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1 INTRODUCTION

The last evaluation of quench levels related to transient beam losses was done in

1987 [1]. The subject is reevaluated with a more detailed approach of the response of the

superconducting cables to a transient heat load associated to beam losses.

Our conclusions do not depart substantially from the former study, but we never-

theless propose updated levels of quenching and a more precise time-scale associated to

di�erent levels of transient losses.

After a brief summary of the results of hadronic shower simulations in LHC magnets

(section 2), the temperature dependent speci�c heat of the di�erent elements of the cables

are given in section 3. We discuss the structure of the superconducting cables and some

associated thermodynamical time constants in section 4. The number of protons lost in a

short time necessary to induce a quench is computed in section 5, while section 6 contains

a reminder about steady state losses.

By comparing the numbers given in Sections 5 and 6 we see that the allowed tran-

sient losses before quenching are only related to the enthalpy reserve of the wires, supple-

mented in some conditions by the heat reserve of the helium statically present locally in

the cable.

2 HADRONIC SHOWERS

The energy of a proton impacting on matter is dissipated through two processes.
{ The proton interacts on a nucleus and produces many secondary particles, which
later also interact, and so on, until the residual energy per particle is too small to
create additional ones. In ordinary metals ( iron or copper) the average distance
between two interactions is l � 15cm and the e�ective length of the showers is

L � 1m, with a tail expanding up to � 10L. The result of this process is called a
hadronic shower. It is combined to electromagnetic showers through the decay of
neutral pions into two photons.

{ Charged particles ionise atoms along their path. The excited electrons release their
kinetic energy to the lattice, or by emitting photons in the atomic range of energy,

which are absorbed and converted to phonons locally.
Finally almost all the incident energy is converted to heat. The spatial distribution of heat
deposition cannot be computed analytically with a good accuracy, but good Monte-Carlo
programs exist today. In the present work we use simulations done with the program
CASIM [2], in which we introduced the essential of the geometry of a LHC magnet, as

well as the �eld map at both the injection and top energy nominal �elds. This study has
already been described [3]. The results are consistent with those obtained in a separate

analysis done with the program FLUKA [4, 5, 6]. We simulated the impact of protons on a

single location of the beam screen of a LHC dipole. The transverse geometry of the dipole
is shown in Figure 1. The angle of attack was the betatronic angle x0 = 0:24mrad at the
location of impact. Di�erent parameters were varied, with little e�ect on the results[3].

For simplicity, we used Iron instead of the real mixing of Cu/NbTi of the coils.

The nuclear absorption and radiation lengths of Iron are � 10% smaller than those one
of Copper, almost compensating the weak contribution to shower development of the

insulation material and the helium, which occupy together � 10% of the volume of the
coil (see Section 3).

An ideal simulation would provide the three-dimensional density of energy deposi-

tion d3E=drd'ds, with r the transverse radial coordinate, ' the transverse azimuth and s

the longitudinal coordinate. In practice, computer time limitations made us choose quite
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Figure 1: The description of the dipole used in the hadronic shower simulation with the Casim

program. The beam impacts on the beam screen with a grazing angle of 0.24mrad and in the

horizontal plane. The energy deposition is scored in every cell delimited by the radial and the

azimuthal lines
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Figure 2: The longitudinal energy deposition in the most exposed cable at top energy. The

simulated data have been smoothed for better presentation. The impact point of the protons on

the beam screen is at s = 0
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Figure 3: The maximum radial energy density along the most exposed azimuth

large recording cells. In the coil, the basic cell for recording the deposition of energy was
the transverse section of the cables (see Figure 1) with a longitudinal segmentation of
100mm. Therefore, we only get directly the average energy density "ra in the transverse

cells, i.e. for the cables, the average density over their section (see Figure 2 for this func-
tion along s in the most exposed cable). In order to estimate the peak density deposition
in the cable, a sharper distribution is needed. An empirical �t of the radial dependence
of the maximum energy deposition per unit volume in the beam screen, the vacuum
chamber and the two layers of cables with a power law "(r) = Ar�n allowed to deduce

the maximum transverse deposition of energy in smaller areas of cable with an adequate
precision. The constraints on "(r) are to reproduce correctly the di�erent "ra values (see
Figure 3). The origin of r is at the inner side of the beam screen, where the beam touches
�rst. The �tted exponents are n = 1:76 at injection and n = 1:15 at top energy. The
function "(r) in GeV=cm�3 is the maximum deposition of energy at every radial value r,

independent of the longitudinal coordinate s.

Beyond the beam screen and the vacuum chamber, the conductor closest to the
impact point receives the maximum energy deposition of heat at both injection and top
energy. If a beam loss occurs during a short time (< 3000�s, see Section 4.1), the heat

does not migrate substantially in the cable even transversely. If the time dilution is large

enough, the heat can di�use transversely in the Cu/NbTi wires. In the �rst case, the

quench limit occurs at the edge of the cable facing the beam. The maximum energy density

deposited per proton lost at that radial position is called "peak and is deduced from the
radial �t discussed above. In the second case, the radial (or transverse) average value,

called "ra must be used instead. With the �t of the exponent n, we get "peak="ra = 2:7 at
injection and "peak="ra = 1:8 at top energy.

The CASIM simulation was done with a radial cable size of 17mm, now changed

to 15mm. By integrating the power laws, a di�erence of 6% (injection) and 8% (top)
is computed between the two kinds of inner cable for the variable "ra (see below and
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Table 1:Maximum energy densities, peak and radial average, local (per proton), and distributed

(per proton/m), deposited in the most exposed superconducting cable of a dipole. The original

simulation at top energy was made at 8TeV. All " values are given both in GeV (top) and in

Joule (bottom) units.

"peak;local "ra;local "peak;dist "ra;dist

Beam Energy [GeV=cm3] [GeV=cm3] [GeV �m=cm3] [GeV �m=cm3]

Injection .45TeV 0.24 0.085 0.24 0.085

Top 7TeV 10.8 5.5 7.9 4.0

[J=cm3] [J=cm3] [J �m=cm3] [J �m=cm3 ]

Injection .45TeV 3:8 � 10�11 1:4 � 10�11 3:8 � 10�11 1:4 � 10�11

Top 7TeV 1:7 � 10�9 0:88 � 10�9 1:3 � 10�9 0:64 � 10�9

Table 1). To correct for the decrease of the top energy from 8TeV to 7TeV, the maximum
energy deposition "peak and "ra are decreased by 12%.

At top energy, "ra = dEmax
ra (s)=ds is reached at s � 350mm. The values "ra and

"peak are given in Table 1.
Also shown in Table 1 is the energy density "dist per proton�m

�1 related to a lon-

gitudinally distributed loss of protons in the most exposed cable (here I1), spread over a
distance longer than the length of the shower.

The value "dist is obtained by convoluting the curve of Figure 2 with a long rectan-
gular s-distribution. For a longitudinally continuous density of protons falling on the beam
screen ndist (in units [protons/m]), the continuous energy density is (using e(s) = dE=ds)

gdist = ndist �

Z
1

0
e(s) ds = ndist"dist (1)

while the same density is reached in the case of a local loss of nlocal (in units [proton]) as

glocal = nlocal � emax (2)

with emax being either "peak or "ra. Equating the left quantities for equal maximum density

of energy, we get

"dist

emax

=
nlocal

ndist
=

Z
e(s) ds

"local
= Leff : (3)

A quench occurs in both cases when e � n reaches the critical energy (see below) and

therefore

"dist = emax � Leff : (4)

Leff is the e�ective length of the shower along the most exposed cable.

Leff is numerically integrated with the Monte-Carlo data as Linjection = 1:0m and

Ltop energy = 0:7m. It has been veri�ed that the ratio "peak="ra is not notably modi�ed
when the losses are distributed.
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Critical energy density for quench

The density " of energy per proton (either local or distributed longitudinal loss) is

directly related to the quench level in the case of transient losses. When the time duration

of the loss is fast compared to a given thermal di�usion time constant in the s.c. coils,

the number of protons nq to induce a quench is

nq =
�Qc

"
(5)

where �Qc is the amount of heat per unit volume which is necessary to raise the tem-

perature to its critical value Tc. Di�erent " values are given in Table 1. It will be seen in

Section 5 that both �Qc and " depend on the duration �t of a transient loss thus making

nq dependent on �t.

3 SPECIFIC HEAT AND ENTHALPY IN SOLID ELEMENTS

We need to know the speci�c heat as a function of temperature for three kinds of

solid materials, i.e. in

{ Copper

{ Superconducting NbTi
{ The insulation material of the wire

The main ingredient for the speci�c heat of solids is related to vibrations of the lattice

(or phonons) and to the free electrons if a metal is considered. This is well described
by the theory of Debye. This theory uses a �xed lattice constant and therefore allows
the calculation of the speci�c heat cv(T ). In our case the wires are almost free to expand
locally since they are surrounded by liquid helium and we shall use cp(T ). But in a limited
range of temperature cp = cv to a very good approximation.

We readily make use of the existing theory and data to �x the speci�c heat c(T ) of
copper and of the insulation material. The case of NbTi in superconducting state requires
a bit more attention.

3.1 CRITICAL TEMPERATURES

In the operating conditions of the dipoles, the critical temperatures are given in
Table 2. These values shall be understood as the ones at which a quench will occur. But

the stored beams will su�er from magnetic �eld instabilities at temperatures slightly lower
than the critical ones. Realistic estimates for quench limits shall therefore make room for
some contingency.

3.2 SPECIFIC HEAT OF COPPER

At low enough temperature the speci�c heat of ordinary metals (here copper) can

be accurately parametrised by

cCu(T ) = cv = Cu � T + �Cu � T
3 (6)

The linear term is related to conduction electrons and the cubic one to the lattice waves
or phonons. The third power of T is a low energy Taylor development of the formula

obtained from the theory of Debye[15]. For copper[14],

Cu = 9:686 � 10�2mJcm�3K�2 �Cu = 6:684 � 10�3mJcm�3K�4 (7)
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Figure 4: The speci�c heat of NbTi and copper

3.3 SPECIFIC HEAT OF NbTi

This section is a summary of the work by Elrod, Miller and Dresner[16] and by
Lubell[17]. In the superconducting state of a metal, the conduction electrons at the top of
the Fermi sea are no more free to move independently. They aquire a compact behaviour,
itself compactly coupled to the phonons. For this reason, it can be shown that the linear

term of c(T ) disappears at null magnetic �eld, while the cubic term is increased when
compared to the normal state of the same material. Further, c(T ) contains a new term,
linear with both T and the magnetic �eld B, which is another consequence of the special
behaviour of the conduction electrons. Beyond the critical temperature at a given �eld,
the normal shape of c(T ) reappears.

All these phenomena require a thorough theoretical investigation, well beyond the

scope of the present document. It is enough to see in [16] that the above facts are clearly
borne out experimentally. Elrod et al. [16] have compared their results to other measure-
ments and they observe relative di�erences of the order of 20%, while giving convicing

arguments for �nding their own values to be the most precise set. We therefore use their
parametrisation for the s.c state of NbTi.

cNbT i(T ) = cv = NbT i �
B

Bc2(0)

T + �NbT i � T
3 (8)

where

NbT i = 0:87mJcm�3K�2 (9)

�NbT i = �NbT i + 3NbT i=Tc = 4:464 � 10�2mJcm�3K�4 (10)

with

�NbT i = 1:38 � 10�2mJcm�3K�4 (11)
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and

Tc = Tc(B = 0) = 9:2K , Bc2(0) = Bc2(T = 0) = 14T (12)

All the numerical values are deduced from [16].

Above (Bc,jc), in the normal state we use

c(T ) = NbT iT + �NbT iT
3 (13)

with � and  as above.

3.4 SPECIFIC HEAT OF THE INSULATION MATERIAL

The insulation material is basically made of Kapton for which the speci�c heat is

c(4K) = 3:6 � 10�3mJcm�3K�1 and c(10K) = 26 � 10�3mJcm�3K�1 [18]. These values are

very close to the speci�c heat of NbTi. For its small relative volume (see Table 3) and its

much smaller heat conductivity than the metals, the insulation material has little impact

on transient losses.

3.5 ENTHALPY RESERVE OF THE WIRE

Between the steady temperature of the bath, T1 = 1:9K and the critical temperature
of quenching T2 = Tc(B; j) , the enthalpy di�erence �H of the wires is obtained by adding
c(T ) of copper and NbTi with the adequate weight and by integrating between T1 and
T2. We get

Hwire(T ) = a(B)T 2+ bT 4 + const (14)

with

a(B) =
1

2(1 + f)
(fCu + NbT i

B

Bc2(0)

) and b =
1

4(1 + f)
(f�Cu + �NbT i) (15)

where f = 1.6 (Section 4). Numerically,

a(B) = 2:98 � 10�2 + 0:167B=Bc2(0) and b = 5:39 � 10�3: (16)

The enthalpy reserve of the wire �Hwire = Hwire(T2) � Hwire(T1) are given in Table 2.
T1 = 1:9K is the steady temperature of the helium bath and T2 is the critical temperature

Tq.

3.6 HEAT RESERVE IN HELIUM

The heat �Q which is necessary to reach a temperature T2 in helium, starting at

the temperature of the bath T1 = 1:9K must be evaluated di�erently in two temperature

intervals. In the liquid phase, but only up to the transition between helium II and I at
T1 = 2:168K, cp = cv = c(T ) [20]. Therefore [20]

�Q� =
Z T�

T1

c(T )dT = 1:6 Jg�1 = 233 mJcm�3: (17)

Above T�, in helium I and in the gaseous state cp and cv di�er substantially [21] and this

domain of temperature requires additional thoughts. The sole quantity which depends

on nothing is the latent heat of evaporation. The helium inside the cable is con�ned
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Table 2: The enthalpy reserve of the superconducting wire, the helium and the cable. The

fractional volume of helium is assumed to be 5%, see Table 3. Tq is the temperature at which

the superconducting state is lost for the operating �eld Bo. The steady temperature in the

abscence of beam losses is the one of the helium bath Tbath = 1:9K. For �V and � , see Section

4.2.

Energy Bo Tq Heat reserve �V �He �metal

[GeV] [T] [K] [mJcm�3] [Wcm�3] [s] [s]

�Hwire �QHe �Qcable

450 0.56 9 38 313 351 8 4:4 � 10�2 6 � 10�3

7000 8.65 2.8 a) 0:8 29:0 29:8 4 8 � 10�3 3 � 10�3

a) Tq increases by � 0:1K if Bo decreases by 0:1T . The nominal operational �eld is at present Bo = 8:4T
and therefore Tq � 3:0K (these parameters are still subject to small changes). With these updated
values, the heat reserve at top energy become �Hwire = 1:07 (+34%) and �QHe = 35 (+22%)

into capillaries delimited by the wires. They have a typical transverse dimension of d �
0:3mm. A shower develops longitudinally over L � 1m. The speed of sound in helium is
v � 5200m=s in our domain of temperature [20]. A strong underestimation of the time
needed for the heat to move over a distance L=2 is �t = L=2v = 2ms � 200beam turns.

We deduce that the process occurs at �xed volume whenever fast losses are considered.
In addition there is no signi�cant exchange through the insulation of the cable. This
is obvious when comparing the allowed rate of transient losses (Section 5) to what is
allowed in steady state (Section 6). Therefore, once the heat deposit is ended, the process
is adiabatic and develops at �xed volume. The allowed heat deposition is then expressed
by

�Q2 =
Z T2

T�

cv(T )dT (18)

In this case, �Q can no more be identi�ed to enthalpy which is a thermodynamical
potential when p =constant. Using the data of McCarty [20, 21] and the density � =

0:147gcm�3, we get �Q = �Q� + �Q2 = 6:3Jcm�3 for T2 = 9K and �Q = 0:58Jcm�3

for T2 = 2:8K (Table 2). The heat reserve �QHe in Table 2 is multiplied by the fractional

volume of 5% of helium in the cable.

4 COIL STRUCTURE AND THERMAL CONSTANTS

A schematic cut view of a superconducting cable is shown in �gure 5. The structure
of the cables is described in [9] and [10]. The wires are made of NbTi �laments inserted
inside a Copper matrix. The helium occupies the space between the wires or between the

wires and the insulator. The fractional volume of the di�erent components of the cable

are given in Table 3, from which we derive

f =
�VCu

�VNbT i

= 1:6 (19)
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Figure 5: The simpli�ed cut view of a cable (top) showing the inhomogeneous density of helium.

The distances of the bottom �gure are given in Table 4.

Table 3: Fractional volumes in the s.c cables of the LHC magnets

Material �V=V [%] �[gcm�3]

Helium 5.0 0.147

Insulation material 3.0 � 1:4

Cu 56.6 8.96

NbTi 35.4 6.0
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Table 4: Temperature decay time constants in the cable at injection (T � 9K) and at top energy

(T � 4K). The transverse time constants depend on the resistance at the surface of the wires.

The contribution of helium is excluded here (see Section 4.2).

size L [cm] � [�s] � [�s]

injection top energy

Wire radius r 0.05 �wire = 8 �wire = 4

Small transverse La 0.17 �a � 300 �a � 150

Large transverse Lradial 1.5 �radial � 20000 �radial � 10000

Longitudinal Llong 2.75 �long = 6000 �long = 3000

The thermal contact between two cables is poor. Heat transport out of the cable is

dominated by the ow of helium through the insulator. This has a marginal contribution

when considering transient losses (dt� 1s). This is quantitatively demonstrated by com-
paring the transient quench levels (section 5) to the steady state allowed rates (section
6).

A quench occurs in a cable when enough heat is deposited locally for the temperature
to grow above the critical one (Section 3.1 and Table 2). If the deposition of heat is not
homogeneous, it will di�use in the cable and also be transferred from the wires to the

helium stored in the cable. In section 4.1 we estimate some di�usion time constant in the
conductor. In section 4.2 the time constant for the transfer of heat between the wires and
the helium is evaluated. These time constants will allow to �x which fraction of the heat
reserve �Qc of the cable and which " shall be used in (5) for a given time scale.

4.1 HEAT DIFFUSION IN WIRES

The conduction of heat inside the cables cannot be reduced to the case of an homo-
geneous mixing of Cu and NbTi. Transversely, the resistance of contact between adjacent
wires dominates and might be deliberately increased for better �eld quality of the magnets.
An indicative value for direct transverse di�usion is given in Table 4. Longitudinally, a
microscopic model of heat di�usion in the wire reveals substantial di�erences between the

real structure and the homogeneous equivalent. This study is continuing. At top energy
(T < 4K), a good approximation is presently deduced from this model [8] as

� � 364 � L2 [�s; cm] (20)

for a sample of length L and the range of temperature gradients corresponding to the heat

deposition discussed in section 2 (see Figure 3). At injection, where the temperature shall
rise to T � 9K, the constant in (20) must be approximately doubled [8]. The longitudinal

characteristic distance is determined to be close to one fourth of the period of rotation of
the wire inside the cable (see Figure 5). The corresponding �long time (see Table 4) �xes

the time-scale needed to equalise the temperature between the inner and the outer edge

of the cable, and is therefore also a transverse time constant. It will be called �metal below
(�metal = �long).
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4.2 HEAT TRANSMISSION BETWEEN THE WIRE AND THE HELIUM

If the ux of heat between the wire and the helium is large, a gap of temperature

�Tgap appears at their interface, and the process saturates in the so-called '�lm boiling'

regime. At Tgap � 1K, the surface �S ux saturates at �S � 1W=cm2 and the temperature

then immediately rises to T � 10K [12]. Therefore the maximum allowed ux shall be

�S;max � 1W=cm2 at injection, and �S;max � 0:5W=cm2 at top energy to stay below

T = 2:8K (see Table 2 for critical temperatures).

The ux of heat from the wire to the helium per unit volume �V is the product

of the ux per unit of surface of contact copper-helium �S, by the surface of contact

per unit volume of conductor SV . With a wire of radius r = 0:05cm and an expected

relative surface of contact of fcontact � 20% [8], SV = fcontact(2�rl)=(�r
2l) = 2fcontact=r =

8cm2=cm3 = 8cm�1 and �V = �S � SV . The numerical values are given in Table 2. This

limitation of ux is an an additional time constraint, in that sense that to make full use

of the heat reserve of the helium, the heat ux per unit volume shall not be larger than

�V . The time constant is computed as

�He = �QHe=�V : (21)

The quantity �QHe is given in Section 3.6.

5 LEVEL OF QUENCHING FOR TRANSIENT LOSSES

In Section 2, the level of quenching was de�ned by a number of protons nq lost

locally as

nq =
�Qcritical

"
: (22)

The maxima " of the energy deposition per proton and per unit volume in the s.c coil are
de�ned in Table 1. We must consider three cases, for which both " and �Q di�er.
a) The duration of the pulse of loss is very short, or �t� �metal = �long (see Section 5.1).

Then the temperature does not equalise transversely between the inner and the
outer edge of the cable (Section 4) and in addition the helium does not contribute

(�He > �long, see Table 2). The energy deposition in the most exposed wire shall be
considered and then

�Qcritical = �Hw and " = "peak: (23)

b) The duration of the loss is close to �t � �metal (see Section 4). Then the temperature

increases in the wire with no substantial heat transfer to the helium but di�uses in

the wire across the section of the cable. Once the critical temperature Tc is reached,
the quench occurs before the heat transfer to the helium helps to maintain the

temperature low enough below Tc. In this case

�Qcritical = �Hw and " = "ra: (24)

c) The duration of the loss is close to than �t � �He but remains �nite. Then an equilib-
rium of temperature occurs between the interior of the wire and the helium which

is present in the cable . Therefore, �Qc will be

�Qcritical = �Qcable = �Hw +�QHe and " = "ra: (25)
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Table 5: Time scale for beam compared to time constants related to heat transfer in the super-

conducting cables.

Beam �t[�s] Cables � [�s] Beam turns

Filament � 10�3

Single bunch 5 � 10�3

Fast Wire radius 4

losses One SPS batch 6

One LHC turn 89 � 1

Cable ( metal )

- Injection 6000 70

- Top 3000 35

Medium Exhaust of He
range heat reserve

losses - Injection 4:4 � 104 500

- Top 8 � 103 90

Slow RF losses at ramping ' 2 � 105 2200
losses Steady losses 1 1

At both injection and top energy, the limited heat ow from the metal to the helium
�xes the longest time-scale (see Table 2). A summary of the quench limits is given in Table
6 for local or longitudinally distributed losses and the three time scales considered here.

The two sets of values are correlated by the factor "distributed="local of Table 1.
If a loss lasts �t < � (either metal or helium), the number of protons leading to

quench of Table 6 shall be reduced by the ratio �t=� (for an approximate result).
The numbers in Table 6 must be considered with some care. As an example, the peak

magnetic �eld is somewhat larger than the nominal value used to compute the critical

temperature. The thickness of both the vacuum chamber and the beam screen are not
yet �nalised, thus the density of energy deposition in the cable might change. A margin
of �50% is certainly not exagerately safe.

5.1 A SINGLE BUNCH AT INJECTION

At the starting-up of LHC, a single bunch will be injected. The bunch might touch

the vacuum chamber if the orbit of the beam is bad beyond the collimation system.
The duration of the loss will be �t < 5ns � �metal. As for choosing the longitudinal
distribution of the loss, we shall discard the case where the loss occurs on a step of the

vacuum chamber, on the grounds that such steps should be avoided for other reasons and

anyway it is unlikely that the trajectory will have just the right phase to produce a full
loss at that location.

What is most probable is a loss with an angle of incidence nearly equal to the
betatronic angle at some locations, usually where � = �arc;max. In that case, the loss will

be distributed over a length �s = 2�=x0 � 11m. A quench will therefore occur with a

bunch intensity (case �t < �metal in Table 6)

nq = 109�s = 1010protons: (26)

12



Table 6: Number of protons to induce a quench in the transient case at di�erent time scales. A

machine turn lasts �turn = 89�s. Local losses happen at a step of the beam screen (upper half

of the table). A distributed loss (lower half) over the length �s can amount to (dN=ds) ��s.

See table 2 for the sensitivity to the value of the critical temperature at top energy.

Time-scale �t < �metal �t > �metal �t � �He Min. Number of turns
�He=�turn

Local losses N [protons]

Injection 1:0 � 109 2:7 � 109 2:5 � 1010 500

Top Energy 4:7 � 105 8:5 � 105 3:4 � 107 90

Distributed losses dN/ds [protons/m]

Injection 1:0 � 109 2:7 � 109 2:5 � 1010 500

Top Energy 6:4 � 105 1:2 � 106 4:6 � 107 90

The intensity of the bunch shall therefore not be much larger than � 3 � 109 protons.

5.2 A BATCH AT INJECTION

A batch is �t = 6�s and thus �t < �metal. The quench limit for a distributed loss

therefore remains the one discussed in Section 5.1, nq = 1010protons. The intensity of
a batch is nbatch = 2:5 � 1013protons. The ratio of the two numbers indicates that the
injection must be a very clean process. The transverse excursions of the injected beam
must be limited by collimation in the warm transfer channel, leaving enough clearance
between the edge of the beam and the beam screen, which shall in no circumstance scrape

the beam directly. Obviously also, the collimators of the ring must be in operation during
the injection process, to protect the machine against potential instabilities a�ecting either
the injected or the already stored batches.

5.3 LOSSES AT THE BEGINNING OF THE RAMP

During the injection process, a �nite fraction of the protons will end-up outside of

the RF-buckets, or migrate there later, even in good operational conditions. This fraction
is estimated to be of several percents. During the acceleration, these protons will drift

towards the vacuum chamber and produce a ash of losses [22]. With the presently foreseen
ramping curve [23], the ash shall last �t � 0:2s < �He or �nturns � 2000. This is long

enough to make use of the full reserve of heat of the helium in the cable. To allow for a
strong fraction (� 100%) of the injected beam to be outside the RF-buckets, the e�ciency

of the collimation system shall therefore be

r >
Nstored

2:5 � 1010 ��s
=

3 � 1014

2:5 � 1011
� 1200 (27)
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Table 7: Rate of continuous local losses of protons per meter which induce a quench.

wq[Wcm�3] _nq

Injection 0.01 7 � 108pm�1s�1 = 6:5 � 104pm�1turn�1

Top Energy 0.005 7:8 � 106pm�1s�1 = 7 � 102pm�1turn�1

6 CONTINUOUS LOSSES , A REMINDER

A continuous heat deposit implies a continuous evacuation of heat to keep the

temperature constant in the cables, and below the critical temperature. The limit of heat

ow is set by the conduction of heat by the HeliumII ow through the insulation of the

conductor, a mechanism which has no more to do with speci�c heat considerations. The

present limits are set by the studies on the insulation of the cables made at Saclay [24].

The limit of heat transmission capability wq (here reduced to a power evacuated out of

the cable per unit volume) is reached and a quench occurs with the unit power deposition
given in Table 7. The values of wq might change with a di�erent kind of insulation by a
factor of two, more or less. The number of protons which can be lost locally per second
in a continuous way must therefore be smaller than (see Table 1 for "ra;dist)

_nq = wq="ra;dist: (28)
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