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Abstract

We discuss the equivalence between Type I, Type II and Heterotic N = 2 superstring

theories in four dimensions. We study the effective field theory of Type I models

obtained by orientifold reductions of Type IIB compactifications on K3 × T 2. We

show that the perturbative prepotential is determined by the one-loop corrections to

the Planck mass and is associated to an index. As is the case for threshold corrections

to gauge couplings, this renormalization is entirely due to N = 2 BPS states that

originate from D = 6 massless string modes. We apply our result to the so-called

S-T -U model which admits simultaneous Type II and Heterotic descriptions, and

show that all three prepotentials agree in the appropriate limits as expected from the

superstring triality conjecture.
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1. Introduction

There has been some very convincing evidence accumulated so far for the equivalence

of theories which were believed in the past to describe truly different types of superstrings.

Type I, Type II and Heterotic theories seem merely to provide complementary descriptions

of a more complicated theory of fundamental interactions, and the larger framework of

superstring dualities now includes also M-theory and F-theory descriptions. In order to

reach various points on the web of connected models, it is often convenient to start from

ten dimensions and to descend to lower dimensions by compactifying these well-known

theories. The equivalence of various superstring compactifications can then be understood

as a consequence of a few fundamental dualities originating from higher dimensions [1].

Among the four-dimensional models, the most familiar examples of dual pairs are based

on Type II and Heterotic constructions [2] whose equivalence originates from the well-

established six-dimensional duality between Type IIA compactified on K3 and Heterotic

compactified on T 4 [3]. These models have N = 4 or N = 2 spacetime supersymmetry

in D = 4 and their equivalence has been checked in many ways, including some highly

non-trivial quantitative comparisons of the respective low-energy effective actions [2, 4, 5].

As a generic feature, the string coupling of the Heterotic side is mapped under such duality

to a “geometric” modulus on the Type II side.

Type I theory remained a wild card in duality conjectures until quite recently Polchinski

and Witten presented several arguments for the equivalence of Type I and Heterotic theories

in ten dimensions [6]. Although in D = 10 this is a strong-weak coupling duality, it turns

out that upon appropriate compactification to D = 4 one obtains N = 2 supersymmetric

dual pairs with the Heterotic gauge coupling mapped to a Type I gauge coupling in a

way that some weakly coupled regions overlap on both sides. This work is focused on

Type I – Heterotic duality in D = 4. We discuss the mapping of special coordinates of

the special Kähler manifold describing the massless vector multiplet sector. We compute
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the perturbative prepotential on the Type I side for a general class of K3 × T 2 orientifold

reductions of the underlying Type IIB theory. We obtain a general expression which involves

N = 2 BPS states only. It agrees with the appropriate limit of the corresponding expression

in the Heterotic theory. We apply this result to a specific example, which admits all three

Type I, Type II and Heterotic descriptions. The agreement of all three prepotentials

provides here a convincing evidence for a true superstring triality in D = 4.

The paper is organized as follows. In section 2, we review Type I – Heterotic duality in

D = 6 [7, 8, 9] and recall some basic features of the effective field theory describing Type I

orientifold reductions of Type IIB theory [10, 11, 7] that are dual to Heterotic K3 compacti-

fications. In section 3, we discuss the tree-level effective actions of four-dimensional models

obtained by toroidal compactifications of six-dimensional Type I models. We identify the

universal vector moduli S, T and U (in Heterotic notation) and describe the duality map-

ping of special coordinates. In section 4 we discuss quantum corrections, explaining what

kind of useful information can be extracted from purely perturbative Type I computations.

We discuss the problem of determination of the one-loop prepotential. In the Heterotic

theory one can extract it from the universal part of threshold corrections to gauge cou-

plings [12, 13, 14]. In Type I theory, the one-loop threshold corrections have recently been

analyzed in ref.[15]; however it is not possible to extract from them the Kähler metric. The

reason is that unlike the Heterotic case, the Planck mass receives non-vanishing corrections

which force redefinitions of special coordinates at the one-loop level. As a result, the uni-

versal part of threshold corrections is absorbed into the tree-level gauge coupling. However

the Kähler metric, hence also the perturbative prepotential, can be extracted from the one-

loop Planck mass. In section 5, we present the one-loop computation of the Planck mass

which allows a determination of the Kähler metric in Type I theory. The metric, hence

also the prepotential are completely determined by the BPS spectrum of the theory. Some

technical details and the expressions for various propagators used in the computation are

given in the Appendix. In section 6, we consider a specific orientifold model with the mass-
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less spectrum consisting of 3 vector multiplets and 244 hypermultiplets [8, 9]. This is the

so-called S-T -U model which admits simultaneous Type II and Heterotic descriptions [2];

the exact form of its prepotential has been determined before by using Type II – Heterotic

duality [5]. We apply the general formula of section 5 to determine the one-loop Kähler

metric. The result reproduces the T → i∞ limit of the Heterotic case [13], as expected

from duality. We summarize our results in section 7.

2. Type I Effective Field Theory in Six Dimensions

In this work, we will consider four-dimensional N = 2 Type I superstrings obtained

by toroidal compactifications of D = 6, N = 1 models. The latter can be constructed as

orientifold compactifications of Type IIB theories [11, 16]. In this section we review some

basic features of the effective field theory in D = 6, in connection with Type I - Heterotic

duality [7].

Anomaly cancellation constrains the massless spectrum to satisfy

nH − nV = 244− 29(nT − 1) , (2.1)

where nH , nV and nT are the numbers of hyper, vector and tensor multiplets, respectively.

Since we are interested in theories dual to Heterotic compactifications, we restrict our

discussion to nT = 1. These theories contain one two-index antisymmetric tensor field

whose self-dual part belongs to the tensor multiplet while its anti-self-dual part belongs

to the gravitational multiplet. In Type I theory the antisymmetric tensor arises from the

Ramond-Ramond (R-R) sector.

The scalar component of the tensor multiplet is related to the K3 volume and determines

the gauge coupling constants. In fact, a standard dimensional reduction from D = 10 to

D = 6 gives

L(6) = −e−2φ6

1

2
R(6) + 2

(
∂ω

ω

)2

− 2(∂φ6)2

− 1

4
e−φ6ω2F 2 −

1

16
ω4(dB − Ω)2 + . . . (2.2)
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Here, ω4 is the volume of K3, R(6) is the scalar curvature, φ6 is the six-dimensional dilaton,

F is the gauge field strength, dB is the antisymmetric tensor field strength and Ω is the

gauge Chern-Simons term. It is now easy to see that in the Einstein frame the factor e−φ6

drops from the gauge kinetic terms, so that the gauge coupling constant becomes 1/ω.

The scalar ω belongs to the tensor multiplet while the string coupling eφ6 belongs to a

hypermultiplet.

The gauge couplings of eq.(2.2), obtained by a simple dimensional reduction, are not the

most general ones. First of all, in orientifold constructions, there appear additional gauge

bosons associated to open strings with end-points fixed on 5-branes [16]. The corresponding

gauge kinetic terms are

−
1

4
e−φ6ω−2F ′

2 −
1

16
B ∧ F ′ ∧ F ′ + . . . (2.3)

By going again to the Einstein frame, one sees that the coupling constant becomes ω for

these (primed) gauge fields. In the most general case the gauge couplings are given by

linear combinations [10]:

1

g2
i

= viω
2 + v′iω

−2 (2.4)

where vi and v′i are constants. In models involving non-vanishing constants of both types,

i.e. viv
′
j 6= 0 for some gauge group generators i, j, an additional complication arises because

the effective field theory action given by the sum of eqs. (2.2) and (2.3) is not consistent

with supersymmetry [17]. The last terms of eqs. (2.2) and (2.3) are Wess-Zumino terms

which cancel gauge anomalies in analogy with the Green-Schwarz mechanism in D = 10.

We will come back to this problem later, after compactifying to D = 4.

Type I – Heterotic duality originates from D = 10, where both theories are believed to

be equivalent after inverting the string couplings and rescaling the Regge slope α′ [6]:

φI10 = −φH10 α′I = eφ
H
10α′H (2.5)

where I and H refer to Type I and Heterotic, respectively. Using the relation between six-
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and ten-dimensional dilatons, e−2φ6 = e−2φ10ω4, one finds

e−2φI6 = ω4
H ω4

I = e−2φH6 (2.6)

which implies that the six-dimensional theories become equivalent after interchanging the

square of the string coupling with the inverse of the K3 volume, e2φ6 ↔ ω−4. As a result, the

interactions of tensor and gauge multiplets are purely classical on the Type I side, since the

string coupling belongs to a hypermultiplet. On the other hand, the hypermultiplet sector

of the Heterotic side does not receive any quantum corrections since the string coupling

there belongs to a tensor multiplet.

3. Tree-Level Effective Field Theory in Four Dimensions

After toroidal compactification to D = 4 one obtains N = 2 superstring models with

the massless spectrum consisting of the supergravity multiplet, nV + 3 vector multiplets

and nH hypermultiplets. The three additional vector bosons and the graviphoton arise

from the metric and from the R-R antisymmetric tensor. The way scalar particles fit into

supermultiplets is more subtle, therefore we discuss them now in some detail.

In addition to the scalar components of the nV vector multiplets which are open string

states, and the scalar of the tensor multiplet, there are also 5 scalars which appear upon

compactification to D = 4. Three of them come from the torus metric GIJ and two from

the antisymmetric tensor: the axion dual to D = 4 components Bµν , and the internal

component BIJ . Note that the usual NS-NS (Neveu-Schwarz) antisymmetric tensor is

eliminated by the orientifold projection. Straightforward dimensional reduction of the

D = 6 effective action (2.2), (2.3) yields

L(4) = −e−2φ4

1

2
R(4) + 2

(
∂ω

ω

)2

− 2(∂φ4)2 −
∂U∂Ū

(U − Ū)2
+

1

4

(
∂
√
G

√
G

)2


−
1

4
e−φ4G1/4ω2F 2 −

1

4
e−φ4G1/4ω−2F ′2 + . . . (3.1)
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where for the moment we kept only the terms which are relevant for the identification of

the supermultiplets. The four-dimensional dilaton (defined as the string coupling constant

in D = 4) is given by e−2φ4 = e−2φ6
√
G. In eq.(3.1), U is the usual complex modulus which

determines the complex structure of the torus: U = (G45 + i
√
G)/G44.

Guided by the form of gauge coupling constants, we define two complex fields S and

S ′, with the imaginary parts given by

S2 = e−φ4G1/4ω2 S ′2 = e−φ4G1/4ω−2 . (3.2)

The real parts S1 and S ′1 are defined as the scalar dual to Bµν and B45, respectively. In

terms of these fields, eq.(3.1), transformed into the Einstein frame and supplemented by

the dimensionally reduced kinetic term (dB)2 of eq.(2.2), reads

L(4) = −
1

2
R(4) +

∂U∂Ū

(U − Ū)2
−

(∂S1)2

4S2
2

−
(∂S ′1)2

4S ′22
−

(∂S2)2

4S2
2

−
(∂S ′2)2

4S ′22

−
1

2
(∂φ6)2 −

1

4
S2F

2 −
1

4
S ′2F

′2 + . . . (3.3)

The complex scalars S, S ′ and U belong to vector multiplets while the six-dimensional

dilaton φ6 remains in a hypermultiplet. Equation (3.3) shows that in the absence of open

string vector multiplets, the three universal scalars S, S ′ and U parameterize a [SU(1, 1)]3

manifold, with the corresponding prepotential F = SS ′U .

Type I theory exhibits two continuous Peccei-Quinn symmetries associated to S and S ′

axion shifts which remain valid to all orders of perturbation theory since the corresponding

axions originate from the R-R sector. In terms of the independent scalars appearing in

eq.(3.3), the four-dimensional string coupling is a combination of fields belonging to hyper

and vector multiplets:

e−2φ4 = e−φ6(S2S
′
2)1/2 . (3.4)

This means that both hyper and vector multiplet sectors can in principle receive quantum

corrections in four-dimensional Type I theory, once e−2φ4 combines with appropriate factors

to form a hyper or a vector multiplet component.
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We can now use Type I – Heterotic relations (2.6) in D = 6 to deduce the duality

mapping in four dimensions:

SI = SH S ′I = TH UI = UH . (3.5)

Here, SH = α + ie−2φH4 , where α is the axion dual to Bµν and φH4 is the Heterotic dilaton;

TH ≡ T = B45 + i
√
G is the usual Kähler-class modulus of the 2-torus. This means that at

the exact level the two theories are equivalent upon identification of S ′ with T and of the

hypermultiplet scalar e−2φ6 with the K3 volume, according to eq.(2.6).

In order to see how the prepotential depends on the additional nV open string vector

multiplets, we first discuss the simplest case of vectors obtained by dimensional reduction

from D = 10. Starting from the Lagrangian (2.2) one obtains:

L(4) = −
1

2
R(4) +

∂S∂S̄

(S − S̄)2
+

∂U∂Ū

(U − Ū)2
−

(∂S ′2)2

4S ′22
−

(∂S ′1 + 1
2

∑
ia
i
4

↔
∂ ai5)2

4S ′22

+
∑
i

|U∂ai4 − ∂a
i
5|

2

(S ′ − S̄
′
)(U − Ū)

+ . . . (3.6)

where a4, a5 are the scalars arising from the compact components of six-dimensional vector

fields. These Lagrangian terms can be derived from the N = 2 prepotential

F (0) = S(S ′U − 1
2

∑
iA

2
i ) (3.7)

where the special coordinates of gauge fields are defined by [18]

Ai = ai4U − a
i
5 , (3.8)

and S ′ is redefined as

S ′ = S ′|A=0 + 1
2

∑
ia
i
4Ai . (3.9)

The duality transformation (3.5) maps Ai into perturbative gauge multiplets on the Het-

erotic side.

Instead of the vectors Ai coming from the ten-dimensional gauge group [SO(32)], con-

sider now the vector multiplets related to 5-branes discussed in section 2. Their D = 6
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kinetic terms are of the form (2.3), and lead to the same D = 4 effective Lagrangian and

prepotential as in eqs.(3.6) and (3.7), with the replacement of A by A′ [defined as in eq.(3.8)]

and with the interchange S ↔ S ′. On the Heterotic side, these vector multiplets have a

non-perturbative origin, and the corresponding gauge couplings are determined by the T

modulus instead of the Heterotic dilaton S (modulo exponentially suppressed instanton

corrections).

A more complicated situation arises in the simultaneous presence of A- and A′-type of

fields, or in the presence of vector multiplets with gauge couplings involving non-vanishing

v and v′ as in eq.(2.4). If one naively starts from the combined action (2.2)+(2.3) and goes

down to D = 4, one finds that in terms of the redefined complex fields

S ′ = S ′|A=0 +
∑
i
vi
2
ai4Ai S = S|A=0 +

∑
i
v′i
2
ai4Ai , (3.10)

the scalar kinetic terms are determined by the Kähler potential

K = − ln{(S ′ − S̄
′
)(U − Ū)−

∑
i
vi
2

(Ai − Āi)
2} − ln{(S − S̄)(U − Ū)−

∑
i
v′i
2

(Ai − Āi)
2}

+ ln(U − Ū)

= − ln{(S − S̄)(S ′ − S̄
′
)(U − Ū)− 1

2

∑
i[vi(S − S̄) + v′i(S

′ − S̄
′
)](Ai − Āi)

2

+
1

(U − Ū)
[
∑
i
vi
2

(Ai − Āi)
2][
∑
j

v′j
2

(Aj − Āj)
2]} . (3.11)

The corresponding scalar manifold, although Kähler, is not of the special type, which is

a consequence of the fact that the six-dimensional action was not consistent with super-

symmetry, as already mentioned before. This six-dimensional anomaly disappears in lower

dimensions, where “anomalous” terms are canceled by local counterterms. It is not dif-

ficult to realize that the role of the counterterms is to cancel the last term in eq.(3.11),

so that the Kähler manifold becomes special, as required by N = 2 supersymmetry. The

corresponding prepotential is

F (0) = SS ′U − 1
2

∑
i(viS + v′iS

′)A2
i . (3.12)
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The above result agrees with the analysis of D = 5 compactification of the same theory

[17]. Moreover, it can be verified directly at the string level in various examples.

Note that in the case when viv
′
i < 0 for some i, the corresponding gauge kinetic term

may vanish for finite values of S and S ′. This singularity is inherited from the corresponding

term in D = 6 and is related to the appearance of tensionless strings [7]. On the Heterotic

side, for perturbative gauge fields, v is the Kac-Moody level while a non-zero v′ may arise

from one-loop threshold corrections in the T → i∞ limit.

4. Type I – Heterotic Duality and Quantum Corrections

In this section we discuss perturbative corrections to the prepotential on the Type I side.

We want to understand how duality can be tested by comparing prepotentials, and even-

tually what information can be extracted from purely perturbative Type I computations.

The two Peccei-Quinn symmetries dictate the following form of Type I prepotential:

F (S, S ′, U, A) = F (0) + fI(U,A) + non-perturbative corrections, (4.1)

where F (0) is the tree-level prepotential (3.12) and fI(U,A) is the one-loop correction.

Type I non-perturbative terms include instanton terms which are suppressed in the large

S2 and/or S ′2 limit. Although fI cannot depend on S and S ′ in a continuous way, its form

may be different in the regions S2 > S ′2 and S2 < S ′2, i.e. for large and small K3 volumes,

c.f. eq.(3.2). In models which are invariant under “T -duality” (ω → 1/ω) one obtains the

same result in the two regions.

On the Heterotic side, there is only one perturbative Peccei-Quinn symmetry (associated

to S), therefore the analogous expression is

F (S, T, U,A) = F (0) + fH(T, U,A) + non-perturbative corrections, (4.2)

where we used the duality relation (3.5) which maps S ′ into T . Type I – Heterotic duality
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implies that

lim
T2→∞

fH = fI |S2>S′2
. (4.3)

As indicated above, this relation between perturbative prepotentials is valid only for S2 >

S ′2, since in the perturbative expansion of the Heterotic theory the large S limit is taken first.

The other region, S2 < S ′2, can only be reached non-perturbatively from the Heterotic side,

therefore Type I perturbation theory can be a priori useful in studying the corresponding

region T2 > S2 →∞. The two regions can be related, though, by ω → 1/ω duality which

corresponds to non-perturbative S ↔ T exchange. Note that if a given model admits also

a Type II description, the full prepotential F (S, T, U,A) can be computed exactly at the

classical level on the Type II side.

Let us consider now a class of models based on orientifold reductions of Type IIB

theory compactified on the K3 orbifold T 4/Z2 [11, 16]. In D = 6 these models have one

tensor multiplet and a maximal gauge group U(16) × U(16)′. The two group factors are

associated to open strings with Neumann-Neumann (N-N) and Dirichlet-Dirichlet (D-D)

boundary conditions, respectively. In addition, there are massless hypermultiplets in the

representations 2× [(120,1) + (1,120)], 1× (16,16), and 20 singlets. The U(16)×U(16)′

model has an ω → 1/ω duality which interchanges the two U(16) group factors. After

compactifying on T 2 one obtains a D = 4 model with the tree-level prepotential given by

a special case of eq.(3.12):

F (0) = SS ′U − 1
2

∑
i(SA

2
i + S ′A′2i ) , (4.4)

where A and A′ refer now to U(16) and U(16)′ gauge multiplets, respectively. Note that,

from the Heterotic point of view, U(16)′ has a purely non-perturbative origin.

In order to determine perturbative corrections to the prepotential in Type I theory, one

could in principle follow the method applied on the Heterotic side, by extracting the one-

loop Kähler potential K(1) from the universal (gauge group-independent) part of threshold

corrections to gauge couplings [12, 13]. In fact, the one-loop threshold corrections have been
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recently studied in the Coulomb phase of the U(16)× U(16)′ model [15]. They depend on

U and Wilson-line moduli only, which is consistent with the general form of perturbative

expansion (4.1). Without losing generality, we can focus on the SU(16) subgroup originat-

ing from N-N boundary conditions. At zero Wilson lines, the corresponding gauge coupling

takes the form:

4π2

g2
=
π

2
S2 + ∆ (4.5)

where S2 is the tree-level contribution. The threshold correction is1

∆ = 6
∫ ∞

0

dt

t
Z(t), (4.6)

where

Z(t) =
∑
p∈Γ2

e−πt|p|
2/2 (4.7)

is the partition function of the two-dimensional torus lattice Γ2, with momenta restricted

to Kaluza-Klein modes:

p =
m1 +m2Ū√

2U2G1/4
(4.8)

with integer m1 and m2. Due to this restriction SL(2, Z)T symmetry is lost while SL(2, Z)U

remains as a perturbative symmetry. The integral (4.6) has a logarithmic infrared diver-

gence at t → ∞, which reproduces the correct low-energy running of the gauge coupling

with the beta function coefficient b = 6.2

In the Heterotic theory, as mentioned before, the one-loop Kähler metric can be ex-

tracted from threshold corrections by using the relation [12]

∂U∂Ū∆ = −
b

(U − Ū)2
+ 4π2K

(1)

UŪ
. (4.9)

Using the identity

∂U∂Ūe
−πt|p|2/2 = −

1

(U − Ū)2
∂tt

2∂te
−πt|p|2/2 , (4.10)

1Here we use the standard field theory normalization of gauge couplings which amounts to multiplying

the result of ref.[15] by a factor of 2.
2The apparent ultraviolet divergence in eq.(4.6) disappears when the expression is appropriately cut off

[15]. The potential divergence is anyway U-independent, and thus does not affect our discussion here.
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which follows from eq.(4.8), we obtain after differentiating eq.(4.6):

∂U∂Ū∆ = −
6

(U − Ū)2

∫ ∞
0

dt∂2
t [tZ(t)]

= −
6

(U − Ū)2
∂t

t ∑
p∈Γ2

e−πt|p|
2/2

∣∣∣∣∣∣
∞

0

= −
6

(U − Ū)2
. (4.11)

The final result comes from the boundary term at t =∞; the boundary at t = 0 does not

contribute as one can see easily by performing a double Poisson resummation in m1 and

m2, cf. eq.(4.8). This result coincides with the first term of eq.(4.9). Does this mean that

K
(1)

UŪ
= 0?

The answer turns out to be no. In the Heterotic case, the above procedure relied on

the fact that there are no one-loop corrections to the Planck mass [19]. In contrast, we will

see that such corrections do appear in Type I theory. As a result, the Type I S field as

defined in eq.(3.2) and below requires a redefinition at the one-loop level in order to remain

an N = 2 special coordinate. Indeed, assuming that the Einstein term receives a one-loop

correction δ, so that the coefficient of R(4) in eq.(3.1) is

−
1

2
(e−2φ4 + δ)R(4) , (4.12)

one has to redefine the dilaton e−φ4 → e−φ4 + 1
2
δeφ4 (to the leading order). The gauge

coupling S2 of eq.(3.2) is then redefined as S2 → S2 +
√
Gδ/(2S ′2). As a consequence, the

gauge couplings (4.5) receive a universal correction which upon using the relation (4.9)

translates to

K
(1)

UŪ
=

1

16πS ′2

√
G ∂U∂Ūδ . (4.13)

The above equation is also valid in the presence of Wilson lines. The momentum lattice

Γ2 is then shifted in a way described in [15]. Depending on the sector, one has Γ2 → Ai+Γ2

or Ai +Aj + Γ2. The Ai’s are defined in eq.(3.8) and the shifted lattice Ai + Γ2 is defined

with momenta as in eq.(4.8) with the numerator replaced by m1 +m2Ū+ Āi. It is now easy

to verify that eq.(4.10) remains valid, hence also eq.(4.13). In the next section we compute

the Planck mass correction δ.
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Before concluding this section, we would like to make a few comments concerning the

gauge group dependent part of threshold corrections in Type I string theories. Integrating

eq.(4.11) and using SL(2, Z)U symmetry one obtains ∆ = −b ln[U2|η(U)|4] + const, where

η is the Dedekind eta-function. This result is valid for any gauge group factor and gives the

U-modulus dependence of the one-loop gauge couplings in open string models, including

the case of S ′-dependent tree-level couplings (3.12) with v′ 6= 0. The coefficient v′ can be

determined by anomaly cancellation in D = 6 and was shown [20] to be related to the

four-dimensional N = 2 beta-function, v′i− v
′
j = (bi− bj)/6. This is consistent with duality

since Type I theory reproduces the familiar result of Heterotic string models for the group

dependent part of threshold corrections [21], ∆i −∆j = −(bi − bj) ln[U2T2|η(U)η(T )|4], in

the limit T = S ′ → i∞.

5. One-loop Correction to Planck Mass

In order to extract the one-loop correction to Newton’s constant, we consider an am-

plitude with two external graviton insertions

∂U
∑

one−loop
surfaces

� Vh(p1, ε
1)Vh(p2, ε

2)� = −
1

4
ε1
µνε

2
λρη

µλpρ1p
ν
2 ∂Uδ +O(p4), (5.1)

where � � stands for the path integral over world-sheets of given topology, ε1,2 are the

polarization tensors and

Vh(p, ε) = 8
∫
d2z εµν : (∂̄xν +

1

2
ψ̃νp · ψ̃)(∂xµ −

1

2
ψµp · ψ)eip·x : (5.2)

is the graviton vertex operator in the zero-ghost picture. Here, xµ are the space-time

coordinates, ψµ (ψ̃µ) are their left- (right-) moving fermionic superpartners and 2d2z ≡

dzdz̄. The one-loop surfaces of type-I theory are the torus (T ), annulus (A), Möbius strip

(M) and Klein bottle (K). Strictly-speaking the amplitude (5.1) vanishes on shell due

to momentum conservation and the transversality conditions. A correct procedure is to
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start with the three-point amplitude between two gravitons and a U-modulus, which are

on-shell but have complex momenta. Extracting the desired kinematic structure from this

amplitude gives the same result as the amplitude (5.1), if we blindly ignore the fact that

in this latter pµ1ε
2
µν should vanish [12].

In calculating the left-hand side of eq. (5.1) one must contract at least half of the

fermions, or else the spin-structure summation gives zero. These contractions supply the

desired powers of momenta, so we may set p = 0 elsewhere to find

∂Uδ = −16
∑

σ=A,M,K

∫ ∞
0

dt

t
(2π2t)−2∂UZ(t)

∫
d2zd2w

1

2

∑
s=2,3,4

(−)s
θ2
s

η6
Zint
s,σ ×

×
{
〈∂x(z)∂x(w)〉σ〈ψ̃(z̄)ψ̃(w̄)〉2σ,s̄ − 〈∂x(z)∂̄x(w̄)〉σ〈ψ̃(z̄)ψ(w)〉2σ,s + c.c.

}
(5.3)

Here θ2
s/η

6 is the oscillator contribution of bosonic and fermionic coordinates of the non-

compact space plus two-torus; (−)s is the usual sign of spin-structure summation which

for the desired kinematic structure can be restricted to the even ones; the factor (2π2t)−2

comes from the integration over space-time momenta; Z(t) is the sum over torus momenta

which carries all U-dependence and, in the absence of Wilson lines, is given by eq.(4.7);

finally Zint
s,σ is the contribution of the internal N = 4 superconformal theory describing

the K3 compactification to six dimensions, including for the annulus and Möbius, the

multiplicity of Chan-Patton states. Notice that we have omitted the torus diagram in the

above expression: this vanishes, as we will argue below, consistently with the fact that the

Einstein term is not renormalized in N = 2 heterotic models.

The bosonic and fermionic propagators on A,M,K can be obtained from those on the

torus by the method of images [23]. This is described in detail in the appendix. Using the

fermionic propagators (A.9) one can put the spin-structure summation in the form

∑
s=2,3,4

(−)s
θ2
s(0)

η6
Zint
s ×

1

4

θ2
s(v)θ′1

2(0)

θ2
s(0)θ2

1(v)
= π2Zint

s=1 (5.4)

We have here used the fact that the partition function of the internal superconformal

theory depends on spin structure only through the characters of the associated level-one
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SU(2) Kac Moody algebra, so that the entire sum collapses by the Riemann θ-identity to

an index [21]. This index is a trace over open-string Ramond or closed-string Ramond-

Ramond states, weighted with the fermion-parity operator (−)Fint . It implies that only

massless six-dimensional states, that give rise to N=2 BPS multiplets in four dimensions,

contribute to the amplitude, as is also the case for threshold corrections to the gauge

couplings [22, 15]. Notice also the similarity of this result to the analogous expressions

for the one loop corrections to gauge couplings and Kähler metric in the heterotic string

[21, 12, 14].

To complete the calculation we must still perform the z- and w-integrals of the bosonic

correlators of eq.(5.3). The corresponding calculation for the torus diagram would give

zero for the following reason: fermions can only contract when they are both holomorphic

or antiholomorphic, and 〈∂zx∂wx〉 is the derivative of a periodic function and thus van-

ishes, when integrated over the entire torus. This argument does not go through for the

other three one-loop surfaces, which are obtained by modding out covering tori with an

appropriate Z2 involution Iσ. This is explained in the appendix, where we also derive the

expressions

〈∂x(z)∂x(w)〉σ = ∂z∂wPB(z, w; τ) +
π

4τ2
(5.5)

〈∂x(z)∂̄x(w̄)〉σ = ∂z∂w̄PB(z, Iσ(w); τ)−
π

4τ2
(5.6)

where PB is the bosonic propagator on the covering torus, with modular parameter τ =

it/2, 1/2 + it/2, 2it for the surfaces σ = A,M, K, respectively. Now using the fact that

for a function f that is periodic on the covering torus

∫
σ
∂wf(w)− ∂w̄f(Iσ(w)) =

∫
T
∂wf(w) = 0 , (5.7)

we can easily perform the integrals of the bosonic propagators in eq. (5.3) with the result

∫
d2z

∫
d2w

{
〈∂x(z)∂x(w)〉σ − 〈∂x(z)∂̄x(w̄)〉σ + c.c.

}
= (5.8)
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=
π

4
τ2 =

 πt/8 for σ = A,M

πt/2 for σ = K

Putting together all results, we arrive at our final expression for the one-loop renormal-

ization of Newton’s constant

∂Uδ = −
1

2π

(1

2
Zint

1,A +
1

2
Zint

1,M + 2Zint
1,K

) ∫ ∞
0

dt

t2
∂UZ(t) , (5.9)

The index discussed previously counts hypermultiplets minus the graviton and vector mul-

tiplets in four dimensions [21, 14]. The relative factor of four between surfaces with and

without a boundary, accounts for the fact that while an open-string hypermultiplet has four

Ramond states, a closed-string hypermultiplet contains only a single Ramond-Ramond state

[22, 15]. The final result takes thus the form

∂Uδ = −
2

π

∫ ∞
0

dt

t2
∂U

 ∑
BPS hypermultiplets

e−πtM
2/2 −

∑
BPS vector multiplets

e−πtM
2/2

 , (5.10)

where the masses in this expression originate from momentum in the internal two-torus.

This expression is similar to the general formula for the one-loop N = 2 prepotential in the

Heterotic case [14].

6. Example of String Triality

In this section we discuss one specific model which has simultaneous Type I, Heterotic

and Type II descriptions. On the Type I side it originates from a six-dimensional model

with one tensor multiplet and a completely broken gauge group. Anomaly cancellation

(2.1) constraints such a model to contain 244 hypermultiplets. This model can be obtained

from the class of orientifold constructions discussed in section 4, which are based on the

K3 orbifold T 4/Z2. It belongs to a subclass which has a perturbative Heterotic description

either as SO(32) or E8×E8, compactified on K3× T 2 with instanton numbers (12, 12) [8].

The 8 five-branes are then located half at each fixed point of the orbifold. The D-D gauge
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group is broken down to U(1)16, which furthermore obtain mass by coupling to sixteen hy-

permultiplets coming from the closed-string twisted sector [22]. The maximal gauge group

in D = 6 is thus SU(16)×U(1) and the hypermultiplet spectrum consists of two antisym-

metric 120’s from the N-N sector, 16 fundamental 16’s from the D-N sector and 4 singlets

from the closed string sector. It is easy to see that this N-N gauge group can be broken

completely by scalar vacuum expectation values, leaving exactly 244 hypermultiplets. Four

of those come from the closed string sector, while 240 remain from the open strings.

Upon toroidal compactification to D = 4 one finds also the 3 universal vector multiplets

S, S ′ and U . A Heterotic – Type II dual pair with the same massless spectrum has been

considered before in refs.[2, 5]. On the Type II side, it corresponds to a IIA compactification

on the Calabi-Yau threefold WP1,1,2,8,12(24) with Hodge numbers h(1,1) = 3 and h(1,2) = 243.

The first indication that this pair is also equivalent to the above Type I construction comes

from its perturbative SL(2, Z)U symmetry as well as from the S ↔ S ′ symmetry which

is the remnant of the six-dimensional ω → 1/ω duality. The latter is mapped to S ↔ T

exchange which was found to be an exact symmetry of the Calabi-Yau compactification

[5]. In order to make a quantitative comparison, we will first use the formulae derived in

section 5 to determine the one-loop correction to the Type I prepotential.

Applying eq.(5.10) in the case under consideration, one finds

∂Uδ = −
2

π

∫ ∞
0

dt

t2
× 240∂UZ(t), (6.1)

where the torus partition function Z(t) is given in eq.(4.7). We can now extract the one-

loop Kähler metric by applying ∂Ū to eq.(5.9) and, using eq.(6.1) and the identity (4.10),

to obtain

∂U∂Ūδ = −
120

π

1

U2
2

∫ ∞
0

dt

t2
∂tt

2∂tZ(t) . (6.2)

After the change of variables t = 1/l and double Poisson resummation in the T 2 partition
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function (4.7) one finds

∂U∂Ūδ = −
480

π

√
G

U2
2

∫ ∞
0

dl l∂ll
2∂l

∑
n1,n2

′
e
−4π
√
G

U2
|n1+n2Ū |2l = −

240

π3
√
G

∑
n1,n2

′ 1

|n1 + n2U |4
(6.3)

with the sum running over all integers except for n1 = n2 = 0. Substituting this result to

eq.(4.13) we obtain the following one-loop correction to the Kähler metric:

K
(1)

UŪ
= −

15

π4

1

S ′2

∑
n1,n2

′ 1

|n1U + n2|4
. (6.4)

We now turn to the Heterotic side of the model. The one-loop prepotential has been

determined in ref.[13]. In the limit T2 →∞, its third derivative reads

∂3
UfH(U, T2 →∞) = −

[∂Uj(U)]2

π2j(U)[j(U)− j(i)]
= 4E4(U) (6.5)

where j(U) is the SL(2, Z) modular function with a simple pole at infinity while the weight-

4 lattice function

E4(U) =
45

π4

∑
n1,n2

′ 1

(n1 + n2U)4
. (6.6)

Using the standard N = 2 formulae one finds that the one-loop corrected Kähler metric is

KUŪ = −
1

(U − Ū)2
+

1

S2

K
(1)

UŪ
(6.7)

with K
(1)

UŪ
given by the same expression as in eq.(6.4) with S ′2 replaced by T2. We see that

the Type I result (6.4) corresponds to the T → i∞ limit of the Heterotic case, as expected

from duality.

7. Summary

In this work, we studied the general features of the effective field theory describing

N = 2 compactifications of Type I superstrings. A particular role is played by two dilaton-

like fields associated to continuous Peccei-Quinn symmetries which remain unbroken in

perturbation theory. Under Type I – Heterotic duality one of them is mapped to the

Heterotic dilaton S and the other to the T modulus.
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The one-loop computations presented in sections 5 and 6 provide a strong test of Type

I – Heterotic duality conjecture for a class of N = 2 models based on K3 × T 2 compacti-

fications. Weakly coupled Type I theory is recovered in the weakly coupled regime of the

Heterotic theory in the limit of large Kähler modulus T (T 2 volume), provided that the K3

volume of Type I compactification is large (ω4 > 1). When the K3 volume is small, Type

I perturbation theory probes a non-perturbative region in Heterotic theory. On the other

hand, space-time non-perturbative effects in Type I theory which are exponentially sup-

pressed at large T are mapped to world-sheet instantons on the Heterotic side. The most

interesting conclusion of this work is the fact that the type-I prepotential is determined

by the renormalization of Newton’s constant and it is related to an index. It should be

straightforward to extend these results to other type-I models.

Acknowledgements
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Appendix

We present here the derivation of various propagators which we use in the calculation of

the one-loop amplitude (5.1, 5.3) on the annulus (A), Möbius strip (M) and Klein bottle

(K). These surfaces can be defined as quotients of tori under different involutions (see fig.1)

IA(z) = IM(z) = 1− z̄ , IK(z) = 1− z̄ + τ/2 , (A.1)

where τ = τ1 + iτ2 is the modular parameter of the defining torus. The fundamental cells

of the involutions can be chosen as follows:

A : z ∈ [0, 1/2]× [0, τ2] M : z ∈ [1/2, 1]× [0, τ2] K : z ∈ [0, 1]× [0, τ2/2] .

Actually in section 5 we use the periodicity properties to make the integration region

for the Möbius strip identical to the one for the annulus. The open string boundaries,

corresponding to the loci of fixed points, are drawn as thick lines in fig.1. There are no

fixed points for the Klein bottle representing the evolution and orientation flip of a closed

string. Notice also that the three covering tori are characterized by different modular

parameters: τ = it/2, 1/2 + it/2, 2it for the surfaces σ = A,M, K, respectively.

The bosonic correlators can be expressed in terms of the propagator on the torus T

〈x(z)x(w)〉T = −
1

4
ln

∣∣∣∣∣θ1(z − w|τ)

θ′1(0|τ)

∣∣∣∣∣
2

+
π(z2 − w2)2

2τ2
≡ PB(z, w) , (A.2)

by symmetrizing under the corresponding involutions:

〈x(z)x(w)〉σ =
1

2

[
PB(z, w) + PB(z, Iσ(w)) + PB(Iσ(z), w) + PB(Iσ(z), Iσ(w))

]
= PB(z, w) + PB(z, Iσ(w)) . (A.3)

We follow throughout the conventions of Green, Schwarz and Witten [24] and we set

α′ = 1/2. The above expressions must be supplemented with the usual holomorphic-

regularization prescription, which ensures that left- and right-movers communicate only



–21–

Annulus
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• •
M M ′

0 1

τ = i t
2

a
>

b∧

Möbius strip

�

�

• •
M M ′

0 1

τ = 1
2

+ i t
2

a
>

b

Klein bottle

∧ ∧

�

�

•

•

M

M ′

0 1

τ = 2it

a
>

bT∧

bK

Figure 1: Covering tori and fundamental cells for the three one-loop surfaces σ = A,M, K.

The cycles are represented by dashed lines. The points M ′ are images of M under the

appropriate involutions. The loci of fixed points drawn in thick are open-string boundaries.
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through their zero modes. For the torus this implies that

〈∂x(z)∂x(w)〉T = ∂z∂wPB(z, w; τ) , but 〈∂x(z)∂̄x(w)〉T = −
π

4τ2
(A.4)

For the other three surfaces we have likewise

〈∂x(z)∂x(w)〉σ = ∂z∂wPB(z, w; τ) +
π

4τ2
= −

1

4
∂z∂w ln

∣∣∣∣∣θ1(z − w|τ)

θ′1(0|τ)

∣∣∣∣∣
2

+
π

2τ2
(A.5)

and

〈∂x(z)∂̄x(w̄)〉σ = ∂z∂w̄PB(z, Iσ(w); τ)−
π

4τ2
= −

1

4
∂z∂w̄ ln

∣∣∣∣∣θ1(z − Iσ(w)|τ)

θ′1(0|τ)

∣∣∣∣∣
2

−
π

2τ2
. (A.6)

As a check one can verify that these propagators have the correct short distance singularity

and periodicity properties on each surface. Furthermore the normal derivatives on the

boundaries vanish, consistently with our choice of Neumann boundary conditions for the

non-compact space-time coordinates.

We now turn to fermionic correlators. For 2-dimensional Majorana spinors

Ψ(z, z̄) =

 ψ(z)

ψ̃(z̄)

 (A.7)

the propagator on the torus reads

〈Ψ(z, z̄)ΨT (w, w̄)〉T = PF (s; z, w)

(
1 + γ3

2

)
+ P̄F (s̄; z̄, w̄)

(
1− γ3

2

)
, (A.8)

where γ3 = diag(1,−1), s and s̄ are the even spin structures of the left and right compo-

nents,

PF (s; z, w) ≡ 〈ψ(z)ψ(w)〉sT =
i

2

θs(z − w|τ)

θ1(z − w|τ)

θ′1(0|τ)

θs(0|τ)
. (A.9)

and θs (s = 2, 3, 4) are the even theta functions. The propagators on the other surfaces

can be determined again by the method of images [23]. The left and right components

of fermions have the same spin structure on all covering tori, except for the Möbius strip

for which the three even spin structures are (s, s̄) = (2, 2), (3, 4) and (4, 3). One way to

understand this subtlety is by noting that for the Möbius strip τ = 1
2

+ it
2

so that θ̄3 = θ4.
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The Z2 involutions exchange left- with right-moving fermions up to a subtle choice of signs.

One consistent choice is

I2
σ = I3

σ = I4
σ =

 0 1

1 0

 , σ = A,M. (A.10)

I2
K = I3

K =

 0 −1

1 0

 , I4
K =

 0 1

1 0

 . (A.11)

Symmetrizing the torus propagator under these involutions one finds

〈ψ(z)ψ(w)〉σ = PF (s; z, w)

〈ψ(z)ψ̃(w̄)〉σ = PF (s; z, Iσ(w)) (A.12)

〈ψ̃(z̄)ψ̃(w̄)〉σ = P̄F (s̄; z̄, w̄).

The reader can check that these propagators have the correct pole structure and periodicity

properties.

References

[1] For a recent review see J.H. Schwarz, hep-th/9607067.

[2] S. Kachru and C. Vafa, Nucl. Phys. B 450 (1995) 69.

[3] C.M. Hull and P.K. Townsend, Nucl. Phys. B 438 (1995) 109;

E. Witten, Nucl. Phys. B 443 (1995) 85.

[4] I. Antoniadis, S. Ferrara, E. Gava, K.S. Narain and T.R. Taylor, Nucl. Phys. B (Proc.

Suppl.) 46 (1996) 162;

V. Kaplunovsky, J. Louis and S. Theisen, Phys. Lett. B 357 (1995) 71;

I. Antoniadis, E. Gava, K.S. Narain and T.R. Taylor, Nucl. Phys. B 455 (1995) 109;



–24–

S. Kachru, A. Klemm, W. Lerche, P. Mayr and C. Vafa, Nucl. Phys. B 459 (1996) 537;

I. Antoniadis and H. Partouche, Nucl. Phys. B 460 (1996) 475;
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[20] G. Aldazabal, A. Font, L.E. Ibáñez and F. Quevedo, Phys. Lett. B380(1996)33.

[21] L.J. Dixon, V.S. Kaplunovsky and J. Louis, Nucl. Phys. B 355 (1991) 649.

[22] M. Douglas and M. Li, hep-th/9604041.

[23] C.P. Burgess and T.R. Morris, Nucl. Phys. B 291 (1987) 256 and 285.

[24] M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory, Cambridge U. Press

1987.


