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1 Introduction

The Bhabha scattering process consists in fact of two distinct processes (especially at the
Z peak): one is the Small Angle Bhabha (SABH) process below about 6◦ in the scattering
angle, which is dominated by the gamma t-channel exchange and another one, the Large
Angle Bhabha (LABH) process above 6◦, which gets important contributions from various
s-channel (annihilation) exchanges. The SABH process is employed almost exclusively to
determine the luminosity in the e+e− colliders, using dedicated luminometer sub-detectors.
The LABH provides input data for precision electroweak tests of the Standard Model
(SM), in particular the electron partial width Γe of the Z boson. In this presentation we
shall concentrate mainly on the SABH process. At LEP at

√
s = MZ, in the 1◦–3◦ angular

range it gives about four times more events than Z decays. It is therefore ideally suited for
precise measurements of the luminosity from the point of view of statistical error. Even
more important, it is dominated by “known physics”, that is by t-channel exchange of a
photon – it is therefore calculable from “first principles”, i.e. from the Lagrangian of the
Quantum Electrodynamics (QED) with the standard Quantum Field Theory methods,
Feynman diagrams, etc.

1.1 Theoretical error in the luminosity measurement

At present, the luminosity measurement at LEP using the SABH process has a very small
statistical and experimental systematic error, typically 0.07 − 0.15%. The uncertainty of
the theoretical calculation of the SABH process has to be combined with this error. It is
called the “theoretical error” (the theory uncertainty) of the luminosity. It was last year
reduced to 0.16% [1] and is now at the level of 0.11% [2,3]: in spite of the progress, it is
still a dominant component of the total luminosity error. This error enters into that of the
total cross section measured at LEP. The experimental precision of the so-called invisible
width (number of neutrinos) is strongly dependent on the precision of the luminosity
measurement. The other quantities used for tests of the SM are also affected. In Table 1
we show the influence of the luminosity error on the LEP measurable used in the test of
the SM.

Obviously it would be worthwhile to lower the theoretical uncertainty in the calculation
of the SABH cross section below the future, ultimate, experimental precision of LEP
experiments, which will probably reach 0.05%. From the beginning of the LEP operation
both experimental and theoretical components in the error of the luminosity went from
the level of 2% to 0.1%. Why was it always difficult to reduce the theoretical error even
further? The main obstacles were the need for non-trivial calculations of the higher-order
contributions and the complicated Event Selection (ES) in the actual measurement. Due
to the complicated ES, the phase-space boundaries in the calculation of the SABH cross
section are too complicated for any analytical calculation. The calculation has to be
numerical, the best being in the form of the Monte Carlo event generator MCEG. The
theoretical calculation would be completely useless if in the calculation of the SABH cross
section we did not control its “technical precision”, corresponding to all possible numerical
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Theoretical luminosity error
0.16% 0.11% 0.06%

mZ [GeV] 91.1884 ± 0.0022 91.1884 ± 0.0022 91.1884 ± 0.0022
ΓZ [GeV] 2.4962 ± 0.0032 2.4962 ± 0.0032 2.4961 ± 0.0032
σ0

h [nb] 41.487 ± 0.075 41.487 ± 0.057 41.487 ± 0.044
Rl 20.788 ± 0.032 20.787 ± 0.032 20.786 ± 0.032

A0,l

FB 0.0173 ± 0.0012 0.0173 ± 0.0012 0.0173 ± 0012
Γhad [GeV] 1.7447 ± 0.0030 1.7447 ± 0.0028 1.7446 ± 0.0027
Γll [MeV] 83.93 ± 0.13 83.93 ± 0.13 83.93 ± 0.12
σ0

ll [nb] 1.9957 ± 0.0044 1.9958 ± 0.0038 1.9959 ± 0.0034
Γhad/ΓZ [%] 69.90 ± 0.089 69.90 ± 0.079 69.89 ± 0.072
Γll/ΓZ [%] 3.362 ± 0.0037 3.362 ± 0.0032 3.362 ± 0.0028
Γinv [MeV] 499.9 ± 2.4 499.9 ± 2.1 499.9 ± 1.9
Γinv/Γll [%] 5.956 ± 0.030 5.956 ± 0.024 5.956 ± 0.020

Nν 2.990 ± 0.015 2.990 ± 0.013 2.990 ± 0.011

Table 1: Line shape and asymmetry parameters from 5-parameter fits to the data of the four LEP1
experiments, made with a theoretical luminosity error of 0.16%, 0.11% and 0.06% [4]. In the lower
part of the table also derived parameters are listed.

uncertainties. The control over the technical precision is probably the most difficult and
labour-consuming part of the enterprise.

1.2 BHLUMI MC event generator

In the recent years the LEP collaborations have used the BHLUMI Monte Carlo event
generator to calculate the SABH cross section for any type of experimental ES. The
program, originally written in 1988 [5], was published in 1992 [6] with the first-order
QED matrix element O(α1)exp (exponentiation according to the Yennie-Frautschi-Suura
theory) and its matrix element was recently upgraded by means of adding the missing
second-order in the Leading-Logarithmic approximation [7]. BHLUMI provides multiple
soft and hard photons in the complete phase-space in all versions. The multi-photon
integration over multi-photon phase-space remains essentially unchanged in BHLUMI
since the first version. Gradual improvements concern mainly the matrix element. More
and more cross-checks are built up in order to better determine its technical precision,
see [1, 8].

1.3 Importance of the various QED corrections

The electron mass is very small and the Leading-Logarithmic approximation in terms of
the big logarithm L = ln(|t|/m2

e) − 1 is a very useful tool. In Table 2 we show numerical
values of the “canonical coefficients” for various LL and sub-leading QED radiative cor-
rections. As we see from the table, for a precision of order 0.5% it is enough to include
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θmin = 30 mrad θmin = 60 mrad
LEP1 LEP2 LEP1 LEP2

O(αL) α
π

4L 137×10−3 152×10−3 150×10−3 165×10−3

O(α) 21
2

α
π

2.3×10−3 2.3×10−3 2.3×10−3 2.3×10−3

O(α2L2) 1
2

(

α
π

4L
)2

9.4×10−3 11×10−3 11×10−3 14×10−3

O(α2L) α
π

(

α
π

4L
)

0.31×10−3 0.35×10−3 0.35×10−3 0.38×10−3

O(α3L3) 1
3!

(

α
π

4L
)3

0.42×10−3 0.58×10−3 0.57×10−3 0.74×10−3

Table 2: The canonical coefficients indicating the generic magnitude of various leading and sub-
leading contributions up to third-order. The big-log L = ln(|t|/m2

e) − 1 is calculated for θmin =
30 mrad and θmin = 60 mrad and for two values of the centre of mass energy: at LEP1 (

√
s = MZ),

where the corresponding values of |t| = (s/4)θ2
min are 1.86 and 7.53 GeV2, and at a LEP2 energy

(
√

s = 200 GeV), where the corresponding value of |t| are 9 and 36 GeV2, respectively.

the entire first-order O(α) and the second-order leading-log O(α2L2), while at the present
precision, of order 0.05%–0.10%, it is necessary to have control over O(α2L) and O(α3L3).

1.4 Outline

In the following section we shall briefly summarize the results of the Bhabha Working
group in the recent LEP2 workshop, which led to a new lower precision estimate of 0.11%
of the theoretical uncertainty in the luminosity. In the next section we shall give a glimpse
of the recent calculation of the critical second-order sub-leading correction to the SABH
process, which opens the route towards a theoretical precision below 0.10%.

2 Bhabha Working group of LEP2 workshop

The main aim of the 1995 Bhabha Working group was to compare different QED calcu-
lations for the SABH and LABH processes, in order to verify and/or improve precision
estimates for these calculations, for both LEP1 and LEP2 applications. It has to be
stressed that it was really the first systematic and organized example of such a compar-
ison, although the first step in this direction was already taken in Ref. [9]. The QED
calculations for the SABH process, apart from BHLUMI, were provided by four groups
of authors: the names of the SABH programs/calculations are1 SABSPV [10], BHA-
GEN95 [11] and NLLBHA [12]. Among these four, BHLUMI represents a full-scale event
generator, SABSPV and BHAGEN95 are MC programs providing the total cross section
for arbitrary ES, and NLLBHA is a semi-analytical program able to calculate the total
cross section only for certain special (unrealistic) ES’s. The QED matrix element in all
the calculations includes complete first-order and second-order in the leading-logarithmic

1Here we gave only one reference per program, see [2] for an exhaustive list of relevant references.
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Figure 1: Monte Carlo results for the symmetric Wide-Wide ES’s BARE1, CALO1, CALO2 and
SICAL2, for matrix elements beyond first-order. Z exchange, up-down interference and vacuum
polarisation are switched off. The centre of mass energy is

√
s = 92.3 GeV. In the plot, the

O(α2)Y FS
exp cross section σ

BHL
from BHLUMI 4.02.a is used as a reference cross section.

approximation, with the notable exception of NLLBHA, which features in addition, the
second-order next-to-leading-log corrections. All calculations feature some kind of expo-
nentiation and part or all of the third-order LL corrections.

In order to be able to better understand the differences between the four calculations
the WG participants agreed on four examples of the “standard event selection” (SES)
named BARE1, CALO1, CALO2, SICAL2. These vary from the simple and unrealistic
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BARE1 (for which NLLBHA can provide results) to the more sophisticated CALO1 and
CALO2, ending with SICAL2, which is very close to a typical experimental ES at LEP.
All four SES’s, represent the “double tag” type of event selection, that is both e+ and e−

have to be observed in forward/backward direction with a certain minimum energy and
minimum scattering angle. For BARE1 the observed scattered objects are just “bare”
e+ and e− while accompanying bremsstrahlung photons are ignored completely. This is
unrealistic because all LEP luminometers are of the calorimetric type, i.e. they combine in
the final state the e± with the photons that are close to them into single objects, “clusters”.
The scattering angle of the cluster (which is the angle of its centre) is required to be above a
certain minimum angle, below a certain maximum angle, and the total energy of the cluster
has to be above a certain threshold, typically half of beam energy. Note that the most
sophisticated silicon luminometers are not able to distinguish electrons and photons at
all! All three SES’s, CALO1, CALO2 and SICAL2, are calorimetric and differ in the way
the cluster is defined. CALO1 uses an angular cone around the directions of e± in order to
associate photons with the e± while CALO2 defines the cluster in terms of a plaquette in
the (θ, φ) plain centred around e±. CALO2 and CALO1 still make a distinction between
electrons and photons. SICAL2 is completely charge-blind and forms a cluster around the
most energetic e± or photon exactly as in the silicon luminometer of ALEPH or OPAL.
Finally, let us note that all four ES’s are in two versions, “symmetric” and “asymmetric”.
In the symmetric version the minimum and maximum value of the scattering angle θ
in the forward and backward hemisphere are the same; in the asymmetric version, they
are not. The real experimental ES is asymmetric in order to eliminate effects due to the
geometrical uncertainty of the interaction point. The interested reader will find in Ref. [2]
a more detailed description of the above four ES’s.

The comparisons between the four calculations started with the warming-up exercise
in which all four groups have calculated the same first-order O(α1) cross for all four SES’s
(except NLLBHA, which is able to provide a cross section only for BARE1). After some
adjustment of the matrix element (Z-exchange and vacuum polarization were switched off)
and debugging of the programs for SES’s very good agreement was obtained. The cross
sections at O(α1) agreed to within 0.03%. The calibration test was passed successfully
for all SES’s including the realistic SICAL2. In the above test the matrix element was
exactly the same and what was really seen as a difference was the pure technical precision.
It would be ideal to extend this kind of test to second-order, but here we could not do
the same. The matrix elements are not compatible, because in most of the calculations
the second-order sub-leading terms are incomplete. The procedure of the phase-space
integration over the two real photons is for SABSPV and BHAGEN95 inherently tied up
with adding second-order LL correction and/or exponentiation.

In the next step the comparison of all calculations was attempted for all four SES’s for
the matrix element “beyond-first-order”, using the best available QED matrix element for
a given program. In order to minimize the possible differences, Z-exchange and vacuum
polarization were temporarily switched off. The results of the calculations are shown
in Fig. 1. All cross sections are compared with the BHLUMI cross section, which is
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used as a reference2. The differences with BHLUMI are plotted as a function of the
dimensionless energy-cut parameter zmin. The minimum energy of e± in units of beam
energy is approximately zmin, and the actual definition of zmin is slightly different for each
ES, see Ref. [2] for more details.

As we see in Fig. 1, we have included in the comparisons another cross section cal-
culated by means of BHLUMI, which is referred to as being computed by OLDBIS +
LUMLOG. The corresponding method of adding the second-order LL correction to the
first-order cross section (for arbitrary ES) was described in Ref. [13] and the tools to cal-
culate it are included in the BHLUMI as separate sub-programs. These tools are: (a) the
first-order event generator OLDBIS and (b) the LL MC event generator LUMLOG, which
generates photons in the strictly collinear approximation. The comparison of BHLUMI
with OLDBIS + LUMLOG was used in Refs. [1, 14] in order to estimate the technical
precision of BHLUMI and the missing higher-order and/or sub-leading contributions. In
fact the OLDBIS + LUMLOG recipe is quite similar to the SABSPV calculation. The
main difference is that while the OLDBIS + LUMLOG prescription for combining O(α)
cross section with the O(α2)LL was “additive”

O(α1) + {O(α2)LL −O(α1)LL} (1)

the SABSPV recipe is “multiplicative”

O(α2)LL ×
{

1 +
O(α1) −O(α1)LL

Born

}

. (2)

In both cases the O(α3)LL can be easily used instead of O(α2)LL. Finaly, in Fig. 1 we also
show cross section denoted SABSPV2 (dots) which is obtained according to multiplicative
prescription of SABSPV but using the cross sections from OLDBIS and LUMLOG3.

As we see in Fig. 1, there are distinct regularities in the results. The OLDBIS + LUM-
LOG additive ansatz coincides extremely well with the results of BHAGEN95, because
the latter is also based on the additive recipe. The difference between BHLUMI and the
result of additive recipes is, consistently with the older papers [1, 14], within 0.15% for
the experimentally interesting range 0.25 < zmin < 0.75. The result of the multiplicative
prescription of SABSPV agrees with BHLUMI better; in fact, it stays for the same zmin

range within 0.1% “permille box”. This is an interesting result if we remember that the
multiplicative prescription is a little better from the point of view of physics, since it can
effectively account for the part of the phase space with one real photon collinear and one
real photon acollinear to e±. The additive prescription simply ignores such configurations.
Another encouraging result, albeit only for the unrealistic BARE1 ES, is the good agree-
ment of the NLLBHA result with BHLUMI. If taken seriously it would mean that the
missing O(α2) next-to-leading-log (NLL) contribution in BHLUMI is indeed below 0.1%.
One would really need a similar result for more realistic ES’s. The above comparisons

2A table of the absolute cross sections is given in Ref. [2].
3The slight difference between SABSPV and SABSPV2 is of pure technical origin. The SABSPV2

result is not included in Refs. [2, 3] – was obtained after the LEP2 workshop.
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were also extended to the asymmetric version of the SES’s and they were also repeated
for the situation when the Z-exchange and vacuum polarization were restored. As can be
seen in Ref. [2], similar agreements were obtained. For LEP2 the agreements are slightly
worse but definitely better than 0.20%.

LEP1 LEP2
Type of correction/error Ref. [1] Present Present
(a) Missing photonic O(α2L) 0.15% 0.10% 0.20%
(a) Missing photonic O(α3L3) 0.008% 0.015% 0.03%
(c) Vacuum polarization 0.05% 0.04% 0.10%
(d) Light pairs 0.01% 0.03% 0.05%
(e) Z-exchange 0.03% 0.015% 0.0%
Total 0.16% 0.11% 0.25%

Table 3: Summary of the total (physical+technical) theoretical uncertainty for a typical calorimetric
detector. For LEP1, the above estimate is valid for the angular range within 1◦–3◦, and for LEP2 it
covers energies up to 176 GeV, and angular range within 1◦–3◦ and 3◦–6◦ (see the text for further
comments).

2.1 New theoretical error estimate

Following the above results the new estimate of the total theoretical error for the BHLUMI
cross section was obtained. It is summarized in Table 3 with the various components of
the theoretical error listed. The older results of Ref. [1] and the conservative projection of
the theoretical error for LEP2 are also given. The main progress is done for the missing
photonic O(α2L), which was reduced by 30%. This result is based on the agreement
between BHLUMI and SABSPV for all four standard event selections, see example in
Fig. 1. The agreement within 0.1% between BHLUMI and NLLBHA for the unrealis-
tic BARE1 trigger was also taken into account. The estimate of the missing photonic
O(α3L3) contribution is based on the result from the new calculation embodied in the
LUMLOG event generator (sub-generator in BHLUMI) [7]. As we see, the older value
of this contribution was underestimated. The light pair contribution was also previously
underestimated and as a result of work and discussion within the working group it went
up to 0.03%. There is a condition attached to the use of 0.03% for pairs – one has to use
at least the LL calculation of the light pair production effect. If not, then 0.04% is rec-
ommended. The new, slightly better value of the vacuum polarization error is the result
of recent works [15] and [16]. The corresponding programs for vacuum polarization are
included in BHLUMI [7]. The improved calculation with a new smaller error tag for the
Z exchange was done during the workshop and published in Ref. [17]. The corresponding
improvement of the matrix element for the Z exchange is implemented in BHLUMI [7].

The highest priority is now to calculate O(α2L) contributions and to implement them
in the BHLUMI Monte Carlo event generator. When this correction is under complete
control, then the remaining biggest problem will be to determine and reduce the technical
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precision of the Monte Carlo calculation. (At present, technical precision is combined
with the missing O(α2L) contribution.)

There is an ongoing effort to calculate complete O(α2L) for the SABH process, see for
instance Refs. [12, 18] and the contribution of L. Trentadue in these Proceedings. In the
next section, we shall present the new unpublished numerical result for some important
O(α2L) contribution, coming from the Cracow–Knoxville group.

Finally, let us mention only briefly the main results of the Bhabha Working group on
the LABH process. In the working group the first systematic comparison of seven different
calculations was done. The agreement of 0.5% close to the Z position was reached and at
LEP2 agreement at the level of 2% was seen. Most of the programs were of the Monte
Carlo type and the comparison was made for two realistic ES’s, calorimetric and non-
calorimetric, each for two values of the collinearity cut. The resulting precision estimate
essentially confirmed the expectation. The important achievement was that it was the
first systematic comparison of the LABH programs for a wide range of event selections.
The result of the comparison is encouraging, but more work is obviously required if the
theoretical error is to be reduced. We refer the reader for more details to the section on
the LABH process in Ref. [2].

2.2 New results in the O(α2L)

q1,µ q2,µ

p1,λ p2,λ

k,ρ
e-

e+

γ

γ

Figure 2: O(α2) single bremsstrahlung correction in e+e− → e+e− at low angles. Only
the upper line real emission graphs are shown.

The calculation of the second-order QED matrix for the SABH process includes a
calculation of the (a) two-loop second-order form factor, (b) one-loop correction to single
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Figure 3: Monte Carlo result for entire β̄
(r)
1 , r = 1, 2 and for the pure second-order

contribution β̄
(2)
1 − β̄

(1)
1 for the SICAL Wide-Narrow event selection. Mass-tems are not

included. All result divided by Narrow-Narrow Born cross section. Energy cut variable
zmin is defined in Fig. 2 of Ref. [1].

photon emission process and (c) tree-level double-photon bremsstrahlung. The calcula-
tions of (a) and (c) exist in the literature and the fully differential distribution for (b) was
not available until recently. In the following we describe numerical results obtained using
the recently published results of Ref. [19] on the one-loop corrections to single-photon
emission. The Feynman diagrams involved in this process are shown in Fig. 2. In the
BHLUMI event generator this matrix element is implemented in the O(α2L2) approxi-
mation. The sub-leading contributions of O(α2L) are incomplete in BHLUMI. Since the
result of Ref. [19] is in principle exact, we therefore have a chance to check how big is,
in fact, the missing O(α2L) part. We expect it generally to be 0.1% or less. There is,
however, a certain problem from the start. How can we calculate something meaningful
numerically from the formulas of Refs. [19] and [1] if the matrix element from the Feynman
diagrams in Fig. 2 taken alone is infrared-divergent. (We have to combine it with double
bremsstrahlung and the second-order part of the formfactor in order to get a finite cross
section.) The way out that we shall apply for the moment is to subtract both virtual and
real singularities according to Yennie-Frautschi-Suura work [20]. The infrared-divergent
terms are trivial and uninteresting – they are proportional to the perfectly known first-
order matrix element. Only the piece left after the subtraction contains non-trivial O(α2)
corrections; it is finite and small. It is the so-called β̄1 function. The β̄1 function is a
standard object in the YFS inclusive exponentiation scheme – it is already used in the
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BHLUMI matrix element. It is defined as follows

β̄
(2)
1 (ki) =

{

D
(2)
[1] (k) exp(−2αℜB)

}

∣

∣

∣

∣

∣

O(α2)

− S̃p(k) β̄
(1)
0 , (3)

where D
(2)
[1] is the O(α2) squared matrix element for single-real-photon emission corre-

sponding to diagrams in Fig. 2; the definitions of the infrared virtual formfactor B and
of the real soft factor S̃ are exactly the same as in Refs. [1, 20]. We are really interested

in the pure O(α2) part of β̄
(2)
1 ; we will therefore need to subtract the trivial first-order

version of it defined as

β̄
(1)
1 (ki) = D

(1)
[1] (k) − S̃p(k) β̄

(0)
0 . (4)

The 3-body phase-space integration is done using the BHLUMI Monte Carlo; the
results are shown in Fig. 3 for the realistic caloric ES called SICAL defined in Ref. [1] as
a function of the energy cut zmin, also defined there. As we see in the figure the difference
between O(α2) and O(α1) is about 3% and therefore compatible with the generic size of
the O(α2L2), see Table 2. The difference between the BHLUMI LL ansatz of Ref. [1]4 and
the exact result of Ref. [19] is up to 0.015%. This has to be multiplied by factor 2 because
only the emission from the upper line is taken into account. We therefore obtain the total
missing O(α2L) to be 0.03%, i.e. well compatible with expectations. In the above results
result the so-called mass-terms are still not included5. They are still under numerical
tests. Note that this result was not known at the time of the LEP2 workshop and was not
taken into account in Ref. [2] and Table 3. The above result shows the most complicated
and difficult component of the O(α2) calculation, but it is still incomplete because the
two-loop formfactor and double-bremsstrahlung contributions have to be included. Once
all three components are in BHLUMI, we shall be able to make the theoretical precision of
the luminosity measurement better still. We hope that this will happen soon. Let us also
express our hope that we shall be able to compare our results with those of Refs. [12,18].

3 Summary

We have reported on the recent improvements on the precision of the QED calculations of
the Bhabha process down to the 0.11% level. In particular we have shown recent results
on the second-order exact calculation for one real and one virtual photon, which suggests
that missing O(α2) contributions are below 0.1%. This opens the way to even further
improvements in the theoretical error on the luminosity measurement at LEP.
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