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NLO calculations in QCD: a general algorithm ∗
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Largo E. Fermi 2, I-50125 Florence, Italy
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We briefly describe a new general algorithm for carrying out QCD calculations to next-to-leading order in

perturbation theory. The algorithm can be used for computing arbitrary jet cross sections in arbitrary processes

and can be straightforwardly implemented in general-purpose Monte Carlo programs.

1. MOTIVATIONS

During the last fifteen years many efforts have
been devoted to carry out accurate QCD calcula-
tions to higher perturbative orders. These calcu-
lations are motivated by three main reasons.

First of all, the comparison between perturba-
tive calculations and experimental data allow one
to perform precision tests of QCD in the strong-
interaction processes that involve a large trans-
ferred momentum Q [1]. These tests are essential
for measuring the strong coupling αS(Q) and its
running as predicted by asymptotic freedom. Per-
turbative QCD studies are also important to eval-
uate the background for new physics signals [2].
More recently, a renewed interest in perturbative
calculations has been motivated by phenomeno-
logical and theoretical models of non-perturbative
phenomena [3]. Using these models and having
under control the perturbative component, one
can use experimental data on high-energy cross
sections to extract information on the underlying
non-perturbative dynamics.

To these aims, calculations at the leading or-
der (LO) of the perturbative expansion in the
QCD coupling αS(Q) are insufficient. In fact, just
because of its perturbative nature, the running
of the QCD coupling can be hidden in higher-
order corrections by the replacement αS(Q) =

∗Research supported in part by EEC Programme ‘Human
Capital and Mobility’, Network ‘Physics at High Energy
Colliders’, contract CHRX-CT93-0357 (DG 12 COMA).

α
(0)
S [1 + K(Q)αS(Q) + . . .], α

(0)
S being the val-

ues of αS at a fixed (and arbitrary) momentum
scale. It follows that a LO calculation predicts
only the order of magnitude of a given cross sec-
tion and the rough features of a certain observ-
able. The accuracy of the perturbative QCD ex-
pansion is instead controlled by the size of the
higher-order contributions. Any definite pertur-
bative QCD prediction thus requires (at least) a
next-to-leading order (NLO) calculation.

In general, NLO calculations are highly non-
trivial. The first bottleneck one encounters in
producing new NLO calculations for a certain
process is the evaluation of the relevant matrix
elements (recent progress in these computations
is reviewed in Ref. [4]). However, even when
the process-dependent matrix elements are avail-
able, there are practical difficulties in setting up
a straightforward calculational procedure. The
physical origin of these difficulties is in the ne-
cessity of factorizing the long- and short-distance
components of the scattering processes and is re-
flected in the perturbative expansion by the pres-
ence of divergences. QCD theorems guarantee
that these divergences eventually cancel in the
evaluation of physical cross sections but do not
prevent their appearance in intermediate steps.
Since single intermediate expressions are usually
divergent, the numerical implementation of NLO
calculations forms a second bottleneck.

The main issue one has to face is thus the fol-
lowing. On one side many different NLO calcula-
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tions (i.e. calculations for different observables)
for a certain process and, possibly, for many pro-
cesses are warranted. On the other side each cal-
culation is very complicated (see also Sect. 2).

In particular, it is very important to reduce the
second bottleneck mentioned above by setting up
an efficient and simple method for computing ar-

bitrary quantities in a single process. It would be
even more important to have at our disposal a
simple algorithm for computing arbitrary quanti-
ties in arbitrary processes. The goal is a universal
algorithm that, in principle, can be used to con-
struct a general-purpose Monte Carlo program
(not a Monte Carlo event generator) for carrying
out NLO QCD calculations. Conceptually, such
an algorithm could be used in the same manner
as some universal Monte Carlo event generators
(e.g. HERWIG [5]): any time one wants to com-
pute a new quantity or to vary the experimental
cuts, one simply modifies the ‘user routine’ ac-
cordingly; any time one wants to study a differ-
ent process, one simply enters the corresponding
matrix elements.

In this contribution we briefly describe a gen-
eral algorithm [6] of this type, which is based on
the subtraction method and the dipole formalism.

2. NLO QCD CALCULATIONS

The general structure of a QCD cross section
in NLO is the following

σ = σLO + σNLO . (1)

Here the LO cross section σLO is obtained by inte-
grating the fully exclusive cross section dσB in the
Born approximation over the phase space for the
corresponding jet quantity. Let us suppose that
this LO calculation involves m partons with mo-
menta pk (k = 1, ..., m) in the final state. Thus,
we write

σLO =

∫

m

dσB , (2)

where the Born-level cross section is:

dσB = dΦ(m)({pk}) |Mm({pk})|
2 F

(m)
J ({pk}) ,(3)

and dΦ(m) and Mm respectively denote the full
phase space and the tree-level QCD matrix ele-

ment to produce m final-state partons. These are
the factors that depend on the process.

The function F
(m)
J defines the physical quan-

tity that we want to compute, possibly including
the experimental cuts. Note that this quantity
has to be a jet observable, that is, it has to be
infrared and collinear safe: its actual value has to
be independent of the number of soft and collinear
particles in the final state. Thus, we should have
(we refer to [6] for a more detailed formal defini-
tion)

F
(m+1)
J → F

(m)
J , (4)

in any case where the m + 1-parton configura-
tion on the left-hand side is obtained from the
m-parton configuration on the right-hand side by
adding a soft parton or replacing a parton with a
pair of collinear partons carrying the same total
momentum.

Efficient techniques, based on helicity ampli-
tudes [7] and colour subamplitude decomposition
[8], are available for calculating tree-level matrix
elements. Thus the evaluation of the LO cross
section does not present any particular difficulty.
Even if σLO cannot be computed analytically (be-
cause Mm is too cumbersome or the phase-space

cuts in F
(m)
J are very involved), one can straight-

forwardly use numerical integration techniques,
for instance, a Monte Carlo program where the

function F
(m)
J is given as ‘user routine’.

At NLO one has to consider the exclusive cross
section dσR with m + 1 partons in the final state
and the one-loop correction dσV to the process
with m partons in the final state:

σNLO =

∫

m+1

dσR +

∫

m

dσV . (5)

The exclusive cross sections dσR and dσV have
the same structure as the Born-level cross sec-
tion in Eq. (3), apart from the replacements
|Mm|2 → |Mm+1|

2 and |Mm|2 → |Mm|2(1−loop).

Here |Mm|2(1−loop) denotes the QCD amplitude
to produce m final-state partons evaluated in the
one-loop approximation.

The calculation of the loop integral in
|Mm|2(1−loop) leads to ultraviolet, soft and
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collinear singularities. The ultraviolet singular-
ities can be handled in a simple way within the
loop corrections by carrying out the renormaliza-
tion procedure. Thus we can assume that the
virtual cross section in Eq. (5) is given in terms
of the renormalized matrix element and the ul-
traviolet divergences have been removed.

Soft and collinear singularities instead lead to
the main problem. These singularities do not can-
cel within the sole dσV and are accompanied by
analogous singularities arising from the integra-
tion of the real cross section dσR. In the case of
jet quantities, adding the real and virtual contri-
bution, these singularities cancel and the physical
NLO cross section in Eq. (5) is finite. This can-
cellation is guaranteed by the property in Eq. (4).
However, the cancellation mechanism is not tri-
vial because it does not take place at the inte-
grand level.

The two integrals on the right-hand side of
Eq. (5) are separately divergent so that, before
any numerical calculation can be attempted, the
separate pieces have to be regularized. The most
widely used regularization procedure (actually,
the only regularization procedure that is gauge
invariant and Lorentz invariant to any order of
the QCD perturbative expansion) is obtained by
means of analytic continuation in a number of
space-time dimensions d = 4 − 2ǫ different from
four. Using dimensional regularization, the di-
vergences (arising out of the integration) are re-
placed by double (soft and collinear) poles 1/ǫ2

and single (soft or collinear) poles 1/ǫ. Thus the
real and virtual contributions should be calcu-
lated independently, yielding equal-and-opposite
poles in ǫ. These poles have to be combined and
after having achieved their cancellation the limit
ǫ → 0 can be safely carried out.

In principle this computation procedure does
not pose any problems. In practice, that is not
the case. On one side, analytic calculations are
impossible for all but the simplest quantities be-
cause of the involved kinematics for multi-parton
configurations and of the complicated phase-
space cuts relative to the definition of the jet ob-
servable. On the other side, the use of numeri-
cal methods is far from trivial because real and
virtual contributions have to be integrated sepa-

rately over different phase-space regions and be-
cause of the analytic continuation in the arbitrary
number d of space-time dimensions.

The most efficient solution to this practi-
cal problem consists in using a hybrid analyti-
cal/numerical procedure: one must somehow sim-
plify and extract the singular parts of the cross
section and treat them analytically; the remain-
der is treated numerically, independently of the
full complications of the jet quantity and of the
process.

There are, broadly speaking, two general meth-
ods for doing that: the phase-space slicing

method and the subtraction method. Both the
slicing [9] and the subtraction [10] methods were
first used in the context of NLO calculations
of three-jet cross sections in e+e− annihilation.
Then they have been applied to other cross sec-
tions, adapting the method each time to the par-
ticular process. Only recently has it become clear
that both methods are generalizable in a process-
independent manner. The key observation is that
the singular parts of the QCD matrix elements
for real emission can be singled out in a general
way by using the factorization properties of soft
and collinear radiation [11]. Owing to this uni-
versality, the two methods have led to general al-
gorithms for NLO QCD calculations.

In the context of the phase-space slicing
method, an algorithm has been developed for
jet cross sections in lepton and hadron colli-
sions [12,13]. The complete generalization of this
method to include fragmentation functions and
heavy flavours is in progress [14,15].

As for the subtraction method, two approaches
are available for setting up general algorithms.
The ‘residue approach’ introduced in Ref. [16] has
been further generalized in Refs. [17–19] and is
discussed elsewhere in these Proceedings [20]. In
the rest of this contribution we describe the more
recent approach, based on the dipole formalism
[6,21].
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3. THE SUBTRACTION METHOD

The general idea of the subtraction method is
to use the identity

σNLO =

∫

m+1

[
dσR − dσA

]

+

∫

m+1

dσA +

∫

m

dσV , (6)

which is obtained by subtracting and adding back
the same quantity dσA. The cross section contri-
bution dσA has to fulfil two main properties.

i) Firstly, it must be a proper approximation of
dσR such as to have the same pointwise singular
behaviour (in d dimensions) as dσR itself. Thus,
dσA acts as a local counterterm for dσR and one
can safely perform the limit ǫ → 0 under the inte-
gral sign in the first term on the right-hand side of
Eq. (6). This defines a cross section contribution
σNLO {m+1} with m + 1-parton kinematics that
can be integrated numerically in four dimensions:

σNLO {m+1} =

∫

m+1

[(
dσR

)
ǫ=0

−
(
dσA

)
ǫ=0

]
.(7)

ii) The second property of dσA is its ana-
lytic integrability (in d dimensions) over the one-
parton subspace leading to the soft and collinear
divergences. In this case, we can rewrite the last
two terms on the right-hand side of Eq. (6) as
follows

σNLO {m} =

∫

m

[
dσV +

∫

1

dσA

]

ǫ=0

. (8)

Performing the analytic integration
∫
1
dσA, one

obtains ǫ-pole contributions that can be combined
with those in dσV , thus cancelling all the diver-
gences. The remainder is finite in the limit ǫ → 0
and thus defines the integrand of a cross section
contribution σNLO {m} with m-parton kinematics
that can be integrated numerically in four dimen-
sions.

The final structure of the NLO calculation is as
follows

σNLO = σNLO {m+1} + σNLO {m} , (9)

and can be easily implemented in a ‘partonic
Monte Carlo’ program, which generates appropri-
ately weighted partonic events with m + 1 final-
state partons and events with m partons.

Note that, using the subtraction method, no
approximation is actually performed in the eval-
uation of the NLO cross section. Rather than
approximating the cross section, the subtracted
contribution dσA defines a fake cross section that
has the same dynamical singularities as the real
one and whose kinematics are sufficiently simple
to permit its analytic integration.

The real cross section contribution dσR has the
following general structure

dσR = dΦ(m+1) |Mm+1({pk})|
2 F

(m+1)
J ({pk}),

(10)

where dΦ(m+1) and |Mm+1|
2 depend on the pro-

cess and F
(m+1)
J depends on the quantity we want

to compute. Obviously, for any given dσR one can
try to construct a corresponding dσA by properly

approximating dΦ(m+1), |Mm+1|
2 and F

(m+1)
J .

It is less obvious that one can use the subtrac-
tion method to compute arbitrary quantities in a
given process, because one needs a fake cross sec-
tion dσA that depends only on the process and,
hence, is independent of the actual definition of

the jet function F
(m+1)
J . It is still less obvious

that one can use the subtraction method to con-
struct a universal algorithm for computing arbi-
trary quantities in arbitrary processes. To this
purpose the fake cross section dσA also has to be
somehow independent of Mm+1.

Our method to achieve this generality is based
on the dipole formalism.

4. DIPOLE FORMALISM AND UNI-

VERSAL SUBTRACTION TERM

4.1. Soft and collinear limits

The starting point of the dipole formalism
are the soft and collinear factorization theorems
for the QCD matrix elements. According to
these theorems, the singular behaviour in d di-
mensions of a generic tree-level matrix element
Mm+1(p1, ..., pm+1) with m + 1 final-state par-
tons can be obtained by means of factorized lim-
iting formulae that, respectively in the soft (when
the parton momentum pj vanishes) and collinear
(when the parton momenta pi and pj become par-
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allel) regions, have the following structure

|Mm+1(p1, ..., pj, ..., pm+1)|
2 →

|Mm(p1, ..., pm+1)|
2 ⊗c J

2(pj) , (11)

|Mm+1(p1, ..., pj, pi, ..., pm+1)|
2 →

|Mm(p1, ..., pj + pi, ..., pm+1)|
2 ⊗h Pij . (12)

The notation in Eqs. (11,12) is symbolic (see
Ref. [6] for more details) but sufficient to recall
their main features.

The contributions Mm on the right-hand sides
are the tree-level matrix elements to produce m
partons and are respectively obtained from the
original m+1-parton matrix element by removing
the soft parton pj or combining the two collinear
partons pj and pi into a single-parton momentum.

The other contributions on the right-hand sides
are responsible for the soft and collinear diver-
gences. The factor J

2(pj) in Eq. (11) is the
eikonal current for the emission of the soft gluon
pj, and Pij is the Altarelli-Parisi splitting func-
tion. These factors are universal: they do not
depend on the process but only on the momenta
and quantum numbers of the QCD partons in
Mm. In particular, J

2(pj) depends on the colour
charges of the partons in Mm, and Pij depends
on their helicities. Because of these colour and
helicity correlations (symbolically denoted by ⊗c

and ⊗h), Eqs. (11,12) are not real factorized ex-
pressions. Moreover, there is another important
reason, due to kinematics, why Eqs. (11,12) can-
not be regarded as true factorization formulae but
rather as limiting formulae. Indeed, the tree-level
matrix elements in Eqs. (11,12) are unambigu-
ously defined only when momentum conservation
is fulfilled exactly. Since, in general, the m + 1-
parton phase space does not factorize into an
m-parton times a single-parton phase space, the
right-hand sides of these equations are unequivo-
cally defined only in the strict soft and collinear
limits.

Owing to their universality, the limiting formu-
lae (11,12) can be used to approximate the ma-
trix element |Mm+1|

2 in Eq. (10) and thus to find
a subtracted cross section dσA that matches the
real cross section dσR in all the singular regions
of phase space. However, the implementation

of Eqs. (11,12) in the calculation of QCD cross
sections requires a careful treatment of momen-
tum conservation away from the soft and collinear
limits. Care also has to be taken to avoid dou-
ble counting the soft and collinear divergences in
their overlapping region (e.g. when pj is both soft
and collinear to pi). The use of the dipole factor-
ization theorem introduced in Ref. [21] allows one
to overcome these difficulties in a straightforward
way.

4.2. Dipole formulae

The dipole factorization formulae have the fol-
lowing symbolic structure

|Mm+1(p1, ..., pm+1)|
2 =

|Mm(p̃1, ..., p̃m)|2 ⊗ V ij + . . . . (13)

The dots on the right-hand side stand for contri-
butions that are not singular when pi · pj → 0.
The dipole splitting functions V ij are universal
(process-independent) singular factors that de-
pend on the momenta and quantum numbers of
the m partons in the tree-level matrix element
|Mm|2. Colour and helicity correlations are de-
noted by the symbol ⊗. The set p̃1, ..., p̃m of mod-
ified momenta on the right-hand side of Eq. (13)
is defined starting from the original m+1 parton
momenta in such a way that the m partons in
|Mm|2 are physical, that is, they are on-shell and
energy-momentum conservation is implemented
exactly:

p̃ 2
i = 0 , p̃1 + ... + p̃m = p1 + ... + pm+1 . (14)

The detailed expressions for these parton mo-
menta and for the dipole splitting functions are
given in Ref. [6].

Apart from the presence of colour and helic-
ity correlations, Eq. (13) can be considered as a
true factorization formula because its left-hand
and right-hand sides live on the same phase-space
manifold. Equation (14) indeed guarantees that
exact kinematics are retained in the definition of
the m-parton configuration {p̃1, ..., p̃m}. These
m parton momenta depend on pi and pj in such
a way that in the soft and collinear regions the
m-parton configuration become indistinguishable
from the original m+1-parton configuration. Cor-
respondingly, the dipole splitting function Vij is
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defined in order to coincide with the eikonal cur-
rent and with the Altarelli-Parisi splitting func-
tion respectively in the soft and collinear limits.

It follows that Eq. (13) provides a single for-
mula that approximates the real matrix element
|Mm+1|

2 for an arbitrary process, in all of its
singular limits. These limits are approached
smoothly, thus avoiding double counting of over-
lapping soft and collinear singularities. The ex-
act implementation of momentum conservation
makes possible this smooth transition and the ex-
trapolation of the limiting formulae (11,12) away
from the soft and collinear regions.

4.3. Universal subtraction term

These main features of the dipole formulae al-
low us to construct a universal subtraction term
with the following form

dσA = dΦ(m+1)
∑

ij

|Mm({p̃k})|
2 ⊗ V ij

· F
(m)
J ({p̃k}) . (15)

Note that the only dependence on the jet observ-

able is in the jet-defining function F
(m)
J and the

only dependence on the process is in the tree-
level matrix element |Mm|2. These are the same
m-parton functions as enter in the calculation
of the Born-level cross section of Eq. (3). The
only other ingredients needed to construct dσA

are the dipole splitting functions, which are com-
pletely process-independent and given once and
for all [6]. This specifies the universal character
of Eq. (15): the fake cross section dσA used for
the NLO calculation is straightforwardly obtained
in terms of the sole (process-dependent) informa-
tion that is necessary for the corresponding LO
calculation.

Having the subtraction term in the explicit
form (15), we can discuss how it fulfils the proper-
ties i) and ii) listed in Sect. 3. As for the property
i), we note that there are several dipole terms on
the right-hand side of Eq. (15). Each of them
mimics one of the m + 1-parton configurations
in dσR that are kinematically degenerate with a
given m-parton state. Any time the m+1-parton
state in dσR approaches a soft and/or collinear
region, there is a corresponding dipole factor in
dσA that approaches the same region with exactly

the same probability as in dσR. The equality of
the two probabilities directly follows from (15)
and from the limiting behaviour in Eqs. (4,11,12)
of the cross section factors on the right-hand side
of Eq. (10). In this manner dσA acts as a lo-
cal counterterm for dσR. Note, in particular,
that the cancellation mechanism is completely in-
dependent of the actual form of the jet-defining
function and works for any jet observable (i.e. for
any quantity that fulfils Eq. (4)).

As for the property ii), we start by noting that
dσA (likewise dσR) depends on the m + 1 par-
ton momenta p1, ..., pm+1. However, having intro-
duced the modified momenta p̃1, ..., p̃m, for each
dipole term in Eq. (15) we can define a one-to-one

mapping

{p1, ..., pm+1} ↔ {p̃1, ..., p̃m, pi + pj} . (16)

The key feature of this mapping is that the m
modified momenta can be chosen in such a way
that they obey exact phase-space factorization as
follows

dΦ(m+1)(p1, ..., pm+1) = dΦ(m)(p̃1, ..., p̃m)

· dϕ
({p̃k})

(pi + pj) , (17)

where dϕ is a single-particle subspace that, for
fixed p̃1, ..., p̃m, depends only on the dipole mo-
menta pi and pj [6]. Owing to the exact phase-
space factorization and to the fact that the fake
cross section in Eq. (15) is proportional to the
jet quantity calculated from the modified m-
parton configuration, the integration of the sin-
gular dipole contributions can be completely fac-
torized (modulo colour and helicity correlations)
with respect to a term that exactly reproduces
the Born-level cross section:∫

m+1

dσA =

∫

m

dΦ(m)({p̃k}) |Mm({p̃k})|
2

· F
(m)
J ({p̃k}) ⊗

∑

ij

∫

1

dϕ
({p̃k})

(pi + pj) V ij

=

∫

m

dσB ⊗ I({p̃k}) . (18)

The last factor on the right-hand side of Eq. (18)
is defined by

I({p̃k}) ≡
∑

ij

∫

1

dϕ
({p̃k})

(pi + pj) V ij , (19)
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and contains all the soft and collinear singularities
that are necessary to compensate those in the vir-
tual cross section dσV . Owing to the convenient
definition of the dipole splitting function V ij , it
is possible to carry out analytically the integra-
tion in Eq. (19) over the dipole phase space in d
dimensions. This leads to an explicit and univer-
sal expression [6] for the factor I, whose ǫ-poles
cancel those in the one-loop matrix element.

5. FINAL RESULTS AND NUMERICAL

IMPLEMENTATION

The discussion in the previous section shows
that, by using the subtraction method and the
dipole formulae, one can extract and treat analyt-
ically the singular parts of a NLO cross section in
a way that is independent of the exact details of
the observable and of the process. This leaves a
remainder that depends on the full complications
of the jet quantity, but which is finite so that it
can be treated either numerically or analytically
(whenever possible).

In general, the use of numerical integration
techniques (typically, Monte Carlo methods) is
certainly more convenient. First of all, the nu-
merical approach allows one to calculate any
number and any type of observable simultane-
ously by simply histogramming the appropriate
quantities, rather than having to make a separate
analytic calculation for each observable. Further-
more, using the numerical approach, it is easy to
implement different experimental conditions, for
example detector acceptances and experimental
cuts.

In order to summarize the final results of our
algorithm and to describe their numerical imple-
mentation, we start by recalling how the LO cross
section in Eq. (2) is evaluated by using a Monte
Carlo program. One first generates an m-parton
event in the phase-space region dΦ(m) and gives
it the weight |Mm|2. Then this weighted event is
analysed by a user routine according to the actual

definition of the phase space function F
(m)
J and

inserted into a corresponding histogram bin.
Following the decomposition in Eq. (9), the

NLO cross section is obtained by adding two con-
tributions (which are not necessarily positive def-

inite) with m-parton (as in the LO calculation)
and m + 1-parton kinematics, respectively. Un-
like the original real and virtual contributions,
these two terms are separately finite and can be
directly integrated in four space-time dimensions.

The first contribution is obtained by inserting
Eq. (18) into Eq. (8) and is explicitly given by

σNLO {m} =

∫

m

dΦ(m) F
(m)
J ({pk})

·
{
|Mm({pk})|

2
(1−loop) (20)

+ |Mm({pk})|
2 ⊗ I({pk})

}

ǫ=0
.

The first term in the curly bracket is the one-
loop renormalized matrix element for producing
m final-state partons. The second term is ob-
tained by combining the tree-level matrix element
to produce m partons and the universal factor
I in Eq. (19). These two terms are defined in
d = 4 − 2ǫ dimensions. Great progress has been
made in recent years in the analytical techniques
for evaluating loop amplitudes, and many of them
have been calculated [22,4]. The explicit expres-
sion of the universal factor I is provided by our
algorithm. Thus, one has to carry out the ex-
pansion in ǫ-poles of the two terms in the curly
bracket, cancel analytically (by trivial addition)
the poles and perform the limit ǫ → 0. This
simple algebraic manipulation is sufficient to con-
struct an effective m-parton weight (the curly-
bracket contribution on the right-hand side) that
is finite. As a result, Eq. (20) can be handled
by the Monte Carlo program exactly in the same
way as the LO cross section.

The NLO contribution with m+1-parton kine-
matics, which is obtained by subtracting the fake
cross section in Eq. (15) from the real cross sec-
tion in Eq. (10), has the following explicit expres-
sion:

σNLO {m+1} =

∫

m+1

dΦ(m+1)

·
{

|Mm+1({pk})|
2 F

(m+1)
J ({pk}) (21)

−
∑

ij

|Mm({p̃k})|
2 ⊗ V ijF

(m)
J ({p̃k})

}
,

The terms in the curly bracket define an effective
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matrix element that is integrable in four space-
time dimensions. It follows that the NLO matrix
element Mm+1, with m + 1 final-state partons,
can be directly evaluated in d = 4 dimensions
thus leading to an extreme simplification of the
Lorentz algebra. Knowing the tree-level matrix
elements and the dipole splitting functions, the
Monte Carlo integration of Eq. (21) is straight-
forward. One simply generates an m + 1-parton
configuration and uses it to define an event with
positive weight +|Mm+1|

2 and several counter-
events, each of them with the negative weight
−|Mm|2 ⊗ Vij . Then these event and counter-
events are analysed by the user routine. The role

of the two different jet functions F
(m+1)
J and F

(m)
J

is that of binning the weighted event and counter-
events into different bins of the jet observable.
Any time that the generated m + 1-parton con-
figuration approaches a singular region, the event
and one counter-event fall into the same bin and
the cancellation of the large positive and negative
weights takes place.

6. MONTE CARLO PROGRAMS

Generalizing the procedure for constructing
NLO Monte Carlo programs for arbitrary quanti-
ties has several advantages. These are principally
due to the reduction in the number and complex-
ity of ingredients that have to be calculated for
each new process, and because the d-dimensional
integrals only need be done once and can be easily
checked independently, rather than being buried
inside a specific calculation.

Using the general algorithm described in this
contribution, we have already constructed a
Monte Carlo program (EVENT2) for three-jet ob-
servables in e+e− annihilation [21]. In the case
of un-oriented three-jet events, this program is
comparable and in agreement with the program
EVENT [23], which uses the subtraction proce-
dure introduced in Ref. [10]. In the case of ori-
ented events, our program [24] should be com-
pared with a corresponding program, EERAD
[12], based on the phase-space slicing method.

A NLO program for 2 + 1-jet observables in
deep-inelastic lepton-hadron scattering will soon
be available [25] and compared with the Monte

Carlo MEPJET [26] that implements the phase-
space slicing algorithm of Ref. [13].

7. SUMMARY AND OUTLOOK

The calculation of jet cross sections in per-
turbative QCD requires the integration of multi-
parton matrix elements over complicated phase-
space regions that depend on the actual definition
of the jet observables and on the experimental
cuts. In general, these phase-space integrations
can be carried out only by using numerical meth-
ods. Beyond LO, however, numerical techniques
cannot be straightforwardly applied because real-
emission contributions and virtual contributions
are separately divergent. These divergences have
to be first regularized, then evaluated analyti-
cally, combined together and cancelled before any
numerical calculation can be attempted.

The algorithm described in this contribution
overcomes in a simple way all the analytical
difficulties related to the treatment of soft and
collinear divergences in NLO calculations. Us-
ing the subtraction method and the dipole for-
mulae, we are able to explicitly carry out all
the analytical work that is necessary to evalu-
ate and cancel the singularities. The final out-
put of the algorithm is given in terms of ef-
fective matrix elements that can be automat-
ically constructed, starting from the original
(process-dependent) matrix elements and univer-
sal (process-independent) dipole factors. The ef-
fective matrix elements can be numerically or an-
alytically (whenever possible) integrated over the
available phase space in four dimensions to com-
pute the actual value of the NLO cross section.
If the numerical approach is chosen, Monte Carlo
integration techniques can be easily implemented
to provide a general-purpose Monte Carlo pro-
gram for carrying out NLO QCD calculations in
any given process.

The simplified discussion of the algorithm pre-
sented in this contribution directly applies to
processes, like e+e− → n jets, in which there
are neither initial-state hadrons nor identified
hadrons in the final state. However, the formal-
ism and the algorithm are completely general in
the sense that they apply to any jet observable
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in a given scattering process as well as to any

hard-scattering process. Full details and explicit
results for lepton-hadron and hadron-hadron col-
lisions and for fragmentation processes are given
in Ref. [6]. The inclusion of heavy quarks in the
algorithm can be performed in a completely gen-
eral and process-independent manner and will be
presented elsewhere. Another potentially impor-
tant extension is the generalization to polarized
scattering processes, which is also straightforward
in the dipole formalism.

At present, QCD calculations to next-to-next-
to-leading order (NNLO) are available only for
some fully inclusive quantities (see Ref. [28] and
references therein). In this case one considers
all possible final states and integrates the QCD
matrix elements over the whole final-state phase
space. Thus one can add real and virtual contri-
butions before performing the relevant momen-
tum integrations in such a way that only ultra-
violet singularities appear at the intermediate
steps of the calculation. In the case of less inclu-
sive jet observables, one cannot take advantage of
the cancellation of soft and collinear divergences
at the integrand level and, at present, no straight-
forward method is available to handle these diver-
gences at NNLO. Even once the necessary two-
loop matrix elements for several processes are cal-
culated, the amount of work needed to provide a
numerical implementation will be enormous. The
main features of the dipole formalism, which per-
mit a universal treatment of soft and collinear
singularities at NLO, seem particularly suited to
set up a general method for carrying out NNLO
QCD calculations.
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