposition of D2 under A1×A1 has the form

P
D

(0)
2

=
θ2

3 + θ2
4

2
= P

A
(0)
1
· P

A
(0)
1

= θ3(2·)
2,

P
D

(V )
2

=
θ2

3 − θ
2
4

2
= P

A
(1)
1
· P

A
(1)
1

= θ2(2·)
2,

P
D

(S,C)
2

=
θ2

2

2
= P

A
(0)
1
· P

A
(1)
1

= θ2(2·)θ3(2·). (A.52)

Thus the corresponding hatted Jacobi forms become

̂θ2
3(τ, z) + ̂θ2

4(τ, z)

2
= P

A
(0)
1

= θ3(2·),

̂θ2
3(τ, z)− ̂θ2

4(τ, z)

2
= P

A
(1)
1

= θ2(2·),

̂θ2
2(τ, z)

2
=

1

2
(P

A
(0)
1

+ P
A

(1)
1

) =
1

2
(θ2(2·) + θ3(2·)). (A.53)

Finally, going back from the conjugacy class picture to the boundary condition picture

one has

NS±A1
= P

A
(0)
1
± P

A
(1)
1

= θ3(2·)± θ2(2·) = ̂θ2
3/4(τ, z) , (A.54)

R+
A1

= P
A

(0)
1

+ P
A

(1)
1

= θ3(2·) + θ2(2·) = ̂θ2
2(τ, z) . (A.55)

A.6 Tables

This table displays some expansion coefficients of the Jacobi forms E4,1, E6,1, φ10,1, φ12,1

and of the Siegel forms C5, C30.
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N e4,1(N) e6,1(N) c10,1(N) c12,1(N) f(N) f ′2(N)

-4 - - - - - 1

-1 - - - - 1 -1

0 1 1 0 0 10 60

3 56 -88 1 1 -64 32448

4 126 -330 -2 10 108 131868

7 576 -4224 -16 -88 -513 ***

8 756 -7524 36 -132 808 ***

11 1512 -30600 99 1275 -2752 ***

12 2072 -46552 -272 736 4016 ***

15 4032 -130944 -240 -8040 -11775 ***

16 4158 -169290 1056 -2880 16524 ***

19 5544 -355080 -253 24035 *** ***

20 7560 -464904 -1800 13080 *** ***

In the following table some expansion coefficients of E4,1E6

∆
, E4E6,1

∆
and of An (see eq.(3.8))

for n = 0, 1, 2, 12 are listed.

N E4,1E6/∆ E4E6,1/∆ 2A0 2A1 2A2 2A12

-4 1 1 2 2 2 2

-1 56 -88 -32 -44 -56 -176

0 -354 -66 -420 -396 -372 -132

3 -26304 -27456 -52760 -53356 -53952 -54912

4 -88128 -86400 -174528 -174384 -174240 -172800
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B The world sheet integral Ĩ3,2

Consider the integral

Ĩ3,2 =
∫
F

d2τ

τ2

[
Z3,2F (τ )

(
E2 −

3

πτ2

)
− dn(0)

]
, (B.1)

where

F (τ ) = An =
∑

N∈Z,Z+3
4

cn(4N)qN ,

Bn(τ ) = AnE2 =
∑

N∈Z,Z+3
4

dn(4N)qN . (B.2)

F denotes the fundamental domain for SL(2,Z).

The calculation of (B.1) involves three contributions [38, 18, 29, 27, 45], that is Ĩ3,2 =

I0 + Ind + Ideg . In this appendix, we will evalute Ind by closely following the procedure

described in [38, 18, 29, 27, 45]. We will work in the chamber T2 > U2 > 2V2. The other

two contributions can be evaluated along similar lines.

Recall that

Z3,2(τ, τ̄) =
∑
p∈Γ3,2

q
1
2
p2
L q̄

1
2
p2
R =

∑
m1,m2,n1,n2,b

q
1
2

(p2
L−p

2
R)q

1
2
p2
R q̄

1
2
p2
R , (B.3)

where

p2
R =

|m2 +m1U + n1T + n2(TU − V 2) + bV |2

2Y
,

1

2
(p2
L − p

2
R) =

1

4
b2 −m1n1 +m2n2 ,

Y = T2U2 − V
2

2 > 0 . (B.4)

Performing a Poisson resummation on m1 and m2 yields [18, 45]

∑
m1,m2

q
1
2
p2
R q̄

1
2
p2
R =

∑
k1,k2

Y

U2τ2
q
b2

4 eG , (B.5)

where

G = −
πY

U2
2 τ2
|A|2 − 2πiT detA+

πb

U2

(
V Ã − V̄A

)

−
πn2

U2

(
V 2Ã − V̄ 2A

)
+

2πiV 2
2

U2
2

(n1 + n2Ū )A . (B.6)
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Here,

A =

 n1 −k1

n2 k2

 ,

A = (1, U)A(τ, 1)T = −k1 + n1τ + k2U + n2τU ,

Ã = (1, Ū )A(τ, 1)T = −k1 + n1τ + k2Ū + n2τ Ū . (B.7)

The contribution Ind is obtained by restriction to non-denerate matrices A (that is,

matrices with non-zero determinant) of the form [38, 18]

A =

 n1 −k1

0 k2

 ≡
 k j

0 p

 , p 6= 0 , k > j ≥ 0 . (B.8)

Then [38, 18]

Ind = 2
Y

U2

∑
b∈Z

∑
p∈Z
p6=0

∑
k>0

k−1∑
j=0

∫ ∞
−∞

dτ1

∫ ∞
0

dτ2

τ 2
2

q
b2

4 eGF (τ )
(
E2 −

3

πτ2

)
, (B.9)

where

G = −2πiTkp−
πY

τ2U2
2

(kτ2 + pU2)2 − 2πbk
V2

U2
τ2

+ 2πi
b

U2
(jV2 − pV1U2 + pU1V2)

+ 2πi
V 2

2

U2
2

k(j + ikτ2 + pU)

−
πY

τ2U2
2

k2(τ1 +
j + pU1

k
)2 + 2πi

V2

U2
bkτ1 + 2πi

V 2
2

U2
2

k2τ1 . (B.10)

The integral over τ1 is gaussian and yields∫ ∞
−∞

dτ1e
− πY

τ2U
2
2

k2(τ1+
j+pU1
k

)2+2πiτ1Ñ
=
U2

k

√
τ2

Y
e−

πτ2U
2
2

Y k2 Ñ2−2πi
j+pU1
k

Ñ , (B.11)

where

Ñ = N +
b2

4
+ bk

V2

U2

+ k2V
2

2

U2
2

. (B.12)

Then, Ind turns into

Ind = 2
√
Y

∑
N∈Z,Z+3

4

∑
b∈Z

∑
p∈Z
p6=0

∑
k>0

1

k

k−1∑
j=0

∫ ∞
0

dτ2√
τ 3

2

eG
′
e−2πτ2(N+ b2

4
)e−

πτ2U
2
2

Y k2 Ñ2−2πi
j+pU1
k

Ñ
(
dn(4N)−

3cn(4N)

πτ2

)
, (B.13)
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where

G ′ = −2πiTkp−
πY

τ2U2
2

(kτ2 + pU2)2 − 2πbk
V2

U2
τ2

+ 2πi
b

U2
(jV2 − pV1U2 + pU1V2) + 2πi

V 2
2

U2
2

k(j + ikτ2 + pU) . (B.14)

Next, consider summing over j. Then

k−1∑
j=0

e
−2πi j

k
Ñ+2πi

V2
U2
jb+2πi

V 2
2
U2

2

kj
=

k−1∑
j=0

e−2πi j
k

(N+ b2

4
) =

{
k if

N+ b2

4

k
= l ∈ Z .

0 otherwise .

(B.15)

Note that setting N = kl− b2

4
is consistent with N ∈ Z,Z + 3

4
. It follows that

Ind = 2
√
Y
∑
l∈Z

∑
b∈Z

∑
p∈Z
p6=0

∑
k>0

(B.16)

∫ ∞
0

dτ2√
τ 3

2

eG
′′
e−2πτ2kle−

πτ2U
2
2

Y k2 Ñ2−2πi
j+pU1
k

Ñ
(
dn(4kl − b2)−

3cn(4kl − b2)

πτ2

)
,

where now Ñ = k(l + b V2
U2

+ k
V 2

2

U2
2
), and where

G ′′ = −2πiTkp−
πT2

τ2U2
(kτ2 + pU2)2 − 2πbk

V2

U2
τ2 − πk

2V
2

2

U2
2

τ2 +
πV 2

2

τ2
p2

+ 2πi
bp

U2
(−V1U2 + U1V2) + 2πi

V 2
2

U2
2

U1pk . (B.17)

Next, rewrite the sum over p 6= 0 as

Ind = 2
√
Y
∑
l∈Z

∑
b∈Z

∑
p>0

∑
k>0(

e2πiTkp+2πiU1pl+2πiV1pb + e−2πiT̄ kp−2πiU1pl−2πiV1pb
)
e2πkpT2

∫ ∞
0

dτ2√
τ 3

2

e−Aτ2e
− B
τ2

(
dn(4kl − b2)−

3cn(4kl − b2)

πτ2

)
, (B.18)

where

A = π(2kl + 2bk
V2

U2
+

U2
2

Y k2
Ñ2 + k2 T2

U2
+ k2V

2
2

U2
2

) =
π

Y
(kT2 + lU2 + bV2)2 ,

B = πp2Y . (B.19)

Then, by using the following integral representations for the Bessel functions K1
2

and K3
2

(for A > 0, B > 0)∫ ∞
0

dτ2√
τ 3

2

e−Aτ2e
− B
τ2 =

√
π

B
e−2
√
AB ,

∫ ∞
0

dτ2√
τ 5

2

e−Aτ2e
− B
τ2 =

√
π

B
e−2
√
AB

(
√
A+

1

2
√
B

)
, (B.20)
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it follows that

Ind = 2
∑
l∈Z

∑
b∈Z

∑
p>0

∑
k>0

(
e2πipr�y + e−2πipr�y

)
[
dn(4kl − b2)

p
−

3cn(4kl − b2)

πY
(
|kT2 + lU2 + bV2|

p2
+

1

2πp3
)

]
, (B.21)

where

r � y = kT1 + lU1 + bV1 + i|kT2 + lU2 + bV2| . (B.22)

Note that, in the chamber T2 > U2 > 2V2, |kT2 + lU2 + bV2| = kT2 + lU2 + bV2 and,

hence, r � y = kT + lU + bV . This is due to the fact that the coefficients cn(4kl − b2)

and dn(4kl − b2) vanish unless 4kl − b2 ≥ −4.

Then, summing over p yields

Ind = 4<

(∑
l∈Z

∑
b∈Z

∑
k>0

[
dn(4kl − b2)Li1(e2πi(kT+lU+bV ))

−
3

πY
cn(4kl − b2)P(e2πi(kT+lU+bV ))

])
, (B.23)

where we introduced [18]

P(e2πi(kT+lU+bV )) = (kT2 + lU2 + bV2)Li2(e2πi(kT+lU+bV )) +
1

2π
Li3(e2πi(kT+lU+bV )).(B.24)

The term proportional to 1
Y
cnP contributes to the Green–Schwarz term [18], whereas the

term proportional to dnLi1 contributes to F1.
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