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Abstract

The Bethe{Levinger sum rule is extended beyond the potential model. The pion degrees of

freedom are taken into account and the modi�cations of the potential theory are analysed within

two di�erent approaches: dipole sum rule and dispersion relation on the Compton amplitude.

Our aim is to extract from the photon data experimental information on the expectation value

of the square of the pion �eld, a quantity which enters also in the restoration of chiral symmetry

in nuclei and in pion{nucleus scattering. We are led to incorporate in the description the �

resonance, which is strongly excited by the pion degrees of freedom.
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I. INTRODUCTION

The forward Compton amplitude is sensitive to the pionic structure of nuclei, through

its link [1] to the enhancement factor K of the dipole sum rule [2]. In the original derivation

of the sum rule the enhancement arises mostly from the tensor correlations, i.e. from the

pion. It is thus natural to investigate how the explicit introduction in the electromagnetic

current of the pion degree of freedom a�ect the sum rule, especially in view of the fact that

the pion has a small mass, which is not far from the nuclear excitation domain. This is

known to create di�culties in the actual evaluation of K as it is not possible to disentangle

the nuclear excitations in the photoproduction region. We have shown in a previous work

[3] that the usual enhancement factor provides information on the tensor part of the spin{

isospin correlations. By extending the sum rule to incorporate the pion degrees of freedom it

is possible to explore the expectation value of the squared pion �eld, a quantity that enters

in a number of other problems such as the restoration of chiral symmetry in nuclei and in

pion{nucleus scattering. This is the aim of this work.

The explicit inclusion of pions in the electromagnetic current entering in the dipole

sum rule has been previously performed by Noble [4], who found a strong reduction of

enhancement factor (K � 0:2 instead of K � 1). In the present work, we will show that this

is because the inclusion of pions has an e�ect not only on the enhancement factor, but also on

the integral over the cross-section, since the photoproduction region has to be incorporated.

This guarantees the consistency of the new sum rule, which de�nes the enhancement factor.

Section II gives the general formalism, while section III discusses the dipole sum rule. In

section IV we analyse the Compton amplitude, explicitly taking into account pion degrees of

freedom: this method has the advantage of dealing with the photoabsorption cross-section

rather than the electric dipole one, not directly measurable. Section V enlarges the descrip-

tion to incorporate the � resonance.
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II. THE MODEL AND ITS NON-RELATIVISTIC LIMIT

We start with a �rst quantized relativistic Hamiltonian, which describes the nucleon and

pion �elds and their interaction through a pseudoscalar coupling HN +H� +HNN�:

HN =
Z
d3x �N(x)(i@= +M)N(x) (1a)

H� =
1

2

Z
d3x ~@�i(x)~@�i(x) + _�i(x) _�i(x) +m2

��
i(x)�i(x) (1b)

HNN� = ig

Z
d3x �N(x)5�

iN(x)�i(x) (1c)

where m� is the pion mass and g the �NN coupling constant. This Hamiltonian gives rise

to the following equation of motion:

(i@= �M)N(x) = ig5�
i�i(x)N(x) (2a)

(@2� �m2
�)�

i(x) = �ig �N(x)5�
iN(x) (2b)

The antinucleon contribution is small in the low-energy domain, O(1=M2), and it can be

neglected. The charge density operator then reduces to the sum of the nucleon and pion

charge density:

j0(x) = �N (x) + ��(x)

= e[ +(x)
(1 + �3)

2
 (x) + _�2(x)�1(x)� _�1(x)�2(x)] (3)

with the substitution of the �eld N(x) by the two component �eld  (x). The Siegert theorem

guarantees that the pion contribution is a correction of order 1=M2 and it can thus be ignored

in the charge density. The situation di�ers if we consider the time derivative of the charge

density operator. Using the equation of motion for the time derivatives of the nucleon and

pion �elds, we get:

_j0(x) = e

"
i

2M
~@

 
 +(x)

(1 + �3)

2
~@ (x)

!
+ ~@

�
~@�2(x)�1(x)� ~@�1(x)�2(x)

�
+

+
ig

2M
~@
�
 +(x)~�(�2(x)� 1 � �1(x)� 2) (x)

��
: (4)
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Notice that the result is the divergence of a vector, as should be, since the continuity equa-

tion is automatically implemented in the theory.

Finally we evaluate the commutator of j0(x) with _j0(x), ignoring the 1=M2 contributions.

This commutator plays an essential role in the dipole sum rule and in the de�nition of

the seagull terms in the Compton amplitude. After a cumbersome but straightforward

calculation we get the result of Ref. [4]:

h
j0(x; t); _j0(y; t

0)
i
t=t0

= e2[�3(x� y)

"""
i

M
�

 
 +(x)

1 + �3)

2
 (x)

!
+

+ i�
�
�1(x)�1(x) + �2(x)�2(x)

�
]

###
: (5)

In Eq. (5) terms with a vanishing expectation value have been discarded. Notice that the

explicit inclusion of the pion in the de�nition of the electromagnetic current replaces the

usual seagull term given by the exchange potential e2�( +(x) (x)Vexch(x�x0) +(x0) (x0)),

by a quantity related to the square of the charged pion �eld. In the potential case and in

the OPEP approximation, the seagull term is represented by the four Feynman diagrams of

Fig. V.

In the present description, the intermediate excited states with one pion can be reached

by the current and are excluded from the seagull term. In other words the diagrams which

can be cut on a pion line between the two photons get an imaginary part. This is the case

for the two-body diagrams a,b,c of Fig. V. Thus they do not appear in our new description

of the seagull term and only the diagram 1d enters.

III. THE DIPOLE SUM RULE

The commutator of Eq. (5) enters in the electric dipole sum rule:

S1 =
1

2�2

Z 1

0

�E1(!)d! =
1

3
h0j [[D;H];D] j0i (6)
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where �E1(!) is the electric dipole part of the photoabsorption cross-section and the dipole

operator is:

D =
Z
x � j0(x)d

3x (7)

The mean value on the ground state has to be evaluated in the centre-of-mass frame. From

Eqs. (5) and (6) we get

1

2�2

Z 1

0

�E1(!)d! =
e2

M

ZN

A
+ e2h0j��(0)��(0) � �3(0)�3(0)j0i: (8)

The nuclear pion �eld that enters in the expectation value is the total one in the nucleus.

Its square has terms where the pion �eld originates and is absorbed by the same nucleon.

This does not represent a correlation term. In the photoproduction cross-section as well there

is a contribution coming from free nucleons. It is then natural to subtract this contribution

so as to retain only the exchange pieces, as in the original Bethe{Levinger sum. The new

sum rule is written:

1

2�2

Z 1

0

d!
h
�E1A (!)�A�E1N (!)

i
= e2

ZN

AM
(1 +K4) (9)

where

K4 = e2[h0j��(0)��(0)j0i � h0j��i (0)�
�
i (0)j0i � (�! 3)]: (10)

The second piece in the brackets represents the contribution of the free nucleons. We have

used in Eq. (9) the same notation K4 as in our previous paper [3] on the Compton amplitude.

This term, which is a genuine seagull term, represents the Thomson amplitude of the charged

exchanged pions as given in graph of Fig. Vd. The sum rule Eq. (9) is a new one in which

the meson exchange correction on the Compton amplitude is linked to the expectation value

of the squared charged pion �eld.

On the left-hand side of Eq. (9) the cross-section has to incorporate the contributions of

all excitations that can be reached with our electromagnetic current. In addition to purely

nucleonic states, they include in particular states with pions, arising from the photopro-

duction process. The corresponding cross-section di�erence thus extends above the pion
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threshold including also the photoproduction region. It represents the modi�cations of the

E1 cross-section for a nucleon imbedded in the nuclear medium. This includes the giant

dipole part and the quasi-deuteron one, as for the usual enhancement factor, but also the

changes of the E1 photoproduction cross-section, as due for instance to a Pauli blocking.

Accordingly our enhancement factor K4 is di�erent from the usual one, K. The inclusion

of pion degrees of freedom in the electromagnetic current eliminates from K the terms a,

b, c, of Fig. V characterized by a pion propagation between the two photons, which ap-

pear as seagulls only in the potential theory. In a world with only nucleons and pions it

would thus be possible to evaluate the expectation value of ��(x) ��(x), from the measured

photoabsorption cross-sections.

IV. DISPERSION RELATIONS AND COMPTON AMPLITUDE

We now turn to the approach in terms of the forward Compton amplitude f(!). At

zero energy it takes the Thomson values, which for the nucleus, proton and neutron are,

respectively:

fA(0) = �
e2Z2

AM
; fp(0) = �

e2

M
; fn(0) = 0: (11)

In the high-energy limit it is given by a seagull term S, which can be obtained by gauge and

covariance constraints [1]:

(""0)S = "�"
0
�S��

�4(x� y)@�@�S�� = �(t� t0)h0j [j0(x); [j0(y);H]] j0i: (12)

On the other hand the energy dependence of the Compton amplitude is governed by the

time-ordered product given by

T (!) =
X
n

jh0jj(x)eikxjnij2

En � ! + {"
�
jh0jj(x)eikxjnij2

En + ! + {"
(13)

One can see from Eq. (13) that T (!) goes to zero when ! is well above the excitation

energies in consideration: ! >> En. In this case T (!) obeys an unsubtracted dispersion

relation so that:
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T (0) =
1

2�2

Z 1

0

�(!0)d!0: (14)

In contradistinction the dispersion relation for the amplitude f(!) requires a subtraction as

f(! !1) = S. Writing

f(!) = T (!) + S (15)

we obtain at zero energy

f(0) = T (0) + S; (16)

where f(0) is the Thomson value, T (0) is known from the cross-section integral Eq. (14).

Therefore Eq. (16) can be used to determine the seagull term S through a sum rule. As

in the previous section we have to subtract from f(!) the free nucleon part so as to retain

only the exchange part, leaving only the term of diagram 1e, which we denote by S4:

S4 = �e2
ZN

AM
K4: (17)

Our sum rule is written:

1

2�2

Z 1

0

d! [�A(!)�A�N(!)] = e2
ZN

AM
(1 +K4): (18)

We �nd a relation similar to that given in Eq. (9), but the full cross-section rather than the

electric dipole one is involved.

It is clear from Eq. (5) that the seagull term depends on the de�nition of the electro-

magnetic current. In the present work we do not want to incorporate the full complexity of

this current. Our scope is limited: we consider only nucleonic and pionic degrees of freedom.

In this way we obtain a simple expression for the seagull in terms of the pion �eld. The

same remark applies to the time-ordered product. Accordingly, in our sum rule, such e�ects

as shadowing of the photoabsorption cross-section due to vector dominance are left out of

our considerations. This is why a cut-o� in energy has to be applied in the integral over the

cross-section.
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We now de�ne this cut-o�, denoted by1 in the integral over the cross-section of Eq. (14).

This maximum energy depends on the model that we use. In the original Bethe{Levinger

description, the electromagnetic current does not create pions. The intermediate states jni

in the expression of T (!) in Eq. (13) are thus purely nuclear. Large ! values mean well

above the nuclear excitation energy, in such a way that T (!)! 0. In this case an energy in

the vicinity of the pion mass can be considered large and the integral of the cross-section is

restricted to the energy below the pion threshold. In the present description the potential

approach is given up. Mesons are now explicitly taken into account, we retain only the

pion and we ignore the nucleonic excitations. High energy, in this case, means above the

photoproduction region (in the absence of nucleonic excitations), ! � few hundred MeV is

considered large. Thus the cross-section integral should be cut at !max� 300{500 MeV.

Let us elaborate better on the choice of the cut-o�, which is a crucial point in our work.

Our description of the nucleus is restricted to a certain type of excitations: purely nuclear

in the original Bethe{Levinger sum rule, nuclear plus pionic in the present case. It is then

necessary to reach a consistent description with only those excitations and to eliminate

the other ones, in particular from the cross-section, which impose a cut-o� in the integral.

The idea is that there are well separated energy domains, where only certain excitations

dominate: only nuclear at low energies !max � m�; nuclear and pionic in the region up to

!� � 300{500 MeV. This is only approximate. For instance the nuclear excitations extend

also above the pion threshold, and this is a well-known problem for the determination of

K. Similarly we will see that higher excitations such as � mix in the photoproduction

region and we will have to extend the description to incorporate the �. However, for the

moment we ignore this di�culty. In order to reach a consistent theory with a chosen set of

excitations, the maximum energy should be large enough for T (!max) to vanish and at the

same time small enough for the other excitations not to show up in the cross-section.

The expectation value of the squared pion �eld, which builds the seagull term K4 is an

important quantity. We follow here the ideas of Chanfray and Ericson [5] who have shown

that it governs the restoration of chiral symmetry in nuclei. It also enters as a pion exchange
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contribution to the s-wave pion optical potential. In Ref. [5] it is expressed in terms of spin{

isospin response function. If the only hadrons present in the nucleus are nucleons, the static

approximation can be used. It leads to the following equation:

ZN

AM
K4 =

g2

4M2

Z
d3q

(2�)3
X
i6=j

h0j(~�i~q)(~�j~q)��i �
�
j j0i

(q2 +m2
�)

2
(19)

This quantity involves longitudinal spin{isospin correlations and it is related to the pion

excess number [3].

The theoretical evaluation of K4 with the nuclear matter spin{isospin correlations of

Ref. [6], gives a valueK4 = 0:16, which is much smaller than the usual factorK, in agreement

with Noble's �ndings [4]. This is due to a nearly complete cancellation between the scalar and

the tensor pieces of K4: K4 scalar = �0:68;K4 tensor = +0:84. The scalar part has essentially

the same value as in the free Fermi gas model. It represents the Pauli blocking e�ect for the

contribution of Fig. 2a to the Compton amplitude. On the contrary, K4 tensor vanishes in

a free Fermi gas and arises only from tensor correlations, which are mostly responsible for

the quasi-deuteron cross-section (see diagrams of Figs. 2b and 2c). In our analysis a small

K4 value does not contradict the sum rule in Eq. (18). It implies that the cross-section

integral exceeding the classical sum rule should also be small. As a consequence the integral

of the quasi-deuteron cross-section should be nearly equal to the Pauli quenching of the

photoproduction one.

Let us now turn to the analysis of the experimental data and discuss whether K4 is ex-

perimentally accessible. The present discussion incorporates only nucleons and pions. This

is not realistic as the � resonance strongly inuences the photoabsorption nuclear and nu-

cleonic cross-sections. The question is then whether this inuence prevents an experimental

determination of K4. Let us recall that the � is not appreciably modi�ed in the nucleus: its

inuence, which is overwhelming in the separate cross-section individually, is therefore less

dominant in their di�erence. It is thus conceivable that, by introducing a suitable cut-o� in

the integral over the cross-section di�erence, we may limit this inuence, at the same time

preserving the information on the nucleon{pion sector.
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However this is not possible because the Pauli blocking itself is a�ected by the existence

of the �. It is indeed known that the modi�cation of the pion propagation in the nuclear

medium, due to the virtual �-hole excitations, makes the Pauli blocking less e�ective [7].

It is thus not possible to disentangle the � in the pion photoproduction region. Therefore

the description should not be restricted to nucleons and pions, but also incorporate the

� resonance, which is done in the next section. This is not a disadvantage. Anyhow a

determination of h�2i that would not incorporate the � would not be realistic, since the �

is so strongly excited by the pion degree of freedom.

V. THE � EXCITATION

We now extend this description to incorporate the � excitation, which we treat as a

stable particle. This inclusion changes again both T (0) and K4. This last quantity, which

is the Thomson amplitude on the exchanged pions, has to take also the � into account as

given by the graphs of Fig. 3b. We have kept the diagrams with one �. The many-body

graphs corresponding to Fig. 3a and b are shown in Fig. 2.

In the dispersion relation for T (0) the integral over the cross-section has to include also

the region of � and �� production, i.e. the region up to !max � 700{800 MeV. This region

covers the near-threshold one for the �� excitations, which is expected to experience a strong

medium modi�cation. Indeed, in the nuclear medium, the elementary process +N ! �+�

should give rise, below threshold, to a quasi-deuteron with a �, absent for free nucleons. The

relation (18) remains true with the new de�nition of K4 and the new value of the maximum

energy in the integral.

The seagull term of Fig. 2 can be concisely expressed, as before, as the expectation value

of the square pion �eld, Eq. (10). This expression was obtained previously without � but

it remains valid also in this more general case. Actually the expectation value is changed

by the introduction of the �, but not the operator form appearing in Eq. (5). For the

actual evaluation of K4, the � excitation shoud be incorporated in the nuclear response. In
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the static approximation the correlations with � excitation are not available. However an

estimate K4 can be obtained in the following way. The spin{isospin correlations also enter

in the pion excess number, which is given by a similar expression, with a di�erent power

of !q in the denominator (!3
q instead of !4

q ). This is reected in the following relation [3]

between the seagull term and the pion excess number per nucleon, n�:

K4 =
16

3
n�m�

*
1

!q

+
(20)

where h1=!qi = h(q2 +m�
2)�1i is an average over the pion momentum. This relation, which

holds as well with the �, can be used to estimate K4. The pion excess has been evaluated

by Freeman et al. [9] who pointed out the important role of � in the production of the pion

excess. In nuclear matter we deduce from their work the � contribution to the excess

n�� � 0:18 � 0:04 � 0:14; (21)

where the �rst number in the di�erence is the total value and the second the purely nucleon

one. For the average pion energy, we take that of the tensor, which dominates the �

contribution h1=!qi � (550 MeV)�1. From Eqs. (20) and (21) we estimate for the seagull

term K�
4 of Fig. 2c: K�

4 = 1:3. On the other hand, for the nucleon contribution KN
4 of

Fig. 2a and 2b, the explicit evaluation with the nuclear matter correlations of Ref. [6] gives

a small value KN
4 = 0:16 as already mentioned. The overall theoretical prediction is then

K4 = KN
4 +K�

4 � 1:5: (22)

Let us now turn to the experimental value, deduced from the relation (18) and the

experimental cross-sections [10], [11]. The cross-section per nucleon is shown in Fig. 4

for uranium together with the nucleon one and the di�erence. Notice the sizeable excess

of the nuclear cross-section over the free one in the region of 400{500 MeV, as expected

from the quasi-deuteron with � mechanism. An evaluation of the cross-section integral of

Eq. (18) depends somewhat on the exact value of the cut-o�. We have taken three choices:

!max = 700, 800 and 1000 MeV. We have used the data of Ref. [10] up to 100 MeV and
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those of [11] above. We obtain, for the value of K4 : � 1:5; 1:3; 1:1, respectively for !max =

700, 800, 1000 MeV, with an error of about 10%. At this stage, we would like to comment

our value of K4, which is in reasonable agreement with the theoretical estimate of Eq. (22).

We �nd nearly the same result as in the classical Bethe{Levinger sum rule [2], in spite of

the explicit inclusion of extra degrees of freedom, the � and �. This is understandable as

the inclusion of the pions only brings the value of K down to practically zero (linked to the

Pauli blocking of the photoproduction cross-section). The value of K is then restored by

adding the � degrees of freedom.

Not surprisingly, the value of K4 displays a certain sensitivity to the cut-o�. Its deter-

mination is therefore approximate. However, this limited information is interesting because

even the sign of K4 is not a priori obvious. We �nd it to be positive, which establishes the

sign of correlation part of the expectation value of �2. This result is quite compatible with

the existence of a pion excess in nuclei, of the predicted magnitude. It also con�rms the

important role played by the � resonance in this excess.

The question that can be raised is whether �2 is saturated by incorporating in the

description only nucleons and �, which �xed the cut-o� in the region of 800 MeV. In principle

the answer is no, other resonances which decay via the pion emission could contribute as

well. However the inclusion of nucleons and � only to saturate the pionic degrees of freedom

is a common procedure and it should give the bulk of the e�ect.

We now address the question of consequences for chiral symmetry restoration in nuclei

and of the pion exchange correction in �{nucleus scattering. A positive value of K4 means

an acceleration of the restoration process [5] and a repulsive exchange contribution in the

s-wave optical potential. Using the relation between K4 and ��pion exch given in Ref. [5],

we deduce from the value K4 � 1:2 in uranium, a nucleus that we consider representative

of nuclear matter, ��pion exch(�0) � +4.5 MeV (as compared with �N � 45 MeV), an

acceleration of the restoration process by 10%.

On the other hand the pion exchange contribution to the s-wave optical potential

parametrized as 2m�Vopt = �4��beff0 (�) is
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b
eff
0 exch(�0) = �

�pion exch

4� f�
2(1 + m�

M
)
= �0:004m�

�1: (23)

We recall that the experimental value from the pionic data, i.e. at a density somewhat

lower than the normal one, is beff0 (� � 0:7�0) � �0:03m��1. Scaling the calculated exchange

contribution linearly in the density, we �nd that pion scattering o� exchanged pions provides

about 10% of the measured repulsive potential.

In conclusion, we have established a new sum rule, which is an extension of the Bethe{

Levinger one, and which includes also the pion and � degrees of freedom. Our sum rule links

the seagull term of the Compton amplitude, i.e. the Thomson scattering on the exchanged

pions, to the integral of the cross-section that covers the region of nucleon, pionic and �

excitations, i.e. up to � 800 MeV. As the seagull term is linked to the expectation value

of the pion �eld squared (correlation piece), the experimental value that we derive from the

sum rule establishes the positiveness of this quantity, consistent with the existence of a pion

excess in the nucleus. It also indicates a slight acceleration of chiral symmetry restoration

in nuclei, due to the interaction and a repulsive pion-exchange contribution to the s-wave

optical potential.
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a) b) c) d)

Figure 1: Seagull contributions in the OPE potential model.

a) b) c)

Figure 2: Many-body diagrams for the pion-exchange seagull contribution to the Compton

amplitude.
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a) b)

Figure 3: Seagull contributions when � and � degrees of freedom are explicitly taken into

account.
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Figure 4: Plot of the cross-section per nucleon in uranium (nuclear), of the weighted average

of the proton and neutron cross-sections (nucleon) and of their di�erence (��).
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