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ABSTRACT

We discuss the transformation properties of classical extremal N = 2 black

hole solutions in S-T -U like models under S and T duality. Using invariants of

(subgroups of) the triality group, which is the symmetry group of the classical

BPS mass formula, the transformation properties of the moduli on the event

horizon and of the entropy under these transformations become manifest.

We also comment on quantum corrections and we make a conjecture for the

one-loop corrected entropy.
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1 Introduction

During the last years it has become obvious that the structure behind string theories

is organized by discrete perturbative and non–perturbative transformations, which are

either symmetries of a given string theory or map two different theories into one another.

(See [1] for recent reviews and references.)

The pattern of relations that arises this way becomes more and more complicated when

the number D of space–time dimensions and the number N of supersymmetries is de-

creased.

The case of D = 4, N = 2 models has proved to be especially interesting because it is

rich in structure, but still exactly tractable. The perturbative aspects and the role of

symplectic transformations were worked out in [2], [3], [4], [5]. One of the most prominent

examples in this class is the so–called S-T -U model, which has just the minimal number

3 of vector multiplets for a theory coming from a D = 6, N = 1 model by toroidal

compactification.1

These vector multiplets contain the dilaton/axion S and the two moduli of the torus, T

and U as their scalar components.

The S-T -U model can be obtained from the ten–dimensional heterotic E8 × E8 string

by compactification on K3 × T2 with instanton numbers (14,10). It is related by well

established non–perturbative dualities to the IIA string compactified on the Calabi–

Yau–threefold P1,1,2,8,12(24) [6] and to the IIB string on the mirror, as well as to the

type I superstring by a more recently proposed duality [7]. Moreover, there are self–

dualities under perturbative and non–perturbative transformations which can be derived

either from the triality of D = 4, N = 4 heterotic, IIA and IIB models [8] or from the

self–duality of the corresponding heterotic D = 6, N = 1 model [9].

The self–dualities manifest themselves very clearly in the spectrum of BPS states, which

is organized by the symplectic structure of local N = 2 supersymmetry. The BPS

spectrum consists of both elementary and solitonic states, where the latter ones can be

explicitly constructed as extremal black hole solutions of the low energy effective action.

(See [10] for a review on stringy extremal black holes.) Extremal D = 4, N = 2 black

holes with a non–vanishing event horizon have the property that the moduli take on the

horizon certain fixed point values, which solve an extremization problem for the central

charge of the N = 2 algebra [11], [12]. (This seems to have generalizations for theories

with higher D and N [13].) Moreover the absolute value squared of the central charge

1The model has in addition a large number of hypermultiplets which are not relevant for our purpose.
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coincides with the extremized ADM mass squared of the extremal black hole and - up

to a constant - with its entropy. All these quantities can be expressed in terms of the

symplectic quantum numbers of the solution.

The BPS spectrum of the theory receives both perturbative (one-loop) and non–

perturbative corrections whose form is restricted by the symplectic structure of local

N = 2 supersymmetry. In this note we will focus mostly on duality properties of the

classical BPS spectrum, i.e. we consider both elementary and solitonic states but ignore

quantum corrections.

As discussed in [8] and in [14], the classical BPS mass formula2 of the S-T -U model is

invariant under the triality group

(SL(2,Z)S ⊗ SL(2,Z)T ⊗ SL(2,Z)U )×ZT−U
2 × ZS−T

2 ×ZS−U
2 , (1.1)

where the SL(2,Z) factors act as fractional linear transformations and the Z2 factors act

as permutations on the moduli S, T, U . The spectrum decomposes into certain subsets

called orbits, which can be characterized by invariants of the triality group and of certain

subgroups as discussed in [14]. The purpose of this note is to use the formalism developed

in [14] to make explicit the symmetry and transformation properties of extremal black

hole solutions of the S-T -U model. Note that every D = 4, N = 2 model coming from

D = 6 by toroidal compactification will contain the solitons discussed here as a subset.

Thus we are discussing the universal sector of all these S-T -U like models.

The paper is organized as follows: In section 2 the conditions for extremality of the

central charge are solved using invariants of subgroups of the triality group. In section 3

the entropy is computed and found to be completely triality invariant. We also comment

on the relation to D = 4, N = 4 models. The final sections 4 contains some remarks

on quantum corrections. By considering the transformation properties of the classical

entropy under one–loop T duality we arrive at a conjecture for the one–loop corrected

entropy. We also speculate on what happens at the non–perturbative level.

2 The solution on the horizon

Let us first recall some relevant elements of the symplectic formalism of N = 2 super-

gravity in the concrete case of supergravity coupled to nV vectormultiplets. We follow

references [2], [3], [4], [15], which can be consulted for more complete information. The

2Note that this does not imply the existence of all the corresponding states. In fact the full quantum

spectrum is not expected to have triality symmetry. See section 4 for a discussion of quantum properties.
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low energy effective action of N = 2 supergravity coupled to nV vectormultiplets can

be written in terms of a so–called symplectic section ΩT = (P I , iQI), I = 0, . . . , nV .

The combined set of field equations and Bianchi identities is invariant under symplectic

transformations Γ ∈ Sp(2(nv + 1)), which act on the section Ω as P I

iQI

→ Γ

 P I

iQI

 =

 U Z

W V


 P I

iQI

 . (2.1)

Whereas at the classical level the symplectic transformations can be continuous, Γ ∈

Sp(2(nV + 1),R), it is expected that this is broken to a discrete subgroup by instanton

effects at the quantum level, Γ ∈ Sp(2(nV + 1),Z).

The mass formula for BPS saturated states is given by

M2
BPS = |z|2 = |MIP

I + iN IQI|
2 , (2.2)

where z is the central charge of the N = 2 supersymmetry algebra and MI and N I

are the symplectic quantum numbers. Note that the MI are related to electric and the

N I to magnetic charges under the U(1)nV +1 gauge group.3 The BPS mass is invariant

under symplectic transformations (2.1) provided the quantum numbers are redefined by

(N I ,−MI)→ (N I ,−MI)ΓT .

The 2(nV + 1) components of Ω can be expressed in terms of the nV physical scalar

fields, which provide so–called special coordinates on the moduli space. In the case of

the S-T -U model there are three such scalars, namely the dilaton S and the moduli T

and U . One choice for Ω at the classical level is given by

ΩT = (P I , iQI) = eK/2(1, TU, iT, iU, iSTU, iS,−SU,−ST ) , (2.3)

where

K = − log(S + S)(T + T )(U + U ) (2.4)

is the Kähler potential. The BPS mass formula then takes the form

M2
BPS = |z|2 = eK|M|2 , (2.5)

where

M = M0 +M1TU + iM2T + iM3U + iN0STU + iN1S −N2SU −N3ST (2.6)

is the so–called holomorphic mass.

3The extra U(1) corresponds to the graviphoton.
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Symmetry transformations in N = 2 supergravity coupled to vector multiplets must

act as Sp(2(nV + 1),Z) transformations. When acting on the section (2.3), symplectic

transformations with W = Z = 0 (implying V = UT,−1) leave the action invariant,

whereas transformations with Z = 0 leave it invariant up to total derivatives. This is the

form classical and perturbative symmetries must take. On the other hand transformations

with Z 6= 0 are not symmetries of the action and exchange electric and magnetic degrees

of freedom, which is the suitable form for non–perturbative symmetries or dualities.

The maximal known symmetry group of the S-T -U model at the classical level is the

triality group [8], [14]

(SL(2,Z)S ⊗ SL(2,Z)T ⊗ SL(2,Z)U )×ZT−U
2 × ZS−T

2 ×ZS−U
2 . (2.7)

It contains the tree level T duality group O(2, 2,Z)T,U ∼ (SL(2,Z)T ⊗ SL(2,Z)U ) ×

ZT−U
2 , which is a classical symmetry, together with the S duality group SL(2,Z)S [16]

and the exchange transformations S ↔ T and S ↔ U , which are non-perturbative

transformations.4

As a concrete example let us specify the symplectic matrices realizing the S duality

transformations S → aS−ib
icS+d

, T → T , U → U :

U = d1, V = a1, W = bH, Z = cH , (2.8)

where H = η⊕η and η =

 0 1

1 0

. Also note that the action of the exchange transforma-

tions will be given below in (2.12), whereas the matrices of O(2, 2,Z)T,U transformations

can be found in [15].

Let us then consider classical BPS black hole solutions of S-T -U like N = 2 supergravity

coupled to (at least) 3 vector multiplets with four electric and four magnetic charges

M0, . . . , N
3. In [12] it was argued that the central charge becomes extremal on the

horizon. This can be used to express the moduli S, T, U on the horizon in terms of the

quantum number MI , N
I . Moreover, the entropy S of the black hole is proportional to

the absolute value squared of the extremized central charge zhor and to the extremized

ADM mass MADM of the black hole:

S = πM2
ADM , M2

ADM = |zhor|
2 = eK|Mhor|

2 . (2.9)

4Since the terminology might be confusing, let us recall that in this context discussing the theory at

’classical’ or ’semi–classical’ level means that one includes both elementary and solitonic states, but that

one ignores all quantum corrections. ’Classical’ transformations then leave the action invariant, whereas

’non–perturbative’ transformations map it to a dual action which (in the case under consideration ) has

the same form, but contains a different set of degrees of freedom as the elementary ones.
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To be precise, the central charge z has to be extremized with respect to the Kähler

covariant derivative [12], that is by solving5

Diz = 0 → eK/2 (KiM+Mi) = 0 , i = S, T, U . (2.10)

This yields three quadratic equation for the three moduli S, T, U :

S =
M0 +M1TU + iM2T + iM3U

iN0TU + iN1 −N2U −N3T
,

T =
M0 + iM3U + iN1S −N2SU

M1U + iM2 + iN0SU −N3S
,

U =
M0 + iM2T + iN1S −N3ST

M1T + iM3 + iN0ST −N2S
. (2.11)

The equations are related by the exchange transformations

ZS−T
2 : S ↔ T, M2 ↔ N1, M1 ↔ −N2 ,

ZS−U
2 : S ↔ U, M3 ↔ N1, M1 ↔ −N3 ,

ZT−U
2 : T ↔ U, M2 ↔M3, N2 ↔ N3 .

(2.12)

Thus, it is natural to expect that the extremized moduli as well as the entropy have

simple and natural transformation (or invariance) properties under S and T duality

transformations. As discussed above (the relevant subsector of) the tree level BPS mass

formula of S-T -U likeN = 2 models is invariant under the triality group (2.7). In order to

make transformation properties manifest, one can use the invariants of certain subgroups

of the triality groups, as discussed in appendix A of [14]. For example, taking mutual

O(2, 2) scalar products

〈v, w〉 = v0w1 + v1w0 + v2w3 + v3w2 (2.13)

of the vectors M = (M0, . . . ,M3) and N = (N0, . . . , N3) gives rise to the invariants

〈M,M〉 = 2M0M1 + 2M2M3

〈N,N〉 = 2N0N1 + 2N2N3

〈M,N〉 = M0N
1 +M1N

0 +M2N
3 +M3N

2 (2.14)

of the T duality group

O(2, 2,Z)(T,U) = (SL(2,Z)T ⊗ SL(2,Z)U )× ZT−U
2 . (2.15)

5The lower indices indicate ordinary partial derivatives with respect to the special coordinates S, T, U .
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The exchange symmetries S ↔ T and S ↔ U map the vectors M,N to vectors M ′, N ′

and M ′′, N ′′ whose components can be read off from (2.12). Using these vectors one

obtains the invariants 〈M ′,M ′〉, etc. and 〈M ′′,M ′′〉, etc. of the groups O(2, 2,Z)S,U ∼

(SL(2,Z)S ⊗ SL(2,Z)U ) × ZS−U
2 and O(2, 2,Z)S,T ∼ (SL(2,Z)S ⊗ SL(2,Z)T ) × ZS−U

2 .

These groups are the classical symmetries of the triality rotated actions, where T or U

have taken over the role of the dilaton.

Moreover, there is a GL(4) subgroup of Sp(8) defined by W = Z = 0 in (2.1). In this

subgroup V = UT,−1 and therefore

M ·N = M0N
0 + · · ·+M3N

3 (2.16)

is invariant. Since the tree level T duality group O(2, 2,Z)T,U is a subgroup of this GL(4)

as already mentioned above (see [15] for an explicit embedding), M · N is therefore an

O(2, 2,Z)T,U invariant. Likewise M ′ · N ′ and M ′′ · N ′′ are invariant under O(2, 2,Z)S,U

and O(2, 2,Z)S,T , respectively.

When solving the three quadratic equations (2.11) one encounters the quantity

D = 〈M,M〉〈N,N〉 − (M ·N)2 (2.17)

and its transformed D′ and D′′ under S ↔ T and S ↔ U as discriminants. D is

manifestly invariant under O(2, 2,Z)T,U but one can easily check that it is also invariant

under the exchange transformations S ↔ T and S ↔ U and therefore under the full

triality group: D = D′ = D′′. Note that it was argued in [14] that no quadratic invariant

of the full triality group can be constructed out of MI , N
I . This is no contradiction to

the result here because the invariant D is quartic.

In order to obtain extremized moduli with a positive real part, one has to demand that

D > 0. For D ≤ 0 the moduli become purely imaginary. This does only make sense if

they are imaginary rational, S, T, U ∈ iQ. These values are cusps of the corresponding

SL(2,Z) and are thus equivalent to S = T = U = ∞ which, of course, is not an

interesting solution. For D > 0 the explicit solution of (2.11) is

S = i
M ·N

〈N,N〉
+

√√√√〈M,M〉

〈N,N〉
−

(M ·N)2

〈N,N〉2
,

T = i
M ′ ·N ′

〈N ′, N ′〉
+

√√√√〈M ′,M ′〉
〈N ′, N ′〉

−
(M ′ ·N ′)2

〈N ′, N ′〉2
,

U = i
M ′′ ·N ′′

〈N ′′, N ′′〉
+

√√√√〈M ′′,M ′′〉
〈N ′′, N ′′〉

−
(M ′′ ·N ′′)2

〈N ′′, N ′′〉2
. (2.18)
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The transformation properties of the solutions under triality transformations are mani-

fest: the solution for S is invariant under the T duality group O(2, 2,Z)T,U , whereas T

and U are exchanged under T ↔ U (which acts as M ′ ↔ M ′′, N ′ ↔ N ′′ on the quan-

tum numbers) and transform fractional linearly under SL(2,Z)T and SL(2,Z)U . On the

other hand the solutions for S and T and S and U are exchanged by ZS−T
2 and ZS−U

2

respectively. And the solutions for T and U are invariant under the groups O(2, 2,Z)S,U ,

O(2, 2,Z)S,T .

3 The entropy

It is now straightforward to compute the entropy with the result

S/π = M2
ADM =

√
〈M,M〉〈N,N〉 − (M ·N)2 = 〈N,N〉<S . (3.1)

This agrees with the result obtained in [17] by considering so called double extreme

solutions, in which the moduli take the same value at infinity and on the horizon (and

are therefore constant in between). As shown above the classical entropy is invariant

under the full triality. This had to be expected because the classical BPS spectrum from

which it is computed has this property.

From (3.1) one can easily read off that the entropy vanishes for certain classes of black

holes.

The first class consists of black holes with only four non–vanishing quantum numbers,

including the cases of purely electric (N = 0) and purely magnetic (M = 0) black holes.

In fact, it is a well known property of extremal N = 2 black holes that only dyonic ones

can have a non–vanishing event horizon and entropy [10]. By triality we know that the

entropy must also vanish if M ′ = 0 or N ′ = 0 or M ′ = 0 or N ′′ = 0.

The second class of black holes with vanishing entropy has eight non–vanishing quantum

number which are, however, not completely independent from one another, with the effect

that the quantum numbers can be expressed in terms of momentum quantum numbers

mi (i = 1, 2) and winding quantum numbers ni of strings around the two–torus as

MI/p = (m2,−n2, n1,−m1), N I/q = (−n2,m2,−m1, n1) . (3.2)

This implies that

〈M,M〉 ≡ −2p2nTm ,

〈N,N〉 ≡ −2q2nTm ,

M ·N ≡ −2pqnTm , (3.3)
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and therefore S = 0. The corresponding BPS states are those which can be embedded

into a heterotic D = 4, N = 4 model as short multiplets [14], implying that only those

states which are intermediate from the N = 4 point of view contribute to the entropy.

By triality the entropy also vanishes for those black holes, where the vectors M ′, N ′ and

M ′′, N ′′ take the form (3.3). In D = 4, N = 4 theories the exchange symmetries S ↔ T

and S ↔ U do not act as a self–duality but map heterotic to IIA and IIB strings,

respectively [8], [14]. In particular they map short multiplets of the heterotic theory to

multiplets which are intermediate in the heterotic but short in the IIA or IIB theory

[18], [14]. Therefore, the triality rotated N = 2 black holes with vanishing entropies are

those which come from short multiplets of the N = 4 IIA or IIB theory.

Finally we would like to recall the entropy formula for heterotic N = 4 black holes [19]

S/π =
√
P 2Q2 − (Q · P )2 , (3.4)

where the Q denote 28 electric charges and where the P denote 28 magnetic charges

which lay in the (6,22) Narain lattice. O(6, 22,Z) invariance then restricts the entropy

to be of the form (3.4). Comparing to (3.1), it is evident that the N = 2 formula should

result from a suitable truncation. Short N = 4 multiplets are characterized by P and Q

being parallel. Thus it is evident that only intermediate N = 4 multiplets contribute to

the entropy.

4 Quantum Corrections

In N = 2 supergravity coupled to vector multiplets, there are both perturbative and

non–perturbative quantum corrections. The full prepotential of the S-T -U model takes

the form [2], [3], [4]

F (S, T, U) = −STU + f(T, U) + f (NP )(e−2πS , T, U). (4.1)

Note that the perturbative correction f(T, U) does not depend on the dilaton, reflecting

the fact that perturbative corrections can occur at the one-loop level, only.

Let us first neglect non–perturbative corrections and consider the one-loop effects. Ob-

viously, the full perturbative theory with prepotential F pert(S, T, U) = −STU + f(T, U)

is not triality symmetric. Moreover T –duality is still a symmetry, but the symplectic

transformations get modified such that the perturbative T duality group is no longer

O(2, 2,Z)T,U .

In order to obtain a convenient description of the perturbative T duality group, a trans-

formation from the symplectic section (XI , i∂IF ) (where (XI) = eK/2(1, iS, iT, iU)),
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defined in terms of the prepotential, to the section (P I , iQI) introduced earlier by means

of the symplectic transformation P 1 = −iF1(= TU), iQ1 = X1(= iS) is required [2], [3].

In the new parametrization, the one-loop T duality transformations take the form

ΓTree =

 U 0

0 UT,−1

 −→ ΓPert =

 U 0

W UT,−1

 =

 U 0

0 UT,−1


 1 0

Λ 1

 ,

(4.2)

where Λ is a symmetric integral matrix which encodes the quantum corrections.

The one-loop transformation rule of symplectic quantum numbers implied by the general

formula (N,−M)→ (N,−M)ΓT is

M → UT,−1M −WN, N → UN . (4.3)

Explicit generators of the perturbative T duality group have been given in [3], [4], [15].

The most obvious effect is that the dilaton S is no longer invariant under perturbative

T duality but is shifted by a function of T and U . One can however define an invariant

dilaton Sinvar by adding a suitable function of T and U to the dilaton S [3]. Note that

the invariant dilaton is not a special N = 2 coordinate.

The transformation law of the classical entropy under one-loop T –duality transformations

can be easily worked out and reads

S = π
√
D → S̃ = π

√
D̃ , (4.4)

where

D̃ −D = (〈WN,WN〉 − 2〈WN,UT,−1M〉)〈N,N〉

+2(M ·N)(WN · UN) − (WN · UN)2 . (4.5)

Thus, the tree level expression for the entropy is not invariant under one-loop T duality.

Whereas the breaking of the full triality symmetry by loop corrections is no surprise,

one expects T duality to be true at the perturbative level and thus there must exist a

modification of the entropy formula. One can also check that the left and right hand

sides of the classical solutions (2.18) for the moduli on the horizon transform differently

under perturbative T duality. This implies that the solutions must be modified at the

one-loop level, too. We expect that invariants of the perturbative T duality group will

play a crucial role. Note that 〈N,N〉 is such an invariant whereas 〈M,M〉, M ·N and D

are not.
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A natural candidate for the one-loop entropy is found by observing that the tree level

entropy can be written as

Stree = π〈N,N〉<S . (4.6)

Now, 〈N,N〉 is invariant under one-loop T duality, and it is well known that one can make

the dilaton invariant by adding a suitable function of T and U , yielding the so–called

invariant dilaton Sinvar [3]. This motivates us to conjecture that the one-loop entropy is

given by

S1−loop = π〈N,N〉<Sinvar . (4.7)

The conjecture is also compatible with the known perturbative structure of gravitational

threshold corrections. Since at the tree level only states, which are intermediate from the

N = 4 point of view contribute to the entropy we expect that at one–loop all contributions

of such states go into the invariant dilaton.

Let us finally recall what is known about non–perturbative effects. It is firmly established

that the heterotic S-T -U model is dual to the IIA compactification on the Calabi–Yau

threefold P1,1,2,8,12(24) [6], [20], [21], [22], [23], [24]. This implies that the full non–

perturbative prepotential is given by the classical prepotential of the dual IIA model.

Symplectic matrices corresponding to the true quantum symmetries can be computed by

studying the monodromy properties of the prepotential around its singular loci on the

moduli space of the threefold.

Both the structure of the conifold locus of the threefold and an analysis of the perturbative

monodromies of the heterotic theory indicate the following: T duality transformations

corresponding to Weyl transformations of generically Higgsed non–Abelian gauge groups

(like for instance the T ↔ U exchange, which is the Coxeter twist of the SU(2) gauge

group unbroken at T = U) are replaced by two non–perturbative quantum monodromies

caused by dyons that become massless. This is the stringy generalization of the Seiberg-

Witten solution of the pure N = 2 SU(2) super Yang–Mills theory.

Since the Calabi–Yau moduli space contains more singular loci, there is space for other

non–perturbative effects as well. There exists, for example, the so–called strong coupling

locus [25], which is fixed under the exchange transformation S ↔ T [20], [14], [24]. Thus,

the S ↔ T exchange is, although not a symmetry at the perturbative level, a symmetry

of the full non–perturbative theory.

Since the group structure of symmetries is strongly modified when going from the pertur-

bative to the non–perturbative level, one expects that the entropy formula is also further

modified. A better knowledge of the monodromy group and of its invariants should be

useful for dealing with this question.
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[15] G. L. Cardoso, D. Lüst and T. Mohaupt, Nucl. Phys. B 455 (1995) 131, hep-

th/9507113.
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