View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by CERN Document Server
U

IFT-P.013/96

Excited Fermion Contribution to Z° Physics at One Loop

M. C. Gonzalez-Garcia
Theory Division, CERN, CH-1211 Geneva 23, Switzerland.

S. F. Novaes
Instituto de Fisica Corpuscular — IFIC/C.S.1.C.
Dept. de Fisica Tedrica, Universidad de Valencia
46100 Burjassot, Valencia, Spain
and
Instituto de Fisica Tedrica, Universidade Estadual Paulista,

Rua Pamplona 145, CEP 01405-900 Sdo Paulo, Brazil.

Abstract

We investigate the effects induced by excited leptons at the one-loop level
in the observables measured on the Z peak at LEP. Using a general effec-
tive Lagrangian approach to describe the couplings of the excited leptons, we
compute their contributions to both oblique parameters and Z partial widths.
Our results show that the new effects are comparable to the present experi-
mental sensitivity, but they do not lead to a significant improvement on the
available constraints on the couplings and masses of these states.
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I. INTRODUCTION

The standard model of electroweak interactions (SM) is not able to give a satisfactory
explanation to family repetition and to the complex pattern of the fermion masses. One
expects a substantial improvement in the understanding of these problems when consider-
ing an underlying fermionic substructure where the usual fermions share some constituents
(preons) [1]. In this sense, the SM would be just the low-energy limit of a more fundamental
theory, being valid only at energies below the compositeness mass scale A.

One of the most unambiguous predictions of the composite models is the existence of an
excited lepton state for each known lepton. Unfortunately, we do not yet have a satisfactory
model that could reproduce the whole family spectrum. In view of the lack of a unique
predictive theory, a model-independent phenomenological analysis of the effects of fermion
compositeness seems the most appealing approach. On this ground, we can employ the
effective Lagrangian techniques to describe the physics of these excited states below the
compositeness scale.

This approach has been employed in several phenomenological studies that analysed the
expected signatures of these excited fermions in pp [2,3], eTe™ [2,4-7], and ep [4,6] collisions
at high energies. On the experimental side, several searches for these particles have been
carried out, including those at the CERN Large Electron—Positron Collider (LEP) [8] and at
HERA [9]. At LEP, the experiments at the Z pole excluded the existence of excited spin—%
fermions with mass up to 46 GeV from the pair production search (ete™ — £*£*), and up
to 90 GeV from direct single production (ete™ — ££*) for a scale of compositeness A < 2.5
TeV [8]. Very recent results from the L3 Collaboration [11], at centre-of-mass energies of
130-140 GeV, determined the lower mass limits at 95% C.L. of 64.7 GeV for the excited
electrons, and roughly A > 1.4 TeV for 90 < M. < 130 GeV. The experiments at the
DESY ep collider HERA also searched for resonances in the ey, vW, and eZ systems [9,10];
however the LEP bounds on excited leptons couplings are about one order of magnitude
more stringent in the mass region below the Z mass.

In spite of the failure of all the direct searches for compositeness, we could expect that
the next generation of accelerators, working at higher centre-of-mass energies, would be able

to obtain a direct evidence of the existence of these composite states. On the other hand, an



important source of indirect information about new particles and interactions is the precise
measurement of the electroweak parameters done at LEP. Virtual effects of these new states
can alter the SM predictions for some of these parameters and the comparison with the
experimental data can impose bounds on their masses and couplings.

In this work we investigate the one-loop effects of excited leptons in the observables
measured on the Z peak at LEP. Using a general effective Lagrangian approach in terms of
dimension six operators to describe the couplings of the excited leptons, we compute their
contribution to both oblique and vertex corrections to the electroweak parameters. Our
results show that the new effects are comparable to the present experimental sensitivity, but
they are only able to constraint very marginally the model parameters beyond the present
limits from direct searches.

The outline of the paper is as follows. In section I, we introduce the effective Lagrangian
describing the couplings of the excited leptons. Section III contains the relevant analytical
expressions for the one-loop corrections induced by the excited leptons. Our results and
their respective discussion are given in Section IV. This paper is supplemented with two
Appendices. In Appendix A, we list all the relevant Passarino—Veltman functions, and in
Appendix B we present our results on the new contribution to the two- and three-point

functions in D dimensions.

II. EFFECTIVE INTERACTIONS

In this work, we consider excited fermionic states with spin and isospin % We assume
that the excited fermions acquire their masses before the SU(2) x U(1) breaking, so that
both left-handed and right-handed states belong to weak isodoublets. We introduce the
weak doublets, with hypercharge Y = —1, for the usual left-handed fermion (¢) and for

the excited fermions (¥*),

v N
P = , and U = ,

e F
L

The most general dimension-six effective Lagrangian describing the coupling of the excited
fermions to the usual fermions, which is SU(2) x U(1) invariant and CP conserving can be

written as [4]
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where f, and f; are weight factors associated to the SU(2) and U(1) coupling constants,
with A being the compositeness scale, and o, = (¢/2)[y4,7.]. We will assume a pure left-
handed structure for these couplings in order to comply with the strong bounds coming from
the measurement of the anomalous magnetic moment of leptons [12].
In terms of the physical fields, the Lagrangian (1) becomes
Lrpg=— >, CvpsFo*™(1—)fo.V, —1 >, DyriFo*(1—v)fW.V, + h. c., (2)
V=v,2,W V=v,2

where F' = N,E, and f = v,e. The non-abelian structure of (1) gives rise to a contact
quartic interaction, such as the second term in the Lh.s. of Eq. (2). In this equation, we
have omitted terms containing two W bosons, which do not play any role in our calculations.

Cyry is the coupling of the vector boson with the different kinds of fermions,

Come = — g2 + 1) , O = gx(f2 = /1)
Cyg. = —@ey(ﬁ cotbw — fitanfw) , Czn, = @eg(fz cot Ow + f1tan O ) (3)

€
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and the quartic interaction coupling constant, Dy gy, is given by

_ _ V2
Dyg, = —Dyne = WfZ

> (4)
Dzg, = —Dzne = ;@%ﬁﬁ .

The coupling of gauge bosons to excited leptons can be described by the SU(2) x U(1)

invariant and CP conserving, effective Langragian,

_ P . Y gko 7t . g’/s:l Y
= —U*|| g—y*"W + ¢ —+"B =~ —gt . —a*0,B, || ¥~
Lrr l(g2'y WM—I—g2'y M)—I—(2A2U 0. W, + 5A 27 0, (5)
In terms of the physical fields, this can be written as,
'CFF = — Z F(AVFF')’MVM + KVFFO'lujaMVL)F . (6)

V=v,2,W
Since we have assumed that the left- and right-handed excited leptons have the same
quantum numbers under the standard gauge group, the dimension-four piece in (6) is taken

vector-like. Ay pp is given by
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and Kypp is given by
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It is important to notice that the phenomenological model for the excited fermions de-
scribed by the Lagrangians (2) and (6) has been extensively used by several experimental
collaborations [8-11] to search for excited states. Therefore the results presented in this
paper can be directly compared with the bounds on the excited fermion mass and compos-

iteness scale obtained by these collaborations.

III. ANALYTICAL EXPRESSIONS

In this work we employed the on-shell-renormalization scheme, adopting the conventions
of Ref. [13]. We used as inputs the fermion masses, Gr, a, and the Z-boson mass. The
electroweak mixing angle is a derived quantity defined through sin® 8y = s%, = 1— M2,/ M3.

As a general procedure to evaluate the virtual contributions of the excited states, with
couplings described by (2) and (6), we evaluated the loops in D = 4—2¢ dimensions using the
dimension regularization method [14] which is a gauge-invariant regularization procedure,
and we adopted the unitary gauge to perform the calculations. We identified the poles at
D =4(e¢=0)and D =2 (e = 1) with the logarithmic and quadratic dependence on the
scale A [15]. The finite part of the loop is given by

1 1
Lgnite = HII(l) [L(e) — Ry <— — g + log 47w + 1> — Ry <—1 + 1>]
€— €

where Ry(1) are the residues of the poles at ¢ = 0(1). The final result is written as

A2
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In order to compute the loops in D dimensions in terms of the Passarino—Veltman scalar
one-loop functions (see Appendix A), we used the Mathematica package FeynCalc [16]. The
output of FeynCalc, in the case of the two-point functions, was checked against the results
obtained by a direct analytical calculation. Our results for the new contribution to the two-
and three-point functions in D dimensions (see below) can be found in Appendix B.

Close to the Z resonance, the physics can be summarized by the effective neutral current

Ju = (ﬂGuM%Pf>1/ [(If - 2Qf3W"5f> Yu — Ig’)’u’)’S] ; (9)

where Qf (Ig) is the fermion electric charge (third component of weak isospin), and G, is the
Fermi coupling constant measured via the muon lifetime. The form factors p; and x; have
universal contributions, i.e. independent of the fermion species, as well as non-universal

parts,
Pfr = 1 + Apuniv + Apnon ) (10)
kf =14 Akuniv + Aknon - (11)

Excited leptons can affect the physics at the Z pole through their contributions to both
universal and non-universal corrections. The universal contributions can be expressed in
terms of the unrenormalized vector boson self-energies. Defining the transverse part of

vacuum polarization amplitudes between the vector boson V; — V5, HL’}JV2(q2), as
I2(¢") = g =" (q%)

where Vi, = v, W, and Z, we can write

EZZ s —EZZ P EZZ P EWW vz 0
Apumv():_ ex(g_zex()_l_ exz() ()_|_23W ex! ’
Anex,, = w Z(E) | ow ZH(0) oy lE”( ) S ()
Kuniv Sw z Sw W 2z w ’
ox & (222(2) EVW(w LW 0) — 27V (w ew D7Z(0
aozs, =m0 - G (TG BC()) | BIO ST ) o O,

(12)

where w(z) = MI%V(Z), sw(cw) = sin(cos)fw and X' = dX/dq’.
The diagrams with excited lepton contributions to the self-energies are shown in Fig. 1.

Va

The final result for the transverse part of vacuum polarization E?f contribution coming

from the loop of an excited fermion with mass M and an ordinary massless fermion is
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E?f% = #OVlFfO%Ff {6q2A2 + q4 10g #
4
—2¢°M? — % + MP2M* — @) + (M — ¢*)(2M? + ¢*) (13)
2 2
[ (e (- )
where Vj(y) refers to the initial (final) vector boson, and the constants Cyp; are defined in

(3) for the different vector bosons and fermions.

For the vacuum polarization, E?}é, coming from the loop of two excited fermions with

mass M, we obtain:

2
S = 24171_2 #{6KV1FFKV2FFM2A2 + [2AV1FFAV2FF

+6(Av,rrKv,rr + Av,rr Kvirr)M + 3Ky, rr Kv, rr <%i + 2M2>]M2 log ]‘[\4—22
+4 Ay, pr Av,pr M? <% + 22%2) + 6(Av,rrKv,rr + Av,rr Kv, rr) M3
+Kv,rrKv,pr M? <53i2 + 4M2>
_2M arctan lml [2AV1FFAV2FFM2 <1 + 22‘{2)
+6(Av,rrKv,rr + Av,rr Kv,rr)M? + Ky, rr Kv,rr M? (¢* + 8M2)]}

(14)

For the purpose of illustration, we derived approximate expressions in the large- M limit.

For Rg = ¢*/M?* < 1, we obtain

1272
—3(Av,rrKv,rr + Av,rr Kvirr)M — 6Ky, rr Kv,rr M? — 3Cv,p;Cy,rs M?

svivs = M’ p )apzio0 o C Ky ppKv pp) — Av ppA
ex Q ( WWFf V2Ff—|_ WFF V2FF) WFFAVLFF

2
+ [Av,rrAv,rr + 3(Avirr Kv,rr + Av,rpr Kv,rr)M + 3Ky, pr Kv,rr M?| log %}
(15)
We obtain in this approximation the following expressions for the universal corrections,
720c%, s,

Ap(z) = o525 — Rz (3 + s3) l—24 — 60k /R —50 f* R, — 15k* R,

+60 f2 Ry, 10g Ry +15 k2 Ry, 10g RL]

4

(16)
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" C%Ig"'s%/V p(z)
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where Rz = MZ%/M? and Ry = M?/A%. For the sake of simplicity, we have assumed that
hi=fo=fand kg =k, = k.

We should notice that since we are including non-renormalizable dimension six operators
the results of the loops are, in principle, quadratically divergent with the scale A. However,
since we are restricting ourselves to SU(2) x U(1) gauge invariant operators, the final re-
sults for the physical observables are, at most, logarithmically divergent after using the SM
counterterms, as can be seen in Eq. (16). Also, it is straightforward to verify that the
new physics decouples as the new contributions in Eq. (16) vanish in the limit Rz — 0 for
R; <1.

Corrections to the vertex Zff give rise to non-universal contributions to p; and ;.
Excited leptons affect these couplings of the Z through the diagrams given in Fig. 2 whose

results we parametrize as,

. € Zf f w EZXZ(O)
_7’23ch |:7MFVex - 7#75FAex I3 7#(]‘ - 75)5 M% ’ (]‘7)
and
2F77 (M2
Apnon _ Aexjg Z) , (18)
TH
]_ Zf I — 2SWQf
ARSE = — - F (M . 19
Knon 23%/[/‘Qf l Vex Iéf Aex( Z) ( )

There are twelve one-loop Feynman diagrams that involve the contribution of excited
fermions to the three-point functions. For each diagram we define TiV2(q2,M 2 M32),
t = 1,---,12, where V; is the virtual vector boson, with mass My, running in the loop.
Therefore, we can write the excited lepton contribution to the form factors Fg%ﬁ)ex, for an

external vector boson V; as,
iSWCW
Fx‘/,;{( )= F)&i( )= TTVHff(QZ) ) (20)

with



Tyi—s+4-(¢") = T(¢*, M?,0) + TY(¢*, M?, M7) + T} (¢*, M?, M)
+T3(¢%, M?,0) + T (4%, M?, M3) + T,V (¢, M?, M)
+T5(q%, M?,0) + T (¢, M2, M7) + T3 (%, M?, M)
+T07 (¢?, M?, M3,) (21)
+3 [12(¢2, M?,0) + TZ(¢?, M?, M3) + TV (¢, M?, M3,)|
+3 [T3(¢2, M7,0) + T (¢?, M2, M3) + T (¢, M?, M3y)|
+T1v¥(q2,M2,M§V) + Tlvg(qZ,MZ,MI%V) :
We have assumed that the ordinary fermions are massless (i.e. m? < M? /M), and in
this limit, TX§,9,10(q2,M2,M‘2,) = 0. Notice that the external fermions loops (diagrams 5-
10 of Fig. 2 ) only contribute as half, due to the addition of the fermion wave function

renormalization counterterms. We also found the relations,
v v
Ty*(¢* M?, My) = T5*(¢*, M?, M7,)
V; v
T5*(q% M?, My) = Tg* (g%, M?, M7)
v v
T¢ (¢ M?, My) = 113 (q*, M?, M7)
Our results for T1Y§,4,5,11(q2,M2,M‘2,), in terms of the Passarino—Veltman scalar one-loop

functions, are
T = —471_3 7 CV,ry { [AVlFF (2 M® —3M* My® + My® + M*> My® ¢* + 2 My* q2>
+Kv,rr <2MMV4 ¢ — 2 M3 My® q2>] x Co(0,0,¢%, M?, M3, M?)

+Avrr (<2 M+ M My? + My* + M2 + 2 %) + Kvipr (M ¢* + 2M M3 q)
Y
q

+Kv,rr (12MM‘2, Q* — 6MQ4>] X arctan [

1/2
) [AVIFF (—12M* + 6M> MZ + 6 Mj + 10 M2 Q* + 9 M2 Q* — 4Q*)

q
(4 M* —qZ)”Zl
2 2
—I-% [AVlFF (18M2 ‘|‘9MV2 —4(]2) —6KV1FFM(]2] 10g#

M ,
_W [AvlFF <2M4 M? My® — MV4> - 2KV1FFAMAMV2(J ] log ]‘Zg }
v
= Iii:@ Chars {AVIFF(l% +117Ry) — Rq [AvlFF(64 + 9Ry)

+Kv,rr M(108 + 18Ry )| + [—Av,rr (108 + 54Ry)
2
‘|‘RQ (24 AVIFF + 36 KVlFF M)] log %} y

(22)



where the coupling constants Cyrs, Ayrr, and Ky g are given by (3), (7), and (8), respec-
tively, and the Passarino—Veltman function Cy(0,0,q¢*, M?*, MZ, M?) is given in Appendix
A. The approximate expression was obtained for the large-M limit, i.e. Rg = ¢*/M? < 1
and Ry = MZ/M? < 1.

2 2
T2V2 — OVlFf OV2Ff gV2 + gV2> {M2 _ 2MV2 _ 2(]2 _ q2 10g # + 2MV2 10g %
14
+Mh(W—Mv—M 0(0,0,¢%, M?, M%,0)
M2 9 9 2
*ﬁf‘“l‘““‘qﬁ s(1-37)
AZ
8 rt Cvory (gv2 + gvz) Rq < + 2Ry log Ry + 2log W) ;
(23)

where g7, and gy are the vector and axial coupling of the vector bosons to the usual fermions:
forV:'y,gz:—eandgzz();forV:W,g”W:gﬁvzg/(2\/§);forV:Zandfzz/,
9z = 9% = g/(4ew); for V = Z and f = ¢, gy = g(4s}y — 1)/(4ew) and g5 = —g/(4ew).

T} = 1447r2 5 O ps griww {—36 A? g+ 72 M* — 36 M2 M% — 36 M — 45 M2 g2

+15 M2 g% + 46 ¢* + 18(4 M® — 6 M* MZ + 2 M§ — M* ¢* + 4 M? M3 ¢*
+3Mp g2 — M? ¢*) x Co(0,0,¢%, MZ, M?, M3)

2 2\1/2
UMy — @) T (4314 — 12002 M3 — 12 M — 18 M2 * + 4 M ¢

AZ
+5 q4> X arctan l(4M12/ (i q2)1/21 + 3q2 (18 M? + 36 M%, + 5q2) log U

+m(24M6 — 12 M* M2 — 12 M2 M% — 18 M* ¢ — 36 M ¢

2
+5 M? q4—5M‘2,q4> log %}

. 2
—215;]8‘471'2 CY,ry giww l 72% — 18 — 36 Ry + Rq (103 + 144Ry + 144Ry log Ry)

2
+ (108 + 216 Ry + 30RQ)10g %‘l ,

[

(24)

where gy,ww is the coupling constant of the triple vector boson vertex. For V; = v,7 is

given by g,ww = gsw and gzww = gcw.

10



T, = C?,ry (9‘11/1 + g%) l14 M* — M?* My® — 7 My*

16 (M - M) =

2 Mé 2
—6(M2 — M) (2M? + My?) log % — 62 —VM$, log %51 (25)

[

2
].6 Tp 2 OV2Ff (gV1 —I' ng> l14 —|— 13RV — 6(2 —|— RV)lOg %‘l ,

and,

2

Tl‘;2 = 32 2 OV2Ff DVlFf l4A2 + 15M2 + 15MV — 18(M2 + MV) 10g ]‘/‘\42
18 M, M2
M — MZ 8 0z

_|_

[

. 2 2 2
S Cvurs Doy |45 +15 + 15Ry — 18(1+ Ry)log %l :
where Dy py is given in (4).
At first order in R, Rz and Rw we get the following approximated expression for the

form factor Fyif, which is valid for V; = v, Z:

2
FUI(g?) = _% Ro {128 Ay, O3y + 128 Ay pr (C2ps + Cpy)

+72Cvirrgp Cwrs (g% + 0%) + T2 Crviry [Cors (9% + 9%%) + Cary (9% + 9%5))]
+103 Cfyr i ¢ gvyww + 216 (OzFf Ky,rr+ O%py Kvirr + Cirpg KVlF'F’> M

+ [48 Avirir g + 48 Ay pr (C2py + Chpy) — 144Cviprp Cwrry (9 + g
—144 Cv, ry [Ova (95¢ +95;) + Czrs(g%; + g%f)] —30C% 5 s gviww

+172 (O,zFf Ky,rr + Cop; Kvirr + Oy KVlF’F'> Ml log Rp

+Rw [18 Av,pir Corpr s + 144 Ol gviww + 36 Oy s Ky M

+144 Cwris [Crirrp (g + giy) + Cwrr g gviww] log R
+Rz (18 Av,pp Clps + 36 Chpy Kvipr M

—|—144 OVlFf OZFf (9%1‘ + g%) 10g Rz]} .
(27)
In order to check the consistency of our calculations, we also analysed the effect of
the excited leptons to the yff vertex at zero momentum, which is used as one of the

renormalization conditions in the on-shell renormalization scheme. Taking into account the

appropriate values for the constants Cyrs (3), Avrr (7), and Kypr (8), we verified that the
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vertex yée cancels at ¢> = 0. In the same way, we have also checked that T, 5, (¢*> = 0) =0
(note that T, and Tj; must change sign for external neutrinos). Therefore our expressions
for the new contributions satisfy the appropriate QED Ward identities [17], and leave the
fermion electric charge unchanged. In consequence, the vertex corrections are proportional
to ¢* as is explicitly shown in the approximate expression (27). Moreover, we also verified

that the excited fermions decouple from the vertex correction in the limit of large M.

IV. NUMERICAL RESULTS AND DISCUSSION

The above expressions for the radiative corrections to Z physics due to excited leptons
are valid for arbitrary couplings and masses. In order to gain some insight as to which
corrections are the most relevant, let us begin our analyses by studying just the oblique

corrections, which can also be parametrized in terms of the variables €, €5, and €3 of Ref.

[18]

e = Apii(2)

univ

€5 = iy Apex, (2) — 283, AR, — s3 Arex (28)

univ univ univ

€ = By Ape, (2) + By AreE + (B — sB ) AR, (2) .

univ univ univ

Recent global analyses of the LEP, SLD, and low-energy data yield the following values for
the oblique parameters [18]

€ = efM + e = (5.14+22) x 1073,
€2 = M 4 3V = (—4.1 £4.8) x 1072, (29)
€3 = egM + e = (5.1 +2.0) x 1073,

In Table I, we give the attainable values for the new contributions to the e parameters for
different values of the excited lepton mass and couplings. As seen from this table, requiring
that the new contribution is within the limits allowed by the experimental data (29), we find
that the constraints coming from oblique corrections are less restrictive than the available
experimental limits. Notice that A being the scale of new physics, M must satisfy M < A.

As for the vertex corrections, we see in Eq. (20) that the excited leptons alter just the
left-handed coupling of the Z. The new contributions to the Z widths, I'.e = I'(Z — ete™)

and Iy = 3 T(Z — D), are given by

12



AT, = abty O Y2z,
3swew (30)
ATy, = aMzm x F2¥(z) .

The theoretical values for the Z partial width generated by ZFITTER [19], for myep, = 175
GeV and Mg = 300 GeV, are I'.. = 83.9412 MeV and T';,, = 501.482 MeV. The most recent
LEP results [22], assuming lepton universality, are TLEF(Z — (+4~) = 83.93 £ 0.14 MeV
and for the invisible width TLEF = 499.94-2.5 MeV. Therefore, at 95% C.L., we should have
—0.28 < AT, < 0.26 MeV, and —6.48 < ATy, < 3.32 MeV.

We list in Tables IT and III the values of AT'.. and AT';,, attainable in this phenomeno-
logical model for some values of the compositeness scale and excited lepton masses, assuming
different configurations of the weight factors f; ,, and ;5. Our numerical results show that
the most restrictive bound on the excited fermion mass and compositeness scale comes from
the comparison of ATl'., with the LEP data for this observable.

Let us compare our bounds coming from AT, with the ones emerging from the direct
search for the excited leptons. First of all, we should point out that the direct search at LEP
was just able to reach excited fermion masses up to 130 GeV [11]. On the other hand, the
HERA Collaborations [9,10], looking for states that decay into a gauge boson and a usual
fermion in the reaction ep — f*X, can access masses up to 250 GeV.

In Fig. 3, we present the excluded region, at 95% C.L., in the A versus M plane imposed
by AT, for fi = fo = k1 = k3 = 1. We have further assumed that M < A, leading to the
excluded region represented by the shadowed triangle. For comparison, we also present the
region excluded by the ZEUS data [10] (below and left of the dashed curve), for f; = f» = 1.
Since we have assumed that BR(e* — ey) = 1, this curve represents an upper limit for
the ZEUS bound. As we can see, we were able to exclude just a small region beyond the
available limit. We also show our results when we relax the condition of M < A. In the latter
case, our analysis excludes all excited lepton masses with scales A < 165 GeV. It should be
realized, however, that relaxing such a condition leads to non-decoupling of the new physics
in the large- M limit. Moreover, one can question the use of effective Lagrangians to describe
the interactions of particles heavier than the cut-off scale.

In conclusion, we have evaluated the contribution of excited lepton states, up to the

one-loop level, to the oblique variables and also to the Z width to leptons. We have com-
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pared our results with the precise data on the electroweak observables obtained by the LEP
Collaborations in order to extract bounds on some of the free parameters (compositeness
scale and excited lepton mass) of the phenomenological model under consideration. We also
compared our results with the recent bounds obtained through the direct search for these
particles. Our results show that the present precision in the electroweak parameters attained
by LEP is very marginally able to constrain the parameters A and M beyond the present

limits from direct searches.
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APPENDIX A: SCALAR ONE-LOOP INTEGRALS

The relevant Passarino—Veltman functions are [20],

dPk 1
_ D
Ag(mg) = —1,(1671'2)#4 / 2r)P R —m2 )

dPk 1
Bo(p? 9 2y — (1672 4—D/
o(p1, mg, m7) i(167°)u (2m)P (k* — mg)[(k + p1)? — m]] ,

dPk 1
C 2, 2 , 2,m2,m2,m2 = —i(1672 4_D/
o(P1, Pa1> Py, Mg, MY, M) ( ) (2m)D (k2 — m2)[(k + p1)? — m3][(k + p2)? — m3]

(A1)

where p21 = p2 — p1
The scalar function Ay can be written as [21],
2 2

My H

where we have kept the pole at D = 2, and

2
A= ﬁ—'yE—l—logﬁlﬂ' (A3)

where vg is Euler’s constant.

The By and Cj functions can be written in terms of integrals over Feynman parameters

as

T e e Y
and
Co(p?, Pyr, D3, Mg, M3, m5) = /01 de | dy [Ph2? + p2y® + (0} - — ph)y

-1
— p31)e + (mg — m7 + pa; — pa)y + m3 — 7"5] (A5)
The function By, for some cases of interest, are

2
Bo(0,0,M2) = A+ 1 —log <%> :

2 A7y _ _ (M? 4+ My) M) <MMV>
BO(O7M 7MV) =A + 1 2(M2 o M12,) 10g M12/ 10g /J,2 ?

2

DRI T (R RICd
Bo(¢*,0,M*) = A +2 <1 7 log {1 e log Wz )

4M2 2 1/2 M2
Bo(q?, M?, M? :A—|—2—2(4qLarctan q — log =55
0( ) q (4 M2 — q2)1/2
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In the contribution Ty;(q%, M?, My?) (B7), we have the function

2
BOMY M) = =5~ a0t
M (]“’42) 1 (Mf,) (A7)
+ o + log | —
2007 — My BA\np) TRy

The functions Cy, for some cases of interest, are

00(070707M2707M2): _#7
2
00(070707M27MI2/70) = _mlog (%—12/) 3
2 2 2 1 2 2 M?
Co(0,0,0, M*, My, M?) = M~ M) M* — My (1 +log M )
2 A1 As2 _ 1 M?— ¢ M?— ¢ _
Co(0,0,¢%, M?, M{,0) = = llog( 7z log E 1

— M M
o8 (Ma )bg (Ma)
2 2 2 2
: (M L (M4
—|—1,7r10g <1 — q_> —1a (—) + 14 (7)1 y
M’ "\ M3 ’ -

AM? — 2)1/2
Co(0,0,¢%, M?, M2, M?) = L{—271'arctam I d
0( q 14 ) q2 2(M2 . M12,) _ q2

(4M? — )\ g(4M’ — ¢*)'/?
+4 arctan q arctan o(M? — MZ) — &
M2 (M2 — M2 )2 l
—log | 5= ] lo v
. M : Myq®
be\ar gy e) T \or g TR

i & L —C
“”@W—W%J “@WHMQ4J

, ¢ L ¢
+L2(2(M2—Mé)—£* bz 2(M2—M5)—£)}’

2 " 2v1/2 2 9
Co(0,0,¢%, 30%,0, %) = {‘2” arctan | 1500 _qqz) - Lip (44
AM? — o2)1/2 AM? — g2)1/2
+4arctan l% arctan al YL _qqz)

+Li; <2M€2*— g) - L <2M_2£i g*) + Liz <2M2£— g*)
~Lis (52 é)} ,
(A8)

where ¢ = ¢ +iq(4M? — ¢?)'/2, and Liy(z) is the dilogarithm or Spencer function, defined

as
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1
Lis(z) = —/0 %log(l —at),

APPENDIX B: RESULTS IN D DIMENSIONS FOR TWO- AND THREE-POINT
FUNCTIONS

The result in D dimensions for the transverse part of vacuum polarization Epf% contri-
bution coming from the loop of an excited fermion with mass M and a usual fermion with

mass m (see Fig. 1) is

Eglsz — _4(DE71)71_20V1F)‘OV2F1‘ {2q2A0(m2)

+(M? —m?)[¢* — (D — 2)(M?* — m?)] Bo(0,m?, M?) (B1)

( m
+(D = 2)(M? = m?)? — (D — 3)¢*(M? 4+ m?) — q4]Bo(q2,m2,M2)}
The definition of the 4y and By functions is given in the Appendix A.

For the vacuum polarization (X35?) contribution coming from the loop of two excited

fermions with mass M, we obtain

Sy = _8(DE71)71-2 {2 (D —2)Av,rrAv,rr + Kv,rr Kv,rrq®] Ao(M?)

— [AVlFFAV2FF[4M2 + (D —2)¢*] + 2(D — 1)¢* M(Av,rr Kv,rr + Av,rr Kv,rr)
+Kv,rrKv,rrg’[q* + 4D — 2)M2]]Bo(q2, M2, MZ)}

(B2)

For the three-point functions in D dimensions the results read:,
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Va
17 =

W Avirr Cl,py (2 — D) Ao(M?)

_4(2 — lz)) - 012/2Ff [AVlFF <4M4 — 2D M*— 6 M2 My?+2D M? My?

—|—2MV4—16M2q2—|—8DM2q2—D2M2q2_|_4DMV2q2_D2MV2q2>

~Kyipr (32M°¢ — 16D M*q* +2D° M*q* — 12M My* ¢ +2DMMV2q2>l

x Bo(0, M?, My?)

+SA=D) (; Dy g Chrs lAVlFF (8M* — 12D M* + 4D* M* — 12 M? My
+16 D M? My? —4D? M2 My* + 4 My* — 4D My* — 28 M? ¢* + 50 D M? ¢*
—20D*M?*@?+2D*M? ¢ + 14 My® ¢> — 16 D My? ¢> + 2 D? My? ¢* + 8 ¢*
~12D ¢* +3D%¢*) + Ky, pr (96 D M®¢® — 64 M3 ¢ — 36 D M°® ¢* + 4 D’ M? ¢?
+24 M My?q®> — 28D M My®¢* + 4D* M My? ¢* + 20 M ¢*

—26DMq4—|-6D2Mq4)l « Bo(q®, M2, M?)

42— li?) wr g s lA"lFF (4 M° —2D M® — 10 M* My’ + 4D M* My’

+8 M2 My* — 2D M? My* — 2 My°® — 16 M* ¢*> + 8 D M* ¢*> — D* M* ¢

+26 M2 My?q®> — 11 D M? My? ¢*> + D* M? My? ¢

~8My" ¢ + D My*q’ —8My*¢* +2D My* ¢*)

+Kv,pr (44 M° My® ¢* — 32 M° ¢* + 16 D M® g* — 2 D* M® g2 — 18 D M® My* ¢*
+2D2 M3 My2q? — 12 M My*q* + 2D Ky, pr M My* ¢?
—16MMV2q4—|—4DMMV2q4>] x Co(0,0,q%, M?, My?, M?) ,

(B3)
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Va
T,? =

Vo
1,7 =

ﬁ Cv,rs Cv,rs (4 — D) (g%,2 + g%) M? By(0,0, M?)
+WOV1FJ‘ Cv,rs (10 — 6D + D?) (Q% T g%) My By(0,0, My?)
~ 1z Dy 7 s Ovars (g5, +93,) (200° +607°
_6DMV2 + D2 MV2> % BO(O,MZ,MVZ) (B4)
gDy s Ovars (o + 65) (1002 6D M2 4 D a2

—4 My —24¢%) x Bo(q?,0,M?)

+W Cy,rs Cvirs (9%, +9%,) My® (12M? — 6D M? + D* M?

~4My* —4¢%) x Co(0,0,¢%, M?, My?,0)

41? 012/2Ff gnww AO(MV2)

4(1-D) (5 Ty a7 g hars v (4M* — 6D M* +2D* M* — 6 M> My’
‘|‘8DM2MV2_2D2M2MV2_|_2MV4_2DMV4_7M2q2+13DM2q2
~4D* M? >+ 3My” ¢* — 3D My’ ¢?)

X BO(O,M2,MV2)

) 2 4 4 2 Ara 2 2
+8(1—D) 2— D) 71_2q2OV2Ff9V1WW <8M 12D M*+4D* M* - 12M* My

+16 D M? My® —4D? M2 My? + 4 My* — 4D My* — 18 M2 ¢*> + 24 D M? ¢*
—6D2 M2 ¢* + 20 My® > =20 D My ¢* + 4D* My ¢* = T¢* + 7D ¢* — D* ¢*)
% Bo(q?, My?, My?)

_471_2 CY,rs giww <M2 - MV2> B1(0, M?, My?)

1(1- D)
F @Dy s Chrs ovoww (4300 = 2D MO — 10 M My? 4 4D M* My?

+8 M2 My* — 2D M? My* —2My® —TM*q> +2D M*¢* + 12 M? My? ¢*
~4D M? My® ¢* — 3 My* > — TM? ¢* + 2D M? ¢*)
% Co(0,0,¢2, My, M2, My?) ,

(B5)
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T = ﬁcgfﬁf (2-D) (9‘11/1 —I—g%) Ao(My?)
t s Oy (9% +0) (M? = My?) (2m® — Dm® +2M° — D M” — My?)
><BO((]7]W27]WV2)
_787711: 2 012,2Ff (g%,l —I—g%) <2m4 —Dm*—4m?>M?*+2Dm?M? + 2 M*

—D M* — 3m? My®+ Dm? My? — 3 M? My® + D M? My? +MV4)
x Bo(m?, M2, My?)
(B6)

Note that we have kept here the light fermion mass m. The limit of m — 0 is made at the

end.

T): = WOV2F,¢ (5 — 6D + 2D?) Dy, 5 Ao(Mv?)

+W Cvyrs (3 = 3D + D?) Dy,ry M? Bo(0, M*, My?) (B7)

+W Cy,rs Dv,ry (M? — My?) Bi(0, M2, My?) .
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FIGURES
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FIG. 1. Feynman diagrams leading to contribution of the excited leptons to the two-point

functions
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FIG. 2. The contribution of the excited leptons to the three-point functions
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FIG. 3. Excluded regions in the A versus M plane from the bounds on AT, (shadowed area),
and from ZEUS data (below and left of the dashed curve), at 95% C.L.
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TABLES

M (GeV) A (GeV)
300 500 1000 2000
(fl, f2,/"v1,""v2) = (1a 1,1, 1)
300 0.18,0.17,0.21 | 0.13,0.12,0.16 | 0.076,0.069, 0.09 0.048 , 0.044 , 0.057
500 — 0.063, 0.058,0.075| 0.04,0.037, 0.048 0.023, 0.021, 0.028
1000 — — 0.016, 0.014,0.019 | 0.01, 0.0092, 0.012
2000 — — — 0.0039, 0.0035, 0.0046
(f1, f2s K1, 62) = (1,-1,1,-1)
300 0.052, 0.037, 0.085| 0.055, 0.044, 0.079 | 0.037,0.031, 0.051 0.029, 0.025, 0.038
500 — 0.017,0.012,0.029 | 0.017,0.014,0.025 0.012, 0.01, 0.016
1000 — — 0.0041, 0.0028, 0.0071| 0.0043, 0.0035, 0.0062
2000 — — — 0.001, 0.000069, 0.0018
(f1, f2y K1, K2) = (1,0,1,0)
300 [0.041,0.026, 0.075| 0.037, 0.026, 0.062 | 0.032, 0.026 , 0.047 0.03, 0.026, 0.039
500 — 0.014, 0.0092, 0.027| 0.013, 0.0092, 0.02 0.011, 0.0092, 0.016
1000 — — 0.0036, 0.0023, 0.0066| 0.0031,0.0023, 0.0051
2000 — — — 0.00089, 0.00057, 0.0016
(f1, f2y K1, 62) = (0,1,0,1)
300 0.17,0.17,0.17 0.12, 0.12, 0.13 0.072, 0.069, 0.077 0.046, 0.044, 0.052
500 — 0.059, 0.058, 0.06 | 0.038, 0.037, 0.04 0.022, 0.021, 0.024
1000 — — 0.014, 0.014,0.015 | 0.0094, 0.0092, 0.0099
2000 — — — 0.0036, 0.0035, 0.0037

TABLE I. —€7% 5 X 102 for M, A = 300, 500,1000, 2000 GeV and for different configurations of

the weight factors
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M (GeV) A (GeV)
300 500 1000 2000
(f1, far K1, K2) = (1,1,1,1)
300 0.096 0.042 0.014 0.0045
500 — 0.037 0.012 0.0039
1000 — — 0.0097 0.0031
2000 — — — 0.0025
(f1, f2s 61, 62) = (1, 1,1, -1)
300 0.074 0.030 0.0091 0.0027
500 — 0.028 0.0084 0.0025
1000 — — 0.0073 0.0022
2000 — — — 0.0018
(f1, f2 K1, K2) = (1,0,1,0)
300 —0.0010 0.00038 0.00040 0.00018
500 — —0.00043 0.00016 0.00012
1000 — — —0.00011 0.000038
2000 — — — —0.000029
(f1, f2, k1, K2) = (0,1,0,1)
300 0.087 0.036 0.011 0.0034
500 — 0.033 0.010 0.0031
1000 — — 0.0087 0.0026
2000 — — — 0.0022

TABLE II. AT(Z — ete™) in MeV, for M, A = 300,500,1000,2000 GeV and for different

configurations of the weight factors

28



M (GeV) A (GeV)
300 500 1000 2000
(fl, f2,/"v1,""v2) = (1a 1, 1,1)
300 0.17 0.090 0.031 0.0096
500 — 0.069 0.026 0.0086
1000 — — 0.018 0.0068
2000 — — — 0.0047
(f1, f2r k1, k2) = (1,-1,1, -1
300 0.15 0.19 0.086 0.031
500 — 0.067 0.061 0.025
1000 — — 0.019 0.016
2000 — — — 0.0050
(f1, f2, K1, k2) = (1,0,1,0)
300 —0.043 —0.013 —0.0025 —0.00049
500 — —0.016 —0.0030 —0.00060
1000 — — —0.0040 —0.00077
2000 — — — —0.0010
(f1, f2y K1, k2) = (0,1,0,1)
300 0.34 0.17 0.062 0.021
500 — 0.13 0.050 0.017
1000 — — 0.035 0.013
2000 — — — 0.0089

TABLE III. AT(Z — invisible) in MeV, for M, A = 300,500,1000,2000 GeV and for different

configurations of the weight factors
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