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1 INTRODUCTION

Analysis of bunch behaviour under the influence of space
charge or inductiveimpedancein circular machines, besides
numerical ssimulations, isusually based on two approaches.
Thefirst, dealing with potential well distortion, uses station-
ary solutions. Secondly, stability analysis applies perturba-
tiontheory, small deviationsfrom stationary solutionsbeing
considered. In general there are no regular methods to de-
scribe the bunch motion in aself-consistent way. However,
the dliptic distributionfunction plays a specid rolein that
solutions can sometimes be obtained in analytic form, [1]-
[3].

A sdf-consistent solution of the Vlasov equation for
bunch transport with space charge was found for an dlip-
tic distribution in [4]. Numerical integration of the enve-
lope equation derived thereiswidely used to analysethe be-
haviour of space charge dominated bunches, [5]-[7].

Below we present closed form analytic solutions defin-
ing single particleand bunch motionwithtimeinamachine
with reactive impedance, dso found for an dliptic distri-
bution function, [8]. With RF off the system of equations
paralels that describing the motion of abody under grav-
itational force with integrals of motion similar to Kepler's
laws. Thismode gives different types of solutions. Defo-
cusing induced voltage makes debunching faster. A focus-
ing voltage slows debunching, but above some criticd in-
tensity leadsto bunch shape oscillations. Theseresultswere
used for impedance measurements in the CERN SPS, [9].
With RF on the amplitude and frequency of coherent oscil-
lations are calculated for abunch far from equilibrium.

2 MAIN EQUATIONS

We consider the motion of an intense bunch, short compared
with the RF period, after injectionat ¢+ = 0 into a machine
with a reactive impedance (ImZ /n = const). The initid
distribution function is chosen to be

F=F(1—Ho/H)"? Hy< Hy, =0, (1)

with paraboliclinedensity A(6y) = Ao (1 —62/62,). Here
¢ is an azimuthal coordinate measured from the center of
thebunchand ¢ = df/dt. (0,,, 0,,) are the maximum val-
ues of (g, 0y), valuesat ¢t = 0. We assume that the initial
distribution function of the injected bunch is the function
of the Hamiltonian 1, of the injector. For short bunches
Ho = 02 4+ Q%02, where Q = 0., /0., = 21/ 70(Apim /Ds),
70 = 20,,/wo is the length in seconds of the injected

bunch, £Ap,,/p, istheinitial maximum relative momen-
tum spread inthe bunch, n = 1/9? — 1/+% and w, isthe
revolution frequency.

The equation governing the particle motion has the form
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wherew, isthelinear synchrotronfrequency inthelow in-
tensity case, and intensity effectsfor the bunchwith N parti-
clesarerepresented by the parameter ¢ = sgn(nlm2) Q? =
(6ne? N) /(7 Bepstd) ImZ/n.

We will show below that for the particle with initial co-
ordinates (6, 0y) solutions of (2) can be found in the form

9(15) 0o y1(t) + 6:'0 y2(t), (3)
() Oo 91(t) + 0o 92(2), 4

where y; and y, are unknown functionsof timewith initial
conditions: y1(0) = 1,y2(0) = 0,51(0) = 0,52(0) =
1. We suppose for the moment that the Wronskian of this
systemisconstant, thenfrominitia conditionsiW = ;32 —
Y1y2 = L.

To obtain the distribution function at moment ¢ we ex-
press (6, 6p) as functions of (¢, #) and time and substitute
them into the initial distribution function (1). Integration
over ¢ givesthelinedensity A(#,¢) and (2) becomes
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wherer = r(t) = (y7 + Q%y2)'/?. Asonewould expect
for an inductiveimpedance (ImZ > 0) the induced voltage
defocuses (¢ > 0) above transition and focuses (¢ < 0)
below transition. The requirement that (5) should be valid
for arbitrary valuesof (65,0,) givesasystem of equationsfor
y1 and y». In new variables (r, &) defined by y; = rcosé
and y, = rsin &/, it can bewritten as:

ré 421 = 0, (6)
%—r52+w§0r—:—2 = 0. (7)

This system has first integrals of motion:
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For w,o = 0 thissystem of equationsis also known to de-
scribethe motion of abody inthe (y;, 2y-) plane under the



influence of gravitation with an attractive force for ¢ < 0
and repulsive for ¢ > 0. The first expression describes
conservation of energy inthe system and the second corre-
sponds to the law of areas (second law of Kepler). From
initial conditionsweget Cy = Q2 + w?; + 2e and Cy = Q.
As one can see the Wronskian W = r2£/Q = 1 satisfies
our initial assumption.

The functions y; (¢) and y»(¢) aso define a phase space
distributionwhich is a time dependent solution of the non-
linear Vlasov equation. Note that equation (7) (with & re-
placed by 2/r?) was obtained as an envelope equation in
[4]. However itsfurther analysis, to the best of our knowl-
edge, was restricted to applying perturbation theory in the
stationary case or to numerical integration.

Theintegralsof motion found above alow usto describe
bunch motion by analysis of the equation

52
U =0,
which can be considered as the equation of motion of some
particle with the coordinate » in the potential

(10)
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wherea = 1+ 2¢/Q? and s = w?,/Q?. Herer(t) isa
positivedefined functionwiththeinitia conditionr(0) = 1,
givingthevariationwithtimeof bunchlength () = 7or(¢)
or of pesk linedensity A, (t) = Apo/r(t).
Solutionsof equations (8)-(9) can be written as
YRR R I
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where p(r) = (r — 1)[1 + ar — sr?(1 + r)].
Bunch shape variation is fully presented by the function
r(t) while for single particle motion described by expres-
sions (3) and (4) we need to know the phase £ (t) aswell.

U(r) (1)

(12)

3 ANALYSISOF SOLUTIONS

The character of the solutions depends on the relative val-
ues of 2, w,o and Q.. InFigs.1,2 we show some examples
of potential /() and the solutionsfor different situations
analysed below.

Let usstart first withthe RF of f (s=0) case. If thefunction
r(t) isknown, the phase ¢ can be found from expression

r[(Q% + €)cosé — ] = Q7. (13)
a= 1. For low intensity (¢ = 0) thesolutionis
r(t) = (1+ Q%) (14)

When ¢ # 0, thereare two main types of solutionswhich
correspond to infinite and finite (periodic) motion.

a> 0. Motionin thiscase isonly infinite, which means
continuous debunching (r — oo witht — oo):

p(r)  a-—1 ) |24/ap(r) + 2ar + 1 — a|
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Figure 1: Effective potentia U (r) for different typesof in-
duced voltage with RF off (s = 0) and on (s = 1).
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Figure 2: Variation of normalised peak line density 1/r for
different types of induced voltage with RF off (s = 0).

a= 0. Thisisapoint of bifurcation where the character
of the solutionis changing. From (12) we have

Qt = 2(r — 1)'2(r +2)/3. (15)

a< 0. Thepotential U/ (r) hastheform of apotential well
and the solutions describe bunch shape oscillations with
time. Thisis possible only for a focusing type of induced
voltage (nImZ < 0) when Q2 > Q2 /2.



For —1 < a < 0 the solution has the form

p(r) 1—a . 2ar+1—a =
Qt— a + 2a|a|1/2 arCSIHW—i
(16)
Oscillations begin with the bunch length increasing, so that
1<r <1/]al.
The period of the bunch shape oscillationsis
7 (1 —a) 2702
I= Q |a]?/2 (202 - Q2)3/2° ("

A bunch with an intensity such that « = 0 (Q%/Q% = 1/2)
has an infinitely large oscillation period and continuously
debunches. The period and amplitude of the oscillationsde-
crease with growing |a|. Ate = —1, period 7' = (27)/Q
but the oscillation amplitudeis zero.

a= -1, (2? = Q?). Thisisthe equilibrium situation
whentheinitial bunchismatched to theinduced voltageand
isin the minimum of the potential well U () with solution
r = 1, not changing with time.

a < —1. Thisisthe high intensity case with Q? > Q2.
Oscillations now start with the bunch initialy shortening
(1/]a] € r < 1). Thesolution has aform similar to (16)
with a period defined by (17).

Now let us consider the case with RF on.

Without intensity effects (¢ = 0) the solution
s+1  s-— 1/2

r(t) = +

1
5 5 cos(2wsot)

(18)

describes pure quadrupole oscillations of the mismatched
bunch (s # 1) withfrequency 2w, and »(¢) = 7/ varing
between ro = 1 and r, = 1/+/s. This“low intensity” solu-
tion (the same as (14) in the RF off case) isindependent of
theinitial distribution, if only it isafunction of the Hamil-
tonian H, of linear synchrotron motion.

For the high intensity the expressions (12) can be written
in an analytic form using dliptic integrals of the first and
third kind, [8]. The solutions(¢) have a shape similar to
the low intensity case (18), however the amplitude and fre-
guency of the oscillations depend on bunch intensity.

The positive roots of the equation U/ (r) = 0 are fixed
points which define maximum and minimum values of the
bunch length during the oscillation. One of the roots is
r = 1. Anocther solution, r,, can be presented in the im-
plicit form

€ (1+7y)(sr2 —1)
Q2 2r, ’ (19
Depending on the value of RF voltage and intensity, r, can
belessor morethan theinitial value 1, which meansthat the
bunch shortens or lengthens during the oscillation.

The equilibrium state of the bunch is defined by the min-
imum of the potential well: U'(r.,) = 0. The characteris-
tics of this particular point in the solution are well known,
[1]-[3]. Thevaluer., can be obtained from equation

4
€ 5T, -1
— = 20
Q2 Tegq (20)

Theinjectedbunchis"matched” totheexternal plusinduced
voltage when Q2 = w?;, — ¢. Otherwise it will perfom os-
cillationsaround r., with amplitude , defined by (19).
The analytic form for the period of the bunch shape oscil-
|ations containscompl ete el lipticintegral sof the second and
third kind. The calculated coherent frequency w. = 27 /T.
as a function of intensity is shown in Fig.3. For the fo-
cusing type of induced voltage (¢ < 0) w. changes very
rapidly, whilefor e > 0 it hasaflat minimum. For s = 1
the frequency shift doesn’'t exceed 10% of the low inten-
sity valuewithw, = 1.86w, a Q. = w,o (when induced
voltage equals external voltage). Thisis closeto the value
w, = 1.84w,, measured in [7] and considered there as “a

mystery”.
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Figure 3: Coherent frequency of bunch shape oscillalations
Aw,; = (w, — 2wsg)/wso 8safunction of intensity param-
eter ¢/Q? for different vaues of RF voltage (s).

In our model particles have no synchrotron frequency
spread. From equation (5) the so called “incoherent” syn-
chrotron frequency isw? = w2, — ¢/r3(t). Thisincoher-
ent frequency is modulated by the coherent oscillation fre-
quency w,. with depth (1 — 1/73).
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