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Abstract

The operator product expansion in four-dimensional superconformal field theory is
discussed. It is demonstrated that the OPE takes a particularly simple form for
certain classes of operators. These are chiral operators, principally of interest in
theories with N = 1 or N = 2 supersymmetry, and analytic operators, of interest
in N=2and N =4. It is argued that the Green’s functions of such operators can
be determined up to constants.
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A central role in two-dimensional conformal field theories is played by operator product
expansions [1]. Indeed, all the properties of these theories can be encoded in their OPE’s.
The OPE of two primary fields yields not only primary fields, but also descendants of
primary fields. However, strong constraints on the OPE follow from demanding that it be
compatible with conformal symmetry. This procedure determines the space-time depen-
dent coeficients with which the primary fields occur up to constants of proportionality.
These constants, however, can only be determined by the details of the model, in effect
what null states it possess. Given these constants, the rest of the OPE, that is all the
dependence on the descendants, is determined by conformal symmetry. In particular, in
minimal models, the OPE’s close with only a finite number of primary fields, so that the
correlation functions of such theories can in principle be calculated using the OPE and
the two and three-point functions.

In four dimensions conformal field theories were studied in some detail in a general setting
some time ago [2], but at that time no non-trivial examples were known. However, it is
now known that there are many supersymmetric gauge theories which are superconformal,
certainly in perturbation theory and perhaps beyond. These theories are: the maximally
supersymmetric (N = 4) models [3], a class of N = 2 [4] models and certain N = 1
theories [5]. It has further been conjectured that more supersymmetric theories may
have non-trivial fixed points [6]. It is therefore appropriate to reconsider four-dimensional
operator product expansions in the supersymmetric context.

It has been observed that the chiral sector of superconformally invariant theories in four
dimensions has certain similarities with such sectors in two dimensional superconformal
theories. In particular, the chiral and dilation weights of chiral operators are related if
the theory is at a fixed point [7]. It has also been pointed out that the so-called analytic
sectors of N = 2 and N = 4 theories seem to have similar properties [8]. Moreover, it
has been argued that, although these supersymmetric theories are only invariant under
a finite dimensional superconformal group, their very special form allows one to solve,
non-perturbatively, for large classes of their Green’s functions. In particular, one can
determine the Green’s functions in any chiral or anti-chiral sector and it is likely that one
can also do this in the analytic sector [8]. In this paper, we give the operator product
expansions in these sectors and find close similarities to the corresponding two dimensional
results.

We begin by giving a discussion of operator product expansions and their conformal
properties which applies in a general setting. For simplicity we shall take spacetime or
superspace to be complex. Let us denote the complex, finite-dimensional (super)conformal
group by G, for example, for four-dimensional N-extended supersymmetry G = SL(4|N).
The (super)conformal theories of interest to us are described by (super)fields which live on
the (super)space P\G where P is a parabolic subgroup of G. Which subgroups one should
take in four dimensions can be found in reference [9, 8]. We will denote the coordinates
of P\G by X.

We define primary fields to be fields that transform under an induced representation of G.
To keep life simple, we shall suppose that the fields are one-dimensional, i.e. transform
under a one-dimensional subgroup of P. In many cases such fields are the most interesting



to consider. For an infinitesimal (super)conformal transformation we have

8¢ =V + qAd (1)

where ¢ is a charge associated with the representation (related to the dilation weight
of the field) and V is the vector field generating the transformation on the coset space,
V(X) = 6X 2, X being the change in X. The function A is a function that characterises
the induced representation. We can choose coordinates such that the components of V'
are polynomials of degree 2 in the components of X and such that A is a polynomial of
degree 1. Descendants are space-time or superspace derivatives of primary fields. These
will not in general transform as induced representations. Indeed, under certain conformal
transformations descendants mix into primary fields. One can also take descendants to
be given by group generators acting on the primary fields, but this is equivalent to the
above desciption.

Now consider a complete set of operators {®;} comprising both primary fields {¢;} and
their descendants. We shall assume that we can write an operator product expansion in
the standard form,

O (X1)Ps(X2) =D f15(X1, Xo) P (Xs) (2)

Applying an infinitesimal (super)conformal transformation to this and considering only
primary fields on the left-hand side we find

Z[(Vl + Vo + A1 + QJA2)fin{]<I)K = Zfilj{((sq)K(2) — Va®k(2)) , (3)

where the subscripts 1 and 2 refer to the two points involved. Under a transformation for
which A is X-independent, the terms proportional to the primary fields do not have any
contributions from the transformations of the descendants and we get

(Vi 4+ Vo + (¢ + g5 — ar)A) f5(1,2) = 0. (4)

Hence, for these transformations, the coefficients l-’;- behave as a two point function with
a total ¢ weight of (¢; + ¢; — qx). For the ordinary conformal group these transformations
are translations, dilations and Lorentz rotations. However, these transformations are
sufficient to determine l-’;- up to a constant. In particular, if the fields under consideration
are Lorentz scalars and the primary fields have dilation weights d;(= ¢; in this case) then

ck

5= - ) (5)

1] [(CB]_ . m2)2]%(di+djfdk)

where cfj are constants and z; and x» are the positions of the primary fields ¢; and ¢; in

spacetime.

For the remaining transformations the function A is (super) space dependent. However,
we can still examine only the primary field terms provided we take into account of trans-
formations of descendants which result in primary fields. This calculation determines the
coefficients of the lowest level descendants.



Let us illustrate the procedure for the simplest situation, i.e. the ordinary conformal
group in four dimensions. The only remaining transformations are the special conformal
transformations with parameter C'z5 for which A = mﬁﬁCBﬁ. Under this transformation
only the lowest descendants, i.e. the set of fields {Ona¢;}, transform into primary fields.
Including these terms explicitly, the OPE of equation (3) becomes

¢i(w1)9;(z2) wa T1, T2)Pr (2 —i—z T (11, 29)Onatr(2) + . . . (6)

where the dots denote contributions from higher order descendants. Applying our previous
argument, again except for special conformal transformations, we recover (5) and find that

fk.5ad(m1, To) = (212) &) , (7)

1] 10q. L 4]
(i) B0

where the cfj(l) are constants and z¢5 = z¢% — 5% Applying a special conformal trans-

formation we find i —d, + dy)
O C L )
C’L] C’L] 2dk : (8)

By carrying out all conformal transformations on each side of the OPE and comparing
coefficients of the descendant fields we can determine all the descendant contributions in
terms of the constants c . Thus the situation is the same as in two dimensional conformal
field theories.

We now apply the above procedure to chiral superfields in four-dimensional N-extended
supersymmetry. The analysis can be adapted straightforwardly to other dimensions where
chiral fields are available. Due to the chiral constraint, a chiral superfield can be viewed as
a function of only %% and ¢, where z is an appropriate chiral variable and a = 1,... N.
The operator product expansion of two chiral superfields ¢;(X7) and ¢;(X>) can be written
as

Gi(X1)0;(Xa) = SR fE(X1, Xa)dr(Xa) + £ (X1, X2) (Do) (Xa)+ (9)

+fi aa(X17X2)( Oaadr)(X2) + ...},

where again the dots denote contributions from higher order descendants and where we
have used the shorthand notation 0,4 = and Onq =

We now give the superconformal transformations written in terms of the chiral variables.
The vector fields which generate the translations (P), dilations (D) and special conformal
transformations (K) are:

8 ad eaa .

V(P)ad - 8040'4
V(D) = maé‘ﬁad (10)
V(K)*® = maﬁmﬁdﬁﬁg + 24029, |
and the associated A’s are
A(P)ae = 0
A(D) =1 (11)
A(K)*® = zod |



The vector field generating internal symmetry () transformations (SL(N)) is

1
V(). = 0000 — 620 Ope (12)
N
and the function A(I)® vanishes in this case. For N # 4 we also have R-symmetry
transformations generated by

V(R) = 00pq (13)
with oN
The @Q-supersymmetry transformations are generated by
V(Q)aa - 804(1
V(Q)Z — _eaaaad , (15)

and the S-supersymmetry generators are

V(S)Y = z%%0,,

V(S)me = —zoP0Pe0,; + 0°09% 0, (16)
and only the last of these has a non-vanishing A given by
A(S)¥ = -6 . (17)

There are also Lorentz transformations which act in the obvious way on the vector and
spinor coordinates.

The transformations for which A is constant can, according to our general arguments,
be used to determine the superspace dependence of the coefficients of the primary chiral
superfields. Translations and supersymmetry transformations imply that the coefficients
are functions of z{§' = 2¢* — 2§ and 675 = ¢ —05°. R symmetry implies that if £ is to
be non-zero it must be proportional to 65 to the power ¢; + ¢; — ¢x. (There are no chiral
fields of interest in N = 4 rigid supersymmetry, so this is always valid for the applications
we have in mind.) Let us consider in detail the case when ¢; + ¢; = g. Dilation and

Lorentz symmetry imply that

A T (18)
and . .
157 = ()™ (19)

To fix the descendant coefficients we use special conformal transformations and special
(S) supersymmetries. We find that the contribution given by ¢ and its descendants to
the OPE is

$i(X1)$5(Xa) = o {Dr(Xo) + £65(Daatr) (Xa) + La95 (Pacti)(X2) | (20)
~+higher order descendants .



This result is essentially identical to the analogous result for two dimensional supercon-
formal field theory.

We may also have contributions from primaries which are Lorentz scalars and which have
¢+q —q=3,for N =1, and ¢; + ¢; — g = 2, for N = 2. Such terms have leading
contributions of the form

k K 03
fij = Cij 4 (21)
12
for N =1, and
k k 9%2
ij CijmT (22)

12
for N = 2. There are also primary fields with undotted spinor indices and internal indices.
For example, in N = 1, one can have a contribution to the OPE of Lorentz scalars ¢;
and ¢; from a spin one-half field ¢i, with charge qi if ¢; +¢; — qx = %, and for which the

leading contribution would be
804
i = (23)

12
However, for any pair of primary chiral fields, one always finds a finite number of primaries
in the OPE on the right-hand side determined by the charges and spinorial representations
involved.

We now consider harmonic superfields [10]. For the theories of most interest to us, i.e.
the extended rigidly supersymmetric theories, superfields of this type occur in N = 4
Yang-Mills theory and in the N = 2 matter sector of N = 2 theories. To be concrete we
consider the former case but the formalism can be easily adapted to N = 2. The N =4
harmonic superspace of interest to us is the extension of Minkowski superspace by the
internal space F = S(U(2) x U(2))\SU(4), and the fields we wish to consider are analytic
fields on this space, that is to say, fields which are analytic with respect to the internal
space F, and which are also Grassmann analytic (G-analytic). The latter means that they
are annihilated by half of the superspace covariant derivatives, and therefore depend on
only half of the odd coordinates, in a similar fashion to chiral fields. The difference is
that the derivatives involve the coordinates of the internal space and this allows one to
use a mixture of dotted and undotted spinor derivatives. These fields can be defined on
a new superspace, analytic superspace, which is similar to chiral superspace. It has local
coordinates
X — {mad’ /\aa” 7_‘_(10'4’ yaa’}

where a and a’ can both take on two values. (Locally, the internal space is just like
ordinary complex Minkowski space).

The operator product expansion for two analytic fields takes the form

$i(X1)05(Xa) = SR (X1, X2) 9 (Xa) + £ (X1, X2)(Baat) (Xa)
10 (X1, Xa) (0aatr) (X2) + £ (X1, X2) (Oaadr) (Xo) (24)
+ £ (X1, X2)(Bawdr) (X2) + higher order descendants} .

The superconformal transformations, when written in analytic coordinates, take a partic-
ularly simple form. The vector fields which generate them are, for translations, dilations,



Lorentz transformations (M) and special conformal transformations,

V(Plae = Oaa

V(D) = °%as+ 3N awr + 37" Du

V(M) = (205 + A2 0u) — trace (25)
VM), = (2704 +70) — trace

V(K)* = maﬁmﬁdﬁﬁg + 289N 9y +- Wbé‘magﬁbg + TN Gy

For internal symmetry transformations they are

V(I)aa’ - 8(1(1’
v

(I) — yaa’ o+ %/\aalaaa’ + %ﬂ_ad@ad
V(! = (7704 + y* Oue) — trace (26)
V()Y = (N0,0 +y? Ouw) — trace . .
V(I)aa’ _ ab ba 8bb’ + /\ﬁa ab’ 8ﬁb’ 4 yba'ﬂ_aﬁabﬁ, + /\aa,ﬂ'aﬁéﬁﬁ .
For Q-supersymmetry transformations we have
(Q)aa’ - 804(1’
V(Q)aa - 8(10'4
VQF = y" 0w + 70 2
(@ = 4" 0 — XN pa
while for S-supersymmetry we have
V( )g = Qfaﬁ.aaﬁ"i‘Aab,@ab/
V(S)y = 2"0p0 —m"pu . . (28)
V(s)aa — mﬁdyabﬁéﬁb, . Wbdyablébb' + mﬁaﬂ_aﬁaﬁﬁ, . Wbdﬂ_aﬁ@bﬁ
V(S)* = g a8y + g N Oy — N w005 — NN Gy
The non-zero A’s are . .
A(K)aa — maa
A(T) = -1
A(l) = —y* (29)
A(S)aa — 7.‘.(104
A(S)aa’ — _/\aa’ )

The transformation for an analytic field with charge ¢ takes the form given in equation
(1); the charge is the charge of the field with respect to the internal U(1), i.e. the U(1) of
the isoptropy group of the internal space F. In harmonic superspace it would correspond
to a field satisfying D,¢ = q¢ where D, is the derivative on SU(4) corresponding to this
U(1). In the case of N = 2 there is also an R-symmetry transformation generated by

V(R) = X0y — 704 . (30)

(In N = 2 analytic space the internal indices a and a’ only take one value and so can be
dropped.)



We shall now analyse the OPE for analytic fields using the method outlined above. One
finds again that the primary coefficients { Z} must obey the same equations as a two-point

function with total charge %(q, +q; —qr), e,

(V4 Vs + 50+ 05— @) (B + Ba)) 7 = 0. ()

Now the basic two-point function in N = 4 is the one for an Abelian Yang-Mills field
strength tensor W which has charge ¢ = 1. It is given by

~2

< W(X)W(X,) > % = g1 (32)
where o
~aa’ aa’ A% ﬂ-aamad
One then has )
fly = cij(gra) 2 @taima) (34)

k
for some constants {cj;}.

We can determine the coefficients for the descendant fields in the same way as before and
so we arrive at the result

¢i(X1)9;(X2) = koo ?5(912)%(qijrquqk){ﬁbk.(Xﬁ + %(fh — g + qx) X (35)
X (295 0nc + NS Oaar + M5 0nc + Y1 Onar)Pu(X2)} + ... .

In an N = 4 Yang-Mills theory with gauge group SU(M), for example, the basic local
analytic operators are given by the gauge-invariant powers of the field, i.e., they are the

operators
Ay i=tr(W)™, m=2,...(M —1). (36)

The operator A,, has charge ¢ = m. In particular, A is the supercurrent which we
shall denote by T'. Its components include the energy-momentum tensor, the spacetime
supersymmetry currents and the currents corresponding to the internal SU(4) symmetry
group. The OPE for two T"s is

TT(2) = co(g12)? + cag12{T(2) + (2%%Oni + A% Onar + Tty + Y 00ar ) T(2)}
+ finite terms .

(37)
For most four-dimensional theories the OPE of the energy-momentum tensor with itself
does not close on itself. However, for N = 4 Yang-Mills it does, and the result is strikingly
similar to the two-dimensional case; indeed, we can rescale 1" such that ¢ = 1 in which
case it would be tempting to interpret c, as a the central charge. We remark that it is
only in N = 4 that this can happen because in N = 1 and N = 2 the supercurrent is
neither chiral nor analytic, and we believe that it is only these special types of superfields
which have such simple OPE’s. For a discussion of the OPE in N = 1 supersymmetric
theories we refer the reader to [11].



There may be operators other than the {A,,} and their descendants appearing in the
analytic OPE. For example, given a gauge-invariant scalar superfield on super Minkowski
space one can always construct a gauge-invariant analytic field on harmonic superspace
by applying enough spinorial derivatives. A similar sort of situation can arise with chiral
fields in N = 1. If ¢ is chiral then so is D?¢. However, the latter is not in general primary
unless ¢ has weight % Clearly, analytic operators obtained in this way will only be able
contribute to the analytic OPE if they are primary. The lowest-dimensional analytic
operator of this type that one can construct in N = 4 has naive dimension 6 so that, even
if it is primary, it cannot contribute to the OPE of two supercurrents.

We conclude with a consequence of the OPE for analytic fields in either N = 2 or N = 4.
From a formal point of view the spacetime coordinate x and the internal coordinate y
appear in a very symmetrical manner. Indeed, as we have remarked earlier, in N = 4 the
internal space is locally the same as (complex) Minkowski space. However, from a physical
point of view spacetime and the internal space are completely different. In particular, the
singularities which appear in the OPE as x; approaches x5 are due to the usual difficulties
encountered in defining local products of operators in quantum field theory. On the other
hand, the role of y is simply to act as a device to help us exploit the internal symmetries
of the theory. The internal space is compact, and no internal points need or should be
removed from the domain of definition of Green’s functions of many operators. Therefore
singularities in the internal variables are completely spurious and must cancel. One way
of seeing this is to note that any analytic operator can be reexpressed in terms of a
polynomial in y with coefficients which are fields on ordinary super Minkowski space. If
one examines the right-hand side of the analytic OPE above, one sees that the absence of
singularities in y requires that £(¢;+g¢; —gx) be an integer, and furthermore that there can
only be a finite number of primary fields occurring because otherwise one will introduce
poles in y for sufficiently large values of g;. Thus the situation is similar in some respects to
that obtaining in two-dimensional minimal models. Given that the analytic OPE is valid,
and that analyticity imposes finiteness of the number of primaries occurring in any given
OPE, it is tempting to conclude that any Green’s function of analytic operators can in
principle be computed knowing the three-point functions and the OPE. Any such Green’s
function depends only on a few arbitrary constants, i.e. the {c;}'s and the constants in
the three-point functions. In other words, the analytic OPE for N = 4 (and for N = 2)
suggests that this sector of these theories is solvable in the full quantum theory. We
note, however, that this result depends on some assumptions, principally the form of the
OPE for analytic fields and the assumption that analyticity is maintained in the quantum
theory. The latter seems to be natural given that the theories we are interested in are
superconformal. In a future paper [12] we shall give a more detailed discussion of the
Green’s functions using analyticity and superconformal invariants.
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