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Abstract
The first part of this chapter is on higher-order-mode couplers.  To
introduce the subject a coupling approach is examined which makes use
of the beam tubes as wave guides with internal vacuum compatible RF
loads.  Then it is shown how coupling can be considerably enhanced if
couplers are themselves regarded as resonators.  Examples of couplers
used in the LEP and HERA storage rings serve to illustrate this
approach.  In this first part we regard the cavity as a multi-frequency
generator furnishing, via the coupler, power to a room temperature
load.  In the second part the direction of power flow is reversed.  Now,
at a single frequency, the cavity acts as a low-temperature load to which
RF power has to be delivered and which can be considerably higher
than the higher-order-mode power.

1 . INTRODUCTION

Cavities are the 'motors' of accelerators, passing energy to the charged particle
beams.  But charges passing through a cavity are 'active devices' and can either receive energy
from, or furnish energy to, a cavity.  In an accelerator the first process is the required one
though the second inevitably takes place and may hamper the efforts to produce a high quality
beam.  Couplers are needed to replenish the cavity energy which had been lost to the beam.
Such main or power couplers may have to handle very large amounts of RF power, up to the
MW level.

Couplers are also needed to mitigate the unwanted interactions between particles and
cavities.  They then are called higher-order-mode (HOM) couplers or dampers.  In fact, to be
more precise, couplers are RF devices which allow energy to be exchanged with the modes  of
oscillation of a cavity.  So, at the beginning of this coupler chapter a short discussion of modes
is needed.

2 . MODES AND THEIR CLASSIFICATION

The ideal cavity is a closed volume, completely surrounded by a metallic boundary as
indicated in Fig. 1. For infinite conductivity of the metal walls a closed volume can store
electromagnetic field energy U for infinite time.  Storage is in the form of free oscillations at
eigenfrequencies ωn, the spectrum of which depends on the size and shape of the volume.  At
each ωn, field energy Un changes periodically between its two possible forms, electric and
magnetic, and the patterns of the corresponding fields En and Hn are characteristic of each
oscillation mode.  Computer codes are available (e.g. MAFIA) to calculate the eigenfrequencies
and fields of such modes but for simple boundary shapes analytical solutions also exist.  Two
examples are shown in Fig. 2.

For accelerator cavities it is usual to classify the cavity modes into two groups:  the first
contains only a single member, the mode used for particle acceleration, the second group
contains all the others.  Since, by cavity design, the accelerating mode usually has the lowest
frequency, one calls it the fundamental mode (fm) and all the others the higher-order modes.
Another name for the latter is parasitic modes, indicating that they are deleterious and unwanted.
I will also talk about longitudinal and dipole modes.  Cavities for accelerators have axial
symmetry.  Then in a cylindrical coordinate system φ, r and z, longitudinal modes have fields
with no φ dependence whereas for dipole modes fields vary with cos φ.
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Fig. 1  Example of an ideal cavity Fig. 2  The TM011- and TM012-mode E-
field patterns of a 'pillbox' cavity

3 . BEAM TUBES AS HOM DAMPERS

To integrate a cavity into an accelerator one has to attach it to the beam tubes  These have
little influence on modes with eigenfrequencies lower than the cut off frequency of wave
propagation in the beam tubes.  Cavity modes with higher frequencies are often said to be
propagating.  It is assumed that, by exciting waveguide travelling-wave modes, such cavity
modes will quickly loose their stored energy i.e. become very effectively damped.

The interesting question is now:  Can all HOM of a cavity be made propagating?  What
beam tube diameter is required to achieve this goal?  To get a first idea we do some back of the
envelope calculations.  They become simple if the cavity has the shape of a pillbox with radius a
and length l.  For this simple shape the fundamental TM010 resonance is at the cut off frequency
of the TM01 waveguide mode in a tube of radius a.  This mode has the propagation constant:

  

k2 = 2π
Λ( )2

= ω
c( )2

− 2.41
a( )2

 

At the cut off the propagation constant is zero and hence at the TM010  resonance frequency f0:

  

ω0
c = 2.41

a( )
Note that f0 is independent of the pillbox length 1.  Cavities for ultra-relativistic particles have
lengths around λ0/2 where λ0 is the free space wavelength at f0.  The HOM next to the
fundamental then is the TE111 dipole mode.  At its resonance the cavity length is one half of the
TE11 mode wavelength.  Working again with the propagation constant we can therefore
determine its frequency from

  

2π
Λ( )2 = 2π

2l( )2 = ω1
c







2
− 1.841

a( )2 

The beam tube radius b, which at ω1 just allows propagation of the TE11 mode can then be
calculated since

  

ω1 / c = 1.841 /b .

Writing finally l  = p λ0/2 and rearranging we obtain for the ratio a/b  of cavity and beam tube
radius:

  

a / b( )2 = 1+ 1 / p( )2 2.41 / 1.84( )2

 

To have, according to this formula, propagation of all HOM, the beam tubes must be much
wider than conventionally used and a reasonable value of a/b = 2 is only obtained if p = 0.75
i.e. for a cavity shorter than λ0/2.  This prevents us using such a HOM damping technique for
multicell π-mode cavities.  Even for a single cell the prognostic from this formula is too
optimistic.  A check with a code like URMEL reveals [1] that attaching wide beam tubes to the



cell  lowers its TE111 frequency, so the mode 'refuses' to propagate however wide the beam
tubes are made!

3.1 Confined and trapped modes

Figure 3 shows E-field patterns of a wide-beam-tube design [2] as studied at CERN for
possible use in LHC.  The FM frequency is 400 MHz and the beam tube diameter 30 cm, about
one half of the cavity diameter.  The TE11 and TM01 waveguide cut off frequencies are 586 and
764 MHz respectively and, as we see in comparing frequencies, in addition to the FM also the
TE111 and TM110 dipole modes remain confined to the cavity.  The TM011 mode (first harmonic
of the fundamental) just reaches the region of propagation.  But even a frequency above cut off
is no guarantee of sufficient mode damping.  At about three times the fundamental mode
frequency (at 1232 MHz) we see a HOM which excites only a very small field in the beam
tubes.  For a cell length of λ0/2 the excitation would be even weaker.  We have here the
example of a trapped mode which, though nominally propagating, may remain weakly damped
[3].  Trapped modes become a real headache when designing multicell cavities [4].  They also
have smaller cell-to-cell coupling than other modes so, with increasing cell numbers, field
distributions become very sensitive to perturbations.

Fig. 3  Examples of modes of a single cell with wide beam tubes

3 . 2 Deconfining the TE111 mode

To escape from the dilemma of the first two dipole modes not propagating, two solutions
were proposed and developed.  The first, as pursued at KEK in Japan, simply widens the beam
tube further, but only behind a coupling aperture to the cell1 as sketched in Fig. 4.  However,
not only the TE11 cut off is lowered but also, unnecessarily, the TM01 cut off, so at the RF
absorbing material the FM amplitude might become too high.  Therefore, at Cornell the beam
tube is widened azimuthally only in sectors, which creates the geometry of a ridged waveguide
(see Fig. 4) and lowers particularly the waveguide's dipole mode cut off.  These techniques are
used for one of the beam tubes, the other tube (see Fig. 5) remaining a simple one.  The use of

                                    
1 This concept was already applied by the Wuppertal team in their designs of 3-GHz structures.



different beam tube sections on the two sides of the single cell helps to avoid trapped modes,
measurements on a copper model at Cornell demonstrating efficient damping of all significant
modes to external Q values smaller than 50.

Fig. 4  Beam tube forms at  KEK and Cornell

Fig. 5  KEK B-factory accelerating module

3 . 3 The beam tube RF load

Beam tube HOM couplers have to be terminated into a RF load.  If high HOM powers are
expected this load must be at room temperature.  It also must consume little space within the
beam tube aperture and should allow cooling to extract the developed heat.  The solution which
imposes itself is to clad a ring portion of the inner beam tube surface with a uhv-compatible
absorbing material.  Since, adjacent to a metal surface, only the magnetic field has a component
parallel to the absorbing surface layer the material must have magnetic RF losses.  Ferrites are
such materials and special uhv compatible ferrites were available from earlier work at CERN [5]
to dampen parasitic resonances in the beam pickups of the Antiproton Accumulator.  The
problem was now to attach such ferrites with a good mechanical and thermal bond to a metal
substrate.  A technique using soft soldering [6] has been developed at Cornell while KEK [7,8]
has succeeded in brazing ferrites.  The main obstacle to bonding of ferrites to a metal is their



difference of thermal expansion.  It is important to keep the dimensions of ferrite tiles small and
to use a ductile metal like copper as substrate.  Brazing then can be done in a vacuum oven
using a standard Ag-Cu brazing alloy while pressing both partners together with 4 kg/cm2

force.

3 . 4 General design implications

The concept of using the beam tubes for HOM damping implies an accelerating-module
design where each single-cell cavity is housed in a separate cryostat.  As illustrated by the KEK
design for a B-factory, the large beam tube sections protrude out of the cryostat to allow ferrite
loads at room temperature.  The large diameter beam tubes are wide open ports for heat to reach
the liquid helium vessel by radiation and conduction.  Obviously the simplicity of the HOM
damping scheme has to be paid for by enhanced refrigeration costs.

3 . 5 Ferrite beam tube loads for LEP 2

At CERN we2 prepare ferrite absorbers for mounting them, if required, into the 10-cm
diameter beam tube sections between the 4-cavity modules.  In LEP 2, once all the copper
cavities have been replaced by superconducting ones, the transversal beam impedance will be
reduced, so higher bunch charges can be accelerated.  In addition, when the particle energy is
increased, bunches may become shorter than they are now.  As a consequence the HOM power
deposition within a module will increase, particularly at high frequencies, where the
performance of the HOM couplers is not well known.  Figure 6 shows the power spectrum
predictions [9] according to the ABCI program.  Since this power is deposited into longitudinal
modes and since above 2.2 GHz the TM01 waveguide mode starts to propagate in a 10-cm
diameter tube we can reasonably hope to intercept the high frequency tail of the spectrum (about
1 kW for 2 x 4 bunches of 1 mA) at room temperature inbetween the modules.

The ferrite tiles had to be integrated into the pumping boxes between the modules
(Fig. 7).  The basic idea for their manufacture was first to braze small (3 x 15 x 18 mm3) ferrite
tiles onto flat copper strips which then, by electron beam welding, were joined to form a 10-cm
diameter absorber tube.  In between the strips 2-mm wide slots allow for pumping.  The tube is
then integrated into the cylindrical pumping box.  Water cooling loops at both ends of the
absorber tube remove heat.

                                    
2 F. Caspers, E. Haebel, N. Hilleret, V. Rödel, B. Trincat, R Valbuena

Fig. 6  LEP2 module HOM power from
ABCI calculations for σs = 10 mm

Fig. 7  Pumping box with integrated
HOM load



3 . 6 Concluding remarks on waveguides as HOM couplers and definition of 
external Q

Apart from the technically difficult vacuum RF load, (but which is only needed if the
beam tubes themselves are to be used as waveguides), this HOM coupler concept is of great
simplicity.  We cut an opening into the wall of the cavity and, through this aperture, let RF
power radiate into a wave guide which carries the power as a travelling wave to a termination at
room temperature.  For a mode with angular frequency ωn , stored energy Un and radiating the
power Pn we may, since Pn ∝  Un, characterize the coupling by defining an external Q :

Qex,n =
ωnUn

Pn   
(1)

Below cut off a guide cannot carry travelling waves.  Thus, by a proper choice of the transverse
guide dimensions, coupling to the FM is easily suppressed.  But guide and cavity dimensions
become comparable and integration into a cryostat while keeping heat leaks at an acceptable
level is difficult3.  So coupling to transmission lines has become a more widespread technique.
We then need a filter to suppress FM coupling but we can adapt the line cross-section to the
HOM power and minimize heat leaks.

4 . COUPLING TO TRANSMISSION LINES AND THE EQUIVALENT-
GENERATOR APPROACH

Amongst the different forms of transmission lines the coaxial one is best suited for our
purpose.  For the moment we will assume that the line is terminated by a matched load, R=Zw,
where Zw is the wave impedance, so again energy transport is by a travelling wave.  

Let us now examine the interface between cavity and line in more detail.  We have two
basic choices.  As depicted below we can either leave the inner conductor end 'open', forming a
probe, or 'shorted', forming a  loop.  Seen from the cavity the transmission line terminates this
probe or loop by a resistor R = Zw .  

U

R

U

R

Fig. 8  Two possibilities of coupling, probe or loop

4 . 1 Non-resonant coupling

For a given loop or probe the question is now: Which value of R gives the lowest Qex?

                                    
3 At CEBAF HOM couplers in waveguide technique are used but with loads in the liquid He bath, but this is
only possible because the HOM power is very small.



To answer the question let a mode at ω be excited by some auxiliary device to oscillate
with constant stored energy U.  We then may regard the probe or the loop as the output port of
a RF generator with emf V0 and internal impedance Zi.  We can determine V0 and Zi by
'measuring' open circuit voltage V0 and short circuit current I0 and have for the loop:

  

I0 = Φm
Ls

= µ0
Ls

r

H ⋅ dv

s∫∫
  

  

V0 = jωΦm = jωµ0
r

H ⋅ dv

s∫∫  (2)

Ls is the self-inductance of the loop.  H is the mode's magnetic field and we integrate over the
loop surface.  Evidently Zi = jωLs and according to Thevenin's theorem the coupling port can
be described by the loop inductance in series with the induced voltage as in Fig. 9

L s

V0

         

I0 Cs

Fig. 9  Equivalent generator circuits for probe and loop coupling

A port equipped with a probe has an equivalent circuit dual to that of the loop.  Cs is the
fringe field capacitance of the probe tip.  I0 is a short circuit current and corresponds to the
displacement current of that part of the cavity E-field which ends on the probe surface.

  

I0 = jωΦe = jωε0
v

E ⋅ dv

s∫∫ (3)

Which power is now extracted from the mode?  We find for the loop (Y is the admittance 'seen'
by the voltage source V0):

P = 1
2

V0
2 Re Y( ) = 1

2
V0

2 1
Zw

 
Zw

2

Zw
2 + ωLs( )2  

(4)

and for the probe with Yw = 1/Zw  (Z is the impedance 'seen' by the current source I0)

  

P = 1
2

I0
2Re Z( ) = 1

2
I0
2 1

Yw
 

Yw
2

Yw
2 + ωCs( )2

(5)

The presence of Ls (or Cs) diminishes the power flow on the transmission line and hence the
damping of the mode.

4.1.1 The limit of obtainable damping

Evidently here we have a dilemma.  If, to obtain more damping, we increase the surface
of a coupling loop, then also Ls will increase and take away at least part of the potential benefit
of the higher induced voltage.  And similarly, for a probe a bigger surface will increase Cs.



Let us study this important phenomenon in more detail.  We use a geometry of
transmission line and loop (see Fig. 10) which hardly would be used in a real construction
project but has the advantage that the loop's self-inductance can be expressed by a simple
formula.  We use a strip line and as loop a solenoid with only one turn so (r is the radius of the
solenoid and l its length):

  

Ls ≈ µ0π r2

l  

Figure 11 sketches how such a loop could couple to the TM010 mode of a pillbox cavity.  The
coupler is in the symmetry plane of the cavity and the loop at the equator where the magnetic
field B is maximal and to first order constant over the loop area.  Then:

  

1
P

= 2Zw

ωr2πB( )2
 
Zw

2 + ωµ0π r2/ l( )2
Zw

2

and it follows Qex =
ωU

P
= 2

ωU

B2

Zw

π2ω2r4
+

µ0
2

l2Zw



  

(6)

r

l

Fig. 10  Stripline with loop of solenoidal
geometry

R=Zw

Fig. 11  Pillbox cavity with the coupling
loop of Fig. 11 at the equator

The factor ωU/B2 describes the cavity and loop position, the two additive terms within the
curly brackets the coupler itself.  The salient point is now that one of the two terms is
independent of the loop radius.  So it constitutes a lower limit to the obtainable external Q  (an
upper limit of damping).  It does not pay to increase the loop radius much beyond the value
leading to

  

Zw

π2ω2r 4 = µ0
2

l2Zw

But this expression can be rearranged to give

  

ωLs = Zw (7)

and in this form is of general validity.  Having chosen a wave impedance Zw for the
transmission line and a conductor for the loop, Eq. (7) limits the useful loop size.  On the other



hand, as the second term in (6) shows, if the loop area linked to flux remains fixed, increasing
the conductor cross-section will lead to improved damping.

An example:

To close this section let us now calculate the lower external Q limit for the fundamental mode if
we mount this loop coupler on the equator of the 4-cell LEP cavity.  For an accelerating voltage
of V = 1.7 MV (1 MV/m of accelerating gradient) this cavity has at the equator a magnetic
induction of B = 4 mTesla and in the π-mode a (R/Q) of 230 Ω.  We now can evaluate ωU =
V2/(2R/Q) and obtain, for a line impedance of 50 Ω and a loop length of 8 cm, from the second
term of Eq. (6):

(Qex)min = 3900

For the reasonable loop diameter of 4.2 cm which produces ωLs = 50 Ω, the external Q will be
twice the minimal one and increasing the loop diameter by a factor √2 to 6 cm we will approach
the minimal value to within 25%:

Qex = 5000

However, much lower values of Qex can be obtained from the same loop at the price of some
more sophistication.

4 . 2 Resonant coupling

In the simple non-resonant approach Qex has a lower limit, since part of the induced
voltage is lost as voltage drop across the internal impedance.  But this impedance is not resistive
as in ordinary generators.  For a coupler it is a pure reactance and, in contrast to a resistance, a
reactance can most easily be compensated by an opposite one, at least at certain frequencies.

For a loop coupler the simplest measure is to connect a capacitor in series with the loop
[10].  If we do so for the 6-cm diameter loop we need a capacitive reactance of 100Ω at
352 MHz.  From 1/(ωC) = 100 Ω we obtain C = 4.55 pF.  Such a capacity is small enough to
be easily realised in practice.  The result of compensation is often spectacular.  In our example,
adding the capacitor would divide the external Q by 5!

Qex = 1000

And lower values are within reach as the following discussion will show.

4.2.1  The damping limit for resonant coupling

With the compensation condenser added we have the equivalent circuit of Fig. 12.
Evidently now, at the mode frequency, we can increase the extracted power, and hence the
damping, if we reduce R (e.g. by connecting a λ/4 transformer between condenser and
transmission line) and, in reducing R to zero, it appears as if in the limit Qex = 0 could be
obtained.  On the other hand, with R = 0 there are no losses in the system, and Qex must be
infinite!  To remove this contradiction we have to realise that, in adding the compensation
condenser, we transformed the coupler itself into a resonator with its own quality factor Qco =

ωLs/R and tuned to the mode frequency.  Figure 13 depicts the situation in representing the
mode by a parallel LC-resonator which couples via the mutual inductance M = k√L√Ls to the
loop.  k  is the coupling factor and it follows from the definition of M that the flux of cavity
field through the loop is

Φ = M I = k√L√Ls I



Ls

V0
C

R

Fig. 12  Capacitive series compensation of
loop inductance

M
L L s

I C

R

couplermode

Fig. 13  More realistic representation of
coupling

We will now express the previous formulae in a coupled-resonator notation and this will help to
see the limit of their range of validity.  Using 0.5 L I2 = U we get

  

Φ2 = k2Ls ⋅ LI 2 = 2k2LsU  (8)

With P  = 0.5V02/R we have now

  

P = 1
2

ωΦ( )2
R

= 1
2

ωΦ( )2
ωLs

Qco

and substituting from (8) gives

P = k2ωUQco

If now ωU/P = Qex then

Qex = 1
k





 ⋅ 1

kQco
(9)

Equation (9) does not give anything new.  It still predicts infinite damping for infinite coupler
Q.  But it is written in the language of coupled-resonator theory which says that for R = 0 the
presence of the coupler resonator will simply split the cavity mode into two, with frequency
difference ∆f = k f.

On the other hand, modes of a coupled system are sensitive to perturbations.  Damping is
one of the possible reasons for perturbations and splitting disappears when kQco < 1.
Substituting this into (9) will give a reasonable estimate of the minimal external cavity Q that can
be produced with this resonant coupler technique.

Qex( )min ≈
1
k

=
2ULs
Φ

(10)

In our LEP cavity example, with the loop of 6-cm diameter we have Ls ≈ 46 nH and, for a
stored energy of 2.9 Ws, a magnetic flux of ≈ 11.3 10-6 Vs through the loop.  Using (8) we
calculate a coupling factor of ≈ 2% and

Qex( )min
≈ 50



The coupler Q must then be 50 too and this requires a resistive termination of 2Ω.  In designing
couplers for HOM damping one hardly would go to such an extreme because the coupler
bandwidth becomes too small and about one coupler per mode would be needed!

4.2.2  Fundamental mode filter requirements

As mentioned earlier coupler constructions based on transmission line techniques have to
use a filter to suppress coupling to the fm.  This appears to complicate the design but the filter
can always be integrated into a reactance compensation scheme.  For instance, if in Fig. 12 an
inductance L =  Ls is connected in parallel to C, then a stop filter for the FM at ω0 is formed
(see Fig. 14).  But at higher frequencies the filter reactance becomes capacitive to compensate
the loop reactance at √2ω0.  More general for this circuit, if the HOM frequency at which we
want compensation is at ωc then L and C are given by:

  

1
C = ω0

2L = ωc
2 − ω0

2( )Ls (11)

Voltage and current in the filter may reach high values.  To illustrate this point we do the
'tentative design' of a LEP cavity HOM coupler compensated at 500 MHz and using a loop (as
sketched in Fig. 11) with 3-cm diameter and 4-cm length.  Then at 352 MHz ωLs = 50 Ω and,
since 500/352 ≈ √2, L = Ls.  At an accelerating gradient of 6 MV/m the equatorial magnetic
cavity field is 24 mT and induces the voltage ωΦ = 37.5 kV, which drops across the filter
condenser C and drives a current of I = 750 A through L.  If C has a gap of 3 mm, (a bigger
gap could lead to multipacting), a surface field of 12.5 MV/m results and if the conductor
carrying I has a diameter of 3 cm a surface magnetic field of ≈10 mT will be produced, values
comparable to those in the cavity!   Construction  from superconducting materials using cavity
assembly and surface preparation techniques is mandatory.

Two of the four HOM couplers of the CERN 5-cell 500-MHz prototype sc cavity, built
for beam tests in PETRA at DESY, were of this type [11].  An outline of their geometry is
given below in Fig. 15.  With a coupler Q ≈ 2 they produced external Q values ≈ 40000 and
were operated up to accelerating gradients of 4MV/m  (limit due to a cavity quench).

V0

L

C

Ls

R

Fig. 14  Resonant HOM coupler with
fundamental mode stop filter

cable connector

C
L

loop

Fig. 15  Outline of resonant HOM loop coupler
with FM filter

However, this approach was not further pursued for two reasons.  Making an opening at
the cavity equator causes local field enhancement just where the FM B-field has its maximum,
and putting the coupler at the maximum in turn causes very high field values in the coupler's
filter.  Looking for a coupler position with smaller FM field and above all a more favourable
ratio of HOM to FM fields, a position on the beam tubes of the cavity was identified as optimal.
The TM01  mode being in cut off, damping in the beam tube then acts as a prefilter for the FM .

4.2.3  Couplers on the beam tube with several resonances

Another feature of the last generation of HOM coupler designs is that they are tailored to
be resonant at several frequencies.  Figure 16 illustrates for the LEP cavity the distribution of



HOM with significant R/Q values.  As we see, high R/Q HOM come in three clusters around
480 MHz, 650 MHz and 1.1 GHz, so at these frequencies should be resonances of the HOM
coupler.  A heuristic approach leading to a coupler with the required three resonances is the
following.  First realize that 650 and 1100 MHz are nearly harmonic and that a transmission
line resonator of length λ/2 at 650 MHz with shorts at both ends would have a second
resonance at 1300 MHz.  
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Fig. 16  The high R/Q HOM of the LEP cavity

Replacing the shorts by small inductances L1 & L2, (and L1 would be the coupling loop),
we can move these resonances nearer to each other.  A third lower frequency resonance finally
is obtained by connecting the termination R (see Fig. 17) via a capacitor C to L2.  L2, C and R
then form a second resonator, which shares with the line resonator the common element L2.  In
other words:  the two resonators are coupled, allowing to split the original 650 MHz resonance
into two.

transmission line ca. λ/2 long

RL 21L C

Fig. 17  Circuit of a transmission line coupler with three resonances

The HOM couplers [12] used at DESY in HERA and more recently in the TESLA [13,14]
project, as well as at CERN on the LEP Nb-Cu cavities all use this approach.  As shown in
Fig. 18 the HERA coupler has a small antenna added to the loop so that coupling to electric
cavity fields is enhanced.  The FM filter is in the back of the coupler, parallel to L2, forcing a
voltage zero across C.  In CERN (see Fig. 19) the filter has been moved to the front in
returning L1 via a capacitor to ground.  In this way coupling to FM E-fields is eliminated.
Also, to avoid magnetic coupling, the loop is perpendicular to the cavity axis.  HOM coupling is
electric for the longitudinal modes and predominantly magnetic (to their Bz in the beam tube) for
the dipole modes.  This modification made it possible to have a demounting flange, which has
to carry only the HOM power.  In fact, for a successful fabrication of sc cavities by sputter-
coating [15], demountability of couplers is a precondition.



Fig. 18  Scheme of the HERA HOM coupler

Fig. 19  Demountable coupler for sputter-coated LEP cavities

At SACLAY and CERN it has also been found that letting a loop protrude into the beam
tube is another way to get sufficient coupling to the E-fields of the longitudinal (TM0nm) modes.
This is an interesting variant since it is simpler to fabricate and has been chosen for the LEP
cavities.  A schematic drawing together with a table of external Qs is given in Appendix A.

4 . 3 Design aids

The equivalent generator approach combined with a circuit model of the coupler lends
itself readily to making meaningful estimations of mode damping.  One ingredient is a
calculation (by a network analysis code) of the real part of the coupler's input impedance for
probes (or admittance for loops) including into the network the coupler's Cs (or Ls
respectively).  



The second ingredient is an estimation of the probe's short-circuit current I0 (or the loop's
open-circuit voltage V0 ) with the help of a cavity code which gives the stored energy U  and the
fields E and H at the coupler's location.  We assume that these fields are not too much perturbed
by the presence of the coupler, and estimating the integrals of (2) and (3) we have all the needed
information to calculate Qex .  

During the conceptual design phase of a HOM coupler it is most useful to plot the
calculated real part of the input impedance (or admittance) against frequency to identify the
position of maxima (resonances) and their relative height.  After building hardware models such
'sensitivity' curves can be verified in measuring the transfer function between a small loop or
probe (which replace the cavity field) and the coupler's load as illustrated in Fig. 18.

More recently a code (HFSS) has become available which, with the exclusion of the
interaction region between coupler and cavity fields, allows one to calculate the s-parameters of
a complete hardware model.  Using it greatly facilitates the translation from the circuit model to
the final RF structure.

5 . THE HIGHER ORDER MODE POWER

Obviously a good knowledge of the HOM power is needed if one has to decide on the
size of the couplers and of cables, connectors and vacuum feedthroughs which serve to connect
the couplers to room temperature loads.

5 . 1 Beam with sinusoidally varying linear charge density

To calculate the RF power (Ref. [16] contains a more general treatment of the subject)
from a particular mode with frequency ωm first imagine a beam with sinusoidally varying linear
charge density which passes an AC current I with frequency ω through a reference plane of the
cavity exciting oscillating fields of the same frequency.  If ω is in the vicinity of ωm this mode's
field will predominate with an amplitude depending on ω as typical for a resonance, i.e.
reaching at ω = ωm a maximum proportional to I.  We may measure the accelerating effect of the
field by test charges (which have the same speed v  ≈ c aas the paticles of the beam) and call the
factor of proportionality between the found accelerating voltage V and I (at ω = ωm) the
effective shunt impedance R.

  
V = R I (12)

R in turn is proportional to the loaded Q of the mode and we call the factor of proportionality
(R/Q).

  

R= R

Q






Q (13)

The method used to define V implies for the power Pm lost by the beam at resonance to the
mode's field:

  

Pm = 1
2

I V

using (12) it follows that

  

Pm = 1

2

V2

R

But conservation of energy demands that Pm is equal to the power dissipated in the cavity walls
and in the HOM coupler load



Pdiss = Pm = 1
2

V 2

R
(14)

Further by definition

Q = ωU

Pdiss
(15)

where U is the stored energy of the mode.  Combining (11), (12) and (13) gives:

  

R

Q







= 1

2

V2

ωU
(16)

Using a cavity code (SUPERFISH, URMEL, MAFIA…) (R/Q) can be calculated from Eq. 16
for all non-propagating modes and Pm could be determined for given I and Q.  But it is more
important to realise that all these equations map on the circuit equations of a parallel LC-
resonator (see Fig. 20) to which the beam current is connected in the form of a current source
and which has 1/(ωmC) = (R/Q).

I(t) RC

Fig. 20  Circuit model of beam-mode interaction

Trusting the equivalence between circuit model and mode we can now determine the
response of the mode to other beam current forms.

5 . 2 Response to a single bunch

For a point charge q passing the reference plane at t = 0 the beam current has the form of a
single δ-current pulse.

I(t) = q δ(t)

Such a pulse charges the condenser discontinuously to the voltage q/C which, if the condenser
had no charge before, is the initial amplitude of a subsequent free oscillation:

  

V t( ) = q h t( )     with           h t( ) = u t( )
C

eγt

u(t)  is the unit step function.

With the filling time Tf :

  

γ = − 1
Tf

+ jωm = − ωm
2Q

+ jωm

Further, for a linear  system such as the circuit here and any  beam current I(t)



  

V t( ) = I τ( )
−∞

∞

∫ h t − τ( )dτ

and for our h(t):

   

V t( ) = eγ t

C
I τ( )

−∞

∞

∫ u t − τ( ) e−γτdτ (17)

We now examine a single beam-current pulse I(τ) and V(t) at times t when the current has
returned to zero.  During the pulse then u(t - τ) = 1.  Also, in accelerators the beam current
pulses are very short compared to 2Q/ωm.  So it makes no difference if we neglect the
attenuation and replace the integral in (17) by

  

I τ( )
−∞

∞

∫ e− jωmτdτ

This is the Fourier transform of the current pulse I(t) at ωm.  A single gaussian bunch of charge
q with

  

I t( ) = q

2π
1

σ
e

− 1

2

t 2

σ2

has the Fourier transform

  

I ω( ) = qe
−

ωσ( )2

2

and after the passage of a single gaussian bunch

  

V t( ) = Vb eγ t (18)

with
  

Vb = ωm
R

Q







e
−

ωmσ( )2

2    q (19)

5 . 3 The HOM voltage due to a bunched beam

We may now go a step further and try to determine the response to a beam made up of
bunched charges q which, passing through the reference plane, constitute a pulsed current with
period Tb.  In a steady state the excited oscillations must have the same period Tb .  On the other
hand, in between bunch passages the mode oscillations must be free oscillations i.e.
representable by a phasor V turning with angular speed ωm.

Formally, we may turn this phasor back or forward to the moment of the last or next
bunch passage and in this way construct phasors V+ and V- .  Further, to have the required
overall periodicity with Tb, at the moment of a bunch passage, the accelerating voltage induced
by the bunch must update V- to become V+.  Central to the derivation is now that, due to the
linearity of the circuit, this updating voltage must be Vb.  Writing complex quantities with a
tilde:

  

Ṽ+ = Ṽ− + Vb



but also
  

Ṽ− = Ṽ+eγ Tb

  

Ṽ+ = Vb
1

1− eγ Tb

and for the time interval of free oscillations:

  

Ṽ t( ) = Vb
eγ t

1− eγ Tb

       for        0 < t < Tb (20)

5 . 4 The HOM power from a bunched beam

  

Ṽ t( )  drops across the shunt impedance R , causing in average the dissipation

  

Pmode =  
1
2

1
Tb

Ṽ t( ) 2

R
dt

0

Tb

∫

Pmode is furnished by the bunched beam. Substituting (20)

  

Pmode =  
Vb

2

2RTb1− exp γTb( ) 2  e
− 2t

Tf

0

Tb

∫ dt

using
  

τ = Tb

Tf
= ωmTb

2Q
    and       δ = ωmTb modulo  2π( )

we have
     

1− exp γTb( ) 2
 =  1− 2cosδ exp −τ( ) + exp −2τ( )

And evaluating the integral we obtain with R = Q(R/Q) the result:

  

Pmode =   

1
2

Vb
2

R
Q( )  

1
ωmTb

 F τ,δ( ) (21)

where
  

 F τ,δ( ) =  
1− exp −τ( )( ) 1+ exp −τ( )( )

1− 2cosδ exp −τ( ) + exp −2τ( )
(22)

For gaussian bunches of charge q and substituting from (19)

  

Pmode= 1
Tb

km q2 F τ,δ( ) (23)

km is called the loss parameter [16] of the mode at ωm.

  

km = 1
2

ωm
R

Q







e− ωmσ( )2

(24)



The pulsed current of a bunched beam corresponds to a spectrum of discrete lines at
distance 1/Tb which has the Fourier transform of a single pulse as envelope curve. δ  =   0

(modulo 2π) means that ωm coincides with one of the spectral frequencies. At δ = π the mode is

just in between two spectral lines. Figure 21 shows a plot of F(τ,δ) for these two cases. Note

that F(τ,π) = 1/F(τ,0). F is plotted against 2/τ = 4Q/(ωmTb).
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Fig. 21  F(τ,0) and F(τ,π) plotted against 2/τ = 4Q/(ωmTb)

5.4.1  The strong damping limit

Whatever the δ, for increasing damping (increasing τ) F approaches one, and Pmode
becomes

  

Pmode≈ 1
Tb

km q2
(25)

In the limit each bunch of the beam sees an “empty” cavity and we conclude that the bunches
now loose an energy kmq2 to each mode. For strong damping of all HOM the expression for
the total HOM power thus must have the simple form

P
HOM

≈ 1
Tb

k q2 (26)

with
  

k = km∑ (27)

If the beam is kept on the cavity axis where transversal modes have no accelerating field, only
longitudinal modes contribute to k. Codes like TBCI and ABCI allow one to calculate the km
and their sum, even including the frequency range where modes propagate.



5.4.2   The weak damping limit

If τ = 0.5ωmTb/Q is small enough to approximate exp(-τ) by 1-τ then we can simplify
setting:

F τ,0( ) ≈ 2
τ

= 4Q
ωmTb

Formula (21) now takes the form

  

Pmode ≈  
1
2

2q

Tb
e
− 1

2
ωmσ( )2











2
R

Q







Q

The expression in brackets is the intensity of the beam current’s spectral line at ωm. Calling it

the beam’s RF current at ωm we have:

  

Pmode ≈  
1
2

Irf
2 R

Q






 Q = 

1
2

Irf
2 R (28)

We arrived at a formula rigourously valid for a single harmonic current source and conclude that
used for a bunched beam this approximation is better the smaller the mode’s loaded bandwidth
compared to 1/Tb.

5 . 5 Choices of damping

As we have seen, for a bunched beam we can never reduce the HOM power to zero.  The
lower limit of power given by (26) is the higher the smaller the number of bunches circulating
in a machine for a given average DC beam current I0 = q/Tb.  In fact, by substitution of I0 into
(26):

PHO M = k I0
2 Tb (29)

Small numbers of bunches also produce a dense spectrum of beam lines, so the scatter of HOM
frequencies due to dimensional tolerances of cavity production may become comparable to 1/Tb.
It is then impossible to avoid resonances between modes and beam lines and filling times Tf
should be made equal or smaller than Tb at least for longitudinal modes with significant (R/Q)
values.

On the other hand, if high numbers of equally spaced bunches circulate in a machine it
may be possible to detune high (R/Q) modes from beam lines and weak damping gives an
advantage, provided beam stability requirements allow high external Q values.  In all these
cases the resulting loaded Q will be many orders of magnitude smaller than the Q0 of modes in a
sc cavity.  So HOM dissipation in the cavity walls will be negligible compared to the dissipation
due to the generator driven fundamental mode.

6 . THE FUNDAMENTAL MODE POWER COUPLER

6 . 1 Matching

Power couplers must have specified properties only near to a single frequency.  In this
respect they differ considerably from HOM couplers, which in general have to cover broader



frequency ranges.  Also, at least for the applications developed so far, they must couple only
loosely to the fm.  If again we measure coupling by an external Q, values smaller than 1E+5
will hardly be needed and reactance compensation techniques to enhance coupling are not
required, rather 'matching' is required.

The concept of matching comprises measures which, by an appropriate choice of
impedances, optimize the generation and the transport of power.  A simple high power RF
system has three building blocks:  the power amplifier, a line (transmission line or wave guide)
and the load.  We then want to minimize power losses on the line.  This implies that power is
transported by a pure traveling wave and so the line must see a load equal to its wave
impedance.  In most cases, to realise this condition, we need to connect special impedance
transforming matching devices between the line and the load proper and to produce a 'load
match' is one of the functions of the power coupler.

Another matching task is at the output port of the power amplifier which, for best
efficiency, must work on a tightly specified resistive termination.  If lines of standard wave
impedance Z0 are used, the needed transformers form part of the amplifier circuit.  The system
is now in a state where it works with highest efficiency, but more matching can be done to
improve its behaviour in the presence of load matching errors.  The problem is that klystron and
tetrode power amplifiers have an internal or 'source' resistance, which may be an order of
magnitude higher than their optimal load resistance.  Hence, looking back to the amplifier, the
line is not matched.  This has the consequence that reflections at the load are back reflected from
the amplifier adding to the forward power which thus depends on the load.  Matching at the
amplifier side of the line is called 'source matching'.  At microwave frequencies a convenient
way of source matching is to connect a circulator between amplifier and line.  For a fixed drive
power to the amplifier the forward power is then independent of load matching errors.

6 . 2 Matching the external Q

The load to which a power coupler shall match is a  special one: The FM of a sc cavity,
which exchanges energy with the bunches of a particle beam.  If we represent the mode by a
parallel LC resonator (with ωcL = 1/(ωcC) = (R/Q) ) then the beam is a current source connected
to its terminals.  In the discussion here, which focuses on matching, it is sufficient to regard the
coupler as an impedance transformer for the wave impedance Z0 of the line, so that looking
from the resonator to the line we see a transformed wave impedance Z (see Fig. 22).

I

Line Cavity

Ib

Ic

V

I

Irefl

Z = (R/Q)Q Beam

forw

Fig. 22  Line with attached equivalent circuit of loss-free cavity and beam

If this line is source matched then, seen from the resonator, its input impedance is also Z ,
producing as external Q  

Q = ωcC Z = (R/Q)-1 Z (30)

We will now assume that the resulting bandwidth ∆ωc = ωc/Q  is small compared to the bunch
frequency.  With the resonator tuned near to one particular line of the beam current's spectrum
the voltage due to all other lines may then be neglected i.e. the current source in Fig. 22 can be
thought of as emitting a sinusoidal  RF current of frequency ωg, identical to that of the RF
power generator.



In the following derivations we will write complex variables (phasors) with a tilde, their
modules (amplitudes) and other real quantities without.  

The circuit equations are here:

Ṽforw + Ṽrefl = Ṽ

and Ĩ forw − Ĩrefl = Ĩ = Ĩc + Ĩb  (31)

2 Ĩforw = ( Ĩ forw + Ĩrefl ) + Ĩc + Ĩb  

but  I forw + Irefl = Vforw + Vrefl( ) / Z = V / Z
  
     and

  

Ĩc = Ṽ / Z̃c 

2 Ĩ forw = Ṽ
1

Z
+

1

Z̃c







 + Ĩb

(32)

where
  

1
Z̃c

= j 
ωg

ωc
−

ωc

ωg







R

Q







−1

 
(33)

Equation (32) is a relation between phasors in a complex current plane.  If now we wish to
represent (32) by a phasor diagram, we are free to define the time zero and thus to decide which
of the phasors shall be collinear with the real axis.

•  Accelerator physicists often declare the RF beam current as real.  In fact it appears
natural to regard bunch charges as real quantities and hence also the resulting beam current.

•  Circuit analysis usually takes the generator signal, here the forward current, as
reference and regards it as real.

•  For people who develop sc cavities, the accelerating voltage is a main concern.
Regarding it as the reference has advantages.  The cavity current Ic (since we neglect cavity
losses) is now an imaginary quantity for any tuning and the angle of the RF beam current
phasor gives directly the synchronous phase Φ if we use the convention to count it from the
crest of the cavity voltage.  But the forward current now is in general complex and the
expressions which relate forward and beam power are under general conditions, rather
complicated.

In the following we need to find the optimal conditions for power transfer to the beam.
We regard an 'accelerating station'  i.e. a group of cavities which, from a power divider, all
receive the same forward power.  Also, the distance of cavities on the beam axis has been
chosen to make for all of them the beam current phasor equal in amplitude and phase which,
referenced to the forward current, is called 'station phase' ϕ.  Under these conditions it is most
convenient to regard the forward current as a real quantity, as in the phasor diagram of Fig. 23.

Since Z is real but 
  

Z̃c  imaginary, the phasors 
  ̃

V / Z  and 
  

Ṽ / Z̃c  are at a right angle and

meet on a circle which has 2Iforw − Ĩb  as diameter.  Figure 23 represents a non matched
situation:  both cavity detuning and coupling are incorrect.  To match we first retouch the
detuning so that 

  ̃
V  becomes collinear with Iforw  (the line 'sees' a real impedance).  The result

is shown in Fig. 24:

Ic = V/Zc now compensates the imaginary component Ibi of the beam current and if we
substitute Zc from (33) we get the detuning condition



Iforw

Iforw

Ib
cV Z/

V Z/

ϕ < 0

Fig. 23  Equation (32) in a phasor diagram
representation
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V Z/

Iforw

Iforw

Ib

ϕ = Φ < 0

Fig. 24  Phasor sum for a correct cavity
detuning

Ic =
V

Zc
= V

ωg

ωc
−

ωc

ωg











R

Q









−1

= −Ibi = −Ib sinΦ (34a)

or
ωg − ωc( )

0.5 ωc / Q( ) ≈ − Q
R

Q









Ib
V

sinΦ (34b)

ωc/Q is equal to the loaded 3dB bandwidth ∆ωc if the line which feeds power to the cavity is
source matched.  When (34) is satisfied, station phase ϕ and synchronous phase Φ (measured
from the crest of the cavity voltage) become equal.

If the detuning condition is met, Eq. (31) reads:

Iforw − Ĩrefl = Ibr = Ib cosΦ

and to obtain zero reflection we have in addition to satisfy Iforw = Ibr .  But for zero reflection
we have also V = Vforw .  Thus (since Zm = (R/Q)Q):

  

  V = Vforw = Iforw Zm =  Ibr
R

Q( )Qm

Solving for Qm and using 2Pb  = V Ibr we obtain the condition in a more practical form:

  

Qm =  
1
2

 
V2

Pb

R
Q( )−1 (35)

Pb is the power transferred to the beam.  Note that, for a given cavity voltage amplitude, Qm
depends only on Pb and not on the particular combination of beam current and synchronous
phase angle which produces Pb .  The phasor diagram for the matched case is shown in Fig. 25
below:

V Z/

Iforw

Iforw

cV Z/ Ib

ϕ = Φ < 0

Fig. 25  Phasor diagram at the match point



Example:

The cavities in LEP2  work at 10.2 MV (6 MV/m) and transfer 120 kW to the beam.  With
(R/Q) = 230 Ω we calculate from (35) Qm = 1.9E6.  The corresponding 3 dB bandwidth is
187 Hz.  The RF beam current is 28 mA and the synchronous phase -32.8˚.  Measured in units
of half a bandwidth the required cavity detuning is then 0.64 .

6 . 2 Matching error analysis

In the following we will use a more formal way of analysis to discuss also the
consequences of matching errors.   Introducing normalized values of detuning, beam current
and cavity voltage:

      

d = Q
ωg

ωc
−

ωc

ωg









 ≈

ωg − ωc( )
0.5∆ωc      

ĩb =
Ib

I forw
= ibr + j ibi

 
and ṽ =

Ṽ

Vforw

and solving (32) and (33) for 
  ̃
V  we get:

   
ṽ = 2 − ĩb

1+ jd
=

2 − ibr( )− j ibi
1 + jd

(36)

and calculate from 
  ̃
V  the reflection coefficient 

  ̃

ρ .

ρ̃ =
Ṽrefl

Vforw
=

Ṽ − Vforw

Vforw
= ṽ −1 =

1 − ibr( ) − j d + ibi( )
1 + jd

(37)

Let the cavity detuning at which 
  ̃
V  and 

  ̃

ρ  become real be d0.  At d0 the expressions in the
denominator and nominator of (36) must have equal phases:

  

d0
1

= − ibi
2 − ibr

and if we substitute this result back:

    v = 2 − ibr( ) (38)

and
  

ρ = 1− ibr (39)

Evidently complete matching is obtained if, in addition to d = d0, also ibr = 1.

Finally, to evaluate also for the general non-matched case the power Pb transfered to the
beam we determine 1-|ρ| 2.  From (37):

  

ρ 2  =  
1− ibr( )2 + d + ibi( )2

1+ d2
 

(40)

  

Pb
P

 =  1− ρ 2  =  
ibr 2 − ibr( ) − ibi 2d + ibi( )

1+ d2

(41)

P is the forward power needed to transfer Pb to the beam.



6.2.1  Coupling errors

Let us now compare two cavities of the accelerating station.  One, the reference cavity,
shall be matched i.e. have (Pm is the forward power and Ibrm the real component of the RF
beam current phasor):

  

Ibrm = Iforw( )m = 2Pm / Zm   ⇒  2Pm = Ibrm Zm

and
  

Vm  = Vforw( )m = 2Pm Zm     ⇒  2Pm = Vm / Zm

The second cavity shall be correctly detuned (d = d0) and sees the same RF beam current. But
with Z ≠ Zm it will receive from its line a different value of forward current and of forward
voltage:

  

Iforw =
2Pm

Z
= Ibrm

Zm
Z

     ⇒     ibr = Ibrm
Iforw

= Z

Zm
= Q

Qm
 

and
  

Vforw = 2Pm Z = Vm
Z

Zm
= Vm

Q

Qm
 

Substituting into (39) and (38) we find for the second non-matched cavity:

  

ρ = 1− Q

Qm
 (42)

and for the ratio of cavity voltages:

  

V

Vm
= Q

Qm
2 − Q

Qm







(43)

From Pb = (1 - |ρ|2) Pm we verify that (43) also describes the ratio of powers transferred to the
beam.  Pb does not vary strongly with Q.  For Q/Qm = √2  we find Pb/Pm = 0.964.  

A more serious consequence of a coupling error is increased voltage in the coupler's
transmission line.  Vrefl adds to Vforw to form a standing wave pattern with voltage maxima of
Vmax = (1+|ρ|) Vforw.  Here we must differentiate between two cases:  overcoupling, Q < Qm,
and undercoupling, Q > Qm:

   

1+ ρ  =  
2 − Q

Qm
  when   Q ≤ Qm

     Q
Qm

  when   Q > Qm









 

(44)

Present day couplers work at field levels far below those found in cavities.  So, why is
increased voltage a problem? The answer is that, in contrast to sc cavities, power couplers may
be plagued by multipacting discharges within their operating power range and that, in the
presence of mismatch, the forward power at which a given multipacting resonance is met,
becomes reduced by (1 + |ρ|)2.  

Example:
If, with the important mismatch of Q/Qm = √2, one sends 120 kW to the cavity one loses only
the moderate reflected power of 4.3 kW.  But multipacting levels up to an equivalent power of
170 kW are now within the operating range of the coupler!



6.2.2  Beam current changes

We now change the real component of the RF  beam current from Ibrm to Ibr and
simultaneously, by a servo loop, the forward power from Pm to P  so that the voltage of the
reference cavity stays constant. Equation (38) then gives the condition for the changed forward
current:

  

V = Vforw 2 − ibr( ) = Iforw Zm 2 − Ibr
Iforw






 ≡  Vm = IbrmZm

or
  

2Iforw = Ibr + Ibrm (45)

and remembering that Ibrm = (Iforw)m we have

  

Iforw = 1
2

Ibrm 1+ Ibr
Ibrm







= 1
2

Iforw( )m 1+ Ibr
Ibrm







(46)

it follows that

  

P

Pm
 =  

1
4

1+ Ibr
Ibrm







2
(47)

There is now a standing wave also on the transmission line to the reference cavity. To
know its maximal voltage we again calculate (1+|ρ|)Vforw. From (39) and (46), after some
algebra (see Appendix B)

  

Vmax = 1+ ρ( ) Vforw =  

     Vforw( )m        when Ibr ≤ Ibrm  

Ibr
Ibrm

 Vforw( )m    when Ibr > Ibrm









(48)

Evidently, to avoid increased voltage, coupling has to be correct for the highest expected beam
current.

6.2.3  Beam current changes and coupling errors combined

Finally, applying P  to the second cavity (which has Q ≠ Qm) we have the forward current
(more details in appendix C):

  

Iforw = 2P

Z
= Pm

2Z
1+ Ibr

Ibrm







= 1
2

Ibrm
Zm
Z

1+ Ibr
Ibrm







(49)

and
  

Vforw = Iforw Z
Zm
Zm

= 1
2

Vm
Z

Zm
1+ Ibr

Ibrm







(50)

Substituting (49) and (50) into (38) we obtain the generalised form of (43):

  

V
Vm

 =  
Q

Qm
1+ Ibr

Ibrm







− Ibr
Ibrm

Q

Qm









(51)



Note, that as a consequence of equation (51), for Ibr < Ibrm and undercoupling (Q > Qm) the
cavity field becomes higher than the nominal one. This is illustrated in  Fig. 26 below, taking
the LEP cavity with its nominal gradient of 6 MV/m as example. The used range of Q/Qm
corresponds to what is found in practice for the present fabrication methods of cavities and
couplers.
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Fig. 26  Coupling dependence of the cavity field for three different beam currents

6.2.4  Tuning errors

All the cavities in an accelerating station have independent tuning loops so, in steady state
conditions, tuning errors are insignificant.  The situation is different for fast perturbations.
Tuner constructions available for sc cavities, since they change the length of the cavity, are
rather limited in speed.  Even the fastest designs, using magnetostrictive rods, cannot tune out
vibrations or beam current changes with frequencies above 10 Hz.  It is then necessary to
change the phase and to increase the amplitude of the forward current to keep the cavity voltage-
phasor constant which, for a calculation of the now required additional forward power, forms
the most convenient reference of the phasor diagram in Fig. 27.
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Fig. 27  Same diagram as in Fig. 25, but here V/Z is the reference

Note that here, since we decompose in the direction of V , the values of Ibr and Ibi are
different from those in Fig. 25!  With Iq = Ic + Ibi we now read from the diagram (Iq is a
measure of the deviation from correct tuning):
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



 
(52)

Evidently, for given cavity voltage, RF beam current and synchronous phase (i.e. beam power)
the required forward power P depends on Z (coupling) and Iq (tuning) and to minimize P we
have to satisfy the two equations:

  

 
∂

∂Iq
P Z, Iq( ) = 0        i( )          and                  

∂
∂Z

P Z, Iq( ) = 0         ii( )     

  or         Iq = Ic + Ibi = 0       (iii)         and           Iq
2 + Ibr

2 − V

Z






2
= 0         (iv)   

Satisfying (iii) and (iv) we have a match and the minimum minimorum of the forward power.
But with a tuning error, Iq ≠ 0, we still can obtain a relative minimum of the forward power by
satisfying only (iv). We find the optimal coupling under such conditions to be tighter than the
matching one:

  

            Zopt = R

Q





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Qopt = V2

Ibr
2 + Iq

2   ≤   
V

Ibr
= Zm

 

(53)

We now can imagine two scenarios. In the first we had not foreseen a tuning error and matched
at a nominal beam current Ibrm i.e. we had chosen Z = V/Ibrm. Substituting this value of Z into
Eq. (52) we get:

  

P =  
V

8
Ibrm + 2Ibr + Ibr

2

Ibrm
+

Iq
2

Ibrm











and normalising by the beam power in matched conditions, Pbm = 0.5VIbrm, we obtain a more
general form of Eq. (47):
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(54)

Iq is related to the deviation df from correct detuning. To first order  Iq/Ibrm = 2df/∆f  where ∆f
is the loaded 3 dB bandwidth.

Example:
Recently it has been realised [17] that operated at 6 MV/m the LEP cavity suffers from a
ponderomotive mechanical oscillation [18].  These oscillations may be suppressed by operating
the cavity on its resonance frequency i.e. with ωc = ωg .  But then Ic = 0  i.e. Iq = Ibi and at the
nominal beam current Ibm:

  

P

Pbm
=  

1
4

1+1( )2 + Ibim
Ibrm





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2
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




 =  1+ 1

4
tg2φ (55)

Now for Pbm = 120 kW and Φ = -32.8°  P = 132.5 kW and (1 + |ρ|)2P = 225 kW.



In the second scenario we know Iq in advance and choose Z = Zopt.  For zero detuning we
have Zopt = V/Ib and the phasor diagram forms an isosceles triangle.  Below the LEP example
(Φ = -32.8°) is illustrated.
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Iforw Ibϕ
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V Z/ = Ib

Fig. 28  Phasor sum for zero detuning and optimal coupling

The synchronous phase is now two times the station phase.  Substituting Zopt into (52) we find:

P = 1
4

VIb 1 + cosφ( )
 

(56)

6.2.5  Tuning and coupling errors combined

Finally we will try to visualize what consequences coupling errors have if the cavities of
an accelerating station are kept at resonance (ωc = ωg).  Here right from the start we had to use a
direct numerical approach: First for a reference cavity with Q = Qm = 1.88E6 and Φ = -32.8˚
the station phase ϕ was determined by solving (36) numerically.  Remembering that ϕ and P are
the same for all cavities in a station we then can proceed to determine Φ and Pb for cavities with
different external Qs in using (36) and (41).  The results are shown in Fig. 29.  In contrast to
the case of correct tuning the synchronous phase (the phase angle difference between cavity
voltage and RF beam current) now depends on cavity coupling and rises with increasing
external Q.  Undercoupling thus leads to a sharper increase of power reflection and at the upper
limit of the external Q range the equivalent travelling wave power (1+|ρ|)2 P rises to 280 kW.

6 . 3 Hardware considerations

Power couplers for sc cavities are normal conducting (nc) devices.  Hence their designs
could take over many features of earlier constructions for nc cavities.  Such couplers may be
subdivided into three functional units: first the coupling element proper, probe, loop or coupling
iris.  Second a ceramic window which seals off the cavity vacuum while letting through the RF
power.  Third a transition piece to the standard wave guide of the power distribution system.

Couplers for sc cavities have one element more to bridge the gap between room and liquid
He temperature while keeping, compared to the cavity dissipation, the heat flux into the He bath
small.  This thermal transition is a length of guide or line where special care has been taken to
minimize both the metal cross-section and thermal conductivity by using copper-plated stainless
steel.  In addition, cooling with cryogenic gases (He or N2) is employed to intercept heat at
discrete points or continuously in a counter current-flow fashion, very similar to the current
leads for sc magnets.

For powers around 100 kW and frequencies around 400 MHz wave guides have
unnecessarily large cross-sections.  So the coaxial line geometry is the preferred ending, to
avoid heat conduction by the inner conductor, in an open circuit as the probe which couples to
the electric cavity field within the cut-off tube near to one of the cavity end cells.  Thus from the
inner conductor only heat radiation can reach the He bath and its operation even at room-
temperature becomes feasible if no cold window is employed.



Use of such a second cold window (at ≈ 70 K) was the rule in earlier coupler
constructions [19,20].  It was felt that only in this way the sensitive sc surfaces of the cavity
could be protected if, under the action of the RF fields, gas molecules would be desorbed from
6warm parts of the coupler and especially from its first room-temperature window.

With the argument that the thermal transition piece should act as an efficient baffle, later
[21] only the warm window was kept4 allowing the use of window constructions with a proven
performance from copper-cavity work.  Figure 30 shows the LEP power coupler as an example
of this approach.  Window and 'door-knob' transition to a waveguide are taken over from the
coupler for the LEP copper cavities.

                                    
4 The developments for the 1.5 GHz TESLA very-high-gradient sc linac, to be operated at 1.8 K, have
reintroduced a second 70 K window as heat shield and to seal the cavity at an early stage of manufacture against
dust particle intrusion.

Fig. 29  Influence of coupling errors for LEP cavities
operated at resonance

Fig. 30  A LEP power coupler with
50 Ω coaxial line

6 . 4 Conditioning

Applying for the first time higher powers to vacuum RF devices is often a very delicate
operation.  In fact, if the power is raised abruptly one risks provoking violent discharges which
may destroy the device.  Two phenomena combine to create this danger.  The first is the



presence of adsorbed layers of gas (predominantly H2O) molecules on RF boundary surfaces.
The second is the existence of electron orbits which, starting and ending on surfaces, become
self replicating at certain field levels.  If now at such a kinematic “multipactor” resonance an
initial electron has an impact energy high enough to release more than one secondary then an
avalanche occurs with a proportional increase of gas desorption. If the process is not controlled
the local gas pressure may rise to the level where ordinary gas discharges set in.

But gas desorption is not only a danger.  It is also the effect which makes “conditioning”
possible.  In fact, the secondary emission coefficient of a copper surface (and similarly for other
metals) decreases when H2O layers are removed [22], so multipactor discharges have the
tendency to eliminate themselves.  To make a discharge disappear one only has to “tickle” it
long enough, taking care that pressure bursts do not rise into the unsafe region above
10-7 Torr.

6 . 5 Deconditioning

Couplers for copper cavities are conditioned together with the cavity.  Couplers for sc
cavities need more elaborate procedures.  Their operation is often plagued by the reappearance
of multipactor discharges (deconditioning).  This is caused by the baffle action of the warm-
cold transition [23].

It has been shown that multipactor orbits in coaxial [24] lines with wave impedances
bigger than 50 Ω start and end on the outer conductor alone which, acting as a cold trap, is
unfortunately also the zone to where molecules liberated in the warm window area are
cryopumped.  Multipactoring recreated in this way is very difficult to condition.  Probably
molecules desorbed by electron impact are only partially pumped away, the remainder is re-
adsorbed at cold surfaces nearby.

To alleviate the problem of deconditioning, power couplers for sc cavities are, after a
thorough bake out at 200°C, preconditioned on a separate room-temperature test stand and only
then transferred to the cavity.  Since, during this last operation, contact with humid air is
unavoidable LEP couplers are subsequently baked a second time in situ.  The window is heated
to 200°C for 24 hours.  Only then are the cavities cooled and RF power applied for the final
conditioning.

As a further safeguard against the reappearance of multipacting the LEP coupler has been
fitted with condensers [25] which isolate the central conductor of the coaxial line for DC
voltages but let the RF power pass.  So, if required, a bias voltage can be applied [26].  It has
been found that a bias of 2.5 kV suppresses all multipactor resonances up to a travelling-wave
power of at least 200 kW.

Finally, since multipactor resonances belong to certain E-field levels at the outer
conductor, power flow before multipacting sets in will be the higher the smaller  the central
conductor's diameter.  With respect to multipacting characteristics the conventional choice of a
50 Ω wave impedance is not optimal.  In consequence the LEP power coupler's antenna
diameter recently has been reduced from 45 mm to 30 mm which corresponds to Z0 = 75 Ω.



REFERENCES

 [1] V. Rödel, E. Haebel, The Effect of the Beam Tube Radius on Higher Order Modes in a
Pill-Box RF Cavity, SL/RFS/Note 93-17.

 [2] V. Rödel, L. Verolino, Geometry of a Superconducting 400 MHz Accelerating Cell for
the LHC, SL/RFS/Note 91-11.

 [3] W. Hartung,  In Search of Trapped Modes in the Single Cell Cavity Prototype for CESR-
B, Proc. of the 1993 PAC, Washington, p.898.

 [4] E. Haebel and A. Mosnier, Large or Small Iris Aperture in SC Multicell Cavities?  Proc.
of the 5th Workshop on RF-Superconductivity, DESY, 1991, p. 823.

 [5] F. Caspers, Experience with UHV Compatible Microvave Absorbing Materials at CERN,
PS 93-10 (AR).

 [6] D. Moffat et al., Design and Fabrication of a Ferrite-lined HOM Load for CESR-B, Proc.
of the 1993 PAC, Washington, p. 977.

[7] T. Tajima et al.,  Bonding of a Microwave-Absorbing Ferrite with Copper for the HOM
Damper of the KEK B-Factory SC Cavities, KEK Preprint 93-152, November 1993.

 [8] T. Tajima et al., Development of HOM Absorber for the KEK B-Factory SC Cavities,
Proc. of the 6th Workshop on RF-Superconductivity, CEBAF, 1993, p.962.

 [9] E. Plawski, Influence of the Bunch Length on the HOM Power Deposition in the SC LEP
Cavities, CERN LEP2 Note 94-19.

[10] W. Schminke, SPS/ARF/WS/gs/81-68,CERN 1981.
 [11] E. Haebel, Fundamental and HOM couplers on SC Cavities for Electron Storage Rings,

Proc. of the 1983 PAC, Santa Fe, New Mexico, p. 3345.

[12] E. Haebel and J. Sekutowicz, Higher Order Mode Coupler Studies at DESY, DESY-
Report M-86-06, July 1986.

[13] J. Sekutowicz, Higher Order Mode Coupler for TESLA, Proc. of the 6th Workshop on
RF-Superconductivity, CEBAF, 1993, p. 426.

[14] S. Chel et al., Thermal Tests of HOM Couplers for Superconducting Cavities, Proc. of
the 1994 EPAC, p. 2007 .

[15] Ph. Bernard et al., Demountable E/H-Field HOM Couplers for the Niobium Sputtered
LEP Cavity, Proc. of the 5th Workshop on RF-Superconductivity, DESY, 1991, p. 956.

[16] P.B. Wilson, High Energy Electron Linacs:  Application to Storage Ring RF Systems and
Linear Colliders, SLAC-PUB-2884, Feb. 1982.

[17] D. Boussard et al., Electroacoustic Instabilities in the LEP2 Superconducting Cavities,
Proc. of the 7th Workshop on RF-Superconductivity, Gif sur Yvette, 1995.

[18] M.M. Karliner et al., Instability in the Walls of a Cavity due to Ponderomotive Forces of
the Electromagn. Field, Soviet Physics-Technical Physics, Vol. 11, No 11, May 67.

[19] A. Citron et al. and H. Lengeler, The Karlsruhe-CERN Superconducting RF Seperator,
Nucl. Instr. Meth. 164 (1979) p. 31.



[20] L. Szeczi and R. Lehm, Theor. und Techn. Beschr. eines 100 KW Koppelsystems für
einen supraleitenden Beschleunigungsresonator, Primärbericht 9/81, KFK, Karlsruhe.

[21] E. Haebel, Beam tube Couplers for the Superconducting LEP Cavity,, Proc. of the 2nd
Workshop on RF-Superconductivity, CERN, 1984, p. 299.

[22] J. Barnard et al., Secondary Electron Emission from Various Technical Materials and
Condensed Gases, Proc. of the 7th Workshop on RF-Superconductivity, Gif sur Yvette,
1995.

[23] E. Haebel et al., Gas Condensation on Cold SuRFaces, a Source of Multipacting
Discharges in the LEP Power Coupler, Proc. of the 7th Workshop on RF-
Superconductivity, Gif sur Yvette, 1995.

[24] E. Somersalo et al., Analysis of Multipacting in Coaxial Lines, Proc. of the 1995 PAC,
Dallas, Texas.

[25] H.P. Kindermann et al., Status of the RF Power Couplers for Superconducting Cavities
at CERN, to be Published in Proc. of the 1996 EPAC, Sitges (Barcelona).

[26] J. Tückmantel et al., Improvements to Power Couplers for the LEP2 Superconducting
Cavities, Proc. of the 1995 PAC, Dallas, Texas.



APPENDIX A

liquid He 
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Fig. 1  Geometry of the HOM coupler used in LEP

Table 1
Damping of significant HOM with two couplers per LEP cavity

f/MHz 461 476 506 513 639 688 1006

Mode TE111 TE111 TM110 TM011 TM111 TM111 TM012

(R/Q)/Ω 18 15 20 13 56 25 16

Qex 17 000 14 000 5600 5700 7000 1000 2000

APPENDIX B

From

  

V = Iforw Zm 2 − Ibr
Iforw


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we obtain
  

2Iforw = Ibrm + Ibr (B2)

and using Eq. (39) from the main body of this lecture



we have
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and remembering that  Ibrm = (Iforw)m  we get
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and    
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APPENDIX C

From the main body of the lecture:
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and
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it follows that
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and
  

Vforw = IforwZ
Zm
Zm

= 1
2

Vm
Z

Zm
1+ Ibr

Ibrm







(C5)

substituting (C4) and (C5) into (C1):
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