
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN/ECP-96-10

31/07/96

COMO: An approach to Object Oriented Analysis and Design

for High Energy Physics applications of algorithmic nature

Francis Bruyant

CERN/ECP

Abstract

The emergence of the Object Oriented technology is having major consequences on

the evolution of the software for High Energy Physics. Given the lack of maturity of the

commercial products currently available, it is too early to make a statement on which OO

languages and methodologies will survive up to the start of the Large Hadron Collider.

The opinion of the author is that many traditional design features successfully tested dur-

ing the last two decades are rather independent from any speci�c language characteristics.

They still appear as valuable and could be seamlessly transposed into the Object world.

They constitute the skeleton of the COMO approach presented in this note.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25200331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

This report reviews

{ the motivation for the COMO project and its initial aims,

{ the arguments behind its main concepts,

{ the proposed approach.

It summarizes research work undertaken part-time over the last 5 years into the ad-

equacy of Object-Oriented (OO) software technologies for High Energy Physics (HEP)

applications.

COMO, an acronym for Constituent Model, originates from ideas developed in the

context of Event reconstruction for the L3 detector at LEP [1]. The concepts have emerged

from observations based on past experience. During the period of incubation they were

exposed partially and discussed on several occasions, not always with much success! It is

only recently that, with the encouragements and suggestions of more experienced people1,

they have reached coherence and maturity and can be presented hopefully in a more

convincing way, with personal comments to shed some light on their raison d'être. This,

however, does not mean that the proposed approach makes use of all potentialities of the

Object paradigm. COMO does not have such an ambition. The OO purists shall see it as

a revisited SA/SD programming technique. I do not share their view, to the extent where

the \object structures" mentioned in this report should not be seen as \data structures",

despite of analogies in the semantics of the relations used to de�ne them.

It will take years of hard work before a statement can be made on the possibility to

master the entire OO technology and to use it with a real bene�t. Any e�ort in this

direction has to be encouraged, with hope that it will succeed.

2 Initial aims

In the early 90's it was fashionable to share the opinion that OO languages would bring

the solution to our software problems. Undoubtedly, some of the OO features (e.g. encap-

sulation, inheritance) looked like good ideas, useful for implementing truly modular and

re-usable pieces of code. There was enthusiasm for commercially available OO method-

ologies proposing attractive recipes to make programmer's life easier and to increase their

productivity, guaranteeing at the same time the quality of the products. However, books

dedicated to the OO technology and to its applications usually warned the reader about

the trauma of entering the OO world, about the necessity of a complete mental revolution.

During the same period, I was investigating the pros and cons of approaches followed

by several HEP Collaborations, trying to identify which developments could be of general

interest and have some intrinsic value, at least for the speci�c domain of applications we

were concerned with. I had come to the conclusion that it was possible to propose general

guidelines [3] to build, maintain and execute in an e�cient way the large programs one

had to write for HEP event simulation and reconstruction. I thought this could avoid

1I am indebted in particular to John Deacon (Consultant, Software Engineering) for a constructive
criticism of my earlier notes on COMO. His comparative study of methodologies [2] has helped me to
clarify many points.

1



the rather sterile replication of e�ort for software organization that takes place in every

new Collaboration. Then, dreaming of \grandiose" ideas about software design (of course

based on FORTRAN, the traditional language I was familiar with) and being convinced

that they could solve our problems in an elegant manner, I have been shocked by the faith

and con�dence, not to say the arrogance, of the OO fans.

How to accept that concepts which have to do with pure logic could be

so strongly dependent on a technology? The willingness to clarify that point has

been, since then, the only motivation behind this work. Therefore, the initial aims of

COMO were nothing else than studying the di�erences and the analogies between an

OO approach and traditional software approaches rather successful in the past, in order

to understand in depth the intrinsic bene�ts of the new technology and, if possible, to

demystify the aura which surrounds it.

What was at stake appeared to me to be of fundamental importance for the HEP

community, not only from a technical point of view, but also from a sociological point

of view: how to revolutionize programming techniques without taking the risk of losing

the invaluable experience accumulated over the years by physicists and programmers who

could suddenly feel lost.

Today, I have no doubts that the main features of the OO languages are valuable and

that it is necessary, and most likely unavoidable anyway, to switch to the new technology.

I also �rmly believe that going the OO way blindly, without regard for the speci�c features

of our environment, might result in a major disaster: this is explained in section 3.1 and

the suggestions to avoid falling into a fatal trap are described in section 4.1.

Regarding the OO methodologies and their notation systems, I have come to the sad

conclusion that none of the proposed commercial products is acceptable to the physicists.

Given the notoriety and the talent of their authors this is rather surprising. It is partly due

to the fact that the work done in this new area of research has not yet reached maturity.

It might also be due to the tribute paid by all methodologies to their common ancestor,

the Entity-Relationship (ER) data model [4]. This is explained in section 3.2 and what

COMO proposes instead is reviewed in section 4.2

It is assumed in the following sections that the reader understands, at least super�-

cially, the OO jargon.

3 Arguments behind the COMO concepts

3.1 The OO grey areas

It is not rare that, after the initial phase of excitement, the OO neophyte enters a period

of doubt about the infallibility of the dogmas: the feeling grows that things might not be

as simple as some books claim. Of course, the intensity of the quarrels around the OO

languages and their respective churches contributes to that situation, but the doubt may

also come from the confrontation of what the books say with the teachings of personal

experience.

There are many areas where the proponents of OO seem to have not initially given

enough attention to the fact that concepts which look simple may cause problems when

confronted with the complexity of reality, e.g.

2



{ messaging,

{ inheritance and run-time reclassi�cation,

{ object persistency.

However, with the research carried out, a consensus seems to be emerging in these areas.

Object persistency, of utmost importance for HEP, is the most striking example. Let us

discuss it �rst. Quite rightly, an object's class is regarded as the essence of the objects

that it generates. It describes their common characteristics, through the de�nition of

attributes, and their common behaviour, through the speci�cation of methods, namely

the implementation of the services that the objects can provide. Primarily related to the

object creation process, known as class instantiation, the concept of class-method had

to be introduced: sending a message to an object, to invoke a service, requires that the

object exists, therefore the creation of an object cannot result from a message sent to it.

Class-methods o�er also the possibility to de�ne services that operate on all objects at

once. In theory the latter facility is technically acceptable. It leads to what is called the

ensemblist approach. In practice it is often a source of problems as it usually results in

developing classes which become monstruous, often modi�ed and therefore unstable.

Let us go through the �rst part of the argument. Most examples given in the books to

illustrate the OO concepts concern objects usually created through a process which one

may qualify as creation by assignment: their ingredients are either preset according to

decisions taken by a privileged \user" or derived through trivial deterministic computa-

tions. In that context, the existence of the objects results from a deliberate intention to

assign to each of them, at creation time, speci�c identi�cation properties: e.g. the objects

of a bank account class created, for instance, each one with a given account number

and for a given person, with given opening date and initial deposit.

For high level scienti�c applications of algorithmic nature the situation is di�erent.

There, objects that one often needs to consider are created through a stochastic2 process:

they result from algorithms that decide which ingredients are assigned to every of them. In

an earlier note [1] such ingredients were given the name of (hierarchical) constituents.

The constituents are themselves objects belonging to other classes, de�ned a priori as

constituent classes of the new objects' class, and the algorithm selects amongst the

objects of the constituent classes the ones assigned to each object. In such a context, one

cannot predict how many objects will be created and which constituents will be assigned to

them; furthermore, one cannot exclude that some constituents will be shared by di�erent

objects: e.g. in a track pattern recognition context, the creation of track candidate

objects, starting from a bunch of space-hit objects, their constituents. What seems to

be speci�c of a stochastic creation process is the sensitivity of the results to even small

changes in the implementation or in the tuning of the algorithms, as well as the di�culty

to compare the quality of the results other than on a statistical basis.

Let us now go through the second part of the argument, related to two essential

requirements which one has to consider for HEP applications (and most likely also in

other scienti�c domains) and on our ability to ful�ll these requirements.

The �rst requirement concerns I/O modularity: during event simulation or event

reconstruction one may often need to store intermediate data, keeping the history of

2Since S. Van der Meer's Nobel award it has been well known that the word stochastic does mean
exactly what one wants it to mean!

3



what has happened, then to restart from any given intermediate state, possibly with

di�erent assumptions.

The second requirement concerns reproducibility: namely, the possibility to record

the conditions under which any results have been obtained, to reproduce these results at

any time if needed.

Commercial approaches are developed to store objects, keeping track of their class

characteristics. In OO applications where only the creation by assignment is considered,

recoding a method does not a�ect the identity of the objects and has usually no side e�ects,

therefore keeping an exact record of what a class consisted of at the time when its objects

were created and stored is often irrelevant. The situation is di�erent for applications where

the stochastic creation takes place. There, modifying an algorithm within a method may

change dramatically the results. It is well known that, due to the imagination and to the

perfectionism of the physicists, one has to expect such modi�cations rather frequently.

Then, keeping track of the conditions under which the objects are obtained, namely of

their class characteristics, though technically feasible, becomes critical, even unrealistic

when dealing with huge amounts of data processed, and re-processed, over long periods of

time. Alternatively, assuming that objects formerly stored could be \re-activated" while

their class has been slightly modi�ed would correspond to a situation where the existence

of the objects precedes their essence, an existentialist view hardly compatible with the

requirement of reproducibility.

If the above arguments illustrate one of the potential problems of the OO technology,

they also show where the trouble comes from and suggest the way to cure it, as discussed

in section 4.1.

Another problem with OO is related to the di�erent interpretations of the concept

of inheritance at the level of the languages. In object modelling context, inheritance is

an abstraction process which consists of describing new concepts by making reference to

similar ones whose de�nition is already known. What similar means is however rather

subjective. Again, judging from the often contradictory opinions expressed by the authors

of OO languages and methodologies, things are not as simple as they look at �rst sight.

It is an aspect of the technology which is undoubtedly fascinating and it is also where one

�nds the most frustrating, irritating and sometimes frightening developments. Quarrels

on subtyping/supertyping versus subclassing/superclassing3 or on aspects of multiple in-

heritance seem to indicate that the rules of the game are not well established. Section 4.3,

describes the inheritance features needed, at least for our applications, and proposes rules

to �gure them out.

A last remark, concerning messaging: this is also an area where there is some confusion.

One could have expected that the way the objects interact, a fundamental OO issue, would

have been de�ned unambiguously and exploited accordingly by the methodologies. For

some conventional OO languages, like C++, messages are nothing else than procedures4

and concurrency features have to be implemented independently, at least for real time or

3As an example, I shall mention a paper (where other points of interest are also discussed) by Gabriel
Eckert, Department of Computer Science, EPFL, Lausanne, CH:Types, Classes and Collections in Object-

Oriented Analysis, Proceedings ICRE'94, Colorado Springs, Colorado, USA.
4\Procedures issue requests for external input and then wait for it; when input arrives, control resumes

within the procedure that made the call", J.Rumbaugh [5]. Nevertheless, in the OO context, messages
are crucially di�erent from subroutine calls, a message being a communication which allows the receiver
to choose the code and to take the appropriate response.

4



multi-process applications. General modes of communication, possibly in
uenced by the

observation of how evolution proceeds (a highly controversial issue anyway), have been

de�ned, for instance the broadcasting mode, where an object (the sender) is assumed

to issue a message to the whole world, expecting that another object (the receiver) will

interpret it and take action. I do not believe that they should be considered for our domain

of applications. Nature displays an extreme prodigality, leading to a lot of unavoidable

wasting, and human beings, with their capacity of thinking, should avoid to imitate it.

Unfortunately, they often do5. A programmer is assumed to know what he/she wants

to do and can therefore establish a priori all connections between the relevant classes in

order to ensure that the most logical path, usually also the most economical one, will be

followed. This is discussed again in section 4.2.

3.2 Weaknesses of the OO methodologies

The OO methodologies need be built upon models which, because of the nature of the

objects, cannot be simply data models. They have to take into account dynamic features

in addition to the static ones. But the static model (also called structure model) is the

essential part of an OO model.

The OO methodologies rely usually on the well known ER data model as the starting

point for a static description of the objects. This model has been for decades a reference,

successfully used for data base related applications [6] and also within general proprietary

data systems such as ADAMO [7].

Before the emergence of the OO technology the world wide di�usion of the ER model,

or of many variations built around it, had given rise to a powerful commercial lobby. For

the authors of OO methodologies there was clearly an obligation, not necessarily only

�nancial interest, to make reference to the ER model and to integrate its basic concepts

and terminology.

When trying to model data in the HEP context of event simulation or event recon-

struction, I have never felt comfortable with the ER concepts, for many reasons. The

�rst one concerns the graphism and notation system which is confusing, not compact,

and becomes unreadable as soon as the number of entities to be considered simultane-

ously grows, not to speak of the interpretation of the cardinalities in the case of n-ary

relationships with n > 2. This could be an unimportant subjective opinion if it did not

re
ect deeper problems. There comes the second reason: the over-simpli�cation of the se-

mantic of the relationships between entities, usually regarded as bi-directional relations6.

Such relations do not take into account the hierarchy which may naturally exist between

entities, a frequent situation for the kind of applications one is concerned with. In other

words, the ER semantic forces the user to degrade the representation of what he/she

wants to model, which is not quite what one expects from a data model. The third rea-

son, as important as the second one, is that the ER model, not surprisingly I should say,

is nothing more than what it means to be, namely a conceptual data model and only a

conceptual one. Due to the absence of a powerful semantic, it does not carry any logical

5Who has not been irritated by the avalanch of uninteresting or irrelevant prospectus distributed every
day in all private mail boxes?

6Indeed, additional information can be provided by giving suggestive names to the relationships or by
assigning rôles to the entities, but this makes an immediate interpretation of the ER diagrams even more
di�cult and the relationship names are usually meaningful in only one of the two directions.

5



information on the real nature of the relation between data and therefore does not give

any hint on how to structure a program to exploit the information that it describes. One

can stay for hours in front of a complex ER diagram and, assuming that one understands

what the labyrinth of entities and relationships means (a performance on its own!), not

have any idea on what to do with it. Furthermore, the detection of errors of logic or of

inconsistencies is by no means evident 7. Physicists expect more than what the ER model

can give them, or they shall not accept to use any model at all.

Up to recently, when refering to the ER terminology to describe their structure mod-

els, the books on OO methodologies were often introducing the concept of object as an

extension of the notion of entity. The notions of relationship and of cardinality were used

to describe additional features of the static model (e.g. association, aggregation) and,

ultimately, to illustrate some aspects of the dynamic model relevant to the messaging

between objects. This has led to a great confusion. Of course, a trivial object can pri-

marily be seen as an entity but most objects are non-trivial: they can be represented by

systems of simpler objects, assembled according to composition rules, based on simple

uni-directional relations. The composition relations include the concept of functional del-

egation, which happens to be also in many situations a 
exible way to avoid making a

poor usage of inheritance, as discussed in section 4.3.

Independently, other relations (uni-directional too) are needed to enable the interac-

tion of the objects with the outside world.

All these points are discussed in detail in the following chapter. In short, all relations in

the OO world are of uni-directional nature and this does not match very well the ER notion

of relationship. For some OO methodologies, in particular the Class Relation approach

[8], the adoption of the ER concepts derives from a deliberate initial choice, regardless

of the consequences. For others, the integration of the ER technology, sometimes made

at the cost of tortuous arguments 8 , is less fundamental and appears so arti�cial that

one may wonder why their authors do usually praise the ER model in the same books. I

called one of the most reputed world experts in OO methodologies and expressed to him

my concern. Speaking of the ancestor, the ER model, his answer was: \It is painful, but

sometimes necessary, to kill the grandfather". I cannot agree more!

There are other weaknesses of the OO methodologies which the ER model is also

partly responsible for. I shall just mention brie
y two of them.

Most methodologies do not consider the existence dependence between objects as

a useful modelling concept. As a result, the notions of aggregation and of associa-

tion to which they refer are often nebulous and not of much practical interest for most

applications. The COMO semantics is based on a precise de�nition of these notions.

The OO methodologies do not pay much attention to promoting the stability of the

classes, so necessary for de�ning re-usable class libraries. This increases the complexity of

the problems mentioned in the previous discussion on persistent objects. Though it was

not initially perceived as an important point, it turns out that many features of COMO

7For instance, the �gure 2.33, page 47 of Batini's book [6], with the cardinalities proposed for the
relationship \taught by", does not prevent that a professor could give courses in di�erent rooms at the
same time, a weakness corrected in the text, where the relation \taught by" is described as a one-to-one
relationship. Nevertheless, this book is remarkable and the distinction made between the conceptual, the
logical and the physical phases is most interesting.

8For instance, the non-demonstration, pages 72-73 of Rumbaugh's OMT book [5], for the ternary
association Student-Professor-University!

6



have an impact on the stability of the classes.

A last remark: the uni�cation of the various aspects of an OO model has, to my

knowledge, never been achieved by any OO methodology, despite some of them advertising

that they have. COMO proposes some steps towards this objective, as discussed in

section 4.6.

4 The COMO approach

4.1 The transient and the persistent objects

The OO philosophy relies on the basic concept that an object is de�ned only by the

services that it can provide, the internal data representation inside the object being of

no concern to the users. Respecting too strictly this concept seems to be a narrow-

minded attitude. It reminds me of a well known sketch by Coluche9 on advertising for

the new OMO, \the washing powder cleans the dirt even inside knots made around the

spots", giving the same results as the old OMO without knots. The housekeeper makes

the knots on Monday, washes on Tuesday and has the rest of the week for untying ...,

great progress! Without any violation of the fundamental encapsulation principle, it is

perfectly acceptable to have, within the objects of a given class, structures built from

simpler objects, known to the user and accessible as such through appropriate services

of that class: these structures may look like knots, but one does not need to untie them!

Of course, any service may also de�ne and use freely internal data whose representation

remains irrelevant to the user.

As mentioned before, a coherent and e�cient storage of persistent objects may turn

out to be a tricky matter, at least for applications with classes whose services consist

of sophisticated algorithms subject to frequent changes. Furthermore, the way classes

are usually built encourages the introduction of services which have to do more with the

environment of the objects than with their intrinsic properties and this is a source of class

instability.

More generally, though this is apparently con
icting with the strict OO orthodoxy, one

is led to the evidence that an object has essential properties, regardless of the context

in which it is considered { these are speci�ed in its own class, and additional auxiliary

properties, which depend on the context and should be speci�ed in other classes.

These remarks lead to the distinction made in COMO between various categories of

user-de�ned classes:

{ the user data classes, whose objects may have to be stored and retrieved frequently.

These objects need not to be too intelligent. They are usually single-state, with

explicit attributes (something like a C structure or like the data part of a ZEBRA

bank [9]). The user data classes are equiped with the set of basic (object-)services

needed.

{ the environment classes, of \singleton" kind (namely with a unique instance),

whose responsibility is to prepare the creation of their related user-data objects.

Because they know why and under which conditions these objects are created it is

natural that they keep control of them. The environment classes are often bulky

9A french humorist (1944-1986), founder of the Restaurants du coeur to feed people without resources.

7



and complex, each with a multi-state composite instance, with all kinds of services,

possibly including those where sensitive algorithms of stochastic creation processes

are implemented. All this has however no major inconvenience to the extent where

their instances are transient, namely do not usually need to be stored persistently.

Keeping a record of the successive modi�cations of these classes does not imply

anything else than traditional source code versioning techniques.

{ the (intermediate) tactical classes, to which the environment classes allocate part

of their responsibilities and whose objects, created under their control, have the

speci�c mission to feed them with the information required to build the user-data

objects. The objects of the tactical classes are always transient. They have an

autonomous life, namely they control themselves their evolution, their changes of

state. They play a fundamental role and the success of an OO application depends

greatly on a skillful design of these classes.

The user data classes are nevertheless classes, therefore a priori compatible with any

OO data base management system (OODBMS) commercially available. The bene�t comes

from their expected stability, and this is what makes the di�erence. Several user data

classes can be related to the same environment class. The construction of a user data

class has to follow simple rules in order to achieve e�cient and modular I/O, for instance

the use of some attributes as keys for object retrieval.

The construction of an environment class may also follow some rules: in COMO it is

suggested that all environment classes inherit from the same abstract class Processor ,

whose properties, in relation to the dynamic aspects of the model (section 4.6) and to the

construction of large programs (section 4.7) are of interest 10.

During the execution of a program, an environment class' instance can be regarded

as the repository of the user data objects that it has to keep under control. All relevant

user data classes are then accompanied by their respective environment classes, which

can either be tailored for the appropriate application or be more general classes of whose

services only some will be used. Mechanisms to \reload" the repositories from the external

medium where the user data objects are stored have to be made available as services of

the environment classes, as well as mechanisms to \empty" the repositories to store the

required user data objects. These tasks could be steered by speci�c I/O processors coupled

to a commercial OODBMS.

4.2 The object modelling features

Object modelling consists of describing the static and dynamic properties of the objects.

It relies on concepts expressed through an unambiguous semantics and on a graphical

representation expected to match faithfully the underlying semantics.

The static aspect of object modelling concerns primarily the description of the stable

states of an object. The dynamic aspect concerns the creation of the objects and what

causes their state transitions.

The user-de�ned classes, described above with the main objective of ensuring a greater

stability for the classes whose objects have to be stored persistently, illustrate the need to

10The processor characteristics could be viewed as a design pattern, in the spirit of the recent remarkable
book on Design Patterns [10].

8



handle composite objects and therefore to de�ne precise composition rules. These rules

should give the users all 
exibility required for a modular construction of classes/objects

based on simpler and stable ones. Composite objects need not be nebulous: whenever it

is possible to describe them in a logical and transparent way, by identifying carefully their

components, there is only a bene�t to do so. The components of an object characterize

its state.

Among the essential properties of an object, some can be regarded as belonging

exclusively to the object and others can be regarded as sharable. This leads to the fun-

damental distinction made in COMO between aggregation (exclusive) and association

(sharable).

In the aggregation case, the characterising properties are either all settled at the time

of creation of the object (internal components) or speci�ed asynchronously through

the de�nition of external components referred to as parts of the object. An object with

external parts is de�ned in COMO as an aggregate. The parts do not know anything

about the aggregate. The parts belong to the aggregate, which means that their ex-

istence depends on the existence of the aggregate. However, they can be regarded as

\dismountable" and, when relevant, be transfered elsewhere prior to the disappearance of

the aggregate. This is in particular the case for the repositories of user data objects, parts

of their respective environment class instances. The asynchronism mentioned above does

not necessarily imply that the aggregate exists prior to the parts, as shown in sections 4.3

and 4.6.

In the association case, some properties characterising the state of a given object are

\borrowed" from other objects which have their own independent existence. One cannot

guarantee that these external components will not be also associated to other objects.

They are a priori sharable and, in COMO, are referred to as constituents of the object.

The object knows how to access its constituents but the constituents need not know

anything about the objects to which they have been associated. Coming back to the ER

model, one may notice that all relationships (of any n-arity) between entities could be

represented by objects having these entities as constituents.

The fact that the external components of an object (both the parts and the con-

stituents), themselves objects of other classes, contribute to its essential properties implies

that the object knows which component classes are expected and how to use their objects.

The auxiliary properties of an object are always speci�ed asynchronously and the

object, which in this case has to pre-exist, is unaware of their existence (relational aggre-

gation). They are usually induced by the conceptual association of an object (e.g. A) to

another object (e.g. B): B is assigned a part C which has A as constituent and where the

auxiliary properties of A in the context of its association to B are described.

The characterising relations within an object are then, in COMO, classi�ed as follows:

{ Internal component, a language feature

{ Aggregation, a relation de�ned through the following properties:

an aggregate has access to its parts through uni-directional relations named

APASI (inverted IS A PArt of),

the parts are created asynchronously,

they can be accessed only through the aggregate,

they do not know anything about the aggregate,

9



their existence depends on the existence of the aggregate (as long as they have not

been dismounted).

{ Association, a relation de�ned through the following properties:

an object has access to its constituents through uni-directional relations named

OCASI (inverted IS A COnstituent of),

the constituent objects do not know anything about the objects to which they are

associated and, most important,

the object is not allowed to change the state of its constituents.

{ Relational aggregation APOCASI, an APASI relation for the description of auxil-

iary properties of a constituent in the context of its association to a given object.

The dynamic aspect of object modelling is related to the capacity of an object (the

sender) to send a message to an object of another class (the receiver). This implies that the

sender knows the receiver, namely has a (uni-directional) relation to the receiver. When

the receiver is an external component of the sender, the condition is naturally satis�ed

through any one of the speci�c composition relations described above. When the receiver

is an object of the \outside world", namely not a component of the sender, the relation to

the receiver, a property of the sender, is given the name USES. The USES relation is a

class-relation within the class of the sender, namely it is the same for all its objects, and

the receiver is always the unique instance of a singleton11. Conceptually, a message sent

to the \outside world" invokes either a service of type action, which does not modify the

state of the sender, or a service of type access, which induces a change of state of the

sender. In practice, the syntax of the procedures available in most OO languages allows

to combine both operations at once and, often, the sender exposes within the message,

either by value or by reference, those of its components that are expected to be modi�ed.

This is convenient, though not quite in line with the concept of messaging.

Any USES relations needed by the tactical objects activated during the execution of

a program are derived from the USES connections pre-de�ned in the set of environment

classes which contribute to the strategy for the given application.

4.3 The inheritance features

As used by the OO technology, inheritance appears as a pure inter-class relation concept:

a \subclass" is derived from a \superclass" by declaring explicitly the inheritance relation

within the de�nition of the subclass. In theory, an instance of a subclass is expected to

ful�ll all commitments of the superclass and can therefore be viewed also as an instance

of the superclass, but this is not what one means by inter-instance relation. I mentioned

in theory because, the above condition is not always satis�ed. Often, one should rather

speak of partial inheritance, which has more to do with code borrowing.

So far two questions can be raised. The �rst is related to the fact that inheritance is

de�ned only as an inter-class relation: is it the unique way, and the best way, to see the

things?

As mentioned before, an instance of a given subclass is also an instance of the super-

class. Is it useful to have the possibility to turn it into an instance of another subclass, a

11The latter statememt should be considered for the moment as a postulate. I do however believe that
its validity could be deduced from purely logical considerations.

10



situation that would somehow simulate a change of nature of the object? The answer is

yes and this is the reason why non-trivial developments on run-time re-classi�cation and

migration are currently taking place. Are these developments going in the right direc-

tion? The answer might be yes or no, depending on the context. Inheritance can often

be simulated by an appropriate usage of composition relations: this is the inheritance

by delegation, expressed in COMO by the relation ISALSO, both an inter-class and

an inter-instance relation. It gives the user the possibility to play simultaneously with

the two related instances and to declare their relation to be either of aggregative or of

associative nature (following the COMO terminology). The inheritance ISALSO is an

elegant way to solve the problems of run time re-classi�cation and of migration, simply

by eliminating them. It also provides a way to handle the delicate situation of multiple in-

heritance and gives a possibility to treat alternative inheritance properties (the nightmare

of modelling amphibian vehicles, which are vehicles, like cars and boats, and which

inherit from both cars and boats!). It �nally enables the de�nition of \roles" for objects

of a given class without modifying the de�nition of the class: e.g. in the appropriate

context, a class husband can be de�ned on the top of a general class male, through an

associative ISALSO relation.

The second question, less fundamental, concerns the semantics: should a clear dis-

tinction be made between the situation where a superclass is concrete, namely describes

the characteristics of objects which may have an existence, and the situation where the

superclass is abstract, namely cannot support the existence of such objects?

COMO suggests the name ISA when the superclass is abstract, and the name ISAKI

(for IS A KInd of) when the superclass is concrete. The ISA inter-class relation corre-

sponds to a specialisation process. The superclass, despite its abstractness, has the

knowledge of all properties of the objects of its subclasses: e.g. in the relation \Box ISA

Solid ", the class Solid knows which services can be invoked from the objects of the class

Box. The fact that an object of the class Solid happens to be a Box appears as a detail.

It could as well be a Tube, a Cone, .., it reacts primarily as a Solid , a property known

as polymorphism.

The ISAKI inter-class relation between a concrete subclass and its concrete superclass

has to do with the extension of the properties of the superclass and may also be used to

modify some of its properties through method overloading. It corresponds to a generali-

sation process. The objects of a subclass have the obligation to ful�ll all commitments of

the superclass. It is recommended to avoid dealing at a given time with groups of objects

belonging to several `ISAKI related' superclass and subclasses.

The ISALSO relation can be used to cover all other inheritance situations. New classes

can be de�ned to simulate the addition of essential properties to classes which already

exist and are simultaneously used in the same context. The ISALSO inter-class relation

is superimposed to an inter-instance relation of either aggregative (APASI! APALSO)

or associative (OCASI! OCALSO) nature; the aggregative case, an alternative to the

ISAKI inheritance, illustrates the possibility mentioned in section 4.2 of a part existing

prior to the aggregate.

Last, anticipating on the introduction of utility processors in section 4.6, the ISALSO

relation gives great freedom to the users to build speci�c classes upon general utility

classes, then achieving an e�ective re-usability of code.

11



4.4 The graphism and notation system

All relations de�ned in COMO for the description of an object are uni-directional relations.

The class diagrams can therefore be sketched for each (composite) class separately. As

a consequence, the graphism adopted to represent a class can also rely on topological

conventions: one iconic box per class, with full or dotted, straight or kinked lines leaving

the box either from the top side or from the bottom side to identify the various relations,

as shown in Fig. 1, 2 and 3.

Figure 1: Composition relations

Figure 2: Outside messaging relation

The object diagrams proposed by most methodologies seem to be not much useful. A

scenario can as well be described, much more economically, by a sequence of messages

listed in clear.

12



▲

▲

Figure 3: Inheritance relations

13



Participation symbols, to express cardinalities unambiguously, can also be proposed,

as shown in Fig. 4. It should be noticed that the symbol is attached to the class to which

the relation belongs. This is the inverse of the usual anglo-saxon convention.

Figure 4: Participation symbols (cardinality)

4.5 The basic generic classes

The following generic (template) classes, which de�ne speci�c characteristics of groups of

objects, are proposed:

Family object, a container which has as parts any number of objects, all from the same

class (or from the \ISA related" subclasses of the same class).

Collection object, a kind of container for a stable family of objects. The parts of the

family are in a given order, not modi�able except by addition of new objects.

Fan-out object, an arti�cial aggregate whose parts can be objects of any classes.

List object, which has as constituents any number of objects, all from the same class.

Because of the aggregative nature of the parts, killing a Family, a Collection or a Fan-

out has the e�ect of also killing their parts. Because of the associative nature of the

constituents, killing a List does not a�ect the constituents.

14



Letter shapes are tentatively suggested for the iconic representation of these template

classes (Fig. 5).

Figure 5: Basic generic classes

4.6 The processor modelling features

As mentioned earlier, all environment classes, also called user processors, are subclasses

of the abstract class Processor . They can be thought of as \sub-steering" kinds of classes

which, in addition to their internal (private) services, have public services performing given

major tasks. The public services provided by the user processors are of two kinds, either

Access services or Action services. They can be designed so as to make possible the

evolution of the objects, when executing in a multi-process environment.

An Access message is sent by an object, the sender, to a user processor object, the

receiver, to collect information required from the receiver. The corresponding Access

service modi�es the state of the sender but does not necessarily change the state of the

receiver. An Access message is expected to return a status, to tell the sender whether

the request has been honored or cannot be honored. The �rst case corresponds to the

situation where the receiver either was ready to honor the request and has honored it,

or has successfully triggered an Action service to honor it. The receiver has usually an

internal status saying whether the relevant information is available or not. The second case

15



means that an exception has occured upstream, which inhibits delivery of the information

required by the sender.

An Action message is sent to a user processor object to execute some speci�c task,

and is not expected to return any results. The corresponding Action service is expected

to change the state of the receiver. An Action message returns control to the sender either

as soon as the task is initiated, when the service is under control of a di�erent process,

or after completion of the task, when executed as part of the same process. In order

to achieve the invariance of the code where the messaging sequences occur, an Access

service may execute a \wait for completion of Action" when the receiver is under control

of another process than the one of the sender.

When relevant, the user processor objects can control the correctness of the sequencing

of Actions, through the use of appropriate internal status variables. Of course, the user-

processor classes may also have internal services other than Access and Action ones.

The bulk of the code that a programmer has to write is clearly located in the Action ser-

vices, which often themselves need to invoke Action services from other user processors.

It seems therefore desirable, in order to minimize the amount of code initially loaded

when executing a program interactively, to give to the user processors a modular internal

structure. This could be achieved in the following way: every substantial Action ser-

vice is regarded as a service of a user action class encapsulated in the user processor

class. When receiving an Action message, a user processor object checks that the relevant

user action object exists (namely is loaded and ready to execute) and, if not the case, it

takes steps to create it, then delegates the message to the user-action object.

The user action objects are aggregated to the user processor objects through APASI

relations.

It is rather frequent that di�erent user processor classes do have Action services which,

ultimately, need to perform similar sub-tasks of purely deterministic nature through gen-

eral, sometimes complex, mathematical or logical algorithms. To avoid duplication of code

there is a bene�t to de�ne general classes whose services can take care of these sub-tasks.

They are called utility processors and play the role of utility routines in traditional

software.

The utility processor objects may also be repositories of utility data objects that

they create. The utility data objects can be treated as pre-existing parts of user data

objects created later by Action services of the relevant user processors. When a user data

object has the same basic characteristics as a utility data object its class can be declared

as related to the utility data class through an ISALSO relation. This gives the great


exibility to play with utility data objects which, on their own or in comparison with

others of the same class, might not ful�ll criteria of acceptance required by the client and

would have then to be deleted, the creation of the user data objects taking place only

when they have successfully passed the tests.

Libraries of utility classes can be developed, partly a priori, by anticipating on the

expected usefulness of their functionality, and completed au fur et �a mesure when the

bene�t of a generalization a posteriori becomes evident.

4.7 Program construction and execution control

With traditional software, a program consists of a piece of code, usually named \main",

and of all subroutines called either directly by the main program or indirectly by the

16



subroutines themselves.

The OO integrists often show some commiseration for the poor traditional program-

mers who, like Sisyph or Penelop, have painfully to redo the entire work every time they

design a new program. For them, one does not write programs, one writes classes! Their

opinion, though not formally wrong, seems to be a damned exaggeration, most likely in-

duced more by a lack of experience with well structured large traditional software than

by the deliberate intention to blu�.

Quite a number of OO practitioners, not to say victims, know where they have been

led by giving too much credibility to such an idyllic vision: in many cases, re-usability has

so far turned out to be an illusion or, at best, a source of ine�ciency. Conversely, there are

large traditional software programs whose e�ective re-usability has been pushed very far:

at CERN, in particular, many utility packages, including the Detector Simulation program

GEANT3 [11], are remarkable examples of re-usable code, despite other weaknesses due

mainly to the absence of encapsulation.

This being said, I nevertheless believe that the OO argument of (e�cient) re-usability

still can apply to our speci�c domain of applications provided the way the classes are

built follows adequate design concepts. This point seems not to have been given enough

attention so far. The proposed COMO approach is one way to give some coherence

to the construction of large programs and to guarantee that they can be

developed without any risk and without loss of e�ciency.

From the COMO point of view, the execution of a given OO program starts with the

creation of an object, a unique instance of the corresponding user program class (a sort

of user processor class), and with the triggering of a pseudo-service (a sort of processor

action) which itself invokes services of user processors.

All user program classes inherit from the same abstract class Program , one of whose

attributes is a JobID object identifying uniquely the job which executes the program.

The user program object is the repository of the information (the input parameters)

required for a given execution of the program and of any information reported during the

execution and considered as useful to save.

When running a production job, a dedicated production control server allocates

a JobID object to the given job. After completion of the program task, and before the

execution stops, it is recommended, at least for any o�cial production, to store some parts

of the user program object in an appropriate production database. It is suggested that

any object created during the execution of a given program and stored persistently has

access, directly or indirectly, to the corresponding JobID object. The JobID value can also

contribute to the identi�cation of any �le (of event data or of calibration data) produced

by the execution of the program and recorded on an external medium.

The messaging and modelling features of the user processor concept provide clear

guidelines to the programmers for structuring programs to be executed in batch mode.

Ultimately, the sequence of services invoked during the batch execution of such an OO

program should not di�er signi�cantly from the subroutine 
ow chart of the equivalent

traditional program except in the areas, usually well localized, where it is possible to

simplify it by using the inheritance relations.

17



5 Conclusions

When deciding, years ago, to study the adequacy of the OO technology for the HEP

software, I could not imagine how long, and sometimes painful, the climbing path would

be, and how strong the feeling of loneliness. From the intermediate point reached today

the panorama is nice and rewarding: one can contemplate the hidden beauty of the OO

world and even see the top! However, going on climbing is too risky, given the rarefaction

of oxygen and the absence of sherpas! So I shall just write a few comments, dedicated to

whoever will participate in the next expedition.

It is a priority for the HEP community, at this point in time, to think about our

speci�c needs, our user requirements, and to brainstorm about possible ways to ful�ll

them. In parallel, one has also to study the evolution of solutions proposed outside and

made commercially available. Then, later, it will be possible to choose, and maybe to

adapt, any products that would seem appropriate.

In the recent period I have often reviewed in my mind a number of software problems

encountered in the last three decades, from the Bubble Chamber era to the LEP era,

through the European Hybrid Spectrometer and GEANT3. This has been most helpful

to assess my own conviction on the validity of the COMO approach, regardless of the

surrounding technology.

Independently, I am seduced by the OO concepts and hope very much that the weak-

nesses of the OO languages will be cured in a near future. OO Analysis and Design,

however, is far from having reached maturity. It is not yet a science, just bricolage with

recipes which sometimes, like for cooking, become an art.

Of course, the eventuality to consider COMO as appropriate to our domain of applica-

tions does not provide us with a complete methodology, namely with friendly tools needed

to develop, use and maintain e�ciently a large distributed software, for data visualization,

coherent documentation, code generation or quality assurance. Existing methodologies

could possibly be adapted, and their tools interfaced, to the speci�c COMO semantics.

For what concerns the implementation of COMO itself, it would be a very small

investment, because COMO consists mainly of an �etat d'esprit, of guidelines for building

re-usable classes in a coherent way. It would undoubtedly be more economical than the

recurrent payment of license fees for commercial methodologies.

Time is not critical as it seems unfortunately that we have more time than initially

planed, but this is not an argument to waste it. Indeed, there is a reason why, I believe,

one should move ahead as soon as possible and this is related to the fact that, right

now, many physicists are busy working on the software needed for the optimization of

the Atlas and CMS detectors: the sooner they could integrate, if not formally at least in

spirit, features which could help for a later conversion to the OO technology, the better.

The physicists would then be given the possibility not only to understand and to accept

the change over, but also to actively contribute to it, a necessary condition for the success

of the future experiments.

18



Acknowledgments

yMerci, Olivier, pour ta pr�esence et ton soutien toujours aussi stimulants

I would like to thank P.G.Innocenti (ECP Division Leader, 1990-1994) for his continu-

ous support and also D.O.Williams (CN Division Leader) for his friendly encouragement.

I am grateful to M.Storr (ECP Divisional Training O�cer) and to J.Deacon (Con-

sultant for training in Software Engineering matters) for many useful discussions. Their

interest stimulated me to complete this work.

Finally, I would like to thank S.Banerjee (TIFR, Bombay) for his continuous assistance.

References

[1] S.Banerjee, F.Bruyant. CERN-L3 Note 748 (May 1990).

F.Bruyant, N.Colino. CERN-L3 Note 761 (July 1990).

[2] J.Deacon. Object{Oriented Modelling: the Requirements. October 1994.

[3] F. Bruyant. Skeleton Logic for Analysis Chains. MC91 Workshop on Detector and

Event Simulation in High Energy Physics, Amsterdam, April 1991.

F. Bruyant. HEP Software Design: How to reconcile the immediate needs and the

trends for the future. 2nd International Workshop on Software Engineering, Arti�cial

Intelligence and Expert Systems in High Energy and Nuclear Physics, La Londe-les-

Maures (France), January 1992.

[4] P.P. Chen. The Entity-Relationship Model: Toward a Uni�ed View of Data. ACM

transactions on Database Systems, no.1, p 9 March 1976.

[5] J.Rumbaugh et al. Object Oriented Modeling and Design. Prentice-Hall, 1990.

[6] C. Batini et al. Conceptual Database Design. An Entity-Relationship Approach. Ben-

jamin/Cummings, 1992.

[7] S.M. Fisher, P. Palazzi. The ADAMO Data System. CERN, 1992.

This paper gives a list of all contributors since 1987.

[8] Ph. Desfray. Ing�enierie des Objets - Approche CLASS-RELATION - Application �a

C++. Editions MASSON, 1992.

Ph. Desfray. Object Engineering - The fourth dimension. Addison Wesley, October

1994.

[9] R. Brun, J. Zoll. ZEBRA User Guide. CERN Program Library Q100.

[10] Erich Gamma et al. Design Patterns. Elements of Reusable Object-Oriented Software.

Addison Wesley, September 1995.

[11] R. Brun et al. GEANT3 Users Guide. CERN Program Library W5013.

19


