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ABSTRACT

The restrictions of target—space duality are imposed at the perturbative level
on the holomorphic Wilsonian couplings that encode certain higher-order
gravitational interactions in N = 2, D = 4 heterotic string compactifications.
A crucial role is played by non-holomorphic corrections. The requirement of
symplectic covariance and an associated symplectic anomaly equation play
an important role in determining their form. For models which also admit
a type-II description, this equation coincides with the holomorphic anomaly
equation for type-II compactifications in the limit that a specific Kahler-
class modulus grows large. We explicitly evaluate some of the higher-order
couplings for a toroidal compactification with two moduli 7" and U, and we

express them in terms of modular forms.

July 1996
CERN-TH/96-182

Lemail: bdewit@fys.ruu.nl, cardoso@suryall.cern.ch, luest@qftl.physik.hu-berlin.de,

mohaupt@qft2.physik.hu-berlin.de, sjrey@phyb.snu.ac.kr


https://core.ac.uk/display/25198921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Recently, substantial progress has been achieved in establishing various types of strong—
weak coupling duality symmetries in superstring theories, such as S-duality of the four-
dimensional N = 4 heterotic string [1, 2, 3] and string—string dualities between the
heterotic and type-II strings [4, 5, 6]. In fact, it now seems that many of the known
superstring theories are related to each other either by non-perturbative strong—weak
coupling duality and/or by perturbative target—space duality. It seems that all these
different string dualities can be understood in a unified manner in the new framework of
either M-theory [5, 7] or F-theory [8].

One interesting case of string—string duality is the duality between heterotic and type-
IT strings with N = 2 supersymmetry in four space-time dimensions. Such theories
exhibit a non-perturbative structure which, in the point—particle limit, contain [9] the
non-perturbative effects of rigid N = 2 supersymmetric field theories studied in [10]. A
large class of N = 2 heterotic vacua in four dimensions can be obtained by the compacti-
cation of the ten-dimensional heterotic string on K3 x T,. The corresponding N = 2
type-II vacua are constructed by compactifying the ten-dimensional type-II string on
suitably chosen Calabi—Yau three-folds. This string—string duality has been tested in
several models with a small number of vector supermultiplets, and it has successfully
passed various non-trivial explicit checks [6],[11]-[16]. Most of these tests were based
on the comparison of lower-order gauge and gravitational couplings [17, 18, 19] of the
perturbative heterotic string with the corresponding couplings of the dual type-II string
in some corner of the Calabi—Yau moduli space. That is, it was shown that the pertur-
bative heterotic prepotential 7(®) and the function F() (which specifies the non-minimal
gravitational interactions involving the square of the Riemann tensor) agree with the
corresponding type-II functions in the limit where one specific Kahler-class modulus of
the underlying Calabi—Yau space becomes large. A set of interesting relations between
certain topological Calabi—Yau data (such as intersection numbers, rational and elliptic
instanton numbers) and various modular forms has emerged when performing these tests

20, 16].

In order to show that a given N = 2 string model has two dual descriptions, both a
heterotic and a type-II description, it is important to also verify whether string—string
duality holds for higher-order (nonminimal) gravitational couplings. A particularly in-
teresting subset of such couplings is based on chiral N = 2 densities which involve the
square of the Riemann tensor multiplied by powers of the graviphoton field strength.
These invariants take the form F© R2T2¢-1 where T is related to the N = 2 gravipho-



ton field strength in a way we will specify later, and F is a function which depends on
the vector moduli. For type-II string compactifications, it was shown in [21] that these
higher-order couplings satisfy a holomorphic anomaly equation derived for the topological
genus-g partition functions of twisted Calabi—Yau sigma models [22]. If a given type-II
model is to have a dual heterotic description, then the heterotic higher-order gravita-
tional couplings should satisfy similar holomorphic anomaly equations. For the case of a
particular model with gauge group U(1)3, the so called S-T model, it was shown in [23]
that some of the heterotic higher-order couplings indeed satisfy the anomaly equations

of [22], at least at the perturbative level.

On the other hand, target—space duality symmetry is a manifest symmetry at weak
string coupling in heterotic string compactifications. Hence, this symmetry should be
encoded in the perturbative heterotic prepotential as well as in all the gravitational cou-
plings F@. These target-space duality transformations constitute a subgroup of the
N = 2 symplectic reparametrizations. However, the (holomorphic) Wilsonian couplings
F@ do not correspond directly to physical quantities and therefore are not themselves
invariant under target—space duality transformations. In fact, it turns out that the holo-
morphic couplings do not transform as functions (or rather, sections) under symplectic
reparametrizations and non-holomorphic terms are necessary in order to obtain quanti-
ties that do transform in a covariant form [24]. For these quantities one can then easily
formulate the requirement of target—space duality invariance, which, as it turns out, can
be translated into certain complicated restrictions on the original holomorphic functions.
A particular proposal for the minimal non-holomorphic corrections required for symplec-
tic covariance, was presented in the second paper of [24], where it should be noted that
this construction does not exclude the possibility of additional non-holomorphic terms
as long as they constitute an independent symplectic function. The result turns out to
satisfy a certain holomorphic anomaly equation, which henceforth will be referred to as
the ‘symplectic’ anomaly equation in order to distinguish it from the anomaly equation
of [22].

As alluded to above, holomorphic anomaly equations can be derived in the context of
topological field theories. They can also be understood in a space-time context as result-
ing from the propagation of massless modes. For those heterotic N = 2 models admitting
a type-1II description, we can make use of string—string duality and consider the anomaly
equation of [22] in the limit where one of the type-II Kéhler-class moduli is taken to be
large so as to make contact with the perturbative heterotic description. Interestingly, in
this limit the anomaly equation of [22] coincides with the symplectic anomaly equation

of [24]. We further demonstrate that, in the heterotic weak-coupling limit, this anomaly



equation is consistent with target—space duality transformations. In doing so, one has
to take into account that, at the one-loop level, the dilaton field is no longer invariant
under target—space duality transformations and neither is the so-called Green—Schwarz
term (describing the mixing of the dilaton field with the moduli), which also appears in
the anomaly equation. We show that these two effects compensate each other, and by
reformulating everything in terms of the invariant dilaton field and the invariant Green—
Schwarz term [17], the results become manifestly covariant under target—space duality

transformations.

In order to elucidate the above observations, we will consider the so-called S-T-U model
in detail. This is a heterotic rank-4 model, that is, a model with gauge group U(1)*, which
is believed to have a dual type-II interpretation [6]. We will solve the relevant anomaly
equation in the heterotic weak-coupling limit for the higher-order gravitational couplings
F@eov and FG®eov  We will show that the results for the covariant non-holomorphic
couplings F@ v and FG) can be cast in a form that is explicitly covariant under
target—space duality transformations by expressing them in terms of modular forms. In

€%V one encounters holomor-

general, when solving for the non-holomorphic couplings F(9)
phic ambiguities [22], which cannot be fixed unless further inputs are provided. Interest-
ingly, for the S-T-U model, F?) < is free from these holomorphic ambiguities, because
target—space duality covariance and the knowledge of the leading holomorphic singular-
ities, that are associated with known gauge—symmetry enhancement points/lines, fixes

¢V provides one with

its structure completely. An unambiguous determination of F®)
information of genus-2 instanton numbers for the corresponding dual Calabi—Yau model
WPy 12812(24). This is an example of the utility of the second-quantized mirror map
[25]. If the higher F@W " could also be determined unambiguously, then one would in
principle be able to obtain information about the higher-genus instanton numbers on the

dual type-II side, about which not much is known.

This paper is organized as follows. In section 2 we will discuss the projective trans-
formation properties of the higher-order couplings F@. In section 3 we discuss their
behaviour under symplectic reparametrizations and extend the discussion of the sym-
plectic anomaly equation given in [24]. We will also provide the explicit solutions to the
symplectic anomaly equation for a specific class of N = 2 effective field theories based
on a cubic prepotential. In section 4 we test string—string duality by showing that the
symplectic and the holomorphic anomaly equations agree with each other in the heterotic
weak-coupling limit. We then solve the holomorphic anomaly equations for the heterotic
higher-order couplings F® and F® in the S-T-U model. When solving the anomaly

equation for F®  we will properly take into account the Green-Schwarz term which



arises as a dilaton—moduli mixing term in the one-loop prepotential. We present our
conclusions in section 5. We refer to the various appendices for additional information

on some of the more technical aspects of our calculations.

2 The holomorphic sections F9)(z)

Consider an N = 2 supersymmetric effective field theory based on vector supermultiplets
with generic couplings to supergravity, both of the ‘minimal’ and the ‘nonminimal’ type.
The latter incorporate interactions of vector multiplets with the square of the Riemann
tensor and are based on the Weyl multiplet: an N = 2 (reduced) chiral superfield W;{,,
which comprises the covariant quantities of the conformal supergravity sector.? This
superfield is antisymmetric in both types of indices and anti-selfdual as a Lorentz tensor.
Besides the graviton and gravitino field strenghts, the covariant quantities consist of the
field strengths of the gauge fields associated with the chiral SU(2) x U(1) automorphism
group of the N = 2 supersymmetry algebra, and an auxiliary spinor, scalar and tensor
field. The anti-selfdual part of the latter, denoted by 777

b, equals the lowest-0 component

of W;{, The Riemann tensor resides at the §%-level, modified by terms proportional to
Topi; Te, as well as the SU(2) x U(1) field strengths. The highest-6 term contains second

derivatives of Tpp;; [26].

It is instructive to compare the Weyl multiplet to the vector supermultiplet. The co-
variant quantities of the latter constitute a reduced (scalar) chiral field (i.e., the super-
field strength), whose lowest-6 component is the complex scalar of the vector multiplet.?
We denote these scalars by X!, where the index I labels the various vector multiplets
(I =0,1,...,n). Supergravity couplings of these multiplets depend sensitively on their
assignment under dilatations and U(1) transformations. As it turns out 7T} and the
scalar fields X! share the same dilatational and U(1) weights, equal to +1 and —1, re-
spectively. Obviously, their complex conjugates, the selfdual tensor T;;,; and the scalars

X7, carry opposite U(1) weights.

From the Weyl multiplet one constructs a scalar chiral multiplet of weight 2, by taking its
square W? = (W;{)SU)Q Owing to its tensorial structure no other independent products
of W can appear in a chiral scalar density. The general ‘nonminimal’ coupling of vector
multiplets and supergravity is now encoded in a holomorphic function of the X’ and W2,

A consistent coupling to supergravity requires this function to be homogeneous of second

2The reduction of the Weyl multiplet is implemented by the following (linearized) constraint,
Im (D;0°*D; W;{)) = 0, where i, j are chiral SU(2) indices and a, b denote Lorentz indices [26].
3For the superfield strength ® the reduction is effected by the superspace constraint Im (DiDj <I>) =0.



degree [27],
FOX, N*W?) = N F(X,W?). (2.1)

One may expand F' in powers of W2 and write

F(X,W?) = i F9(X) W22, (2.2)

The coefficient functions F(@ are holomorphic homogeneous functions of the X! of degree
2—2g. In this paper we intend to study the implication of target space duality invariance

for these quantities in certain string compactifications.

The function F©, which is thus homogeneous of second degree, determines the self-
interactions of the vector supermultiplets with ‘minimal’ coupling to supergravity. Hence-
forth we drop the superscript (0) and simply write F'(X); to avoid confusion we will be
careful and indicate the arguments X and W? whenever referring to the full function
F(X,W?). Initially the action takes a form that is invariant under local dilatations. As
a result of this, the coefficient of the Ricci scalar contains a field-dependent factor pro-
portional to i(XT Fy — X F;).* Without loss of generality we can apply a local dilatation
to set this coefficient equal to the Planck mass such as to obtain the Einstein—Hilbert
Lagrangian. Hereby the scalar fields will be restricted to an n-dimensional complex hy-
persurface. It is then convenient to parametrize the scalars in terms of holomorphic
sections X7(z) depending on n complex coordinates z*, which describe the hypersurface

projectively. In terms of these sections the X' read
X' = mpjanac €252 X1 (2). (2.3)

In order to distinguish the sections X(z) from the original quantities X!, we will always
explicitly indicate their z-dependence. The overall factor exp[%K | is chosen such that
i(XTFr — XT Fy) = m3,,,.q.. With this requirement K(z, z) equals

K(z,7) = —log (iX'(2) Fi(X(2)) — iX"(2) F1(X (%)) , (2.4)

and coincides with the Kahler potential associated with the target—space metric for the
complex fields z4.
As mentioned above, the sections are defined projectively, i.e., modulo multiplication by

an arbitrary holomorphic function,

X(z) — fD X1(2). (2.5)

4We use the standard notation where Fr ;... denote multiple derivatives of F (X) with respect to X.



These projective transformations induce corresponding Kéhler transformations on the
Kahler potential,

K(z,2) — K(2,2) — f(2) — f(2). (2.6)
On the original quantities X’ the transformation (2.5) induces a phase transformation.
This U(1) transformation acts on all quantities that carry nonzero chiral weight. Obvi-

ously, the consistency of the above formulation depends on the presence of the aforemen-
tioned local U(1).

Eventually one has to fix the parametrization of the holomorphic sections (i.e., impose
a gauge), after which the freedom to perform the transformations (2.5) disappears. A
convenient way to do this, is by choosing so-called special coordinates corresponding to
X%2) = 1 and X4(z) = 2. In that case we have |X°> = m3, . exp[K(z,2)]. In
the context of a specific holomorphic parametrization, certain transformations of the
holomorphic sections will be accompanied by corresponding projective transformations

in order to ensure that one remains within the chosen gauge.

Without the dependence on W? the U(1) gauge field can be integrated out straigthfor-
wardly, which leaves the local invariance intact. With the interactions to W? the inte-
gration over auxiliary fields is more subtle and can be done iteratively order—by—order in
the inverse Planck mass. To preserve supersymmetry, elimination of the auxiliary fields
should be postponed until the end. For future reference we give the value of the auxiliary

field T

ab>’ y
21eY

T =- [XI/\_/’IJFJI;J - FIF(;bI} e (2.7)

ml%lanck
Here NV is the matrix that appears in the kinetic terms for the gauge fields, which satisfies

N1;X7 = F;. Note that the first term is of order 1/mpjane by virtue of (2.3); the ellipses
denote fermionic terms and terms that are suppressed by additional negative powers of
Mplanck; the latter arise as a result of the nonminimal supergravity interactions. Because
T is a superconformal background field, the expression (2.7) should be insensitive to
symplectic transformations of the vector supermultiplets, which we will discuss in due
course. This is indeed the case, because both (X', F;) and (F,,;', Ny F;,*) transform
as symplectic vectors. While F; corresponds to the (generalized) electric and magnetic
induction fields, N7 JFl;bJ describes the (generalized) electric displacement and magnetic
fields.

Under supersymmetry the gravitino fields do not transform directly into the vector fields,
but into the auxiliary field T'. Therefore, the field-dependent linear combination of the
fields strengths given in (2.7) defines the graviphoton field strength.

Let us now return to the case where interactions with [I¥2]¢9 are taken into account. For

6



g > 1 the presence of the vector multiplets is crucial in order to compensate for the lack
of conformal invariance of [W?]9. The Lagrangian based on the chiral superspace integral
of just W? is superconformally invariant; its full nonlinear component form can be found
in [26]. The real part leads to the supersymmetric extension of the square of the Weyl
tensor and should be regarded as the action of conformal supergravity. Its imaginary
part is a total divergence whose space—time integral leads to a topological quantity, the
Hirzebruch signature. The action contains the standard gauge—invariant kinetic terms
for the SU(2) x U(1) gauge fields and a kinetic term for the tensor field 7. There is

only one (scalar) field that appears in this action as an auxiliary field without derivatives.

With the interactions to the vector multiplets we introduce further modifications. The
square of the Weyl tensor now acquires modifications by vector multiplet scalars and the
tensor field of the form FW(X) (T%e;;)29~Y R?, but there will also be modifications of
the kinetic terms for the vector fields proportional to (T/%e;;)* F. 1(3) (X)F'F’ .

When substituting (2.3) into the various coefficient functions, the F¥) are replaced by

sections according to
FO2) = i[mbygual? ™ e 108 PO (). (28)

With these definitions the Einstein—Hilbert action and the nonlinear sigma model action
of the Kéahler manifold acquire an explicit factor m#,, . The nonminimal interactions
that involve the square of the Riemann tensor are multiplied by the holomorphic sections

F) times an explicit factor (md,, )" "7

Finally we note that under projective transformations these sections transform as

F9(2) — 21795 Fl9)(3) (2.9)

3 Symplectic transformations of the 79 (z) and holomorphic anomalies

One of the aims of this paper is to investigate whether we can constrain the quantities F
for certain string compactifications by imposing the requirement of target—space duality.
This approach turned out to be successful for the minimal supergravity interactions
encoded in the W?2-independent part of F'(X,W?), as was described in [17, 18]. Here it
is important to appreciate that the target—space duality group is part of the Sp(2n +
2; Z) group of symplectic reparametrizations of the vector supermultiplets.> Under these

reparametrizations F(X, W?) does not transform as a function; the new function assigned

®As usual the classical action allows Sp(2n +2; R) transformations, but nonperturbatively this group

is restricted to an integer-valued subgroup.



to it takes a more complicated form, as we will show below. This implies that invariance
requirements cannot be directly imposed on the sections F9). As it turns out this feature
is generically intertwined with the presence of non-holomorhic additions to the F() [24].
These non-holomorphic terms lead to a so-called holomorphic anomaly [28, 21, 22], which
can be understood from the contributions due to massless fields. The purpose of the text

below is to elucidate this.

On the scalar fields the symplectic transformations act according to

<Fz<j<(,[w2>> - (F());W)) B (v(é i) (pfo)f,[wz)) - @D

+

There are similar transformations on the (abelian) field strengths FZf and G, ; =

NisFE) + OF - where OF | represents moment couplings to the vector fields, such that
pv pv 1 pv I
the Bianchi identities and the field equations read 0" (F* —F *)fw =0"(G"—G )1 =0.

Note that it is crucial here to include the full dependence on the Weyl multiplet, also in

+

the tensors G,

and (’)i, ;- The reason is that the symplectic transformations are linked
to invariances of the full equations of motion for the vector fields (which involve the Weyl
multiplet) and not of (parts of) the Lagrangian. Note that the transformations are W—
dependent and holomorphic (both in X and W), but that W itself does not transform

under the symplectic transformations.

The matrix in (3.1) constitutes an element of Sp(2n + 2;Z). The transformation rule
(3.1) specifies the reparametrization of the fields X! — X! and express the change of
the first derivatives of the function F'(X,W?). Owing to the symplectic nature of the
transformation, the change in the latter is such that the new quantities F; are again
the derivative of some new function, which we denote by F (X' ,W?). Tt is possible to
integrate the expression for the F; and determine F (X' ,W?), up to certain integration

constants. The result reads
F(X,W? = F(X,W?) - 1iX'F (3.2)
+[(UW) X X 4 UV + W 2) X Ey + (2T FF
where Fy denotes the derivative of F/(X, W?) with respect to X”. Clearly F (X, W?) itself
does not transform as a function, although the combination F(X,W?) — L X F; (X, W?)

does. The symplectic reparametrization constitutes an invariance of the equations of

motion, if the new function is identical to the old on, i.e., iff
F(X, W% =F(X,W?). (3.3)

Again, the above equation is not equivalent to the requirement that F(X,W?) is an

invariant function.



By differentiating (3.2) with respect to W? and putting W?2 = 0 at the end, one can derive
the transformation rules for the coefficient functions F9)(X). In this way one establishes
that, with the exception of ¢ = 1, none of the coefficient functions transforms as a

function. More explicitly, F(!) changes under symplectic reparametrizations according to
FOX) = FY(X), (3.4)

while the FU>V(X) transform in a rather complicated way that involves all lower-g
functions as well [24]. Observe that we are still formulating the transformation rules for
expressions depending on the X7 rather than on the sections X*(z), but we shall turn to

this aspect shortly.

It is possible to introduce modifications to the F9), such that they become symplectic
functions. As it turns out, these modifications are necessarily non-holomorphic, although
their precise form cannot be determined solely by the requirement of symplectic covari-
ance, because one can always consider the addition of other symplectic functions. Hence,
there is no contradiction between the above result, which identifies the Wilsonian coeffi-
cient function F) as both symplectic and holomorphic, while we know, for instance from
string theory, that it acquires an antiholomorphic contribution. Presumably this simply
implies that an independent symplectic but nonholomorphic function must be added. Ob-
viously, for the generic F'9) the non-holomorphic corrections will always transform into

holomorphic terms, so as to compensate for the previous lack of symplectic covariance.

The minimal nonholomorphic modifications that are required to turn the Wilsonian coef-
ficient functions into symplectic functions, can be written down systematically by making

use of the following derivative D [24],

d PF(X,W?) . 0
D = ' = NY(X, X, W2 W? :
gz T awraxt VKXWV 5 (3:5)
where
Ny (X, X, W2 W? =2Im F;,(X,W?, NVY=[NY"Y, (3.6)

so that D is non-holomorphic in both X and W. The derivative (3.5) is constructed such
that when acting on a quantity G(X, X, W?2,W?) that transforms as a function under

symplectic transformations, i.e., as
G(X, X, W2, W?) = G(X, X, W% W?), (3.7)

then also DG(X, X, W? W?) will transform as a symplectic function. Using (3.5) one
can thus write down a hierarchy of functions which are modifications of the Wilsonian
coefficient functions F'),

. 1
F@ev(x X) = — lD

g! (3.8)

g—1 8F(X7 WQ)]
ow? W20



where we included an obvious normalization factor. All the F9)<" transform as functions
under symplectic reparametrizations. Except for g = 1, they are not holomorphic. The
lack of holomorphy is governed by the following equation (g > 1),

8F(g) cov _1p JKgJi:l aF(r) cov 8F(g—r) cov
ox1 1 L pxT jxXKE

(3.9)

where F;/K = Fypy NY NME QObserve that this equation remains the same under

Flaeov 529 @)V corresponding to a rescaling
F(X,W?) = p F(X, i W?), (3.10)

for arbitrary p and u.

The integrability of (3.9) imposes a condition on F!),

( 82F(1) cov aF(gfl)cov

This condition is trivially satisfied by (3.8) as F()< defined by (3.8) is holomorphic.
An alternative solution of this equation is FM < oc §[ X7 F;(X) — X! F;(X)]. Note that
the proportionality constant in this solution can be adjusted by a rescaling of the F'9)cov

of the type indicated above.

The above equations are applicable to both rigid and local supersymmetry. In the general
case the coefficient functions are just the derivatives of the full function F' with respect
to a chiral background field and the above results remain true even without setting
this background equal to zero after applying the differentiations. The latter is not so
when we express the above results in terms of the sections X!(z) defined in (2.3), where
homogeneity of the coefficient functions is important, so that we are forced to set W2
to zero. The homogeneity of the F(¥) in X' then ensures that the F(9) (X, X) are
homogeneous of degree 2(1 — g) in X and of degree 0 in X. It is thus straightforward to
construct sections F9)°V(z, z) according to (2.8), which transform in the same way as
the F under projective transformations (cf. 2.9). The lack of holomorphy is encoded
in an equation which is rather similar to (3.9). It can be obtained by multiplying (3.9)
by 0X1(2)/0z* and using the identity

N7 = X [g"B (04 + 04 K) X (2) (95 + 05 K) X7 (2) — X' (2) X (2)] , (3.12)

where K (z, z) and g45(%, Z) are the Kahler potential and metric, respectively. The result-
ing equation, which we will refer to as the ‘symplectic’ anomaly equation to distinguish

it from the anomaly equation discussed below, is covariant with respect to projective

10



transformations and holomorphic diffeomorphisms and reads (g > 1)

g—1
OaF D™ (2,2) = JHK W0 Y DpF o (2,5) DeFO M (2,2). (3.13)

r=1
Here indices are raised or lowered by means of the Kéhler metric corresponding to (2.4).
Covariant derivatives are projectively covariant and defined by D4 F9) = (9,4 + 2(1 —
9)04K)F9); when acting on tensors they include the Levi-Civita connection. Further-
more we used the definition

0X'1(2) 0X7(2) 0XE (2)

024  0zB 92C¢

Although (3.13) applies only to g > 1, its integrability implies a condition for F) (2, z)
similar to (3.11), with the X7 replaced by 24 and FXL by W45B¢.

WABC(Z) = ZF]JK(X(Z)) (314)

The above anomaly equations (3.13) may be compared to the anomaly equations de-
rived some time ago in [22] for the topological partition functions of twisted Calabi-Yau

nonlinear sigma models. They read,

g—1
8Af(g) cov __ %62KWABC [}\72 DBDC]:'(Q*I) cov + Z DBf‘(T) cov Dcf‘(Q*T) cov} ’ (315)
1

r=

for g > 1, whereas for g = 1 we have
3A83f(1)cov = A2 [%621{ WACDWBCD + (1 - iX) gAB}
= A2[ = 1Rap — flx— 12(n + 3)lgas] , (3.16)

where R,5 denotes the Ricci tensor of the Calabi—Yau moduli space and x the Euler
number of the Calabi-Yau.® The value of the coefficient A\? depends on the normalization
adopted for the F@ v as follows from performing the rescaling (3.10). The constants
A%9 measure the strength of the genus-g partition function so that, in the context of

type-1I string theory, A% can be identified with the type-II string—coupling constant.

Clearly (3.9) may be regarded as a truncation (for instance, arising from the singular limit
A — 00) of (3.15). The sections constructed from (3.8) are a solution of the truncated

cov

anomaly equation (3.13) and are unique provided that F (eov is taken to be holomor-

€V can be included separately and they will

phic. Non-holomorphic corrections to F®)
propagate into the higher-g coefficient functions upon solving the appropriate anomaly
equation (i.e., (3.13) or (3.15)). This lack of uniqueness does not represent a problem of
principle. The requirement of constituting a function under symplectic reparametriza-

tions cannot uniquely determine the non-holomorphic terms and the construction based

6A particular solution of (3.16) is F(Deov = \~2 [ — %lng — ﬁ [X —12(n + 3)HK, where g is the

determinant of the Kéhler metric.

11



on (3.8) generates the non-holomorphic modifications that are minimally required in

order to extend the Wilsonian coefficient functions into symplectic functions.

In a given holomorphic parametrization of the sections X!(z) the symplectic transfor-
mations induce a corresponding transformation on the coordinates z. In order to remain

within a given gauge, this transformation is accompanied by a projective transformation,

X!(z) — X'(2) = /O U] X7 (2) + 2V Fy (X (2))] (3.17)

With these definitions we obtain the following transformation rule for the F(@) v,

F9) wov(z 3) = 2(1-9)f(2) (9) V(z, %) (3.18)

As mentioned before, the anomaly equation (3.15) was derived for the genus-g partition
functions of twisted Calabi—Yau sigma models. They were shown to correspond to certain
type-1I g-loop string amplitudes in [21]. It is worthwhile to indicate the origin of the
various terms in the anomaly equation. Generically the defining expressions for the
F@eov are holomorphic. However, when integrating over the moduli space of genus-g
Riemann surfaces one encounters boundary terms associated with various pinchings of the
Riemann surface. The first term in (3.15) is due to the pinching of one of the homology
cycles, which explains why the genus is lowered by one unit; the second term correspond
to a pinching that leads to two disconnected surfaces, so that the sum of their genera
equals the original genus g. In terms of the effective field theory, these pinchings are
identified as the effects of the propagation of massless modes [28, 21]. As is well known,
these effects form an obstacle in obtaining a local effective action. The Wilsonian action,
on the other hand, is a local effective action, in which the cumbersome effects of the
massless modes are avoided by the presence of an infrared cut—off. However, because of
this cut—off the Wilsonian action does not fully capture the physics, and certain features

(like the presence of certain symmetries) of the underlying model are not always manifest.

The approach based on (3.8) encapsulates some of these features. The Wilsonian coeffi-
cient functions are not covariant with respect to the symplectic reparametrizations and
therefore will not be invariant under certain subgroups (such as target-space duality), as
one would expect from an ab initio calculation based on an underlying physical theory
that has this invariance. Certain nonholomorphic corrections readjust this situation, but
they themselves have no role to play in the Wilsonian set—up. Identifying these nonholo-
morphic corrections with the contributions from propagating massless modes provides an
explanation for this phenomenon. Comparison with the anomaly equation (3.15) of [22]
indicates that the approach based on (3.8) correctly takes into acount the massless—tree

contributions. The massless loops, while not excluded in this approach, will appear as
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separate contributions. As we will discuss in the next section, in the semi-classical limit of
the heterotic string only the second term in the anomaly equation (3.15) survives; hence
for the perturbative heterotic string the lack of holomorphy is fully governed by (3.13).
Interestingly enough, as alluded to earlier, the same effect takes place on the type-II side
in the strong-coupling limit. The expressions (3.8) represent an explicit solution to the

latter anomaly equation.

To elucidate the construction based on (3.8), we derive the first few covariant functions
Fl9eov for a specific example, where the W2-independent part of the holomorphic func-

tion equals

dapc XAXBXC
PO W)y = 22E (3.19)
Its corresponding Kahler potential takes the form
K(z,2) = —log ( —idapc (2 — 2)*(z — 2)P(2 — 2)°) . (3.20)

Here we employ so-called special coordinates z# by choosing the holomorphic sections
(X%(2), X4(2)) = (1,2%). The matrix N;; = —i(F;; — F;;) is then equal to (I =0, A)

2nop (2620 + 2920 + 292P)  —3npo(z + 2)°
Ny = ( ) , (3.21)
—3nap(z+2)P 6nap
where nap = —idapc (z — 2)°, and its inverse equals
2K eX (z+2)P
N = ( ) : (3.22)
Kz+2)4 nP+Lief (24 2)4 2+ 2)

So far we put W? = 0. We now consider the W2-dependent terms and construct the

covariant coefficient functions by using (3.8). With the exception of the first one,
FOeov(y 2) = FD(2), (3.23)

all other functions are nonholomorphic. = We exhibit the explicit expressions for
F@eov(z z) and FB3eov(z, 2),

F@eviz z) = FO(2)+ + AABﬁAF )(2) 0 F WV (2),
FOev(z2) = FO2)+ A 04, F 3 (2) 0pF W (2)
+2eX (2 — 2)A04, F W (2) FO(2)
+ A ABP 9,05 FV(2) 0cF W (2) 0pFW(2)
+1eX A8 (2 — 2)90,F Y (2) 0 F Y (2) 0o F W (2)
+216dABC’ TLAD nBEn CF8 f(l ( )8E.7:(1)(Z) 8F.7-'(1)(z), (324)
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where 78 = nAB + 3ef (2 — 2)4 (2 — 2)P. Not surprisingly, the resulting expressions
are rather similar to the ones in the orbifold example in section 7.1 of [22], which are,

cov

however, based on a non-holomorphic F®M <" and define the solutions of the anomaly

equation (3.15) subject to modular invariance.

Unlike the holomorphic quantities F, these non-holomorphic quantities F© " trans-
form as functions under symplectic reparametrizations. They satisfy the holomorphic

anomaly equation (3.13). In appendix B we present the above results for the case of the
S-T-U model.

4 The holomorphic anomaly equations and their solutions for the heterotic

string

In this section we focus on N = 2 supersymmetric models in four space-time dimensions
that have both a type-II and a heterotic description [6]. In the type-II description, such
models are obtained by compactifications of the type-IIA string on certain Calabi—Yau
manifolds. In the heterotic description, they follow from compactifications of the heterotic
Eg x Eg string on K3 x T;. String—string duality then implies that the non-holomorphic
couplings F9)V(z, z) in the type-II and in the heterotic description are related. On the
type-IIA side, the 2z denote the Kihler-class moduli, whereas on the heterotic side the
24 correspond to the heterotic dilaton S and to the heterotic moduli 7* (consisting of
the toroidal and Wilson-line moduli). Partial evidence for such a string—string duality
has been given for the case of 2 moduli in [12, 23, 14], where on the heterotic side we have
the complex dilaton field S and a modulus 7', and for the case of 3 moduli in [12, 14, 16],
with the dilaton S and the two T moduli 7" and U on the heterotic side. This model,
which we will refer to as the S-T-U model, will be discussed in more detail later in this
section. More recently, evidence for string—string duality was also obtained for the case
of 4 moduli, which on the heterotic side incorporates the two toroidal moduli 7" and U

and a Wilson-line modulus [31].

In the context of type-II compactifications on Calabi—Yau manifolds, it was shown in [21]
that the non-holomorphic sections F(@V(z, z) obtained from direct string calculations
are equal to the topological partition functions, and thus they satisfy the holomorphic
anomaly equations (3.15) and (3.16). In type-II string compactifications the contributions
to the F(9 v originate from g loops in string perturbation theory [21]. This can be
seen as follows. According to (2.8), the F(¥ <V are multiplied by a factor (mdy, ) %
keeping the string scale rather than the Planck scale fixed yields a factor [g;2?]9~!, where

g5 2 is proportional to the dilaton and acts as a loop-counting parameter. There can
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be no further dependence on the string coupling, as the type-II dilaton resides in a
hypermultiplet and neutral hypermultiplets do not affect the vector-multiplet couplings.
Thus we are dealing with contributions at precisely g loops. Note that the relevant
anomaly equation (3.15) indeed comprises terms of the same loop order. The first term
describes the (g — 1)-loop contribution with a massless loop appended to it, while the

second term describes the product of an r—oop and a (g — r)-loop contribution.

For type-II models possessing a dual heterotic description, one thus expects that the
heterotic couplings satisfy similar holomorphic anomaly equations. As the arguments
in the previous section have shown, the existence of such anomaly equations can, at
least partially, be understood from arguments based on symplectic reparametrizations,
from which one may conclude that certain features concerning the non—holomorphic
terms should be generic and independent of the precise model one is considering. This
observation will help us to fix the relative normalization between the sections obtained
on the heterotic and on the type-II side. In fact, as we will demonstrate shortly, in the
relevant limit of a large Kéhler-class modulus the type-II and the symplectic anomaly

equations become identical.

Later in this section we will turn to the heterotic weak-coupling limit of these holomorphic
anomaly equations and we will solve them for F®v and F®)<v in the context of
the S-T-U model, for concreteness. The F9)V exhibit singularities at lines/points in
the perturbative heterotic moduli space at which one has perturbative gauge-symmetry
enhancement. We will show that, in the vicinity of these lines/points of semi-classical
gauge symmetry enhancement, the structure of the F ¥ and F )" we obtain precisely
agrees with expressions (3.24) (with certain one-loop corrections included) found in the
previous section on the grounds of symplectic covariance. Subsequently we analyze the
target—space duality properties and exploit the covariance to further restrict the couplings

in terms of modular forms.

4.1 The weak-coupling limit in the heterotic string and target—space duality

As discussed above, in type-II string compactifications the contributions to the F(@) v
originate from g loops in string perturbation theory. For heterotic vacua the counting is
different, because the dilaton resides in the vector multiplet sector. First of all, the Kahler
potential contains a characteristic term In g2, so that the factor (m, 4 )7 ! exp[—(1 —
g)K] in the definition (2.8) of the holomorphic sections F9 depends only on the string
scale and no longer on gs. Therefore the dependence of the corresponding couplings on g

is directly related to the explicit dependence of the F@ on the dilaton. The presence of
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the dilaton is, however, restricted by non-renormalization arguments. As a result, only
the first two terms in the expansion (2.2) depend explicitly and linearly on the dilaton
field (in perturbation theory), and thus represent tree-level contributions. All other terms
contribute at precisely one loop in string perturbation theory [21].

€V satisfy a holomorphic anomaly

Let us now assume that the heterotic sections F)
equation similar to (3.15) and deduce, on the basis of the counting arguments given above,
what the relevant terms will be in the weak-coupling limit S + S — oco. Since generically
all the 9 are independent of S and thus correspond to one-loop contributions, it follows
that the right-hand side of the anomaly equation is generically of two-loop order and will
therefore be suppressed by a factor g2: the first term in the anomaly equation appends a
massless loop to a one-loop term, while the second term consists of products F@—") F(r)
of one-loop terms. Nevertheless, one-loop contributions can still emerge from F) o,
which is not exclusively the result of a one-loop correction but contains also a term
arising from the tree approximation. However, this term is linear in the dilaton, so that
the second derivative term in (3.15) cancels and we are left with the truncated equation
(3.13). Actually, also this term simplifies, as it generically contributes at the two—loop
level, with the exception of the terms proportional to dgF1) v 9, Fla=D v and, for g = 2,

OgFMeov gg Feov which can still give rise to one-loop contributions.

To confirm the above argument let us explicitly consider the limit of large S + S in the
anomaly equation. We consider the dilaton S = 47/g? — i0/27 and an arbitrary number
of moduli 7%, which are related to the special coordinates z4 by iS = 2!, iT* = 2%
The class of compactifications is defined by the requirement that, up to nonperturba-
tive contributions which take the form of positive powers of exp(—27S), the associated

holomorphic prepotentials are given by
FO(S T = —S T, T° + h(T?), (4.1)
and the Wilsonian couplings F@ are given by
FOS,TY) = aS+hrN(TY),
F>U(s T = FO(T9), (4.2)

where a denotes an integer.” The Kéhler potential for the above models, which is com-

puted from (4.1), is given by

K(S,T) = —log(S+ S + V(T,T)) + K(T,T), (4.3)

"We will, throughout the paper, use the normalization convention a = 24 [38], thereby fixing the

normalization of W2,
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where the Kéhler potential K and the corresponding Kahler metric are given by

K(T,T) = —log[(T+T)*nu(T +T)"],
Gus = —20a €5 + 0oy (T + T)(T + T)? 3K
g = —lpte K (T )T + T, (4.4)

where n? is the inverse of 7,,. The quantity V is the Green-Schwarz term, defined by

2(h+h) — (T + T)%(hg + ha)

VD) = == Tym@ 1 77

(4.5)
This term satisfies the following equation, which will be useful later on,

(0005 + 0,0a + 4nay € = 16[0(T + T)], [n(T + T)], |V =

~2(hap + hap)e™ + 2[[0(T + T)], (hue + o) + (@ < B)| (T°+ T X, (4.6)

where [0(T +T)], = 1w (T + T)°.

The behaviour of the Wilsonian couplings F in the limit S+ S — oo can easily be
determined from (4.2). However, the functions entering in the holomorphic anomaly equa-
tion (3.15) are not the Wilsonian coupling functions, but rather the full non-holomorphic
functions F(9V(z, z). Nevertheless, let us momentarily assume that they satisfy the
following conditions in the limit S + S — oo, which are somewhat weaker but consistent

with what one would derive for the Wilsonian couplings on the basis of (4.2),
DS]:(g>l)C0V 0 :
DsFM - a,
DgF=hev
DpFlzbev 5 fO(T,T) | (4.7)

where f(9) is some arbitrary function. Let us now consider the anomaly equation (3.15)
in the limit S + S — co. Because the only non-zero components of the tensor Wupc are

Wars and Wep., the anomaly equation takes the form

_ g-1
a&f(g) cov GQKWagg [Dngf(g_l) cov Z Db]:(r) cov D§]:(g—¢) cov}

r=1

- g-1
+%€2KWFJ)E [DbDEf(g—l)cov + Z Dbf(r) cov Déf(g—r) cov} ] (48)
r=1
Using the results (A.3) and (A.4) of appendix A and the asymptotic conditions (4.7), it
is then straightforward to show that, in the limit S + S — oo, the DD F@=DV term
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does not contribute anything in the anomaly equation (3.15), which is therefore reduced

to the equation (3.13). Actually, this equation reduces to an even simpler form (g > 1),
0aF O = KW 3% [a (B +2(1 — (9 — 1)0K)FIV —a?V,6,5] . (4.9)

where 9, = 0/0T®. As exhibited in (A.2), the quantity —§® V}, which appears only at
genus-2, is equal to the inverse metric component ¢° in the limit of large S +S. The
consistency of the assumption made above that the F9) < exhibit a similar behaviour at
large S + S as the holomorphic sections 9, is confirmed by considering the holomorphic
anomaly equation for 9gF (9 whose right-hand side behaves as (S + S)~2 in the large
S + S limit, again as a result of (A.3), (A.4) and (4.7). For the case of two moduli (i.e.
only S and T') the above result (4.9) was already derived in [23].

Of course, when the models that we are considering have both a heterotic and a type-II

Vv are identical to each other, upon a suitable

description, the covariant sections F)
identification of the type-II and the heterotic fields. A priori it may not be clear that the
normalization of the covariant sections is the same. However, in the semi-classical limit
we have established that they are subject to the same anomaly equation (3.13) which,
according to (3.10), allows for different normalizations corresponding to only an overall
rescaling of the full Wilsonian function F'(X,W?), and of the field W. The first one is
fixed once the W2-independent part of F is fixed. The second one simply depends on
the normalization adopted for W and is thus related to the relative normalization of the
topological partition functions (i.e., the parameter A in (3.15)) vis a vis the normalization
of the Weyl multiplet in the Lagrangian for the effective field theory on the heterotic side.
On the type-II side this connection is provided by the work of [21], which showed that
certain type-II string amplitudes precisely reproduce the topological partition functions.
Our analysis is entirely on the heterotic side and we will simply adopt the standard

normalization convention for the Weyl multiplet leading to a = 24 (cf. footnote 7).

Let us consider the anomaly equation for F®) (T, T) in more detail. At one-loop,
FMeov will be given by

FOV = a8, + RN (T, T) (4.10)

mv

where Sy, denotes the so-called invariant dilaton [17]. It differs from S by a holomorphic
function o(7T') of the T,

Siw — S = o(T) = — g (= 7o) + L(D)). (4.11)

2(n +
Here L is a holomorphic function of the moduli fields 7* which transforms into imaginary

constant shifts under target—space duality transformations. These shifts are associated
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with semiclassical monodromies. The new dilaton field Sj,, is invariant under target—
space duality transformations, but it is no longer a special coordinate in the context of
N = 2 supersymmetry. The true loop-counting parameter of the heterotic string, on the

other hand, is given by [17]

S + ‘g + V(T7 T) = Sinv + Sinv + V;nv(Ta T) (412)
where Vi, (T,T) denotes the so-called invariant Green—Schwarz term, defined by this
equation. Vi, (T, T) is invariant under one-loop target-space duality transformations. It
follows from (4.12) that V(T,T) = Vi (T, T) + o(T) + &(T). Hence,

Oy [FO — aV(T,T)] = 0 [h) ™ (T, T) — aViun (T, T)] (4.13)

mv

The holomorphic anomaly equation for F2) V(T T) can then be rewritten into
8;1.7:(2) cov. _ 4, GQKV_V(—J,g gl_)c ac {f(l)cov —a V}

= aeXWs50, [h(l) ' —a Vinv} . (4.14)

inv

As the metric and the tensors YW must be target-space duality covariant, this exhibits the
manifest covariance of the anomaly equation in the perturbative limit. The correctness
of this result can be inferred from the covariance of the original anomaly equation in the
context of the (S + S) — oo limit.

4.2 The anomaly equation for the heterotic S-7T-U model

The S-T-U model can be constructed by compactifying the ten-dimensional heterotic
string on T3 x K3. A compactification of the Fg X Fg heterotic string on K3, with equal
SU(2) instanton number in both FEg factors, gives rise to a model in six space-time
dimensions with gauge group E; x E;. For general vacuum expectation values of the
massless hypermultiplets this gauge group is completely broken, and one is left with 244
massless hypermultiplets and no massless vector multiplets. Upon a T, compactification
down to four dimensions, one obtains a model with 244 massless hypermultiplets and
with three massless vector multiplets S, T and U, where S denotes the heterotic dilaton
and T, U denote the T, moduli. This model is the heterotic dual of the type IIA—model
(6] based on the Calabi-Yau space WP, 12512(24) with hy; = 3, hg; = 243 and, hence,
with y = —480.

In the heterotic description this model possesses a target—space duality symmetry
SL(2,Z)r x SL(2,Z)y x ZT<U at the perturbative level (S +S — 00). All elements
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of this discrete symmetry group act as symplectic transformations of the form (3.1) sub-
ject to condition (3.3). Hence, according to (3.18) the non-holomorphic functions JF(9) v

transform as modular functions of a specific modular weight. As it is well known, the

aT—ib
icT+d

Kihler potential, K — K — f — f, with f = —log(icT + d). Then, comparison with

(3.18) shows that the non-holomorphic F¥) " possess the following duality transforma-

duality transformations T — T = induce a particular Kahler transformation of the

tion behaviour,
]I'(g) cov (T, ff) (]7 U) N (ZCT 4 d)2(9—1)f(9) cov (717 T’ U’ U) , (415)

and similarly for U — U = 2= Note that, according to (4.10), pe¥ (T, T U, U) and

F@eov(T T U,U) are both invariant under target—space duality transformations (4.15).

The perturbative prepotential for the S-T-U model reads
FO@S,T,U) = -STU + W(T,U) , (4.16)

where h(T,U) denotes the one-loop contribution to the prepotential; it would transform
as a modular form of weight —2, were it not for the presence of an inhomogeneous term
in its transformation rule proportional to a polynomial of 7" and U containing no powers
higher than 72 or U?. This polynomial is directly related to the semi-classical mon-
odromies. It then follows [17] that 93k and 97 h are single-valued modular functions of
weight +4 and —2, respectively, under SL(2,Z),, and of weight —2 and +4, respectively,
under SL(2,Z)y.

Using the results (A.2) given in appendix A and the explicit form for the matrix 7, one
finds that, in the limit S 4+ S — oo,

P = (S +EP, T =(@+TP, = U+D)

+

gTS =—(T+ T)2 orV (T, T, u,u), gUS =—(U+ [7)2 oV (T, Ta U, U) ) (4.17)

with the Green-Schwarz term V (T, T, U, U) given as

vty - 2R - (@) Ei;pi ;ﬁfgl - )(U +D)@uh+36h)

as well as Wgsry = —1. Then, it follows from (4.9) and from (4.14) that

OpFOev = —ﬁDU}'(g‘U“’V, 9>2, (4.19)

OpF@ ey — _ 500 (hiy™ = aViw) | (4.20)

_*
(T + T) nv
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and likewise with 7' and U interchanged. Note that both A and Vi, are target—

space duality invariant, so that both (4.19) and (4.20) are consistent with the modular

transformation behaviour given in (4.15).

At T = U one has a perturbative gauge-symmetry enhancement, so one expects that the
F@eov are singular as T — U. The leading singularities will be holomorphic, whereas
the non-leading singularities will be both of the holomorphic and of the non-holomorphic
type. In the following subsection we turn to the discussion of these leading holomorphic

singularities.

4.3 Leading holomorphic singularities in heterotic models

The holomorphic Wilsonian couplings F¥)(z) are singular at precisely those points in
the moduli space where certain string states become massless. In the type-II context,
for example, precisely one hypermultiplet becomes massless at the conifold points of the
Calabi-Yau moduli space [32], and the leading holomorphic singularity follows from a

¢ = 1 matrix model and is given by [33]

B 1
(g>1) _ 29
PR = gty = e ™

where yi(z) is the mass of the hypermultiplet. The B, are the Bernoulli numbers.

(4.21)

Let us now discuss the leading singularity structure of the perturbative Wilsonian cou-
plings F¥(z) in the heterotic context by taking into account the moduli-dependent,
elementary string spectrum. We base ourselves on the perturbative prepotential (4.1).
The mass formula for a BPS state equals m%pg &< m3,,,.4 €< *? | M(2)|?, where M(z) is

a holomorphic section defined by
M(2) = M; X! (2) — N'Fy(2), (4.22)

and M; and N! denote the electric and the magnetic charges of a given BPS state.
Obviously, M(z) transforms under projective transformations as M(z) — /) M(2).
The separation into ‘electric’ and ‘magnetic’ charges refers to a specific symplectic
basis. In the basis that is relevant for classical string theory [3, 34, 17, 18|, the
symplectic holomorphic sections read (X7(z), Fy(z)) = (1, meTT¢,iT*, —iS mpTPT° —
2ih + iT° Oyh, —iS, 25 T — 9,h). With this result the perturbative holomorphic mass
M(S,T?) equals

M(S,T) = My+ My n,TT" +iM,T* (4.23)
+iS(N° 9y T*T® + N' + 2in, N T?) + 2iN° h — (iN°T* — N®) 9,h .
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For elementary string states (i.e., states whose mass remains finite in the classical limit),

NT = 0. Hence, the holomorphic mass M(T') for elementary string states is given by
M(T) = My + My ngpy T°T" +iM, T, (4.24)
which is not affected by perturbative corrections.

Now, let us briefly consider a simple heterotic model with just one modulus field 7', the
so-called S-T" model. In this model, the holomorphic mass for elementary string states
can vanish at 7" = 1. At this point in the perturbative moduli space, the U(1) associated
with the 7" modulus becomes enhanced to an SU(2), and thus two additional vector
multiplets become massless. In the vicinity of T = 1, the F should have a leading

holomorphic singularity given by

1
* Me(T)
where M o« T'— 1. We note that (4.25) is consistent with the transformation behaviour
of both F9)(z) and M(z) as holomorphic sections. Indeed, it was shown in [23] that the
leading holomorphic singularity of the 7@ on the heterotic side is given by

Flo>(T) (4.25)

g>1 . 2 /ra\9 ng 1
7D =2 (5) 50 ) e 420

where p(T) = £(T—1). The identification of x follows by comparing [23] the singularity of
the holomorphic prepotential F(©) = —18T%+ 1(T —1)2log(T —1) with 2Z._; = p?log .
The relative factor of (%)g between (4.26) and (4.21) reflects a different normalization
convention adopted in this paper from the one used in [23], whereas the relative factor
of 2 reflects the fact that there are two additional vector multiplets becoming massless
at T = 1. Noting that =2 ~ drlog(j(T) — j(1)), where j denotes the modular invariant
function j = E3/n?, it follows that the leading singularity of 79 can be rewritten into
the following holomorphic manifestly modular covariant form with the correct modular

weight

FoNT) = (5) sy OF el — () . (@20

where the holomorphic modular covariant derivative Dy of a weight-w modular form
P(T) is given by [35]

DyP(T) = (9r — wGo(T)) P(T) (4.28)
and where G5(T) is related to the Dedekind function n(T) by Go(T') = drlogn?*(T'). For

later use we define the non-holomorphic modular function Go(T') of weight 2,

Go(T, T) = . Go(T). (4.29)
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For comparison, we also give the Ké&hler covariant derivative for a section P(T') that

transforms under projective transformations with weight w. It reads

- w
DyP(T) = (07 +wdrK ) P(T) = (97 — m)P(T) . (4.30)
As the projective and the modular weights are opposite, w = —w so that the Kéhler

covariant derivative and the holomorphic covariant derivatives differ by a covariant term
equal to w G(T,T) P(T).

Next, let us investigate the leading holomorphic singularities for the heterotic model
with three vector fields S, T' and U. In the same way as above, we find the perturbative

expression for the holomorphic mass for elementary string states M for this S-T-U model,

The holomorphic mass (4.31) can vanish at certain lines/points in the perturbative mod-
uli space, namely at T = U # 1,6%, at T =U =1land at T = U = e%. At
these lines/points, the U(1)? associated with the 7" and the U moduli get enhanced to
U(1) x SU(2), SU(2)? and SU(3), respectively. Hence, the number of additional vector
multiplets at these lines/points is two, four and six, respectively. As before, one ex-
pects the leading holomorphic singularities to be given by (4.25). More precisely, in the
chamber T' > U, one expects that, as T" — U,

1 2(g—1)
FOT,U) o =2 (T — U> : (4.32)
whereas as T' — U =1
1 2(g—1)
FO(T,U) < —4 (ﬁ) , (4.33)
and finally, as T — U = p = e%,
1 2(g-1)

The unique holomorphic modular covariant generalisation of (4.32) transforming as in

(4.15) under modular transformations, is as follows (in the chamber T > U)

FOO(T,U) = 8, Dy Dy og((T) — (V) (4:35)
where . . B
bo= =2 (5) 9(2g — 2)2(929 — 2)!(_)g IR (4:36)

The relative factor of 2 between (4.35) and (4.27) is a reflection of the fact that in the

S-T-U model twice as many states as in the S-T" model become massless at T =1 .
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Finally, it should be pointed out that there can also be subleading holomorphic singular-
ities in the Wilsonian couplings F9 as well as subleading non-holomorphic singularities

cov

in the full non-holomorphic couplings F¥) <. Clearly, the latter ones are uniquely de-

termined by the anomaly equations, as we will show in the remaining subsections for the
case of F@ v and FG) v in the S-T-U model.

4.4 The modular covariant section F® <V in the S-T-U model

In this section, we will solve the holomorphic anomaly equations (4.20) for F() <V, First

cov

consider the non-holomorphic FM <" in the weak-coupling limit S + S — oo. In the

chamber 7' > U [19, 14, 15],

FOeov — g6 4 peov (4.37)

mv

1 :
where A decomposes into two terms,

pHeov _ Dgrav (K(T, T,U,U) +logn*(T) 7772(U)> + b log(y(T) — j(U)) . (4.38)

mv 27T

Note that F() <V solves the heterotic version of the anomaly equation (3.16). The second
term is modular invariant, as is the real part of the first term. However, holomorphic
derivatives of hgi“’v constitute modular forms, and they are the quantities that will play
a role below. Furthermore, by, denotes the gravitational beta function. In the standard
normalization [38], a = 24 and bg.y = 528. The last term proportional to 3; represents
the holomorphic singularity of F1) <V [19, 14], which is not covered by the arguments of

the previous section. The coefficient 3; equals

Since the anomaly equation (4.20) and the one that follows from it by interchanging T
and U are linear, we can solve them term by term. We distinguish three different terms.

The first one requires to solve the equation

a2 2

OrFOh = G OV s [00F Ol = g OV, (440)

where Vi, =V — o — 7, as before, with [17]
4
o(T,U) = —50r0uh + 3 L(T,U) , with L(T,U) = —=1log(j(T) —j(U)). (4.41)
0

We recall that V,,, is not only invariant under target—space duality transformations, but

also finite everywhere inside the perturbative moduli space.
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The integrability of (4.40) is easily shown by using the following identities, which are
special cases of (4.6),

2V + 0rdyh + 0p0h
(T+T) ’

2V + 0rdyh + 070y h
(U+0)?
Here we have used the explicit form of V' given in (4.18). Note that, although the

DrOrV = Oy 0LV =

(4.42)

numerator is modular invariant, it is singular at the lines/points of semi-classical gauge—
symmetry enhancement. The above integrability relation is to be expected, as we know
that the full anomaly equations are integrable from the very beginning, as we discussed

in section 3.

By making use of (4.42), it follows that the following ansatz for F(2 v,
(F@)) = $a2 0pdy Viay + 307 (Go(T, T) Oy L + G(U, U) 07 L) (4.43)

solves (4.40). The modular form G5 was defined in (4.29). Note that F(® ¢V  given in
(4.43), has the appropriate modular weight and that it also does not contribute to the
leading holomorphic singularity given in (4.35). Here, we have made use of the freedom

of adding holomorphic terms to 2 in order to arrive at (4.43).

Next, consider solving the second and the third term of the anomaly equation, which

correspond to solving

_ T(2)cov (1)cov O (2) cov _ a ]’L(l OV 4 A4
[8Tf ]2+3 (T I T) 8Uhmv ) [ Uf ]2+3 (U I U) inv ( )

where h{)® is given in (4.38). Consider the first term in h{)™",

[a ]:- cov] _ _agg;av (T+T> 8U< (T T U U)+10g77 (T) W_Q(U))a
[OgFP ]y = —“gg:v (UiU) or(K(T,T,U,T) +logn *(T)n *(U)) , (4.45)

which is solved by the modular covariant expression

(I bgrav

[F@eov], = - EVG(T, T) Gy(U, U). (4.46)

The above expression (4.46) was also recently derived in [36] in the context of heterotic
N =1 string vacua.

(1)cov
inv

Then consider the second term of h:

(07 F@ <]y = ‘<T—+a T)_zavf“), 00 F O]y = — g O Y, (447)

where
FO = By log(4(T) — §(U)). (4.48)
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One can proceed in two ways. One can either solve (4.47) directly, or one can use the
symplectic formalism developed in section 3 in order to construct a modular covariant
non-holomorphic solution F® ¥ to the anomaly equations (4.47). This is so, because
the construction of symplectic functions (3.8) is based on the existence of a holomorphic
section ()| and the F®) given in (4.48) is precisely such an object. Thus, we will use

the latter strategy in the following.

The explicit expression for F(2) v which one obtains from (3.8) for the S-T-U model, is
derived in appendix B. In the limit S + S — oo, it is given by

a a
_ Oy FV _
T+7V U0

F@(T,U,T,0) = FO(T,U) + orFY (4.49)

where the holomorphic F() is given by (4.48). Note that the non-holomorphic part of
(4.49) is not modular covariant. Just as before, in order to obtain a target—space duality

cov

covariant expression for £ one has to include an appropriate holomorphic F® (T, U)

in (4.49). One such appropriate F®(T,U) is given by
FOT,U) = aGo(T) 0y FY + a Gy(U) 0rFY + By 0r0y log(j(T) — j(U)) , (4.50)

where G2 was introduced in (4.28). The last term in (4.50) is the leading holomorphic
singularity (4.35). Combining (4.50) with (4.49) yields

(FO)y = a (Co(T, T) 0y F YV + Go(U,U) 0rFD) + By 008y log(§(T) — §(U)) . (4.51)

Expression (4.51) is manifestly modular covariant, and it can be checked in a straight-

forward way that it solves the anomaly equation (4.47).

Thus, the solution F?)V to the anomaly equations (4.20) is given by the sum of (4.43),
(4.46) and (4.51), that is by
FA = 162 0p0y Vine + 0> (Co(T, T) dy L + G (U, U) 07 L)
abgrav A 7\ A 7

t+a (Go(T, T) 0y FY + Go(U,U) 0rF ™M) + By 070y 1og(§(T) — §(U)).

Note that there is no freedom left in adding further holomorphic modular forms to
(4.52). The reason is that target-space duality and the knowledge of the leading holo-
morphic singularities that are associated with known gauge-symmetry enhancement
points/lines, fixes the structure of F( < completely. Thus, the F® v given in (4.52)
is the full solution to (4.20). In appendix C, we will give the power-series expansion of
F@eov(T T U,U) in the limit T, U — oo.
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4.5 The modular covariant section F® " in the S-T-U model

In this section, we will solve the holomorphic anomaly equations (4.19) for F® v, In
order to solve them, we will need to evaluate Dy0rdyVin,. We find that
Dy0rOyViny = $D7.05h — § Dydrdy L . (4.53)

We recall that the term 97h appearing on the right hand side of (4.53) transforms co-
variantly under target—space duality transformations, and that it has modular weights
—2 and 4 under SL(2,Z)r and SL(2,Z)y transformations, respectively [17]. Thus, both
terms appearing on the right hand side of (4.53) have modular weights 2 and 4 under
SL(2,Z)r and SL(2,Z)y transformations.

cov

We will now solve the anomaly equations (4.19) for F(®) <V using (4.52) as the input

on the right hand side of (4.19). Since these anomaly equations are linear, we will solve
them separately for each of the three lines of (4.52). First consider the anomaly equations
based on the first line of (4.52). Using (4.53), it follows that these differential equations

can be written out as follows

3

a
[an(3) cov]1 — _m {iD%a?]h(T, U) — 1—16DU8T8UL(T, U) (454)

11Dy (Ga(U,0) 9 LT, U) + Co(T, T) 0y L(T, 1) )]

and likewise with 7" and U interchanged. Note that (4.54) is modular covariant. It can

be solved in a rather straightforward way, and the solution to (4.54) reads
(F@e]y = 1% |Go(T, T) D3OGh + G3(T, T) Drdsh + 2G3(T, T) 9 h
+G(U, U) D dh + G3(U, U) Dydiph + 2G3(U, ) 9]
—450°|Go(T, T) Dydrdy L + Go(U, U) Dydrdy L
—2Go(T, T) Go(U, U) drdy L]
+50*(Go(T, T) Dy G (U, U) 07 L + Go(U, U) DyGs(T, T) 0y L
+LGA(T, T) Dydy L + 1G(U,U) Dror L
~G3(U, U) Go(T, T) 0rL — G3(T, T) Go(U,U) Oy L] . (4.55)
Next, consider solving (4.19) based on the second line of (4.52). The solution reads

2
a bgrav

47

[F®eov), [GY(T, T) DyG(U, U) + G3(U, U) DrGy(T, T)
- G3(T,T) G3(U,T)] . (4.56)
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Note that one can in principle add further modular covariant holomorphic terms to either
(4.55) or (4.56), such as [G%(T) — 0rGa(T)][G3(U) — dyGo(U)), for example [22].

Finally, consider solving (4.19) based on the third line of (4.52). One can again use the
symplectic formalism developed in section 3 in order to construct a modular covariant
non-holomorphic solution F®) V. The explicit expressions for F*) " which one obtains

from (3.8) for the S-T-U model, are presented in appendix B. They are given by

o - F2 5. F2 2F ()
(S)COVTUTU — (3) T U T — v — = =
FOT,U,T,U) FOTU) +a| TIT  T+T)U+D)
1
120~ a2p(1) , _ © 92 (1)
om0y O] (4.57)
(T+T)(U+U)
. a2 Oy FD N aT]:(l)}
T+TY U+ T+T U+U)’

where the holomorphic 1) and F are given in equations (4.48) and (4.50), respectively.
Again, note that the non-holomorphic part of F®) " is not modular covariant. As before,
in order to obtain a target-space duality covariant expression for F®) one has to

include an appropriate holomorphic F® (T, U) in (4.57). One choice is as follows
FOT,U) = a®[3GHT) RFY + 3G3(U)d; FY
—(G2(U) GUT) — 0rGa(T) Go(U) )y FO
—(Go(T) G3(U) = 0y Ga(U) Go(T) ) 0rF W + Gs(T) Ga(U) 070y F V|
—a|Ga(T) Go(U) 810y log(§(T) — §(U))
~Gs(T) 070 Log((T) — §(U)) — Go(U) 0y log(j(T) — 5(U))]
+05 D7D 1og(§(T) — §(U)) - (4.58)

The last term in (4.58) is the leading holomorphic singularity (4.35). Inserting (4.58)
into (4.57) yields

FO), = g2 {gég(T) D3F® 4 Dy (Go(U) Go(T) Dy F )
+563(U) DRFY + Dy (GalT) Ca(U) DyF) |
+afh|Go(T) DrD} log(i(T) — j(U) + Ga(U) Dy D log(3(T) — j(U)
—2Go(T) Go(U) Dy Dy log(j(T) — j(U ))}
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—a?|Go(T) Go(U) Dy Dy FY + Go(T) GA(U) Dy FY

+Ga(U) G3(T) DyFW| + 33070 log(§(T) = §(U)) . (4.59)
The expression (4.59) is modular covariant, and again it can be checked that it solves
the holomorphic anomaly equation (4.19) based on (4.51). In principle, one could again
add additional holomorphic modular covariant terms of the correct modular weight to
(4.59). Such additional terms could, for instance, describe holomorphic subleading sin-
gularities. An example of such a singular subleading term is [G3(T') — 0rGo(T)][G%(U) —
OrG»(U)]log(j(T') — 4 (U)).
Thus, the full solution F®) " (up to possible additional holomorphic modular forms of
weight 4) to the anomaly equation (4.19) is given by the sum of (4.55), (4.56) and (4.59).

5 Conclusions

In this paper we have discussed the computation of the moduli-dependent, higher-order
gravitational couplings in the perturbative limit of four-dimensional heterotic string com-
pactifications with N = 2 space-time supersymmetry. Our method of calculating the
couplings F9) consisted in solving the anomaly equation (4.9), where we took as an
input the known one-loop expressions for the heterotic prepotential F(© and the grav-
itational couplings F(), as well as the leading holomorphic singularity structure of the
higher 7). Subsequently we imposed target-space duality covariance. For the S-T-U
model the result can thus be explicitly written in terms of modular forms. The anomaly
equation can be derived, either from string—string duality by taking the type-II anomaly
equation (3.15) in the limit of a large Kéhler-class modulus, so as to make contact with
the perturbative heterotic side, or by exploiting arguments based on symplectic covari-
ance. The results of these two approaches coincide and lead to the anomaly equation
(4.9).

Let us briefly recall the relevant steps in the derivation of F® v

, given in (4.52), and
of F®) v given as the sum of egs. (4.55), (4.56) and (4.59), for the S-T-U model. As
already emphasized, the one-loop F() is both holomorphic and duality invariant near
the region T" = U in the moduli space. We can therefore use the symplectic formalism
to compute the corresponding non-holomophic part of F®. Adding an appropriate
holomorphic function yields a covariant expression for F?). Second, F!) contains further
terms which are non-singular in the limit 7" — U, namely a one-loop Green—Schwarz piece

from the invariant dilaton and a term proportional to bgay, related to the one-loop Kéhler
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and o-model anomalies. In order to obtain the covariant F® <V that belongs to these
non-singular terms, we explicitly solved the holomorphic anomaly equation. For the
higher F@_ this procedure can be continued. Those terms which are derived from the
holomorphic and invariant F1) are constructed by using the covariant derivative (3.5).
The remaining terms, which are obtained from the Green—-Schwarz term and from the

term proportional to bgay in F (M) follow from the holomorphic anomaly equation.

In summary, we have found a very transparent and systematic structure in the process
of solving the anomaly equation on the heterotic side and in the form of its solutions.
Then, in principle, important information about the higher-genus instanton numbers of
the relevant dual Calabi—Yau three-fold can be obtained through the second-quantized

mirror map [25].
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A Some asymptotic results for S+ S — oo

We wish to consider certain expressions in the limit that S + S — 0o, based on the class

of functions (4.1). We expand the corresponding Kahler potential (4.3) as

V(T,T)
S+ S ’

K(S,5,T,T)~ —log(S + S) + K(T,T) — (A1)

where the ellipses denote terms of higher order in (S + 5)~'. K and the Green-Schwarz
term V' were already given in (4.4) and (4.5).
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First consider the components of the metric in the large-(S + ) limit,

1 2V Vi
(S+85)2 (S+9)° (S+09)?
gap = e
‘/a R Vab
a2 9ab — -
(S+5) S+ S
(S+5)2+2(5+ 9V —yP
g = oy | (A.2)
By gab+ _
S+ S

Here §,; is the metric associated with the Kéhler potential K (T,T), which is used to
raise and lower indices in the above formula. The explicit expressions are shown in (4.4).
Sub- and superscripts a,b,... and a,b, ... attached to V denote differentiations of V
with respect to 7%, T°, ... and T T?,... that are covariant under diffeomorphisms in
the Kéahler space parametrized by these coordinates. Although these covariantizations
do not contribute to the expressions above, they will contribute to some of the formulae

below.

Similarly we evaluate the following expressions for large S + S, without making any
assumptions on the large-(S + S) behaviour of the functions F;, F, and F on which the
various derivatives act,

Va Va

2K 1S S ~ 2K o\ 2
K DYFDF, ~ (S + 8)*(DsFi - e S)D]-'1><D5F2 e S)Df2)
7 c o 7 Ve
2K D2 DS ~ 2K ap _ pa ) D
(& fl fg (& (V Sfl fl) ( 5.7:2 (S n S) fg)
_ T 62K _ _ _
X DFID'F, ~ 5197 (ViDsF, — D*F)) (V*DgF, — D°F,) (A.3)
and
e DSDSF ~ *F[(S+ 9)*D} — 2V DD,
Vavb Ve
————DD 2 Dg+ —~==D
5T 57 b+(S+$AﬁXS+$24f,
B _ . B B Vﬁva
K nanS ~ K a a
K D'DSF ~ K[ - ViDL 4D Ds+mDsDa
Va V& V&a
DD, __Dg — __D,|F,
RS w2
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2K
2K 1ya b € ay b2 ayb bya
D*D°F ~ ———\V*V’"D— (V*D’+V°’D*)D
‘ (S+ 5)2[ Chl /s
L Vz‘zl_)

DDt — —_Dg|F, A4
* CEad (A4
where V* and V* are more complicated objects quadratic in V' and its derivatives. The
derivatives D contain the Levi-Civita connection associated with the Kéhler metric g,

and a Kahler connection proportional to 04 K.

Finally, consider the matrix N;; and evaluate its leading behaviour for large S + S. First
we decompose

Nij= (No)rs + (AN);y, (A.5)

where the first term corresponds to the first term in (4.1) and AN contains the terms

related to the function A. Its nonvanishing matrix elements are

(AN)oy = —2h+2h,T* — hyT°T" + {h.c.},
(AN)oo = (AN)y = ihg — ihaT? + {h.c.},

(AN)w = ha+{h.c.}. (A.6)

Ignoring the contributions from the function h(t), which we will deal with later in per-

turbation theory, we first use evaluate the matrix n4? introduced in section 3. It reads
3(S + 5)ek —3(T + T)beX
nAB = -3 . (A?)

—3(T +T)%eX s (n — (T + T)*(T + T)'¢X)

With the aid of this result and (3.22) we evaluate the inverse of (Ny);,
2 i(S — ) (T — TP
K

NIJ: _
W =573

i(S —S) 258 ~STb — ST . (A8)
(T —T)* —ST*— 8T —Lybe K 7o 4 7o

Using (A.6) and (A.8) we can easily determine N7/ for large S + S.

B A class of non-holomorphic corrections to F® " and F® v in the S-T-U

model

In (3.24) we gave the expressions for F?) " and )" based on a general cubic function
F© _in terms of the holomorphic Wilson coefficient functions FU, F?) and F®). Here we
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specialize these expressions to the case of the S-T-U model. These sections are solutions
of the truncated anomaly equation (3.13). At the end we exhibit their behaviour for large

S + S. We remind the reader that, according to (3.8), F1) " remains holomorphic.

Let us first give the Kéhler potential for this case,
K(S,8,T,T,U,U) = —1log(S+S) —log(T +T) —log(U +U). (B.1)

Furthermore we list the explicit expressions for the inverse of the matrix N;; defined in
(3.6),

2 i(S —S) i(T—T) i(U—U)
i(S —S) 258 ST —-ST —-SU-SU
NI = K B o B -, (B.2)
i(T—-T) —ST—-ST 27T ~-TU -TU

(U—-0) —SU—-§0 -TU—-T0 200

and the matrix 74P defined in the text below (3.24),

0 (S+ST+T) (S+S)(U+T)
At = —6e | (S+S)(T+1T) 0 (T+T)U+TU) | . (B.3)
(S+SU+U) (T+T)(U+U) 0

With these definitions it is somewhat tedious but straightforward to calculate the expres-
sions for F(9) < for this model, by using (3.24). We remind the read that ) <" remains

equal to the holomorphic function F). The expression for F()V takes the form

f(2) cov _ ]:(2) + ]:'S fj(’l) f -7:.[(11) f fé})’ (B4)

U+U TT SS

where the subscripts S, T and U denote ordinary partial derivatives with respect to these

coordinates. For large S + S this reduces to (4.49) provided one makes use of (4.7).

The expression for 3 is much longer and reads

(3)cov __ (3) (2) (1) (2) (1)
F = F +U+U[}—S}—T + FPFS]
1
S — [FPFY + FPFP] + —S s (AR + FP Y
P i — (S +8)F + T+ D) F + (U +O)FY)
(S+S)(T+T)U+U) 5 v
Fs9 = (1) YOk

T TR T (T+T) 7+ (U +0)FY
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P
20U + U)2(S +S)

SO0 FP (5 + 5 FPT

L Fu
2(S + S)2(T +T)

2

5 [(S+8) F + (T + 1) 7]

F3 N o
_ r _ .
S+$GWJWU+UVRU+W(EW‘HU+UX-+)ﬂ%ﬂ

(S + (U + U) FOFD + (T + T)(S + §) FOFL)]

T

Fit
(T+T)U+U)(S+S9)

+ 5 [(S+8)XFP)? + (U +O)(T +T) FPFY

+(S+ 89U +0) FPFD + (T +T)(S + 5) FPFY]

A
U+U)(S+S)T+T)
S+ 8)(U + U) FPFP + (T + T)(S + 8)Fp ) 7]

+ 5 [(T+ TP (FD)? + U+ )T +T) FP AP

+

fr}l) ]:-[(]1) ]

U+U T+T

P 0 i
(S+S)T+T)YU+U)’

fl(Jl) fél) }[ fél) fél)
S+S U+4UJIT+T S+S

(B.5)

At large S + S, this expression reduces to the expression (4.57), where again we made
use of (4.7).

C Power-series expansion of F(?) v

In the following, we will consider the power-series expansion of F(2) <V given in (4.52),

in the limit where T — 0o, U — oo. In this limit, F® " turns into

FEP/(T 1) = (C.1)

N a bgrav

2T
) [Ga(T) 0 log (§(T) — j(U)) + Ga(U) dr log ((T) — 5(U))] -

10202020 + (Z—W + B2) Oy log((T) — §(U)) Go(T)Gs(U)

a
+a(51 5
In [17] it was shown that the one-loop correction h to the prepotential satisfies
Ey(T) E4(U) Es(U) n~*(U)

J(T) = j(U) ’

as well as a similar equation with 7" and U interchanged. The exact expression for h was

O3h(T,U) =2

(C.2)

given in [20] in terms of a power-series expansion. Here we draw attention to the fact
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that this correction carries a different normalization in [17] and [20] and was denoted by
R while in this paper () denotes the one-loop correction to F(). Using the result of

[20], it follows that the first line of (C.2) has the following power-series expansion

5 oo - 6727r(kT+lU)
where the integers k and [ can take the following values: either ¥ = 1,1 = —1 or

k>010=0o0rk=0/0>0o0rk>0,0>0. The constants ¢;(n) are determined
by [20]

E(D)Eo(T) _ &\
Tem 0T o

where ¢ and T are related by ¢ = e~ 2T,

The second line of (C.2), on the other hand, has the following power-series expansion in
the chamber T' > U [20]

' e—27r(kT+lU)
Oroy log(j(T) — 5(U)) Z klc(kl) T GNP (C.5)
where the constants ¢(n) are determined by
T -Ta4= 3 em)q” | ()
n=-—1

and where the integers k and [ can take the same values as indicated above.

The third line of (C.2) can be expanded as follows. Using [35]

Go(T) = 7 (1 Y nfjl o1(n) q”) , (.7)

where o;(n) denotes the sum of the divisors of n, one finds that

2

Go(T) G(U) = 36(1—24201 ) @ (1+ ") + 576 Z o1(m) o1(n) ¢i*™ g5, (C.8)

m=1 n,m=1
where ¢; = e 2™ and where t; = U,t3 =T — U.

A closer look at the fourth line in (C.2) shows that it is regular as 7' — U, that is as
g3 — 1. Using that

e—2m(T-U) e 2m(KT+IU)
drlog(j(T) —j(U)) = 27T<1 t oz t k%:ﬂ’“ c(kl) 6277(kT+lU)>
6727T(T U) 6727r(kT+lU)
8U lOg(](T) — ](U)) = 27T< - m + k;olc kl — e—27r(kT+lU)> s (09)
>
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it follows that

G2(T) Oy log(§(T') — j(U)) 4+ G2(U) 9rlog(j(T) — j(U)) =

2m(Gal) + 2 (GaU) - Ga(T))
- 43
k+lqk k+lqk
+Go(U) > ke (k)5 kf; -+ Gy(T) Y le (k)5 —
k>0 43 k,1>0 — @43

First evaluate

(Go(U) — Go(T)) = 423" o1(n) (g — )

1—q3 n=1

1—CI3

= 4#201 n) gt (gs+a5+-+q4).

Then, it follows that

Ga(U) + (G2(U) — G2<T>>=——(1—24zzal )i q3) -

1_‘13 n—1s—=0

And finally, using that

W mz: m(k+1)
one finds that
¢ q g+ gk
kgok: c(kl) quqk + Go(T kgol c(kl) quqk =
S PIDC [ (e + 1) () "0 g7

kl>0m 0

243 el o) g g

n=1

—24 Z lc(kl) 01 (n) q§m+1)(k+l)+” q:gm'i'l)k-i-n .

n=1

Thus, it follows that F(3P) has the following power-series expansion

k+1

Fesm = xR () A
k.l (I—ag)?
it b 43
—(a® 4 4nBy) S kle(hl)—B_ 9B
%: AL
abgrav
i (1—24201 a1+ ) +576 > oa(m) oa(n)
el n,m=1
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(C.10)

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

n+m . n

2)



_%[1_242201 n) ¢ ¢

6 n=1s=0

30 S (O ) el O

k,0>0m=0

243 kel o) gV g

n=1

—24>" Le(kl) oy (n) g™ DR gk

n=1

Thus, we see that the instanton expansion of F(2tP) is determined in terms of known

coefficients ¢;(n), ¢(n) and o1 (n).
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