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0. Introduction

Some tine ago it was shown that certain four-dimensional supersymmetric theories are

quantum mechanically superconformally invariant or, equivalently, finite. These theories

are: N = 4 Yang-Mills theory [1], a large class of N = 2 Yang-Mills theories coupled toN =

2 matter [2] and certain N = 1 theories [3]. It was also shown that in perturbation theory

the N = 2 Yang-Mills beta-function has only one-loop contributions [2,4]. Although the

significance of these results was not immediately apparent, a number of other developments

have taken place which have focused attention on these theories and which have relied

upon their conformal properties. In particular, the electro-magnetic duality conjecture of

Montonen and Olive [5] is believed to be most likely [6] to be valid in these superconformally

invariant theories as the couplings do not run under a change of scale and so any symmetry

that inverts the coupling makes sense at all scales [7]. It has also been suggested that there

may be further examples of N = 1 theories [24] and N = 2 theories [8] which have non-

trivial fixed points.

Recently [9], it has been found that one can determine the low energy effective action

of spontaneously broken N = 2 Yang-Mills theory. In practice this means that part

of the effective action which is a chiral sub-integral depending holomorphically on the

field strength superfield, A, of the unbroken U(1). Of course, this is only a part of the

full effective action (for the U(1) fields) which is an integral over all of superspace of a

function of A and Ā and derivatives and which in general has non-local contributions. The

determination of the low-energy effective action in [9] makes essential use of properties of

the theory related to electromagnetic duality.

An at first sight unrelated development was the work of BPZ [10], who solved a large class

of conformal invariant theories in two dimensions. This represented the first systematic

non-perturbative solution of a class of quantum field theories. The most likely theories

in four dimensions for which one might try to emulate this achievement are the theories

which have extended supersymmetry. An early signal that such progress may be possible
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was the discovery that at a fixed point the anomalous dimension of a chiral superfield was

fixed in terms of its weight under R-symmetry transformations [11].

Recently [12], the authors have investigated the consequences of superconformal invari-

ance for certain Green’s functions in rigidly supersymmetric theories in four spacetime

dimensions. It has been argued [12] that in superconformal theories one can solve for the

Green’s functions in the chiral or analytic sectors. Chiral sectors occur in N = 1 matter

and Yang-Mills theories and in N = 2 Yang-Mills theories and this result generalises the

analogous result [13] in two dimensions. Analytic sectors occur in N = 2 matter (coupled

to Yang-Mills) and N = 4 Yang-Mills theory. Indeed, in the latter theory a large class of

Green’s functions are analytic and so the theory is at least partially soluble.

Although N = 2 Yang-Mills theory is not superconformally invariant there are still

Ward Identities corresponding to superconformal transformations which have appropriate

anomalous contributions. In this paper we derive the anomalous superconformal Ward

identity and find the conditions that it implies for the low energy effective action of the

spontaneously broken theory. The latter has the form
∫
d4x

∫
d4θF (A)+ c.c, and we show

that the superconformal Ward identity implies that F satisfies

a
∂F

∂a
− 2F = 8πiβ1u.

for any gauge group, where β1 is the coefficient of the one loop beta function and a =< A >.

This constraint is indeed satisfied by the solution for F found by Seiberg and Witten. This

was first shown for the case of gauge group SU(2) spontaneously broken to U(1) in reference

[14] and for the SU(N), SO(N) and Sp(N) gauge groups spontaneously broken to their

Cartan subalgebras in the presence of certain N = 2 matter in references [15,16]. In these

papers [14,15,16], the above condition has been observed to hold phenomenologically, that

is, the authors have assumed the Seiberg-Witten solution with its associated hyperelliptic

curve and have derived the above simple condition from it. In this paper, for the first time

this condition, and therefore part of the information about the low energy effective action,

will be derived directly from the underlying field theory without assuming electromagnetic
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duality.

In order to derive this result, we give a new superspace formulation of the supercon-

formal currents and their corresponding Ward identities. It is well known [17] that the

supersymmetry and internal symmetry currents and the energy-momentum tensor belong

to the supercurrents Jαα̇ and J for N = 1 and N = 2 respectively. In a superconformal

theory, moreover, moments of the supersymmetry currents and the energy-momentum

tensor are also conserved. In section one, we construct a supermultiplet of moments by

combining all the superconformal currents and their parameters into a single superfield.

For N = 1 theories this superfield is fαα̇Jαα̇ where fαα̇ is a superfield that contains the

superconformal parameters. A more complicated expression is given for the case of N = 2

supersymmetry.

In sections two and three the form of the superconformal Ward identities are derived

for rigid supersymmetric N = 1 and N = 2 theories respectively. This is first done for

the Ward identities that involve the supercurrents Jαα̇ and J and then for the form that

involves all the superconformal currents and the associated parameters. The advantage of

this latter formulation is that it allows one to deal with all the superconformal symmetries

together in a simple way.

In section four, we apply the superconformal Ward identities to the spontaneously broken

N = 2 Yang-Mills theory and derive a superfield constraint on the Seiberg-Witten solution.

We find that one special case of this equation is the constraint equation given above.

We then derive an alternative form of this equation by replacing the anomaly part by a

derivative with respect to a conformal compensating field.

1. Currents in Supersymmetric Theories

In this section we review the currents that appear in N = 1 and 2 supersymmetric
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theories. We begin by considering a current corresponding to an internal symmetry. In

N = 1 supersymmetric theories such an internal symmetry current belongs to a real linear

supermultiplet L and the conservation condition is D̄2L = 0. For an N = 2 supersym-

metric theory, on the other hand, an internal symmetry current is a component of a real

symmetric superfield, Lij , which transforms under the triplet representation of SU(2).

The current conservation condition is Dα(iLjk) = 0. For both of these multiplets the in-

ternal (spacetime) currents occur at the θθ̄ level and so the superfields L and Lij have

dimension 2. We observe that an internal symmetry current has superpartners that have

no interpretation as conserved currents in spacetime.

Let us now consider the supersymmetry currents, {jαi}, i = 1, . . . , N , and the supermul-

tiplets they belong to. The supersymmetry variation of jαi has the form δjαi ∼ [jαi, εβjQβj ]

and must, when integrated, give the correct relation for the anti-commutators of two su-

persymmetry charges that occur in the supersymmetry algebra. We therefore conclude

that the supersymmetry current is in the same multiplet as the energy-momentum ten-

sor [17]. By extending this argument we find the supercurrent multiplet corresponding

to superconformal symmetry also includes the internal symmetry currents whose charges

appear in the supersymmetry algebra. For N = 1 there is only one such current, the R

current, while for N = 2 there is the R current as well as the currents corresponding to

the internal SU(2) symmetry. Proceeding in this manner one can systematically construct

the supercurrent multiplet associated with superconformal symmetry in a purely algebraic

fashion [30]. In addition to the conserved currents listed above one also finds that the

components of the supercurrent include certain moments of the energy-momentum tensor

and of the supersymmetry currents.

The N = 1 supercurrent is described by a real superfield Jαα̇. It has dimension 3 and

obeys, in the absence of any anomalies, the conservation condition

D̄α̇Jαα̇ = 0. (1.1)

For N = 2 the supersymmetry current belongs to a real scalar superfield J which has
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dimension 2 and which, again in the absence of anomalies, obeys the equation

DijJ = 0. (1.2)

where

Dij := DαiD
α
j . (1.3)

For both N = 1 and N = 2 superconformal theories, the parameters associated with

superconformal transformations can be combined in a superfield of parameters, fαα̇, which

is subject to the constraint

D(αifβ)β̇ = 0. (1.4)

Such a parameter determines a (real) superconformal Killing vector field Xf given by

Xf = fαα̇∂αα̇ + φαi∂αi − φ̄
α̇
i D̄

i
α̇ (1.5)

where

φαi := −
i

2
D̄α̇if

αα̇. (1.6)

By definition, a superconformal Killing vector field is one which preserves chirality in super

Minkowski space, i.e. one which satisfies

[D̄α̇i,Xf ] ∼ D̄α̇i. (1.7)

The components of fαα̇ can be defined to be given by the following superfields evaluated

at θ = 0:
vαα̇ := fαα̇|,

η̄α̇i :=
i

2
Dαif

αα̇|,

ηαi := −
i

2
D̄i
α̇f

αα̇|,

wij := [Dαi, D̄α̇j ]f
αα̇|,

(1.8)

where the vertical bar denotes evaluation of a superfield at θ = 0. It follows from equation

(1.3) that the fields vαα̇, ηαi and its complex conjugate obey the conformal Killing equation

and the spinor Killing equation respectively. That is,

∂(α(α̇vβ)β̇) = 0 (1.9)
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and

∂(α|α̇|η
i
β) = 0. (1.10)

Solving equations (1.9) and (1.10), one sees that vαα̇ contains translations, dilations and

special conformal transformations, while ηαi and its complex conjugate contain ordinary

(Q) and special (S) supersymmetry transformations. The x-independent field wij is the

parameter of internal symmetry transformations of the supersymmetry algebra.

In a conformal field theory, the energy-momentum tensor Tµν , assumed to be symmetric,

traceless and conserved, can be combined with the parameter of conformal transformations,

fµ, into a conserved current Jfµ , Jfµ := fνTµν , the conservation of Jfµ being a consequence

of the constraints on Tµν and the fact that fµ is a conformal Killing vector,

∂(µfν) =
2

d
ηµν∂ρf

ρ, (1.11)

where d is the dimension of spacetime. Similarly, in an N = 1 superconformal field theory,

the currents and their associated parameters can be neatly packaged into a real superfield

Jf = fαα̇Jαα̇. We observe that if Jαα̇ is not anomalous then Jf is a linear multiplet, i.e.

D̄2Jf = 0. (1.12)

We note that the superconformal currents and their parameters when packaged in Jf have

the same dimension and obey the same conservation equation as an internal symmetry

current L which was discussed at the beginning of the section.

In an N = 2 superconformal theory we may likewise combine all the superconformal

currents and their associated parameters into a real superfield Jfij which is symmetric in

its SU(2) indices i, j. This superfield is

Jfij = i

(
fαα̇DαiD̄αjJ +

1

2
(Dαif

αα̇)D̄α̇jJ −
1

2
(D̄α̇if

αα̇)DαjJ +
1

4
(DαiD̄α̇jf

αα̇)J

)
(1.13)

The coefficients in the above expression are determined by the requirement that

Dα(iJ
f
jk) = 0, (1.14)
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if the supercurrent J is conserved, that is, satisfies equation (1.2). Thus the N = 2

superconformal currents follow the same pattern as the N = 1 superconformal currents;

namely the superconformal currents and their parameters combine into a superfield which

is of the same type as an internal symmetry current.

In this paper, we want to consider theories which are classically superconformal invariant,

but which develop anomalies quantum mechanically. The theories of interest to us are

invariant under Poincaré and Q-supersymmetry transformations, but have anomalies in

some, or all, of the remaining superconformal symmetries. In the presence of anomalies

the supercurrent no longer obeys equation (1.1) or (1.2) which become modified. Although

there are several possible types of anomaly for N = 1 supersymmetric theories, we will

assume that the supercurrent Jαα̇ obeys the operator equation

D̄α̇Jαα̇ = DαS (1.15)

where S is a chiral superfield (D̄α̇S = 0). For N = 2 supersymmetric Yang-Mills theories,

we will show that the anomaly is of the form

DijJ = D̄ijS̄ (1.16)

where S is a chiral superfield, D̄α̇iS = 0.

Anomalies in the supercurrent modify the conservation equations (1.12) and (1.13). It

is straightforward to verify that if Jαα̇ has the conformal anomaly of equation (1.15) then

D̄2Jf = −D̄α̇f
αα̇DαS + ifαα̇∂αα̇S, (1.17)

where D2 = 1
2DαD

α, D̄2 = − 1
2D̄α̇D̄

α̇. The corresponding equation for N = 2 implies

that Jij obeys the equation

Dα(iJ
f
jk) = −

i

4
D̄α̇(ifα

α̇Djk)J = −
i

4
D̄(ij|(D̄α̇|k)fα

α̇S̄). (1.18)

2. N=1 Supersymmetric Ward Identities
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Let us consider anN = 1 supersymmetric theory which contains a set of chiral superfields

collectively denoted by ϕ, their conjugates ϕ̄ and the Yang-Mills potential V . The most

general renormalizable action is of the form∫
d4xd4θ ϕ̄egV ϕ+ Im{

τ

4π

∫
d4xd2θ tr(WαW

α)}+

∫
d4xd2θ U(ϕ) + c.c.. (2.1)

where U is the superpotential which is at most cubic in the chiral superfields and τ =

θ
2π + i4π

g2 .

We denote the effective action of this theory by Γ. We wish to consider the constraints

placed on Γ by superconformal symmetry, that is, by the superconformal Ward identity.

This subject has been studied extensively in the past, see for example references [18,19] and

references therein. Here we will give a simple derivation of the WI based on a superspace

version of Noether’s identification of the current. We shall ignore the complications which

arise due to gauge-fixing and ghosts as these will play no part in the applications in this

paper.

We therefore consider the variation of Γ under the superspace analogue of (infinitesimal)

local reparametrizations. The parameter of these transformations is a spinor superfield

Lα. The chiral superfield ϕ, which obeys a flat space chiral condition and has R weight q,

transforms under Lα transformations as

δϕ = −D̄α̇Lα∂αα̇ϕ− iD̄
2LαDαϕ+ q4ϕ

= −iD̄2(LαDαϕ− qDαL
αϕ),

(2.2)

where

4 = −∂αα̇D̄
α̇Lα + iDαD̄

2Lα. (2.3)

The Yang-Mills potential transforms as

δV = −i(D̄2Lα)DαV −
1

2
D̄α̇Lα∂α̇αV

= −iD̄2(LαDαV ) +
i

2
D̄α̇Lα[Dα,Dα̇]V + iLαWα + c.c.

(2.4)
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By definition, the supercurrent Jαα̇ couples to the supergravity superfieldHαα̇ at linearised

order in Hαα̇ in the form

2

∫
d4xd4θ Hαα̇Jαα̇ (2.5)

Since the transformation of Hαα̇ is given by

δHαα̇ = −
i

2
(DαL̄α̇ + D̄α̇Lα) (2.6)

the variation of (2.5) contributes

−i

∫
d4xd4θ D̄α̇LαJαα̇ + c.c. (2.7)

to zeroth order in Hαα̇. This variation must be cancelled by the variation of Γ under

the transformation of equations (2.2) and (2.4) and we will regard this variation as the

definition of the supercurrent associated with Γ. To be precise, we take the supercurrent

to be defined by

δΓ = i

∫
d4xd4θ (D̄α̇Lα)Jαα̇ + c.c. (2.8)

We now find an expression for Jαα̇ using the method explained above. From equations

(2.2) and (2.4) we find that

δΓ =

∫
d4xd4θ

{
{LαDαϕ− qDαL

αϕ}
δΓ

δV

+ (−iD̄2(LαDαV ) +
i

2
D̄α̇Lα[Dα,Dα̇]V + iLαWα)

δΓ

δV

}
+ c.c (2.9)

where q is the R weight of ϕ which must be 1
3 if we have one chiral superfield with a cubic

superpotential. If we restrict our attention to a U(1) gauge theory then gauge invariance

implies that

D̄2 δΓ

δV
= 0 (2.10)

and so we can discard the first term in the second bracket above. In what follows we will

consider the Abelian theory, but the modification to the non-Abelian case can be made.

Having identified the supercurrent Jαα̇ in terms of the variations, it is straightforward

to write down the Ward identity. For a superconformal theory, there are no anomalies and
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the Ward identity is given by setting the δΓ of equation (2.8) equal to that of equation

(2.9). For theories with superconformal anomalies the supercurrent Jαα̇ will obey the

operator equation (1.15) which is valid in Green’s functions. In recovering the Ward

identity from this operator equation we find additional terms which arise due to the fact

that the derivatives are outside the time ordering of the Green’s function so that they act

on the time ordering as well as the current. These extra (contact) terms are none other

than the variations of the fields, i.e. the δΓ of equation (2.9).

Taking the anomaly into account we therefore find that the Ward Identity for an N = 1

rigid supersymmetric theory for the above transformations is given by∫
d4xd4θ

{
(LαDαϕ− qDαL

αϕ)
δΓ

δϕ

}
+ (iLαWα)

δΓ

δV
− i(D̄α̇LαJαα̇) · Γ + c.c.

= +i

∫
d4xd4θ(LαDαS) · Γ + c.c. (2.11)

In this equation we have redefined the supercurrent by

Jαα̇ → Jαα̇ −
1

2
[Dα,Dα̇]V

δΓ

δV
, (2.12)

in order to obtain a supercurrent which is gauge invariant. The non-gauge invariance of

the supercurrent is an artifact of the way we have derived it. Essentially, we have used

the coupling of the theory to supergravity so that the superfields and their variations can

involve spinorial covariant derivatives that contain the supergravity superfield Hαα̇. We

have chosen the chiral superfield to obey a flat-space chirality condition; however, the

Abelian gauge invariance is realised with a chiral parameter Λ that satisfies D̄α̇Λ = 0

where D̄α̇ is the spinorial covariant derivative which involves Hαα̇. The flat space chiral

parameter Λ0, satisfying D̄α̇Λ0 = 0, is related to Λ by

Λ = Λ0 −
i

2
Hαα̇∂αα̇Λ0 + . . . . (2.13)

Gauge invariance of the effective action plus the lowest order supergravity coupling of

equation (2.5) implies that

δJαα̇ =
i

2
∂αα̇Λ0

δΓ

δV
+ c.c. (2.14)
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¿From this equation we can deduce the change (2.12) in Jαα̇ required to obtain a gauge-

invariant current.

¿From the Ward identity of equation (2.11) we can deduce the unintegrated supercon-

formal WI by functionally differentiating with respect to Lα. It is:

Dαϕ
δΓ

δϕ
− qDα

(
ϕ
δΓ

δϕ

)
+ iWα

δΓ

δV
− iD̄α̇Jαα̇ · Γ = −iDαS · Γ (2.15)

We can derive this Ward identity by the following argument. Given that the identity

contains only gauge invariant quantities it must involve only ϕ, ϕ̄,Wα and S and Γ. The

Ward identity consists of three types of term: terms that correspond to the variation of

the fields, a term of the form D̄α̇Jαα̇ · Γ and a term with the anomaly S. The last two

terms must be such that the anomaly equation (1.15) holds in Green’s functions. This

leaves only the first type of term which we can fix by using dimensional analysis and by

demanding that the coefficients agree with those of the free theory.

We now give an alternative form of the Ward identity that includes the parameters of

the superconformal transformations and involves the current Jf defined in section one.

The advantage of this formulation is that one can make direct contact with the variation

of the effective action under superconformal transformations and one can include all trans-

formations in one Ward Identity. The transformation of ϕ and V under superconformal

transformations are given by
δϕ = Xfϕ+ q4ϕ,

δV = XfV,
(2.17)

where Xf is a superconformal Killing vector (note that it simplifies when acting on chiral

fields) and

4 = ∂αα̇f
αα̇ −Dαφ

α. (2.18)

We can deduce the required form of the Ward identity by substituting

Lα = fαγ̇D̄γ̇δ
8(z − z′) +

1

2
D̄γ̇f

αγ̇δ8(z − z′) (2.19)
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into equation (2.11) to get

δϕ
δΓ

δϕ
+

(
fαγ̇WαD̄γ̇ −

1

2
D̄γ̇f

αγ̇Wα

)
δΓ

δV
− D̄2Jf = D̄α̇fγα̇DγS

− ifαα̇∂αα̇S +

[
1

3
∂αα̇

(
fαα̇ϕ

δΓ

δϕ

)
+
i

6
Dα

(
D̄α̇f

αα̇ϕ
δΓ

δϕ

)]
, (2.20)

where δϕ is given in equation (2.16). We note that the final term in brackets on the right

hand side is a total derivative.

Finally, we can find the integrated form of this equation by integrating over chiral

superspace and adding the complex conjugate. The result is

∫
d4xd2θ

{
δϕ
δΓ

δϕ
+

(
fαγ̇WαD̄γ̇ −

1

2
D̄γ̇f

αγ̇Wα

)
δΓ

δV

}
+ c.c. = 2i

∫
d4xd2θ4S · Γ + c.c.

(2.21)

where 4 is defined in equation (2.18). The current term does not contribute since

[D2, D̄2]Jf is a total space-time derivative.

An alternative form of the anomalous Ward identity [18,19] can be given by including,

in addition to the supergravity field Hαα̇, the chiral compensator φ. In this case, equation

(2.5) generalises to

2

∫
d4xd4θ Hαα̇Jαα̇ + {2

∫
d4xd2θφS + c.c}. (2.22)

The action of equation (2.1) plus the above term is invariant to zeroth order in the super-

gravity fields if we take Hαα̇ to vary according to equation (2.6) and we take the variation

of φ to be given by

δφ =
i

2
D̄2DαL

α. (2.23)

Clearly, when the matter fields satisfy their equations of motion then the variation of the

action implies that the supercurrent satisfies equation (1.15) from which we recognise S

as the part of the effective action which is not superconformally invariant, that is the

anomaly.
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Upon varying the effective action plus equation (2.22) we can read off, as before, the

coefficient of Lα to find the Ward identity with the anomaly automatically encoded. As

such, we recover equations (2.15), (2.20) and (2.21).

The chiral compensator φ contains the component fields (4+4) required to complete the

conformal supergravity multiplet of fields (8+8) to the old minimal Poincaré supergravity

theory (12+12). As such, it necessarily couples to the chiral anomaly as shown in equation

(2.22).

Clearly, we can keep the dependence of the effective action on the supergravity fields

Hαα̇ and φ and replace the presence of the current and the anomaly in the Ward identity

by suitable functional derivatives with respect to the supergravity fields and then set the

supergravity fields to zero. In particular, one can carry out this procedure for the anomaly

alone.

3. Ward Identities for N=2 Supersymmetric Yang-Mills Theory

The N = 2 supersymmetric Yang-Mills theory [20] is described by a complex scalar

superfield W which transforms under the adjoint representation of the gauge group. This

superfield is covariantly chiral, i.e. ∇̄iα̇W = 0, and satisfies the constraint

∇ijW = ∇̄ijW̄ (3.1)

where

∇ij = ∇α(i∇
α
j), (3.2)

∇αi is the spinorial covariant derivative including the gauge connection. The components

of the superfield W are a complex scalar field, spinor fields in an SU(2) doublet, the field

strength tensor of the spacetime gauge field, and an SU(2) triplet of auxiliary fields. We

shall denote the superspace field strength tensor in the Abelian case by A.
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The constraints (3.1) are solved in the Abelian case by

A = D̄4DijVij , (3.3)

where Vij = Vji is the (unconstrained) superfield prepotential that contains the spacetime

gauge potential [21]. The solution in the non-Abelian case is more complicated, but can

still be written in terms of an unconstrained superfield Vij [22]. Alternatively, one can use

the harmonic superspace formalism [23] which allows one to use a prepotential of dimension

zero, but we shall not consider this possibility here.

For the free theory, the action is given by∫
d4xd4θA2 + c.c., (3.4)

and the supercurrent is given by

J = AĀ (3.5)

It is easy to check that it is conserved, i.e. DijJ = 0, by virtue of the equation of motion

DijA = 0.

We now derive the Ward identity for the N = 2 supersymmetric Yang-Mills theory. We

could do this, as for the N = 1 case, by considering the variation of the action under

super reparametrizations. However, the structure of N = 2 superspace supergravity is

significantly more complicated than that of N = 1 supergravity and we shall not give

the details of this approach here. Instead, we shall derive the identity heuristically using

gauge invariance and dimensional analysis as we did for the N = 1 case. The Ward identity

must again have the same three types of term and the ones involving the current and the

anomaly must be consistent with the relation between the current J and the anomaly S̄

of equation (1.16) in the sense that this latter equation is realised as an operator equation

in Green’s functions. The first type of terms which are associated with the variation of

the effective action must contain
δΓ

δV ij
, a function of A and possible covariant derivatives

acting on these. We note that
δΓ

δV ij
has dimension two, but the dimension of all terms
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in the Ward identity is the same as that of the current term which is given by DijJ and

has dimension 3. Taking all this information into account and fixing the one unknown

coefficient by inserting the known current for the free classical theory we find that the

Ward identity is given by

Ā
δΓ

δV ij
−DijJ · Γ = −D̄ij S̄ · Γ (3.6)

Using the expression for Jij of equation (1.13) we find the Ward Identity which corresponds

contains all the superconformal currents and their parameters; it is given by

−
i

4
D̄γ̇(ifα

γ̇Ā
δΓ

δV jk)
+Dα(iJ

f
jk) · Γ = −

i

4
D̄(jk(D̄γ̇i)fα

γ̇S̄) · Γ. (3.7)

The effective action for the U(1) field will contain two types of term, one of which is

a full integral over superspace and is a function of A and Ā and the other which is an

integral only over a chiral sub-integral of superspace and is a function of A only. We can

write the latter contribution in the form

Γc =

∫
d4xd4θF (A) + c.c.. (3.8)

The above definition of F differs from that in the literature. To recover the usual definition

we should take F → − i
16πF . The absence of the usual factors simplifies all the following

equations. We now focus on the constraints imposed by the Ward identity on this latter

contribution since this is the low energy effective action that appears in the Seiberg-Witten

formalism. The variation of Γc with respect to V ij is given by

δΓc
δV ij

= D̄ij F̄ ′ +DijF ′, (3.9)

where F ′ =
∂F

∂A
.

Using the identity

ĀD̄jkF̄
′ = D̄jk(ĀF̄

′ − 2F̄ ) +Djk(AF̄
′) (3.10)
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we find that we can write the first term in the Ward identity of equation (3.6) when

restricted to Γc as

Ā
δΓc
δV ij

= D̄ij(ĀF̄ ′ − 2F̄ ) +Dij(AF̄ ′ + ĀF ′) (3.11)

Substituting this expression into equation (3.6) we find the Ward Identity can be written

as

D̄ij(S̄ + ĀF̄ ′ − 2F̄ ) = −Dij(J −AF̄ ′ − ĀF ′) (3.12)

We may rewrite this equation in the form

D̄ij Ĵ = Dij ˆ̄S (3.13)

where

Ĵ = J −AF̄ ′ − ĀF ′, and ˆ̄S = S̄ + ĀF̄ ′ − 2F̄ (3.14)

We can regard Ŝ and Ĵ as a redefined anomaly and current respectively. This remarkable

simplification of the Ward identity associated with the restricted effective action of equation

(3.8) is essential for the derivation of the identity which is the subject of this paper. We

now define a corresponding Ĵfij which is given by equation (1.13) except that we replace J

with Ĵ so that

Dα(iĴ
f
jk) = −

i

4
D̄γ̇(if

γ̇
αDjk)Ĵ (3.15)

Using equation (1.4), we find that

Dα(iĴ
f
jk) = −

i

4
(D̄γ̇(ifα

γ̇)D̄jk)
ˆ̄S = −

i

4
D̄(jk(D̄γ̇i)f

γ̇
α

ˆ̄S) (3.16)

To obtain the integrated Ward identity we act with
∫
d4xD̄ijDαk on equation (3.16)

and add the complex conjugate. The term involving Ĵfij does not contribute as it is a

space-time derivative. This leaves∫
d4xD̄ijDαkD̄(jk(D̄γ̇i)fα

γ̇ ˆ̄S) + c.c.

=

∫
d4xD̄ijD̄(jk

[
− iδki)∂αγ̇f

αγ + D̄γ̇i)D
k
αf

αγ̇
] ˆ̄S + c.c.

=
4i

3

∫
d4xd4θ̄{4̄ˆ̄S}+ c.c. = 0.

(3.17)
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In the last step we have used the identities

D̄ijD̄kl =
1

6
(δikδ

j
l + δjkδ

i
l)D̄

mnD̄mn, D̄α̇(kD̄ij) = 0, (3.18)

and the definitions ∫
d4θ̄ = D̄ijD̄ij , 4̄ = ∂αα̇f

αα̇ + D̄γ̇iφ̄
γ̇i. (3.19)

Rewriting (3.17) in terms of S using equation (3.14) and taking the complex conjugate, we

find the final result ∫
d4xd4θ4(A

∂F

∂A
− 2F + S) = 0 (3.20)

Later in the paper it will also be useful to consider the N = 2 analogue of introducing

the supergravity fields discussed for the case of N = 1 at the end of the last section. Of

most significance to us will be the rôle of the supergravity compensator. The (24+24)

set of fields of N = 2 superconformal supergravity can be compensated in a number of

ways to form a (40+40) set of Poincaré supergravity fields. However, in this procedure

one always adds a (8+8) chiral compensator which can be represented by a reduced chiral

superfield φr subject to the constraints ∆̄α̇iφr = 0, Dijφr = D̄ijφr. For a review of this

compensation mechanism we refer the reader to reference [29].

4. Application of the Ward Identity to Spontaneously Broken Yang-Mills

Theory

The authors of reference [9] considered N = 2 SU(2) Yang-Mills theory spontaneously

broken to U(1) and, assuming this theory to exhibit electromagnetic duality, were able

to derive an expression for the low energy effective action. One way of defining their low

energy effective action would be to regard it as that obtained by simply carrying out the

functional integral for all the massive fields, but other definitions have been suggested.

Whichever method is considered the low energy effective action is taken to be of the form

of equation (3.8) and so depends holomorphically on only on the N = 2 Abelian superfield

A.
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In the discussions of reference [9] two possible variables are discussed for the formulation

of the above effective action. The variable A is, as equation (3.8) makes clear, the one in

terms of which we can write the effective action in a manifestly N = 2 supersymmetric

manner. The other variable U is defined by U = 1
2W

2 where W is the N = 2 superfield

strength tensor that corresponds to the one massless Abelian gauge field that occurs in

the N = 2 action of the original SU(2) theory. For the free and perturbative theory the

relation between a = 〈A〉 and u = 〈U〉 = 1
2 〈W

2〉 is simply u = 1
2a

2. However, for the

full non-perturbative theory the relation between a and u is complicated. The variable a

viewed as a function of u contains singularities at isolated points. The determination of

the monodromies around these singularities provides the mechanism [9] for determining a

and
∂F

∂a
as a function of u and hence F as a function of a.

When discussing the N = 2 superconformal transformations of the effective action we

must realise the transformations in terms of the N = 2 superfield A since this is the

variable which carries the standard representation of N = 2 supersymmetry. As a result,

the superconformal Ward identity is given by equations (3.7) or (3.13) with the variable

A as indicated.

The anomaly S must be single valued with respect to modular transformations around

the singular points and must be a gauge-invariant object. Further, the anomaly S has

dimension two and is a gauge-invariant chiral superfield. The only possible candidate is

S =
c

2
W 2 = cU, (4.1)

where c is a constant. One can verify that the above S is consistent with the R transfor-

mations of N = 2 supersymmetry. The expectation value of the anomaly is therefore u.

A more detailed analysis shows that although one can have several possible anomalies in

the N=2 superfield current J , the only one possible for an N = 2 Yang-Mills theory is the

chiral one above.

We noted that this anomaly is equivalent to the addition of a chiral multiplet which is
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non-reduced i.e. one which does not satisfy the analogue of equation (3.1). The anomaly S

appears in the current equation (1.16) in the form DijS ≡ Lij and it is straight forward to

verify that this term satisfies the equations Dα(iLjk) = 0 = D̄α̇(iLjk) and so is a complex

linear multiplet.

Taking these facts into account equation (3.20) can be written as∫
d4xd4θ4(A

∂F

∂A
− 2F + cU) + c.c = 0 (4.2)

The chiral superfield 4 can be shown, using the constraints of equation (1.4), to be in-

dependent of space-time, but dependent on θ. The coefficients in the theta expansion are

the arbitrary parameters of the conformal group of equation (1.8). While not all the coef-

ficients of 4 are non-zero, equation (4.2) implies that the integral over a chiral superspace

of 4 times a superfield, which is a function of A, vanishes for any chiral superfield A. As

such, one can conclude that

A
∂F

∂A
− 2F = cU (4.3)

plus a constant term and a term linear in A. These latter terms are not consistent with

R symmetry and can also be discarded for reasons given later. Hence, if we consider the

fields to be independent of space-time or taking the vacuum expectation value of the above

equation we find that

a
∂F

∂a
− 2F = cu (4.4)

We can determine the constant c by considering the large field limit in which perturbation

theory is valid. In this regime u = 1
2a

2 and after rescaling F , as discussed below equation

(3.8), so as to agree with the rest of the literature we have F =
1

2
τcla

2 +
i

2π
a2 ln

a2

Λ2
. Hence

we recognise that c = 8πiβ1 where β1 is the coefficient of the one-loop β-function.

The above discussion generalises in a rather straightforward way to the case when the

N=2 Yang-Mills theory has gauge group G spontaneously broken to U(1)r where r is the

rank of G. The Ward identity of equation (3.6) is the same except that the first term is now

Ān
δΓ
V
ij
n

where An and V ijn , n = 1, . . . r are the chiral superfield strength and prepotential
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respectively of the nth U(1) factor. The Ward identity can be manipulated as before with

the appropriate label and sum over n added to certain terms. The expectation value of

the anomaly is given by < S >= 2c < TrW 2 >≡ cu and so we find the constraint

r∑
m=1

am
∂F

∂am
− 2F = 8πiβ1u. (4.5)

It is straightforward to rederive this equation in the presence of N = 2 matter and we

hope to do carry this out elsewhere. Equation (4.5) is in agreement with references [15] and

[16] where it was derived using the hyperelliptic curve and the Whitham dynamics asso-

ciated with the theory, but was only established for the gauge groups SU(N), SO(N)and

Sp(N) with certain N = 2 matter.

In this case of a N = 2 theory with no superconformal anomaly we can repeat the above

steps and then F will obey equation (4.3), but with no right hand side as β1 = 0. This

equation then determines that F = dA2 where d is a constant. Hence in the case of the

non-anomalous theories equation (4.4) determines the chiral part of the effective action.

This is in agreement with the argument given in reference [13] that found that the Greens

functions of the chiral sector of these theories are determined by superconformal invariance

up to constants. In the case of N=2 Yang-Mills, one can readily show, by explicitly applying

superconformal transformations to the Green’s functions and demanding that the result

vanish that only the two point Green’s function is non-zero.

The appearance of an elliptic curve in the non-perturbative solution of Seiberg and

Witten [9] for N = 2 Yang-Mills theory prompted the authors of references [25] to associate

an integrable system with the non-perturbative solution. In particular, they identified the

solution with Whitham dynamics. In reference [26], it was further shown that the Seiberg-

Witten solution was only be identified with Whitham dynamics provided the function F

obeyed the equation

a
∂F

∂a
− 2F = −

∑
n

Tn
∂F

∂Tn
. (4.6)
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where the Tn, n = 0, 1 . . . are the times of the Whitham dynamics. It has been argued

[15,16] that one can set Tn = 0, n > 1 and, in the presence of massless N = 2 matter,

T0 = 0, leaving only one the term containing T1 on the right hand side. In the explicit

examples studied [15,16], it has been found, using the explicit form of the hyperelliptic

curve that this term does indeed equal 8πiu as required for agreement with equation (4.5).

This equation has also been found [27] to play an important rôle in the derivation of N=2

Yang-Mills theory from superstring theories.

The alternative form of the condition of equation (4.6) also has a natural interpretation

in terms of the derivation given in this paper. As pointed out at the end of section two we

can, in N = 1 supersymmetric theories, replace the anomaly term by a suitable derivative

with respect to the supergravity conformal compensating chiral superfield. For the case of

N = 2 supersymmetric theories with the anomaly structure of equation (4.1), it is natural

to take the conformal supergravity compensator to be a non-reduced chiral superfield

which we also denoted by φ. The coupling between the anomaly and the compensator

is then given by κ
∫
d4xd4θφS. We observe that adding this term to F and functionally

differentiating with respect to φ and setting φ = 0 contributes the term U in equation

(4.3). In particular, differentiating with respect to the highest component, denoted t1,

of S will result in u. Hence we can replace the anomaly in equation (4.3) and the term

u in equation (4.5) by differentiation with respect to φ and t1 respectively and as such,

we can cast equation (4.5) in the form of equation (4.6) if we set t1 ∝ lnT1. The above

non-reduced chiral compensator includes the reduced chiral compensator φr, discussed at

the end of section three that plays such a special rôle in the geometry of N = 2 couplings

to supergravity. Presumably, the other times Tn, n > 1 that appear in equation (4.6) are

related to the components of other ”compensating” superfields required to construct the

superstring. We will return to a more detailed analysis of this point and the associated

supergravity theory in a subsequent paper [28].

For the non-conformal theory, equation (4.4) does not determine the chiral effective

action of equation (3.8) completely. In particular, one is missing the knowledge of u as a
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function of A which, if provided, would allow one to solve to write the above differential

equation in terms of only one variable. Very roughly speaking we are missing about half

the information contained in the solution. Seen from the perspective of reference [26], we

are missing the Whitham dynamics itself. It would be interesting to also give a derivation

of this missing information from the basic theory.

Some papers [16,26] have observed that the constraint of equation (4.6) looks similar to

the L0 constraint found in matrix models. It is thought to be true in matrix models that

the entire solution is given by the imposition of all of the positive Virasoro constraints,

i.e. Ln, n ≥ 0. One might also hope that a corresponding statement is true for the N = 2

Yang-Mills theory and, in view of the work of the current paper, one may wonder if the

constraints Ln, n > 0 correspond to Ward Identities for some additional, possibly broken,

symmetries of the theory.

It would also be interesting to attempt to obtain information about N = 1 supersym-

metric theories using arguments analogous to those used in section four, but starting from

equation (2.21).
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