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Abstract

The main objectives of future experiments at the Large Hadron Collider are the search
for the Higgs boson (or bosons), the verification of the Standard Model and the search
beyond the Standard Model in a new energy range up to a few TeV. These experiments
will have to cope with unprecedented high data rates and will need event building systems
which can offer a bandwidth of 1 to 100 GB/s and which can assemble events from 100 to
1000 readout memories at rates of 1 to 100 kHz. This work investigates the feasibility of
parallel event building systems using commercially available high speed interconnects
and switches. Studies are performed by building a small-scale prototype and by modelling
this prototype and realistic architectures with discrete-event simulations.

The prototype is based on the HiPPI standard and uses commercially available VME-
HiPPI interfaces and a HiPPI switch together with modular and scalable software. The
setup operates successfully as a parallel event building system of limited size in different
configurations, with different input data and different data flow management schemes.
Realistic parameters of 40 MB/s for the link speed and of 100µs for the overhead have
been measured and the total throughput is scalable with the number of destinations. The
prototype measurements lead to a parametrized model of a parallel event building system
which is implemented in a simulation program. This is used to simulate large-scale sys-
tems including a realistic model of the ATLAS event building system with realistic event
size distributions from off-line simulations. The influence of different parameters and the
scaling behaviour are investigated. Different data flow management schemes for destina-
tion assignment and traffic shaping are studied as well as a two-stage event building sys-
tem.
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1.0  Introduction

The Standard Model (SM) is a description of all elementary particles and their interactions
known today. Its biggest successes are the predictions of phenomena which could subse-
quently be discovered and measured in experiments, like the intermediate vector bosons
[Arn83] and the top-quark [Abe95].

But there are also still open questions: the Higgs boson which explains the spontaneous
breaking of symmetry in the electroweak sector of the SM has not yet been discovered. Its
existence is closely related to a very fundamental question, namely: what is the origin of
the different particle masses? And furthermore, when searching at ever higher energies
there is always the possibility to discover new physics which could change the under-
standing of particle physics.

In order to research in this direction the Large Hadron Collider (LHC) [Eva95] was pro-
posed as a hadron collider with unprecedented high energies and high luminosity. Gen-
eral-purpose experiments at this collider will be able to explore a new field of particle
physics with high precision measurements. They will have to cope with high data rates
which require sophisticated trigger and data acquisition systems to observe and select the
rare and interesting phenomena.

An event building system is a part of the trigger and data acquisition system where data
from events belonging to the same interaction are assembled. It has to match with the trig-
ger rates up-stream and down-stream, must not introduce deadtime and not lose event
data. Its performance is determined by the input rate and the event fragment size distribu-
tions and their correlations. Future experiments at the LHC [ATL94][CMS94] will need
event building systems with a bandwidth of 1 to 100 GB/s and which will be able to
assemble events from 100 to 1000 data sources at rates of 1 to 100 kHz. Bus based sys-
tems are not appropriate to fulfill this task and parallel event building based on high speed
interconnects with switching elements has to be envisaged.

This work presents studies carried out to prepare a future experiment at the LHC. The fea-
sibility of event building systems using commercial high speed interconnect standards and
commercially available communication switches is investigated in two complementary
ways: by building a prototype and by simulations. A small-scale prototype has been built
to adapt a given technology to the task of event building and to obtain a realistic model of
the switch. Simulations, on the other hand, use the model and the parameters measured in
the prototype and extrapolate to full-scale systems as needed in a future experiment. Real-
istic event size distributions can be studied as well as different data flow managment
schemes.

In chapter 2 this work presents an overview of the LHC, its physics issues and one of the
general-purpose experiments with its detector lay-out and its trigger and data acquisition
system. Chapter 3 defines the components needed in an event building system and dis-
cusses different architectures and high speed interconnect standards available. The proto-
type and its measurements are presented in chapter 4. Chapter 5 presents the simulation
program used. And simulations of realistic event building systems are discussed in
chapter 6. Different control schemes of event building systems are compared in chapter 7.
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2.0  ATLAS Experiment

2.1  Large Hadron Collider

The LHC [Eva95] is a future proton-proton collider at CERN operating at a centre-of-
mass energy of = 14 TeV and at a nominal luminosity of L = 1034 cm-2s-1. The LHC
will reach higher energies than ever achieved before and thus open a new field of research
in particle physics, in particular for the search for the Higgs boson.

2.1.1  Machine

The LHC, approved in 1994, will be operational in 2004. It will be accommodated in the
LEP tunnel. The existing accelerator complex at CERN consisting of the 50 MeV linac,
the 1 GeV booster, the 26 GeV Proton Synchrotron (PS) and the 450 GeV Super Proton
Synchrotron (SPS) constitute an excellent injection complex for the LHC as shown in fig-
ure 2.1.

FIGURE 2.1. LHC and Injection Complex at CERN

Furthermore, constructing the LHC in the LEP tunnel opens up the possibility of having
electron-proton collisions of a centre-of-mass energy up to = 1.7 TeV. The LHC can
further be used for heavy ion collisions and reaches for lead ions a centre-of-mass energy
of up to = 1312 TeV. Two general-purpose pp experiments (ATLAS [ATL94] and CMS
[CMS94]) and one heavy ion experiment (ALICE [ALI93]) are proposed.

TABLE 2.1. Parameters of the LHC

Circumference 27 km

Proton Energy 7.0 TeV

Luminosity 1034 cm-2s-1

Bunch Spacing 25 ns

s

PS LIL
Booster

EPA
e+e- linacs

proton ion linacs

SPS

LEP/LHC
proton
ion
e+

e-

s

s
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2.1.2  Magnets

A technical challenge which must be overcome at the LHC is the realization of the super-
conducting dipole magnets [Eva95] providing a field of 8.4 T. Figure 2.2 shows a cross-
section of the magnets with two counter-rotating proton beams in one device. This design
uses copper-clad niobium-titanium windings and operates at a temperature of 1.9 K. Some
other parameters are listed in table 2.2. A total of 1,296 dipole magnets are needed, plus
2,500 other magnets ranging from normally conducting bending magnets to large super-
conducting focusing quadrupoles. The cryogenics system for the magnets will contain
some 700,000 l of liquid helium and have a power consumption of about 140 kW.

FIGURE 2.2. LHC Magnets

TABLE 2.2. LHC Dipole Magnet Parameters

2.2  Physics Issues at the LHC

The LHC will open a new field of research in particle physics which cannot be accessed
with today’s experiments. The SM will be tested in an energy range where it has not been
challenged before.

Operational field 8.4 T

Coil Aperture 56 mm

Distance between Aperture Axes 180 mm

Outer Diameter of Cryostat 980 mm

Magnetic Length 14.2 m

Operating Current 12 kA

Operating Temperature 1.9 K

Heat Exchanger Pipe

Superconducting Coils

Beam Screen
4.5 K He Pipe
Non-Magnetic Collars

Beam Pipe
20 K He Pipe
Support Post
50+75 K He Pipe
Alignment Target

Sc. Bus-Bars
Iron Yoke

Shrinking Cylinder

Thermal Shield
2.2 K He Pipe

Radiative Insulation
Vacuum Vessel

1.8 K He Pipe

50+75 K He Pipe
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2.2.1  Standard Model

Today’s understanding of particle physics is summarized in the SM which describes all
known phenomena in the world of particles and their interactions. In the SM there is a set
of fundamental particles and their interactions based on fundamental forces. All known
matter is made up from these particles which are spin-1/2 particles (fermions). There are
two groups: the leptons and the quarks. The leptons interact electromagnetically and
weakly and fall into three families, also called generations:

The quarks interact electromagnetically, weakly and strongly. All mesons and baryons are
composed of the quarks which also fall into three families:

There are three fundamental forces which are the electromagnetic, the weak and the strong
force. They are described by means of gauge theories and are transmitted by one or more
boson(s) which are summarized in table 2.3.

TABLE 2.3. Fundamental Forces and their Bosons

In order to explain the spontaneous symmetry breaking in the electroweak sector a mecha-
nism has been introduced which gives masses to the W and Z bosons. This requires in its
minimal formulation another spin-less particle: the Higgs boson. This particle can also
explain the masses of all the fermions of the SM. In a minimal supersymmetric extension
of the SM the single Higgs boson is replaced by a set of 5 bosons: H±, h, H0, A.

2.2.2  Physics Potential

For an estimated non-diffractive cross-section of ~70 mb [ATL94], an average of 18 mini-
mum-bias pile-up events per bunch crossing of the LHC are expected at peak luminosity.
These will mainly be QCD events and can be used to study event shape and energy flow
and to test QCD and jet cross-sections over several orders of magnitude. The more inter-
esting physics like the events where a Higgs boson is produced are several orders of mag-
nitude (~10-13) less frequent. The following fields of interesting physics [ATL94] can be
exploited at the LHC:

Force Boson Symbol Relative Strength

weak intermediate vector bosons W±,Z0 αweak = 1.02 10-5

electromagnetic photon γ αem = 1/137

strong gluons g αstrong≈ 0.1

e
νe 

  µ
νµ 

  τ
ντ 

 

u
d 

  c
s 

  t
b 
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• Higgs boson:

The most prominent issue for the LHC is the quest for the origin of the spontaneous
symmetry breaking in the electroweak sector of the SM and the quest for the origin of
particle masses. At the LHC the search for the Higgs boson can be conducted over the
wide range of masses from mH ≈ 80 GeV up to mH ≈ 1 TeV.

• Top quark:

Even at the moderate luminosity expected during the first years of LHC operation
(1033 cm-2 s-1), the LHC will operate as a top quark factory delivering roughly 107 tt
pairs per year. The mass of the top quark can be measured with an accuracy of about
±2 GeV for a mass of mt ≈ 170 GeV.

• B-physics:

A particularly rich field will be available in B-physics, the main emphasis being on the
precise measurements of CP violation in the  system and the determination of the
angles in the Cabibbo-Kobayashi-Maskawa unitarity triangle. In addition, BB mixing
in the  system and rare B decays can be studied.

• Supersymmetric particles:

Supersymmetric extensions of the SM predict a wide spectrum of new particles with
masses and production rates such that at the LHC they could be discovered over a large
fraction of the parameter space. Events with a high jet multiplicity and large missing
energy make a search possible in the range of 1 to 4 TeV.

• Physics beyond the SM:

- New heavy gauge bosons W’ and Z’ can be searched at the LHC for masses up to
5..6 TeV.

- Leptoquarks carry both lepton and baryon quantum numbers and also couple to
both. They can be produced via qg→ lLQ and the final state consists in 25% of the
cases in two electrons and one jet. At the LHC the sensitive area is around
mLQ ≈ 1 TeV.

- Deviations from QCD for jet cross-sections and energy spectra can be used to
check thecompositeness of quarks.

- Possibleanomalous couplings of gauge bosons can be studied.

2.2.3  Higgs Boson

The search for the Higgs boson is the most prominent issue for the LHC. It is used to opti-
mize the ATLAS detector geometry and is given here as an example of the physics poten-
tial. Unitary reasons require the Higgs boson to have a mass mH < 1 TeV [Vel77]. For
small masses (mH < 1 GeV) its existence has been excluded in several experiments and
looking at different decay channels [Her90]. LEP delivers a lower limit of mH > 63 GeV
[Blon94] and LEP2 will increase this limit up to mH > 80 GeV if it does not discover the
Higgs boson [Wu87]. Principally the Higgs boson can be found at the LHC covering the
mass region of 80 GeV < mH < 1 TeV.

Bd
0

Bs
0
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Cross-sections for production of the Higgs boson can be calculated in the SM. These cal-
culations use as input parameters the centre-of-mass energy  = 14 TeV, the top quark
mass of around 170 GeV and the structure functions. The Feynman-diagrams for Higgs
boson production are shown in figure 2.3.

FIGURE 2.3. Feynman-Diagrams for Higgs Boson Production

Over the mass range of 80 GeV < mH < 800 GeV the gluon fusion (a) is dominant.
qq→qqH (b) becomes dominant for bigger masses up to 1 TeV. The production cross-sec-
tions times the branching ratios for some prominent processes are shown in table 2.4.

TABLE 2.4. Cross-Section Times Branching Ratio for Some Higgs Boson Processes

Search strategies for the Higgs boson depend on its mass and several have to be combined
to cover the full mass range:

• H → bb:

With a Higgs boson mass below the threshold for decays into a pair of vector bosons
this decay mode is essentially 100%. The signature used will be a lepton from one b-
quark and a b-quark jet from the other, possibly used with the associated production
(figure 2.3 (c) and (d)). This channel is sensitive at 80 GeV < mH < 100 GeV.

• H → γγ:
This is a sensitive channel for 90 GeV < mH < 150 GeV and requires an excellent elec-
tromagnetic calorimeter and identification of photons against a huge background from
jets misidentified as photons.

• H → ZZ(*) → 4l±:

For masses between 130 GeV < mH < 2mZ one of the Z bosons is virtual and the Higgs
boson is rather narrow with a big background from boson pair production. For masses

Process
mH

[GeV]
σ⋅BR
[fb]

pp → H → γγ 100 44

pp → H → ZZ* → 4l± 130 3

pp → H → WW → lνjj 1000 17

s

g

g
t H

g

g

t

H

t

q

q

q

q

H
W

q

q

W
W

H

a)

c)

b)

d)

t
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mH > 2mZ both bosons are real and the signal is rather clean.

• H → WW,ZZ → l±νjj, 2l ±jj:

This signature is important in the mass range up to mH ≈ 1 TeV and uses two jets for
identification.

2.3  ATLAS Detector

ATLAS [ATL94] is a proposed pp experiment at the LHC. It wants to exploit the full dis-
covery potential of the LHC. It will operate at high luminosity but also at the lower lumi-
nosity in the initial phase of the collider. It will try to use as many physics signatures as
possible, like electron, photon, muon and jet detection but also missing transverse energy
and jets from b quarks. At lower luminosity it will in addition try to identifyτ leptons and
heavy quark flavors and resolve their secondary vertices.

FIGURE 2.4. Three-Dimensional View of the ATLAS Detector

2.3.1  Overview

The basic considerations for the design of the ATLAS detector are the following:

• a very good electromagnetic calorimetry that will be able to identify and measure elec-
trons and photons. Hermetic jet measurement and missing transverse energy are also
required;

• efficient tracking at high luminosity that will provide lepton momenta and b-tagging.
The inner detector will also contribute to the electron and photon identification and
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allow detection of secondary vertices at lower luminosity;
• a stand-alone muon spectrometer that will identify and measure muons.

In addition, a large acceptance of the detector over theη range and a triggering capability
at low transverse momenta are required.

The inner detector of ATLAS is in a solenoid magnetic field of 2 T and performs pattern
recognition and particle identification. It has a cylindrical structure and covers the area
between the beam pipe and a radius of 1.15 m and has a length of 6.8 m. The calorimetry
is based on liquid argon calorimeters and a novel type scintillator tile calorimeter which
cover the radial space up to a radius of 2.25 m for electromagnetic and up to a radius of
4.25 m for hadronic calorimetry. The muon spectrometer is based on a superconducting
air-core toroidal magnet system and uses different types of chambers up to radii of 19.5 m
to detect and trigger on muon tracks. The ATLAS detector has a multi-level trigger system
to accommodate the high data rates and to select interesting physics.

2.3.2  Inner Detector

The ATLAS inner detector occupies the cylindrical cavity defined by the boundaries of the
cryostats for the electromagnetic calorimeters at a radius of 1.15 m and on the inner radius
by the boundary of the beam pipe with a diameter of about 5 cm. The inner detector is in
an axial central field of 2 T provided by a superconducting solenoid coil which is inte-
grated in the cryostat for the electromagnetic calorimeter. The inner detector combines
high-granularity detectors at inner radii and continuous tracking elements at larger radii.

FIGURE 2.5. Layout of the ATLAS Inner Detector

Mechanically, the inner detector is divided into three units: a barrel unit extending over
80 cm along the beam axis and two identical forward units covering the rest of the cylin-
drical space. In the barrel region the detectors are arranged on concentric cylinders around
the beam axis. All the forward tracking elements are located in planes perpendicular to the
beam axis. Their sensitive parts are oriented in radial or almost radial direction. The dif-
ferent detector technologies are listed briefly below:

• Thepixel detector is based on silicon detectors which contain an array of pixel diodes
and also the bus lines for control and readout. The readout electronics chip is directly
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bump-bonded onto the silicon detector. Two layers of the pixel detector at small radii
provide two-dimensional spatial information. An additional layer might be installed at
the initial phase of lower luminosity running as close as practical around the beam pipe.
This will enhance the secondary vertex measurements.

• The semiconductor tracker (SCT) uses strip detectors with fine granularity in theϕ
direction. Silicon is foreseen in the barrel region and GaAs substrates in the forward
region where the radiation doses are higher. Each layer of the SCT consists of two
detectors glued back-to-back to measure alternating combinations ofϕ and u orϕ and v
in the barrel region and u and v in the forward region.

• The micro strip gas counters (MSGC)1 have been developed as strip detectors for
large areas. The detectors operate as drift chambers with finely segmented metal anodes
etched on a glass substrate. Small drift times and high-precision position measurement
can be achieved. Each disc of the MSGC in the forward region measures the three coor-
dinatesϕ, u and v.

• The transition radiation tracker  (TRT) is based on straw tubes of 4 mm diameter.
These tubes are made from 60µm thin kapton walls with a 50µm gold-plated beryl-
lium wire along the straw axis. The straws are interleaved with polyethylene radiators
to produce and detect X-ray emission from very relativistic particles. A high pT charged
particle will transverse 64 layers of the TRT and give at least 36 tracking points provid-
ing a good pattern recognition. The TRT will also enhance the electron identification.

TABLE 2.5. Parameters of the Inner Detector

The combination of high-precision tracking detectors and continuous tracking elements
provides a very robust pattern recognition and full tracking coverage over the rapidity

1.  In September 1995 the ATLAS collaboration decided not to build this subdetector.

Detector
Radius
[cm]

Length
[cm]

Elements η Coverage

Pixel 11.5 ±35 50µm×300µm ±2.5

16.5 ±45

11.5..21.3 50,55,80,85

SCT (silicon) 30,40,50,60 ±82 75µm×12cm ±1.4

SCT (GaAs) 20..35 155.7 50µm×7.6cm 2.0..2.5

29..44 182.5

MSGC 44..60 90,..,265.6 200µm×16cm 1.4..2.5

50..96 336.0

TRT 63..107 ±80 4mm diameter×80cm ±2.5

64..103 80..265 39cm

50..103 267..327 53cm
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range of |η| < 2.5. The resulting momentum resolution of the combined detectors is shown
in figure 2.6. The vertex resolution can be parametrized (σ in µm and pT in GeV):

FIGURE 2.6. Momentum Resolution in the Inner Detector

2.3.3  Calorimetry

The ATLAS calorimetry consists of an inner barrel cylinder and end-caps using liquid
argon (LAr) technology and an outer barrel cylinder and two extended barrel sections
using a novel type scintillator tile technology.

FIGURE 2.7. Layout of the ATLAS Calorimeter System
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The barrel electromagnetic calorimeter is made of two half-barrels and uses lead absorbers
in LAr implemented in an “accordion” geometry. There are 1024 absorber plates arranged
around the beam axis in theϕ direction. Between two absorbers there are two gaps with
LAr of 1.94 mm and with a readout electrode of 300µm thickness. The electrode, held in
place by a light honeycomb structure, acts as a blocking capacitor for the high voltage and
contains segmented copper strips for the charge collection. The first compartment can be
read out with very fine granularity inη to act as an integrated preshower for photon identi-
fication. In addition, there will be a separate presampler device in front of the barrel calo-
rimeter to preserve the energy and direction resolution of particles passing the cryostat and
coil material. The minimal total thickness of the electromagnetic barrel calorimeter is
26 X0 (atη = 0).

The LAr end-cap calorimeter consists of two identical end-caps divided into eight wedge-
shaped modules on two coaxial wheels. The “accordion” shaped absorber plates are
arranged in a way that cracks inϕ are completely avoided. The total thickness of this calo-
rimeter is 28 X0 for all rapidity values. The first compartment is again finely segmented in
η to act as a preshower. No external presampler is needed.

The end-cap hadronic calorimeter is made of two wheels per end-cap which are assembled
from 32 sector modules. LAr technology is used with copper absorber plates and elec-
trodes. The forward calorimetry which is integrated with the end-cap electromagnetic and
hadronic calorimeters in the same cryostat uses LAr technology in a tube-like structure to
operate in the high radiation region. A very narrow LAr gap between an absorber rod and
a tube will be used, the absorber being copper for the electromagnetic compartment and
tungsten alloy for the two hadronic compartments.

The hadronic scintillator tile calorimeter is based on a sampling technology with iron
absorbers and plastic scintillator plates (tiles). The tiles are placed perpendicular to the
beam axis and read out by wavelength shifting fibres. The tile calorimeter consists of three
cylindrical structures with each of them sub-divided into 64 independent azimuthal mod-
ules. Readout cells are defined by grouping together a set of fibres onto one photomulti-
plier.

The parameters of segmentation and rapidity coverage can be found in table 2.6. The per-
formance of the ATLAS calorimetry has been extensively simulated and confirmed by
test-beam results. The energy resolution of the electromagnetic calorimeters can be
described by

and the clusters of electromagnetic showers are to 95% contained in windows of 3×7 cells.
The energy resolution of the barrel hadronic calorimeter for charged pions is

σ
E
--- 0.1

E GeV[ ]
--------------------------- 400MeV

E
---------------------- 0.003+ +=

σ
E
--- 0.45

E GeV[ ]
--------------------------- 0.015+=
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TABLE 2.6. Parameters of the Calorimeter System

2.3.4  Muon Spectrometer

The ATLAS muon spectrometer is based on a superconducting air-core toroid magnet sys-
tem which consists of a 26 m long barrel part with an inner bore of 9.4 m and an outer
radius of 19.5 m and two end-caps with lengths of 5.6 m and inner bores of 1.26 m. Each
toroid consists of eight flat coils symmetrically arranged around the beam axis with the
end-caps rotated with respect to the barrel so that the coils interleave.

FIGURE 2.8. Transverse View of the ATLAS Muon Spetcrometer

a. The segmentation varies in the longitudinal compartments, only some values are shown.

Type Region
Technology
(Absorber)

Elements η
Coverage

Depth Segmenta

electro-
magnetic

barrel LAr accordion
(lead)

4 0.025×0.100 (presampler)
0.025×0.025

±1.4

end-cap LAr accordion
(lead)

3 0.003×0.100 (presampler)
0.025×0.025

1.4..3.2

forward LAr tube
(copper)

3 ~0.15×0.15 3.1..4.9

hadronic barrel Scintillator tile
(iron)

3 0.1×0.1 ±1.6

end-cap LAr accordion
(iron)

4 0.1×0.1 1.5..3.2

forward LAr tube
(tungsten)

3 ~0.15×0.15 1.5..3.2

Precision chambersTrigger chambers

End-cap 
    toroid

Barrel
coils
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Muon chamber planes are attached to the toroids to measure the trajectories of muons. In
the barrel the layout consists of three layers of chambers and in the end-caps the chambers
are placed on the front and back faces of the cryostats. A third layer is fixed on the cavern
wall. Two types of chambers are used for the high-precision measurements:

• Themonitored drift tube  chambers (MDT) consist of two multi-layers of four planes
of pressurized thin-wall aluminium tubes with a diameter of 30 mm. They are arranged
at distances of 150 to 350 mm and are used for a very large part of the rapidity range.

• Thecathode strip chambers (CSC) are multi-wire proportional chambers with a sym-
metric cell in which the anode-cathode distance equals the anode wire spacing, both
typically 2.5 mm. The high precision position is measured by determining the centre-
of-gravity of the induced charge on the finely segmented cathode strips made from
etched copper on glass fibre laminates. These chambers can be operated in highest rate
environments at large values ofη using an appropriate segmentation.

The high-precision measurements are complemented with chambers for triggering. There
are also two types used for this:

• The resistive plate chambers (RPC) are gaseous parallel plate detectors with two
bakelite plates coated with layers of graphite paint providing the electric field and
external pick-up strips on plastic material for the signal. A set of two orthogonal strips
is used to provide two-dimensional information with good spatial resolution.

• Thethin gap chambers (TGC) are used in the forward region. They are wire chambers
operated in saturated mode. Two graphite cathodes with a distance of 3.2 mm are sand-
wiched with 50µm diameter anode wires with a pitch of 2 mm. Capacitive readout on
pads and strips gives the spatial resolution required and the time resolution is less than
5 ns.

TABLE 2.7. Muon Chambers used in the Muon Spectrometer

The momentum resolution of the combined muon spectrometer relies heavily on the abil-
ity to align the muon chambers precisely over big distances. The resolution has been cal-

Region
Inner
Layer

Middle
Layer

Outer
Layer

η Coverage

Barrel Radius [m] ~4.5 ~7 ~10 ±1.05

Precision MDT MDT MDT

Trigger - RPC RPC

Transition z [m] ~7 ~10 ~13 1.05..1.4

Precision MDT MDT MDT

Trigger TGC TGC TGC

End-Cap z [m] ~7 ~14 ~21 1.4..3.0

Precision MDT/CSC MDT/CSC MDT/CSC

Trigger TGC TGC TGC
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culated taking into account the three-dimensional magnetic field, multiple scattering in the
various materials and errors in the alignment. The resolution as a function ofη andϕ (w.r.t
to the coil plane) is shown in figure 2.9.

FIGURE 2.9. Momentum Resolution of the ATLAS Muon Spectrometer

2.4  ATLAS Trigger and Data Acquisition System

At the LHC every 25 ns an average of 18 minimum bias events will overlap. With some
tens of 106 channels of the tracking detectors, some 105 channels of the calorimeters and
some 106 channels of the muon spectrometer the ATLAS detector will produce an
immense data flow. This flow needs to be reduced so that it finally can be read out without
creating unreasonable deadtime and can be written to a mass storage system at a reason-
able rate. A highly sophisticated system of data reduction and selection of the interesting
events without losing new and unforeseen physics is required for this task. The ATLAS
trigger and data acquisition system is based on a three-level trigger system with a high
degree of parallelism at every stage.

2.4.1  Trigger Strategy

The level-1 (LVL1) trigger accepts data at the full LHC rate of 40 MHz and uses reduced-
granularity data from the calorimeters and muon spectrometer to apply an event selection
based on the highly significant signatures of electron, photon, muon, jet and missing trans-
verse energy. Simulations [ATL94] show that inclusive signatures lead to prompt trigger
rates of a few tens of kHz (table 2.8). Including a safety margin it can be expected that the
LVL1 trigger accepts events at a maximum rate of 100 kHz.

The LVL1 trigger not only reduces the incoming rate by a factor of about 400 but also
identifies for each accepted event regions of interest (RoI). These are areas of the accep-
tance space where something interesting has been detected. Lower thresholds than for the
LVL1 trigger are used to identify these areas which are then passed to the level-2 (LVL2)
trigger to guide further event selection.

The LVL2 trigger uses full-granularity and full-precision data but acts only on parts of the
data identified by the RoIs. Higher precision of the calorimeter and muon data allows to
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refine the decision taken at LVL1. Also data from the tracking detectors will be included
in order to provide together with the calorimeter and muon information a reduction factor
of 100. Studies [ATL94] have shown that this mechanism will only need a few percent of
the data to deliver an output rate of accepted events of 1 kHz.

TABLE 2.8. Some Simulated Trigger Rates at LVL1 (L = 1034 cm-2s-1)

The level-3 (LVL3) trigger will act on the full event data and reduce the data by another
factor 10. While LVL1 and LVL2 have only been acting on inclusive signatures, at LVL3
detailed reconstruction can be performed though it is desirable to keep the thresholds
lower than the ones used in the analysis to avoid trigger bias and to facilitate background
studies.

At the initial lower luminosities of the LHC B-physics will be of much interest and a dif-
ferent trigger strategy will have to be considered. A low-pT muon trigger will be used to
give prompt trigger rates of up to 10 kHz. On the LVL2 information of the precise tracking
detectors, the TRT and calorimeter will be investigated sequentially to give the required
rate of about 1 kHz. At LVL3 full event reconstruction will be used to select interesting B-
physics.

2.4.2  Trigger and Data Acquisition Architecture

During the LVL1 processing which is done in a completely independent unit all data of the
whole detector are stored in pipeline memories. These can be analogue or digital if the sig-
nals are digitized at bunch-crossing frequency. The pipelines must be long enough to keep
all the signals for the LVL1 latency which will be fixed at about 2µs corresponding to
about 80 bunch-crossings.

When an event is accepted by the LVL1 trigger the data from all the pipeline memories are
read out to off-detector readout boards [Far95]. Since the LVL1 trigger decision is syn-
chronized and arrives a fixed number of bunch-crossings after the interaction the correct
data in the pipeline can be identified and sent to the derandomizer. This is an intermittent
storage which accepts the digitized and possibly zero-suppressed data at the random
LVL1-accept frequency and adopts the output rate to the front-end link. Over this link
which will be based on optical fibres, the data are sent to the readout driver (ROD) which
receives them and checks their consistency with the timing information it gets from the

Trigger Requirement
LVL1 Rate

[kHz]

³ 1 isolated em. cluster, ET > 30 GeV 20

³ 1µ, pT > 20 GeV 4

³ 2 isolated em. clusters, ET > 20 GeV 4

³ 2µ, pT > 6 GeV 1

³ 1 jet, pT > 150 GeV 3
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timing, trigger and control system (TTC). Sparsification and data compression are possi-
ble. It multiplexes several data flows from different pipeline memories onto one readout
link.

FIGURE 2.10. Three-Level Trigger Architecture of ATLAS

While up to this point the technology of the front-end electronics can be detector specific,
from the readout link onwards a uniform technology will be used to facilitate construction
and control of the ATLAS data acquisition system. The readout link will be based on opti-
cal fibres with a relatively uniform data flow of about 1 Gb/s. The data flow will also be
arranged in a way that it matches the RoI segmentation and one RoI will be spread over a
minimal number of readout boards/buffers (ROB). These receive the data at the frequency
of the LVL1-accept and store them during LVL2 processing and until the readout to the
LVL3 trigger is completed. The ROB will contain a multi-port memory with at least two
fast access ports for input and output. For convenience several ROBs will be grouped
together using shared links to the LVL2 and LVL3 trigger. These groups would in today’s
technology be based on (VME) crates. The readout crates would, in addition to the ROBs,
house a trigger interface for receiving the RoI information from LVL1 trigger and the
LVL2 decision. The RoI information will start transmission of the corresponding data
from the ROB to the LVL2 link. The LVL2 decision would either release the correspond-
ing buffer space or start transmission of the full event data to the LVL3 link.

The LVL2 trigger can be regarded as an independent unit which receives the data of the
RoIs from the ROBs and sends back a decision. The LVL3 trigger includes an event build-
ing stage which assembles full events in parallel and sends them to farms of processors
running the LVL3 algorithm. The selected and compressed events will then be written to a
mass storage system for off-line analysis.
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FIGURE 2.11. Trigger/DAQ Architecture of ATLAS

2.4.3  Level-1 Trigger

The LVL1 calorimeter trigger uses reduced-granularity cells of∆η×∆ϕ = 0.1×0.1 with sin-
gle depth compartments in electromagnetic and hadronic calorimeters. Purpose-built pro-
cessors receive the signals from the trigger cells at full LHC frequency and process them
in a pipelined fashion. They will digitize the signals with a smaller dynamic range, cali-
brate them with the help of look-up tables and calculate sums for the electromagnetic clus-
ter finding, the jet finding and missing transverse energy measurement. Since these
algorithms are based on overlapping windows each processing element also requires
information from its neighbours which is achieved by fanning out the input data.

The electromagnetic cluster finding is based on a 4×4 trigger cell window and applies
thresholds on the sum of ET in pairs of adjacent electromagnetic cells in the 2×2 area in
the centre, the sum of ET around this area for isolation and the sum of ET in the 16 had-
ronic cells at the back of the window. This is schematically shown in figure 2.12.

FIGURE 2.12. LVL1 Electromagnetic Cluster Finding in the Calorimeters

The jet finding is based on windows of 8×8 trigger cells above a certain ET threshold. The
missing transverse energy trigger uses the sum over all cells above an ET threshold. The
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processing elements do, in addition to the trigger processing, define the RoIs using algo-
rithms similar to the electromagnetic cluster and jet finding but with lower thresholds.

The muon trigger chambers are used for the LVL1 trigger processing. Four layers of
chambers are located at the middle of the barrel toroid, arranged in two groups of two
chambers separated by about 40 cm. For the low pT trigger (~6 GeV) a coincidence
between these groups is made in a road defining the pT sensitivity (see figure 2.13). Addi-
tional chambers at larger radii are used for high pT triggering (~20 GeV). In the end-cap a
similar algorithm is used. In both cases the muon trigger tracks will be identified by a pro-
grammable coincidence matrix ASIC. The same information is also used to generate the
RoI information.

FIGURE 2.13. LVL1 Muon Trigger Algorithm

The central trigger logic combines the information for the calorimeter and muon trigger
processors and makes an overall decision. The latency of this decision will be constant
and including all cable delays of about 2µs. It will be distributed, together with the LHC
clock and other control signals to the front-end electronics of all detectors. A timing, trig-
ger and control system (TTC) based on opto-electrical fan-outs will take care of this task.

2.4.4  Level-2 Trigger

The LVL2 trigger is based on the use of RoI information delivered by the LVL1 trigger. It
only has to access and process a small fraction of the total data and proceeds in three steps:

1. The feature extraction reduces the data from one subdetector in one RoI into a more
physical quantity like track or cluster parameters.

2. The features from several subdetectors in one RoI are combined to form an object,
which can be a particle candidate.

3. All objects of all RoIs are combined to a global decision.

A possible architecture is shown in figure 2.14. Data from each RoI are extracted from the
ROB (which here acts as a LVL2 buffer) and routed via a network to a set of local proces-
sors where the feature extraction is done. The features are then sent through a network to a
set of global processors where the object forming and the global decision taking is done.
The final decision is sent to a supervisor which keeps track of the status of all the proces-
sors and assigns them to the different tasks. All processors are assumed to be fully pro-
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grammable high-level processors. For initial low luminosity running the same LVL2
trigger system will be used to run a set of selections in different subdetectors in a sequen-
tial fashion. The overall event selection is made in the global processors using information
from all detectors.

FIGURE 2.14. A possible LVL2 Trigger Architecture

2.4.5  Event Building and Level-3 Trigger

When an event is accepted by the LVL2 trigger the decision is distributed to the readout
crates which will read the corresponding data from all its ROBs and send them to the
LVL3 link. The data will be kept buffered in the ROBs as long as the event building sys-
tem is busy. The data will pass through an event building system based on a switching ele-
ment and full events will be assembled in parallel at the switch-farm-interfaces on the
receiving side. These will buffer the full events during the LVL3 processing and provide
feedback to the data flow management system controlling the data flow through the event
building system.

LVL3 processing units are running the LVL3 trigger based on full event reconstruction.
They will most likely be organized in the form of farms, each farm having one or more
processing units, an input and an output unit. The input unit (switch-farm-interface)
receives the full events from the event building system and buffers them in memory. The
output unit receives the LVL3-accepted data and sends them to the permanent storage sys-
tem for off-line analysis.

Estimations of the data flow in the individual subdetectors of ATLAS and the number of
LVL3 links needed is summarized in table 2.9 [Map95a]. All values are based on average
calculations and are still subject to frequent changes.
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TABLE 2.9. Data Flow of the ATLAS Detector

From the estimated data flow it can be seen that the event building system in the ATLAS
detector will have about 100 data sources which provide a full event with a total amount of
data of about 1 MByte, leading to an average event fragment size of about 10 kByte per
source. Assuming a LVL2-accept rate of 1 kHz the total throughput of the event building
system can be estimated to be about 1 GB/s, requiring a minimal bandwidth of 10 MB/s
per source. About 100 destinations will receive the full events at a rate of about 10 Hz
which leaves them 100 ms per event. With processing times of up to 1,000 ms per event
this could be handled with a reasonable number of processing units in the LVL3 farm and
a single high-speed bus system for data transfer as shown in [Mor94].

Subdetector
# Channels

[106]
Occupancy

[%]
Event Size

[kByte]
Throughput

[MB/s]
# LVL3 Links

Pixel 140 0.01 50 50 5

SCT 2.9 1 100 100 10

GaAs 0.8 1 30 30 3

MSGC 1.5 2 100 100 10

TRT 0.42 12..33 500 500 50

Calo & PS 0.23 5..15 350 350 35

Muon 1.3 2..8 200 200 20

total 147.15 - 1330 1330 133
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3.0  Event Building Systems

Experiments in high energy physics produce data in different places over the whole detec-
tor. Every subdetector which might be divided into several modules, has several buffers
into which data is written. To store the data and to make them available for off-line analy-
sis, the data belonging to the same physical event has to be assembled in one place. Also,
some initial trigger processes are based on only part of the data or on data coming from a
coarser granularity of the subdetectors. More sophisticated algorithms based on the com-
plete data can provide a better selection and reduce the amount of data to be stored for off-
line analysis.

Event building is the part of a data acquisition system where the different data scattered
over the buffers of the subdetectors but belonging to the same physical event are assem-
bled and the complete data is transferred to the next level of trigger processing and/or data
storage (figure 3.1). The scattered data is often referred to as “event fragment data” while
the complete data is called “event data”.

FIGURE 3.1. Event Building in a Data Acquistion System

Over the last 15 years the use of VLSI front-end circuitry has increased the allowable trig-
ger rate by at least three orders of magnitude and the performance of trigger processors
and the density of data storage have improved at an equivalent rate. On the contrary, the
speed of standard bus systems used for event building has only improved by a factor ten in
the same time period [Bar90]. Event building has become a bottleneck in data acquisition
systems for modern experiments in high energy physics.

Future experiments at the LHC will need event building systems with an unprecedented
throughput and high level of interconnectivity (see section 2.4.5). Standard bus systems
do not provide adequate performance and parallel event building based on high speed
interconnect and switching elements has to be envisaged. Event building thus will evolve
from single-bus data collectors to multiple parallel channels feeding farms of processors.
This will allow a much higher total throughput of data if the system is free of inherent bot-
tlenecks. Such a system might have internal buffering and a sophisticated data flow man-
agement to make sure that no data gets lost, that all event data are assembled correctly and
the capacity of the system is optimally used.
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Commercial systems should play an important role in event building which is similar to
some problems in telecommunications and high performance computing. Event building,
however, is in principle different from requirements in these fields as the data flow is uni-
directional, apart from control flow, and the data pattern is relatively uniform compared to
the burstiness of telephone calls but it might be possible to use these technologies cost-
effectively.

3.1  Definition

An event building system is an element in the data flow of a physics experiment with dif-
ferent input and output data streams, combining them so that it fulfills the two following
requirements [Spi94b]:

• The event building system is a connection between sources and destinations andtrans-
fers data from the first to the latter.

• The data from the different sources aremerged in a way that all fragments belonging to
the same physical event are sent to the same data destination.

Furthermore, an event building system has to be an integral part of the overall data acqui-
sition system and has to provide the following functionalities:

• control: start and stop the event building system, report error messages,

• configuration: configure the event building system in terms of number of sources and
destinations and their various parameters,

• monitoring: report performance statistics;

• debugging: trace individual data packets through the event building system.

The event building system can be described as a black box model as shown in figure 3.2

FIGURE 3.2. Functionality of an Event Building System

3.1.1  Data model

As the event building system is acting on data it is important to give a model of these data.
Data are logically grouped in forms of event fragments and have three layers:

• Actual Data:

This is the accumulation of bits and bytes in memory. They have a well defined format

event fragment event
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EBevent fragment
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and their size is known.

• Description:

This is a description of the data in terms of memory location, size, format and quality.
The description can be part of the actual data as well.

• Synchronization and Timing:

This is the timing aspect of data: they can be available, being used by a process or be
discarded. Usually this aspect is not an integral part of the data but logically belongs to
them. Often signals are used to represent a state change in the “life” of data.

Furthermore, every piece of data has an identity which might consist of several fields and
usually is part of the actual data and the description but it might also be in the synchroni-
zation. This data model is shown in figure 3.3.

FIGURE 3.3. Data Model

Internal to the event building system all three layers of data have to be handled. This
might be done in different ways with different hardware for each of the layers, e.g. syn-
chronization via interrupts on a bus system, description via Ethernet and actual data via
high speed data link.

3.1.2  Elements

Inside the black box the event building system must have elements to input data, to trans-
fer data, to output data and to control the data flow. It has sources, an interconnecting net-
work, destinations and a data flow management:

• Source:

The source is the interface to the input side of the event building system. It receives the
data (event fragments) from the up-stream data flow, processes them and sends them to
the interconnecting network.

• Interconnecting Network:

The interconnecting network connects all sources and all destinations and transfers data
and control information, if necessary, between these.

• Destination:

The destination is the interface to the output side of the event building system. It
receives the data from the interconnecting network, merges them and outputs full
events to the down-stream data flow.
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• Data Flow Management (DFM):

The data flow management represents the control aspect of the event building system. It
controls the transfer of data, the handling of events and the configuration of the event
building system. It detects and handles errors and communicates with the control sys-
tem of the overall data acquisition system.

Looking inside the black box model one thus gets the picture shown in figure 3.4.

FIGURE 3.4. Components of an Event Building System

3.1.3  Performance Indices

The most important performance index of an event building system is the maximum
throughput Tmax of data that can be digested by it. The input data rate I is defined as the
accumulated data flow of event fragments into the sources, and similarly the output data
rate O as the accumulated data flow of events from the data destinations. If no data get lost
and the re-formatting of the events does not change the total size of it, input and output
data rate will be equal (conservation of data flow):

O = I (Eq. 3.1)

FIGURE 3.5. Maximum Throughput of an Event Building System

Nevertheless, due to the limited capacities of an event building system, increasing the
input rate I will lead to an increased output rate only until the maximum throughput Tmax

is reached, after which the output rate cannot further be increased. Ideally this looks like in
figure 3.5. In reality this curve might be smoother due to the statistical fluctuations of the
data flow when approaching the maximum. Related to the input rate is the input frequency
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which is denoted as f and fmax is the maximum input frequency, equal to Tmax divided by
the event size.

The maximum throughput Tmax can be used to define the efficiencyε of the event building
system as the ratio of the achieved maximum throughput to the ideally possible maximum
throughput which equals the aggregate bandwidth:

(Eq. 3.2)

where NDst is the number of destinations andspeed the link speed.

Other important performance indices are the latency L and the buffer occupancy B. The
latency L is the time between the first event fragment arrives in the source and the full
event is available in the destination. The fragment latency LFrg is the time between an
event fragment arrives at the source and it is released from it. The following relation exists
between the two:

(Eq. 3.3)

The buffer occupancy B is the amount of data that needs to be stored in the source due to
the limited capacities of the event building system. When the input data flow underlies sta-
tistical fluctuations buffer occupancy is not equal to zero even if the input data rate is less
than the maximum throughput. If the input data rate is greater than the maximum through-
put the buffer occupancy will increase with time until it reaches the physical limits of the
buffer. Buffer occupancy can be measured in number of event fragments as well as in the
buffer space occupied.

Other important issues are also the fault tolerance and reliability of the event building sys-
tem, which is a way to characterize how easily it can handle failures in hardware and soft-
ware and how long it takes to recover from such a failure. Cost is important and the cost of
an event building system should be seen in relation to the overall cost of the whole data
acquisition system.

3.2  Interconnecting Networks and Architectures

An interconnecting network is a set of busses, switches and/or data links that permit data
transfer between two or more devices. In an event building system this will mainly be
used to transfer data from sources to destinations but it could also be used for the control
flow if necessary. Looking at interconnecting networks used in existing event building
systems in high energy physics experiments and interconnecting networks used in com-
puter and telecommunication networks several architectures can be foreseen [Bar90].

3.2.1  Shared Bus Architectures

In a shared bus architecture all sources and destinations are connected to the same time-
shared single bus system (figure 3.6). This is the most common architecture for event
building and several standard bus systems are available and actually used in existing event
building systems. A single shared bus architecture allows simple control algorithms and

T
max ε Tideal

max ε NDst speed⋅ ⋅=⋅=

L evt( ) max
src

= LFrg evt src,( )
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the same bus can be used for data and control traffic. It usually can be extended to different
numbers of sources and destinations but does not increase in total throughput beyond the
maximum throughput of the medium. It might even decrease with an increasing number of
sources and/or destinations as the control traffic and the bus arbitration take time. Failure of
the bus system will disable the whole event building system while on the contrary, failure
of single sources or destinations is usually not critical.

FIGURE 3.6. Shared Bus Architecture

Table 3.1 shows typical maximum bandwidth values for some standard bus systems used in
high energy physics [Par90]. Usually the theoretical bandwidth is not achieved due to the
various control messages being sent and the actually achieved bandwidth is much lower.

TABLE 3.1. Maximum Throughput for Some Standard Bus Systems

Some architectures try to overcome the limitations by using several independent single
bus systems in a tree-like structure. This reduces the control flow in any of the single
branches and failure of a single bus will only disable a certain branch rather than the
whole system. Nevertheless the total throughput of such an hierarchial structure is always
equal to that of the single bus.

In order to overcome the performance limit, another alternative is to use more than one
single bus system in parallel. The sources and destinations are connected to several bus
systems and if they do not contend for the same internal resources (e.g. by using multiple
port memory) the total throughput can be increased and ideally reach the sum of through-
puts of the single busses used. This is achieved by the fact that several events can be built
in parallel if the sources can hold more than one event fragment at a time. Only a rela-
tively small amount of control is needed and failure of one of the bus systems is not criti-

Bus System Standard Theoretical Throughput Practical Throughput

CAMAC IEEE 583 (1975) 20 MB/s < 1 MB/s

VMEbus IEEE 1014 (1987) 40 MB/s 10..20 MB/s

VICbus IEC VICbus 30 MB/s ~3 MB/s

Fastbus IEEE 960 (1989) 200 MB/s 40..60 MB/s

Futurebus+ IEEE P896 3.2 GB/s not yet available
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cal as the others can take over its data flow. Nevertheless, in practice, expanding an event
building system using parallel busses is usually unreasonable for more than three busses.

3.2.2  Multiple Port Memories

Another architecture of event building systems can be based on multiple port memories.
One example can be a system where the sources provide their data in multiple port memo-
ries. Each of the output ports of these memories can be connected to a destination. This
architecture (figure 3.7a) provides parallel event building. It has similar features to the
multiple parallel bus architecture and the same performance characteristics. Nevertheless,
it is less reliable because there is only one path from each source to each destination.
Expendability of such a system is limited by the number of physical ports the memory can
have which usually is no more than three.

FIGURE 3.7. Interconnecting Networks with Multiple Port Memories

Dual port memories can alternatively be used in an array architecture where one port is
connected to the sources and the other to the destinations (figure 3.7b). Event fragments
are sent in parallel to the memories in a given column and sent sequentially to the destina-
tion while the next event can already be transmitted to another column. This architecture
needs a relatively simple control and can tolerate failure of the destination busses. The
system which is similar to a full crossbar switch can be extended easily but for a large
number of sources and destinations it becomes expansive as the number of multiple port
memories needed increases proportional to the product of the number of sources and the
number of destinations.

3.2.3  Switches

The connections between sources and destinations can also be established using a crossbar
switch (figure 3.8). This switch which usually, though not necessarily, has the same num-
ber of inputs as outputs allows to connect any source with any destination and establish
several connection at the same time, providing they do not involve the same sources and
destinations. Event building using such switches can be done fully in parallel and the
throughput is optimally that of the sum of links available. Buffering in the source and des-
tination will be necessary but the number of memories needed is only proportional to the
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sum of the number of sources and the number of destinations. The full crossbar switch
requires some control function to arbitrate the requests. It can be made tolerant to failures
in the sources and destinations but failure of the switch will disable the whole system.
However, reliable switches are available for several evolving data link technologies (see
section 3.3).

FIGURE 3.8. Crossbar Switch

A special kind of switch is a “barrel shifter” with a simple rotating interconnection pattern
(figure 3.9). Its control is much easier than for a full crossbar switch and it only needs a
single control input defining the interconnection pattern. The time slot for each pattern
should be appropriate to transmit the maximum sized event fragment. As they usually
vary in size the switch might not be used efficiently. Alternatively the event fragment
could be cut into packets queued individually for each destination.

FIGURE 3.9. Barrel Shifter

As the number of crosspoints in any crossbar switch increases with the product of the
number of sources and the number of destinations, a multistage interconnecting network
might be more efficient. In such architectures the full switch is replaced by a network of
interconnected switches of smaller size. This leads to less crosspoints in total and is more
tolerant to faults if redundancy of data paths is considered. Usually data in such networks
is cut into packets which contain information on the destination. At any stage in the net-
work this information is interpreted and the data stored until it can be forwarded to the
next stage. This is called “self-routing” and practically used with a lot of switching net-
works commercially available.

3.2.4  Integrated Architectures

In an integrated architecture the task of event building is integrated with the task of subse-
quent trigger processing and/or data storage. This is achieved by connecting transferring
and processing elements, replacing them by transputers and connecting them in a mesh
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structure (like in figure 3.10). The communication links between the transputers can be
used to transfer the data from one stage to another. The transputers can do the data assem-
bly and the trigger processing as well as the data flow managment. This is particularly
promising if the trigger processing does not need the full event data all at once but works
in several steps. It offers full configurability and the data flow can be dynamically con-
trolled. Nevertheless, such an event building system is limited by the link speed on the
input side and, for big systems, by the complexity of control needed.

FIGURE 3.10. Integrated Architecture using Transputers

3.2.5  Examples

Table 3.2 gives an overview of the event building systems used in experiments in high
energy physics. It is not exhaustive and only gives a rough estimate of the total throughput
achieved. This latter has of course to be seen in the context of the whole data acquisition
system and depends on the trigger processing made up-stream of the event building sys-
tem.

TABLE 3.2. Overview of Event Building Systems in Today’s Experiments

Experiment Architecture Technology Total Throughput Reference

Aleph tree-like bus system VMEbus, VICbus < 1 MB/s [Rue89]
[Per94]

Delphi tree-like bus system Fastbus < 1 MB/s [Ada92]

L3 tree-like bus system Fastbus 8.0 MB/s [Ang94]

Opal tree-like bus system VICbus & VSBus 2.5 MB/s [Bai93]

H1 tree-like bus system VMEbus &
custom fibre optic link

1.5 MB/s
12.0 MB/s (max)

[Hay92]

Zeus crossbar switch custom-made switch 24.0 MB/s [Beh93]

D0 array of multi-port memories
& trigger processors

custom-made bus
(token ring)

40.0 MB/s (in)
0.8 MB/s (out)

[Cut92]

CDF crossbar switch ULTRANET Hub 50 MB/s [Bar88]
[Pat94]
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The overview shows the wide variety of architectures and technologies used today. It also
reveals a trend towards increasing total throughput. This development is a result of the
increased requirements of experiments and the increased performance available in tech-
nology. Bus based systems, however, are not suited to provide the performance required
for LHC experiments. They do not scale in number of connected sources and destinations
and are limited in total throughput by the medium. Parallel event building system based on
commercial standard for high speed interconnects and switching elements seems to offer
the most promising solution and the LHC experiments [ATL94] have expressed a clear
interest to investigate this further.

3.3  High Speed Data Links

Several interconnection standards for high performance computing environments or for
networks in the field of telecommunication have evolved over the last ten years. They are
based on point-to-point links which can be extended to networks with large numbers of
end-points. They have different protocol characteristics, but allow sometimes to use one
standard on top of the other. They differ in their approaches to error detection and recov-
ery and they are usually used with different hardware.

3.3.1  High Performance Parallel Interface

The High Performance Parallel Interface (HiPPI) standard [HIP90] addresses the require-
ment to standardize and improve I/O bandwidth for high performance computing environ-
ments.

HiPPI is a 32-bit parallel, point-to-point link which transfers data in one direction (sim-
plex) at 100 MB/s or 200 MB/s. It runs over 25 m of twisted pair cable, using one cable
for the 100 MB/s version and two cables for the 200 MB/s version. Flow control across
HiPPI is independent of the distance if there is enough buffer space and it is possible to
build fibre optic “extenders” which run at the full bandwidth for up to a few km. Error
detection is provided by byte-parity on the 32-bit data words and a checksum at the end of
every (256-word) burst of data (LLRC word). The protocol on HiPPI is very simple using
only Request, Connect, Packet, Burst andReady signals. It allows variable length packets
and supports connection-oriented as well as packet-oriented transfers.

The simplicity of the protocol allows to build switches which support very easy routing
mechanisms. They can be staged to make large networks without introducing much over-
head to the throughput. HiPPI is now a major standard in high performance computing
and a variety of components is available. The RD13 project [RD13/95] chose HiPPI for its
event building studies and this work will present the details of the prototype based on this.

3.3.2  Fibre Channel

The Fibre Channel standard [FCS94] is aiming at supporting a broad performance range
of peripheral devices and networks in computing using multiple physical media. It
addresses a similar field as HiPPI and is in some regard its successor. It overcomes the
problem of uni-directional traffic and allows much more flexibility.
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Fibre Channel is based on point-to-point links transferring data in both directions (duplex)
over two different uni-directional cables or fibres running at rates defined between
16.5 MB/s up to 132.5 MB/s. It supports single mode and multi-mode optical fibres as
well as coax cables and can cover distances depending on the medium, from 10 m up to
10 km. 8-bit data is encoded in 10-bit transmission characters, offering a disparity (excess
1’s or 0’s) to detect transmission errors.

The signalling protocol controls the data to be transferred between two ports based on
frames which can be link control frames or data frames. The link control frames are used
for transferring signals likeAcknowledge, Busy andReject. The data frames can contain
up to 2112 Bytes of user data. The flow control of Fibre Channel distinguishes between
three different classes: class 1 is a service providing dedicated connections with each
frame being acknowledged by the receiving port. Class 2 is a frame switched connection-
less service where multiple ports can share the bandwidth of a given physical channel by
multiplexing the frames which are all individually acknowledged by the receiver. Class 3
is identical to class 2 without the acknowledgement of the frames. This is a datagram ser-
vice.

Fibre Channel can be used in a wide range of architectures from single point-to-point con-
nections up to ringlets and switched architectures (which in the Fibre Channel slang are
called fabrics). This standard is evolving rapidly and workstation interfaces as well as
switching elements are becoming available off-the-shelf. Its applicability in data acquisi-
tion systems is investigated by the RD11 project [RD11/95][Cha95].

3.3.3  Asynchronous Transfer Mode

The Asynchronous Transfer Mode [ATM92] is a switching and multiplexing standard for
broadband integrated services digital networks (B-ISDN) used in telecommunications. It
is considered as a specific packet-oriented transfer mode based on fixed length packets
which can be transmitted over a variety of physical media used in wide area telecommuni-
cations as well as in local area networks.

Its most important characteristic is the flexibility in bandwidth allocation through statisti-
cal multiplexing of different data streams allowing every bit rate to be arranged between
the user and the network, up to the link speed. The fixed-size packet, called cell, has
53 Bytes of which 5 are header information and 48 are user information. The header infor-
mation contains identifiers on the channel to be used and some priority information and it
determines the routing through a network. The user information carries the user’s data.
Protection against transmission errors is not included for performance reasons but instead
is provided by higher level protocols available on top of ATM like the AAL5 (ATM Adap-
tation Layer 5) which groups cells into fragments of up to 64 kByte and contains some
flow control mechanisms.

ATM is becoming more and more available and switching networks are being delivered.
The applicability of ATM networks for event building systems is investigated in the RD31
project [RD31/95][Let94].
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3.3.4  Scalable Coherent Interface

The Scalable Coherent Interface [SCI92] is a standard for large multiprocessor systems
and shared memory architectures where it shall replace standard busses to overcome their
limitations in bandwidth and scalability. This is achieved by connecting processors and
memories with a set of simplex point-to-point links in ring structures.

Each single link allows packet-oriented transactions with an address, a command and 0,
16, 64 or 256 Bytes of data. The link can be 16-bit parallel cable with a rate of 1 GB/s and
a maximum distance of 10 m or a 1-bit serial optical fibre for larger distances and up to
256 MB/s throughput. These links can be interconnected in networks or in ringlets. Rings
can be interconnected by bridges which are made from SCI nodes arranged back-to-back.

The protocol splits transactions into a request and a response each one requiring a packet.
Read andWrite primitives are defined as well as more complex transactions, for instance
lock and cache coherency primitives. They are very important in multiprocessor environ-
ments with shared memory configurations.

SCI is now available and interfaces to workstations and standard busses can be bought off-
the-shelf. Complicated architectures like rings, bridges and switching elements and their
applicability to event building systems are investigated in the RD24 project [RD24/95].

3.4  Data Flow Management

The data flow management (see section 3.1.2) is the control element of an event building
system. It uses a set of rules which is also called the event building protocol [Bog95]. It
describes the dynamic behaviour of the event building system where the sources and des-
tinations are associated with data flow processes, theSrc andDst process respectively.

The data flow management controls transfer of data, event handling and the configuration
of the event building system. These three aspects correspond to the following layers of the
data flow management:

• Data Layer:
On the lowest layer the data flow management synchronizes the sources, the intercon-
necting network and the destinations. It routes data from a known source to a known
destination and has in particular to resolve contention in the interconnecting network.

• Event Layer:
The middle layer of the data flow management is concerned about events and event
fragments, their format and buffer management. Event fragments have to be assigned to
a unique destination where they are assembled to full events.

• Data Acquisition Layer:
The highest layer of the data flow management describes the event building system in
terms of sources, interconnecting network, destinations and their various parameters. It
provides the communication with the overall control system of the data acquisition.

In all three layers the data flow management has to detect and handle errors. It must ensure
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that the functionalities of an event building system are guaranteed: that the data are assem-
bled in the correct way, that no data get lost or corrupted, that no deadtime is introduced to
the data acquisition system and it should also minimize the latency.

FIGURE 3.11. Layers of Data Flow Management

The data flow management can be centralized or distributed over the data flow processes.
And in most cases there is a supervisor process taking care of exceptions and the commu-
nication with the control system of the overall data acquisition system. The data flow man-
agement can be implemented in hardware or software and will usually create some control
flow which either is transferred over the same network as the event data or a separate net-
work.

3.4.1  Data Flow Processes

Data flow processes are an implementation of the data flow management. They receive,
process and send events and event fragments. They have an input data connection and one
or more output data connections. A data connection is defined as a logical path on which
data will flow sequentially. Since data are described by a three-layered data model (see sec-
tion 3.1.1) a connection will have to define means for synchronization, transfer of event
descriptors and transfer of full data. TheSrc processes have an input data connection from
the up-stream data acquisition and an outgoing data connection to the interconnecting net-
work. TheDst processes have an incoming data connection from the interconnecting net-
work and an output data connection to the down-stream data acquisition.

In addition, theSrc andDst processes have a buffer management to make sure that no data
get lost. They may send a signal down-stream when the buffers fill up which can be used
to throttle the data or they might overwrite and lose data. Furthermore, they have to know
the event format which describes the event descriptors, their relation to the actual data and
the coding of the actual data in bits and bytes. TheDst process furthermore has to do the
actual merging of the events. It might re-order out-of-the-order event fragments, build
several events in parallel and re-format the full event. It must watch over the number of
event fragments still missing and ensure that missing fragments will be detected.

These functions need a high flexibility and will most likely be implemented in software.
The data flow processes require some processing power, event fragment buffer, data con-
nections to the input/output data streams, data connections to the interconnecting network
and a connection to the data flow management or to a network for exchange of control
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messages. A standardized real-time operating system might be helpful to develop and
maintain the data flow processes which will likely be multi-threaded in order to deal with
the many signals from the data connections, the data flow management and the overall
control system of the data acquisition system.

3.4.2  Contention Resolution

The contention resolution becomes important when several sources are requesting a con-
nection to the same destination (output blocking) or are contending for the same internal
resource (internal blocking). In such cases, arbitration is required defining which connec-
tion will actually be established or which source will be granted the requested resource.
There are several algorithms for contention resolution:

• Round-Robin:
The requests of the sources are handled in a cyclic manner. The next one is the one next
on the cycle.

• Random:
The requests are handled in random order. The next one is sampled from a uniform ran-
dom distribution.

• Fifo:
The requests are handled in the order they arrive. All requests are put in a fifo and the
next one is the one in front of the fifo.

• Priority:
The requests are weighted with a static priority associated with the source they come
from. The next one is the one with the highest priority.

• Programmable:
The requests are weighted with a dynamic priority. The next one is then chosen from a
programmable algorithm taking into account the priorities.

3.4.3  Destination Assignment

The destination assignment has to define where full events are going to be assembled. It
assigns a unique destination to all event fragments with a given event identifier. The desti-
nation assignment controls thus the flow of data through the interconnecting network and
has to work in an efficient way to avoid contention. There are several ways to accomplish
this task.

The destination assignment can be static or dynamic. In a static scheme the decision is not
based on any information about the status of destinations or the status of the interconnect-
ing network. In the dynamic scheme this information is taken into account and the event is
built at a destination such that the interconnecting network and the destinations are opti-
mally used. An example of a static scheme is round-robin or random. Dynamic algorithms
can choose the next free destination, or take the load of the interconnecting network into
account routing event fragments to unused parts, or calculate the next destination from the
data sent so far.
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Another important aspect is who controls the data flow. This is not to be confused with the
control of the actual data transfer which can be source-driven (i.e. the data is written) or
destination-driven (i.e. the data is read) [Bog95]. In a push scheme the sources initiate the
flow logically: they assign the destination by either applying a static algorithm or by choos-
ing the destination from a list. It does not matter if the data then are actually sent through
the interconnecting network or if it is read from it by the destination. In a pull scheme the
destinations initiate the transfer in the sense that they send requests to the sources.

The data flow control can be centralized by using a single server or a single list of free des-
tinations or of event fragments available. Alternatively it can be distributed so that the
sources and destinations communicate and decide on a destination.

3.4.4  Configuration

The configuration is part of the highest level of the data flow management. It consists of a
set of rules to define how the data flow processes and the data flow management are to be
configured and how they communicate with each other and the rest of the data acquisition
system.

The configuration management provides the framework of data flow processes, the data
flow management and the communication channels between them. The static description
of this framework could be held in a database. The dynamic aspect of the configuration
management is described in three phases:

1. The data flow processes and if necessary the data flow management process are gener-
ated and started. A connection for exchange of control, status and error messages is
established.

2. The data connections between the processes are set up and it is ensured that the pro-
cesses at both ends know about each other. In addition, the data flow processes create a
connection to the data flow management or set up a distributed scheme.

3. The data flow processes are ready to receive and send event data. The configuration
management can then finally change the state of the processes by stopping and/or delet-
ing them.

The configuration management should be made in a way that it is scalable with the num-
ber of data flow processes and connections. The modular structure should support differ-
ent types of connections and their synchronization schemes. A prototype of such a
protocol, not explicitly designed for event building, has been developed in the RD13
project [Mor92]. The data flow protocol contains elements of the data layer, of the event
layer and the data acquisition layer.

3.4.5  Error Handling

The data flow management also has to detect and recover from errors. Errors can occur at
several points in the event building system:

• Control transmission:
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There can be errors in the control connections which lead to missing synchronization
signals or to duplicated signals if the hardware has a retry mechanism.

• Data transmission:

The interconnecting network can produce errors due to hardware failures. These errors
are usually detected by the hardware and the mechanisms are part of the standard used.

• Fragment transmission:

An event fragment sent through the interconnecting network can get lost either because
the hardware link has a failure, the internal resources have an overflow (e.g. cell loss in
ATM) or the fragment gets misrouted.

• Data flow processes:

The sources and destinations can be in an erroneous state or hung up due to malfunc-
tions of the processes and/or processors. Their buffers can overflows, the synchroniza-
tion with the outside data acquisition system can be lost etc.

Error detection is already partly covered by some high speed interconnect standards but
some aspects have to be included in the software of the data flow management and have to
use checkwords, acknowledgements and/or time-outs. Error recovery can be done by re-
sending a control message or by re-routing a single event fragment or all event fragments
belonging to the same event. An event can also be tagged as being corrupted or could be
dropped after which the data flow processes continue their work. The different options
have to be tested under realistic and provoked conditions to measure their efficiency in
detecting errors and the time they need to recover from errors.
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4.0  Event Building Prototype

As mentioned in chapter 3 event building systems for future experiments in high energy
physics based on standard bus systems would not provide adequate performance and alter-
native solutions providing a high level of parallelism have to be envisaged. Interconnect-
ing networks made of networks of small switches or a single large-scale switch will have
to be used. Several high speed interconnecting standards are evolving in computer and
telecommunication industries which will offer the aggregate bandwidth and level of con-
nectivity required. High energy physics experiments will greatly profit from such huge
industrial efforts if parallel event building systems can be built using these technologies.

In order to investigate the suitability of industrial standards for event building systems
prototypes have to be built. These are to be regarded as small scaled-down versions of par-
allel event building systems and of other parts of modern data acquisition systems where
data assembly with high bandwidth and a high level of connectivity is needed. The proto-
types serve in particular as input to simulation models which simulate large-scale event
building systems before these are actually built.

A prototype can provide knowledge about the important features of parallel event building
systems, encourage analysis of the problem and help to define the requirements for event
building systems. Implementing a prototype, furthermore, helps to understand the equip-
ment available or needed, helps to evaluate the suitability of a given technology and
requires software which adapts the hardware to its required functionality. The structure of
software needed, the degree of independence from a given technology and the integration
with an overall data acquisition system can be investigated. Finally, measurements with the
prototype lead to typical values for the performance indices with which different technol-
ogies can be compared and a final choice can be made. The measurements will also be used
to tune the simulation model which will be extended to a realistic event building system.

The HiPPI standard is one of the evolving high speed interconnect standards. Switches are
commercially available and so are VME-HiPPI interfaces. The latter are important as
VME is a de-facto standard for today’s data acquisition systems and many sources and
destinations of experiments in high energy physics reside in VME crates. A prototype of
an parallel event building system based on a HiPPI switch with a modern data acquisition
system compatible with the RD13 system [RD13/95] has been built and tested.

4.1  Hardware

The whole prototype event building system as shown in figure 4.1 is housed in one VME
crate except for the HiPPI switch itself which is a completely independent module. The
VME crate contains the VME-HiPPI interfaces and a processor board for control. The
VME-HiPPI interfaces are cabled up with the switch which routes and transfers the data
from sources to destinations providing a bandwidth of 100 MB/s per link.

This system can be regarded as a model of a parallel event building system where the
VME-HiPPI interfaces play the role of sources (HiPPI source) and destinations (HiPPI
destination) respectively. They can be taken as the readout modules collecting data from
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the subdetectors or modules of subdetectors and full event trigger processors, interfaces to
full event processing farms or interfaces to data storage media. With different require-
ments the prototype can also be regarded as a model for other parts in the data acquisition
system where a high level of parallelism and connectivity is required (e.g. the ATLAS
LVL2 system, see section 2.4.4).

FIGURE 4.1.  Layout of the Prototype Event Building System

The HiPPI interfaces and the HiPPI switch have the role of the interconnecting network.
The contention resolution is implemented in the hardware while the destination assign-
ment has to be in software. The processor board runs a mini data acquisition system with
simulated data input. It implements the data flow processes, the data flow management
and is also used to monitor functionality and to measure performance. A VIC 8251
[VIC92] is used to drive the VME system’s clock and to provide arbitration of the VME-
bus. It is not used otherwise and will not be mentioned further.

4.1.1  HiPPI Standard

The HiPPI standard has already been mentioned in section 3.3.1. It is a clock-driven, uni-
directional high speed interconnect with two different data rates of 100 MB/s or 200 MB/s
using either a 32-bit or a 64-bit wide data bus. The following will describe the 32-bit wide
solution which was used in the prototype. It should be expected that using the 64-bit wide
data bus would roughly double the performance.

FIGURE 4.2. Framing Hierarchy of HiPPI
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The HiPPI standard is based on connections between source and destination. Once a con-
nection has been established the data flows in packets with each packet having none or
more bursts. A burst consists of 256 words sent in a contiguous clock period. Shorter
bursts with less than 256 words are only allowed as the first or last burst of a packet. This
framing hierarchy of the HiPPI standard is shown in figure 4.2.

Establishing a HiPPI connection requires only a few signals between sources and destina-
tions which are shown in figure 4.3. All signals exceptInterconnect use differential emit-
ter-coupled logic (ECL) drivers and receivers.Interconnect signals use single-ended ECL
drivers and receivers and are used to indicate connected cables and that the other side is
powered up.

FIGURE 4.3. Summary of HiPPI Signals

A typical waveform is shown in figure 4.4. First a connection is requested by sending a
Request and supplying the I-field (data word for routing information) on the data bus. The
destination accepts a connection by asserting theConnection signal. In case the destina-
tion wants to reject a connection on purpose it will assert theConnection signal for only 4
to 16 clock cycles before releasing it again. The source will then interpret this asAnswer-
Reject. If the signal is asserted for more than 16 clock cycles the source will interpret this
as anAnswerAccept and will start transmitting the data in packets and bursts which are
delimited by aPacket andBurst signals respectively. Each burst is immediately followed
by a LLRC (Length/Longitudinal Redundancy Check word) which as well as the parity
sent on the parity lines in parallel with each burst is used for error detection.

FIGURE 4.4. Typical HiPPI Waveforms
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The destination controls the flow of data by using theReady signal because a source can
only send as many bursts as it has receivedReady signals. If theReady signal arrives
before the source has sent a burst the signals will be counted and the next burst can be sent
immediately. If the source has not received enoughReady signals, the sending of a burst
will be delayed until the nextReady signal.

4.1.2  VME-HiPPI Interface

The VME-HiPPI interface is a VME based board composed of a RIO board [RIO91] and a
HiPPI interface [HIP92]. Local intelligence and memory are provided by the RIO board
and two different HiPPI interfaces are available to be attached on the RIO board: a HiPPI
source (HiPPI/S) and a HiPPI destination (HiPPI/D) thus making two types of VME-
HiPPI interfaces.

The VME-HiPPI interfaces consist of a R3051 RISC controller, 4 MByte DRAM, VME
master and slave interfaces and a HiPPI interface. Other resources are an EPROM for
bootstrapping, different timers as well as CSR registers and a fifo for command passing.
All the elements are grouped around a custom-made internal bus with a maximum data
transfer rate of 50 MB/s. This structure is shown in figure 4.5.

FIGURE 4.5. Block Diagram of the RIO 8262/HiPPI

The VME master and slave interfaces connect the board to the VME backplane bus and
allow access to all the resources on the board from the VME side. The HiPPI interface was
developed jointly by CES and CERN [Pra92] and implements an equivalent of the HiPPI
framing protocol in hardware. The RISC controller can access the interface by writing
command words in registers, will read status information from these and receive interrupts
from the interface. The packing into bursts is handled by the interface and hidden to the
RISC controller. Data of 1024 words can be buffered by the interface and data transfer
between the local memory and HiPPI interface can be made in a fly-by mode which does
not require any further interaction from the RISC controller after setup (DMA).

4.1.3  HiPPI Switch

The HiPPI switch [SWI92] is a non-blocking, 8 input and 8 output crossbar switch. It is
the heart of the prototype event building system and can connect any of its input ports with
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connections can be established at the same time without interfering with each other if they
do not include the same sources or destinations. Thus the aggregate bandwidth of the
switch is 800 MB/s in total.

The switch (figure 4.6) consists internally of four different kind of boards: destination
ports on input, source ports on output, an arbiter with the slave array and a monitoring
board. The destination ports implement a HiPPI destination, receive data from the input
and send connection requests to the arbiter. The arbiter receives these requests and config-
ures the slave array which is a passive crossbar switching array. The outputs of the slave
array are connected to the source ports which implement a HiPPI source, receive data
from the slave array and send it to the output. A monitoring board can be accessed via a
RS232 link. It manages the logical addressing tables and monitors the performance of the
slave array.

FIGURE 4.6. Block Diagram of the HiPPI Switch
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The addressing of a destination can be done in two different ways: source and logical
addressing. In the source addressing 3 bits of the routing field are used directly to deter-
mine the output port. The I-field is rotated by 3 bits in order to allow routing by subse-
quent switches. In logical addressing the routing field is used as a pointer to a table which
contains the output port. This table is directly programmable via the monitor board.

Another important feature is the “camp-on” facility. If the according bit is set in the I-field
a request to an output port will not be rejected when this one is busy but it will “camp on”
which means it will be kept pending until the output port becomes available. If several
requests are camping on the same output port the arbiter will serve them in a round-robin
manner.

4.1.4  RAID Processor

The RAID processor [RAID92] is a VME based board with a local processing unit, mem-
ory and other resources that make it useful as a general-purpose processor within the VME
addressing space. In particular it runs an operating system.

The RAID board consists of a R3000 RISC processor with a floating point unit, 32 MByte
DRAM, a DMA device and VME master and slave interfaces. These elements are grouped
around a custom-made bus with a maximum data transfer rate of 80 MB/s. An interface to
Ethernet supports full TCP/IP protocol and an SCSI interface connects the RAID board to
storage media. Other resources like different timers, CSR registers and fifos exist on the
peripheral bus. This structure is show in figure 4.7.

FIGURE 4.7. Block Diagram of the RAID 8239
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ing system. This software consists of a minimal data acquisition system with simulated
data input and methods for performance measurements. It is an implementation of a three-
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The data layer consists of the HiPPI standard, the firmware for the HiPPI/S and HiPPI/D
modules and libraries for the communication between these modules and the RAID pro-
cessor. The firmware sends or receives event fragments using the HiPPI standard and
exchanges VME interrupts and single word commands with the data flow processes thus
making the data layer completely transparent from the higher layers.

The event layer implements data flow processes which send, receive or process event frag-
ments. It contains the destination assignment and collects performance statistics. The
event format, buffer management and event assembly are common on data and event
layer. The assembly can be accomplished in either.

The data acquisition layer implements a hard-coded configuration of the data flow pro-
cesses, the data flow management and their connections.

4.2.1  HiPPI Firmware

Firmware [Spi95a] was developed for the VME-HiPPI interfaces to allow them to be used
as VME-accessible interfaces for the RAID processor and to give access to the HiPPI link.
The VME-HiPPI interfaces receive commands via VME and are capable of generating
VME interrupts at the end of transfers or in case of errors. The firmware was conceived to
let the VME-HiPPI interface look as an extensional resource to the RAID processor (fig-
ure 4.8). There are two versions of the firmware: one for the HiPPI/S module,SrcFmw,
and one for the HiPPI/D module,DstFmw.

FIGURE 4.8. Firmware for the RIO /HiPPI

The firmware was newly developed, based on former existing firmware [Bij93][Buo93a].
This was necessary to match the requirements of the event building system and to improve
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HiPPI interfaces and started. As there is no operating system on the RIO board the firm-
ware is a simple loop checking the command fifo and various registers of the HiPPI inter-
face. If it finds a command or certain status on the HiPPI interface it can react accordingly
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which allows debugging. Several options in the firmware can be chosen at compilation
time.

FIGURE 4.9. Block Diagram of Firmware

As the HiPPI interface on the RIO board has the HiPPI protocol implemented in hardware
the firmware only has to be concerned about the framing protocol and by the transfer of
data from local memory to the HiPPI interface. Each transfer command leads to a dedi-
cated HiPPI connection which is expressed in the following command sequence:

RingRequest to request a connection using the I-field

PacketSetup to start a packet and define the number of words to be sent, this is used by the HiPPI

interface to pack the data into bursts

ImmediateData to transfer data from local memory to the HiPPI interface’s fifo

PacketEnd to end a packet

HangupRequest to break the connection

The firmware on the HiPPI/D module reads status information from the HiPPI interface’s
status fifo and reacts. The status words are called “Indicates” and the sequence for a nor-
mal data transfer is the following:
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cannot take the data as fast as the sources can send them.

Both firmware versions check the error conditions reported in a register of the HiPPI inter-
face. These include parity and LLRC errors as well as events in the HiPPI protocol (e.g.
HiPPI/S: unexpected HiPPI/D hang-up) and time-outs (e.g. time between two bursts is too
long). Thus the interfaces have information if the data was correctly sent (HiPPI/S), or
correctly received (HiPPI/D).

TheSrcFmw andDstFmw communicate with a program on the RAID processor following
a simple user-client paradigm. The program will send commands to the RIO fifo and addi-
tionally use the same fields in a VME accessible exchange area. The RIO will then report
back by sending a VME interrupt and/or writing status information in the exchange area.
A library [Spi95b] collects all the commands and accesses of the exchange area and pro-
vides simple commands for asynchronous transfer waiting for a VME interrupt or syn-
chronous transfer polling the status field. Each event fragment is handled as one connec-
tion. The I-field is taken from the event descriptor and contains the following fields:

I-field: 0xHHEEEDSS
H field for HiPPI parameters (see section 4.1.3)
E field for event identifier
D field for destination identifier
S field for source identifier

It supports both, the source and logical routing on the switch.

4.2.2  Event Handling

The firmware as well as the data flow processes use the same event format and buffer
management which are closely related. The event merging is based on these and can be
carried out either in the firmware or in the data flow process.

The event format defines an event descriptor and the actual data. The event descriptor con-
tains a manyfold identifier for event identifier, source identifier and destination identifier, a
status words to describe size and quality of data (errors), pointers to the actual data and
pointers for internal use by the buffer management or event merging. The actual data of an
event is an unformatted contiguous block of VME-accessible memory. This can easily be
extended to use hierarchial block structures [Amb94a]. The synchronization aspect of
event data is handled by the communication between firmware and data flow process.

The buffer management defines fifos and a data area. The fifos hold events descriptors
with each one having a pointer to a fixed size slot in the data area. The data area is the
place where the actual data is kept. This allows the event descriptor to be moved rather
than the actual data.

The event merging (figure 4.10) is based on three states of an event: event fragment, inter-
mediate event in stage to be built and full event (evt, bvt, fvt). The merging is a routine
which uses a single fifo (BvtBuf) to hold the intermediate events. It is started every time a
new event fragment becomes available. The new event fragment is taken and theBvtBuf
searched if there is already an event with the same event identifier. If not, the event frag-



April 24, 1996 46- 46 -- 46 -

ment is added to theBvtBuf. If there is already an event the new fragment will be merged
by chaining the pointers. The number of chained event fragments is counted and com-
pared to the number of fragments expected. If the event is complete it is taken from the
BvtBuf and returned.

FIGURE 4.10. EventMerging

This scheme implements concurrent event building where several event fragments arriv-
ing out of order can be built at the same time.

4.2.3  Data Flow Processes

Data flow processes (see section 3.4.1) have been developed. They are conceived as pro-
cessing elements between an input and an output connection. These connections are static
descriptions of the data flow and have three layers like the data they are transporting: the
synchronization layer describes a way to synchronize the processes on both sides, the
description layer describes where to find event descriptors and the data layer describes the
actual data transport.

Two different types of connections have been defined: the shared-memory-type and the
HiPPI-type. In the shared-memory-type the synchronization is done by means of inter-
process communication, the descriptors are held in fifos and the data in the data area of the
buffer management. The HiPPI-type connection uses VME interrupts for synchronization
and accesses event descriptors by VME slave access. The actual data is usually not moved
but some data are pre-loaded onto the HiPPI/S module and only the event descriptor is
moved to change event size and/or destination. Some tests have been made where the
actual data was moved using the RAID boards DMA device.

The Src process receives new events on its input connection, reads the event descriptor
and finds a destination using the destination assignment scheme (see section 4.2.4). Then
it sends the event fragment to the output connection which is of the HiPPI-type. Depend-
ing on the control scheme it might intermittently store the event either on the input side or
on the output side as needed. TheDst process receives a new event from an input HiPPI-
type connection and reads the descriptor. It can have an output connection to the down-
stream data acquisition system. TheDst process reports its status according to the actual
destination assignment scheme.
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FIGURE 4.11. Data Flow Processes

Both data flow processes are implemented as a collection of routines using the firmware
library and some features of the operating system to implement the various kind of con-
nections.

4.2.4  Destination Assignment

Three different destination assignment schemes have been implemented:PUSH, PULL
andSYNC as shown in figure 4.12:

• In the PUSH scheme no information on the destination is used for routing the event
fragments. The destination where the event is going to be built is assigned statically by
means of round-robin or a random function.
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less, the request will be sent to the HiPPI/S module without checking the status of the
last transfer. If the last transfer is not finished yet the request will be queued in the
HiPPI/S module and theSrc process is ready to receive the next event.

• In the SYNC scheme the destinations send a request like in thePULL scheme but
instead of queueing the request on the HiPPI/S module theSrc process will wait until
the last transfer is finished successfully. The event fragment with the destination
already assigned will be queued on an internal output queue of theSrc process until the
previous transfer will be finished. Only after this the new request to the HiPPI/S mod-
ule will be sent.

In the schemes above theDst process receives the signal from the HiPPI/D module that a
new full event has been built. This signal is directly used as a request for theSrc process.
Since this request will always arrive at the sources one after the other no additional assign-
ment on which event fragment is handled by which destination request is necessary.
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FIGURE 4.12. Destination Assigment Schemes

4.2.5  Configuration

The configuration of theSrc andDst processes and the destination assignment scheme is
hard-coded in the EB program (as shown in figure 4.13). The number of sources and desti-
nations as well as the destination assignment scheme are chosen at compilation time.

The EB program runs under EP/LX [EPLX91] on the RAID processor. EP/LX is a UNIX
variance with real-time features compliant to POSIX 1003.4 [POS90]. The program cre-
ates one single UNIX process reacting to the event synchronization signals. It consists of
only a single thread of control reading from the signal queue and reacting accordingly
which means to call a data flow process. These latter are implemented as C routines in the
EB program. The program can also wait for a particular data flow process to get an inter-
rupt. No other run control functions [Jon93] are implemented. The program is the only
user process on the RAID processor and runs at high priority.

When the program starts it creates static structures for the processes and establishes the
connections between these. In the HiPPI-type connection this means to setup a connection
between the EB program and the HiPPI module and to pre-load the event data. An addi-
tional data flow process is created for event generation (Gen process) which generates
events as soon as one of the input fifos of aSrc process becomes empty. This way, the rate
measured always equals the maximum throughput Tmax (section 3.1.3). After setting up
the connections theGen process starts generating a number of events and theSrc andDst
processes will react according to the destination assignment scheme. TheDst process is
dummy as the merging is done in firmware and the signal of a new full event is directly
transferred to a destination request. If one of the data flow processes detects an error the
EB program will report it and stop.
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FIGURE 4.13. EB Program

4.3  Simple Data Transfers

Before the system was actually used for parallel event building simple data transfers from
one source to one destination were investigated to test and debug them working together.
The results are especially useful to see what typical performance values there are.

4.3.1  Data Path

Simple data transfers from a single source to a single destination use the data flow man-
agement, which in this case is a simple transfer protocol. The data flows logically (figure
4.14) from theSrc process to the HiPPI/S module running theSrcFmw, then via the HiPPI
cables and through the HiPPI switch to the HiPPI/D module running theDstFmw from
where they get to theDst process. The synchronization between the HiPPI modules is
completely handled by the HiPPI protocol as is the transfer of actual data. The event
descriptors are transported between the HiPPI modules and the data flow processes by
VME read access and between the HiPPI modules partly in the I-field and are partly
reconstructed on the receiving side. The flow of actual data between the HiPPI modules
and the data flow processes can be made by VME using different options.

FIGURE 4.14. Data Flow for Simple Data Transfers

Different functions have to be carried out at each step of the data flow. Each of these can
be done in hardware or software and produce an overhead which contributes to the
latency. Since some of these hardware and software processes run concurrently the latency
is not a simple sum of the overheads. Although values for the individual overheads are
known (see section 4.3.4) the total latency in a given configuration should always be mea-
sured.
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Simple data transfers can be used to measure the minimum latency and individual over-
heads. In this case the EB program has only oneSrc and oneDst process and uses several
special configurations of hardware and software to measure the contribution of each indi-
vidual step in the data flow:

• Src process dummy:
The Src process starts the first data transfer from a pre-loaded event on the HiPPI/S
module. TheSrcFmw then loops over a given number of events and reports at the end to
theSrc process. This way one does not include the overhead due to theSrc process or
the communication between theSrc process and theSrcFmw.

• HiPPI/D dummy:
A special HiPPI chip is available that responds to the HiPPI protocol without any (mea-
surable) delay and without reading any data, thus running as an ideally fast HiPPI desti-
nation. This chip, called “never ending destination” (NED), can be connected directly
to the output of the HiPPI/S module. It can be used to measure the latency without any
contribution from a real HiPPI destination.

• Firmware options:
SrcFmw andDstFmw can both be configured to use pre-allocated and pre-loaded data
in which case the overhead due to internal buffer management is avoided.

• Interrupts:
TheSrc andDst process have several options to communicate with the HiPPI modules
and EP/LX offers different possibilities to handle VME interrupts.

• Reading Data:
The data transfer betweenSrc process and HiPPI/S module and HiPPI/D module and
Dst process can be achieved via VME using different options.

4.3.2  Method of Measurement

The idea is to factorize the contribution to the latency coming from the synchronization
level, the event descriptors and the actual data moving. The model is that the average
latency depends on a constant overhead due to synchronization and event descriptors and
a data size dependent part for the data moving:

(EQ 4.1)

with  as

Thus the latency will be measured as the time an ideally zero-sized event fragment needs
to go from source to destination. Actually it turns out that zero-sized event fragments are
not allowed in the firmware. A better way to measure latency is to measure it for different
event fragment sizes and then to extrapolate to a zero-sized event. This also has the advan-
tage that since the overhead times are statistically distributed one gets a more stable and
accurate value from the different measurements.

All measurements are done with the EB program running in a large loop of simple data
transfers. Only pre-loaded events of constant size are transferred. The times are measured
using the RAID timers [Spi94d]. The loops are repeated for different sizes from 1 word to

L overhead sync( ) overhead desc( ) time data( )+ +=

time data( ) 0→ size data( ) 0→
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up to 3 MByte. From repetitions of the measurements it can be seen that all rates are
reproducible within ~2.5% for data sizes less than or equal to 4 kByte and within ~1% for
bigger data sizes. The time for a single data transfer can be calculated from the measured
rate as

(EQ 4.2)

A simple linear model is used to describe the event size dependent part: the time to trans-
fer one event is determined by anoverhead and a linkspeed:

(EQ 4.3)

Figure 4.15 shows the time for single transfers from source to destination in dependence
of the event fragment size. A good linear approximation can be seen.

FIGURE 4.15. Transfer Times of Simple Data Transfers

A χ2-fit leads to aχ2/d.o.f between 2 and 3. That this is not closer to 1 is due to the fact
that some of the overhead times are not randomly distributed, e.g. the VME interrupt han-
dling time depends on the situation in which the VME interrupt arrives. The transfer itself
consists only of one HiPPI burst for data sizes less than or equal to 1 kByte, and only for
large sizes are several bursts sent. Nevertheless, the linear approximation is good enough
for an estimation of the latencies and individual overheads. Typical values of the overhead
will be presented in section 4.3.4 and are usually between 10 and 100µs. They have a
reproducibility of about 1µs. Applying the linear model, the data rate can be calculated as

(EQ 4.4)
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For large packets the rate converges tospeed while for very small packet sizes it goes pro-
portional tosize/overhead. Both parameters have an equal influence when the size is equal
to overhead/speed which with the usual overhead values is the case for packet sizes of
around 4 kByte. Figure 4.15 shows the data rate measured with the one fitted and the good
agreement between these two.

FIGURE 4.16. Data Rate: Measurement and Linear Model

4.3.3  Minimum Latency

Different configurations and the method described above were used to measure the over-
head times and resulting latencies.

The influence of the switch was measured by comparing simple data transfers through the
switch and through the cable only. No difference was found within a resolution of 1µs,
thus in accordance with the manufacturers specification. And there is no difference
between source and logical addressing. Furthermore no degradation was observed when
the switch was used for concurrent but exclusive connections.

The overhead from theSrcFmw was found to be 21µs. This was measured using a dummy
Src process and a dummy HiPPI/D module (NED). The overhead from theDstFmw for
receiving an event is about 29µs. This is slower than theSrcFmw can send the data
because the HiPPI/D module has to check the parity and LLRC error flag and the size of
data bursts which is not a-priori known, as for theSrcFmw.

Since theSrcFmw andDstFmw run in a loop and have to check various registers they have
a limited response time of 10µs in both cases, i.e theSrcFmw needs 10µs to respond to a
command and theDstFmw needs 10µs to either respond to a command or a HiPPI trans-
fer. An empty loop without any state changes takes about 6µs. The cycle time is the short-
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est time between two consecutive HiPPI transfers and includes the loop of status polling
and the HiPPI transfer. The cycle time on theSrcFmw is 33µs, on theDstFmw 42µs.

The minimum latency for simple data transfers between the HiPPI/S and HiPPI/D module
is 49µs. With a minimum interrupt handling time of 32µs this means that the minimum
latency for transfers betweenSrc andDst process is about 81µs in total, which on a time
graph looks as shown in figure 4.17.

FIGURE 4.17. Latency of Simple Data Transfers

Src andDst process can run concurrently in which case the frequency of transfers is given
by the frequency theSrc process can send data. If theSrc process waits for an interrupt
signalling the end of a transfer the time between two transfers is 63µs, corresponding to
15.9 kHz. The maximum frequency at which a HiPPI/S module can send event fragments
is only given by the cycle time which corresponds to 30.3 kHz. The maximum frequency
at which the HiPPI/D module can receive event fragments is 23.8 kHz.

4.3.4  Other Overheads

The latency measured so far was the minimum latency which comes from the HiPPI pro-
tocol, the switch and the necessary actions in the firmware to write or read data to or from
the HiPPI interface. Other contributions to the latency in more realistic setups come from
the different ways to handle the VME interrupts, the reading and exchange of event
descriptors and other status variables, the event buffer management and event assembly.

In EP/LX there are different ways to attach a process to the arrival of an interrupt. The
shortest one is the use of a semaphore which needs 32µs between the VME interrupt is
received and the program waiting on the interrupt carries out the next statement. Other
possibilities of synchronization between the HiPPI modules and the EB program are poll-
ing a status variable on the HiPPI module or attaching an interrupt handler routine which
will signal the process of the presence of an interrupt. Another method is using a unique
signal queue [Fum95] in which all interrupts are put and read from sequentially by the EB
program.

The exchange of the event descriptor between the firmware and the data flow processes
takes around 2µs. This is due to reading or writing single fields of the event descriptor in
single word VME accesses and is dominated by the time to access the VME bus.

The buffer management contains the handling of event descriptors, taking them from a fifo
or putting them into one. It takes somewhat different times in the firmware or in the data
flow processes. The times for the event assembly in theDstFmw have been measured as
above by single transfers mergingn event fragments to a full event. The average times for
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differentn are shown in figure 4.18a). After subtracting the cycle time for theDstFmw a
linear dependence between the full time andn can be seen. This leads to 37µs for setting
up the event assembly and finally putting the full event back into the free event buffer, and
a per-event time of 44µs due to searching, chaining the event fragments and checking if
the full event is complete. These times are roughly in agreement with the times for buffer
management. All overheads contributing to the latency are summarized in table 4.1.

FIGURE 4.18. Overhead  of Merging (see text)

TABLE 4.1. Overhead Times (all values inµs)

a. either getting an event descriptor from a fifo or putting one back into a fifo
b. getting an event descriptor from a fifo and putting it back into a fifo in the end
c. average overhead per event, merging n events

Stack Function Overhead

Src buffer managementa

event generation (Gaussian size)
writing event descriptor

6
34
2

Src-SrcFmw response time 10

SrcFmw buffer managementb 27

SrcFmw-HiPPI sending data 21

HiPPI HiPPI switch <1

HiPPI-DstFmw response time
receiving data
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29

DstFmw buffer managementb

event merging
36

~ c

DstFmw-Dst polling status
semaphore
attach routine
signal queue

30
32
36
76

Dst buffer managementa

reading event descriptor
6
2

a) b)
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4.3.5  Data Moving

Data moving between the HiPPI modules via the HiPPI cable and through the switch was
in all configurations compatible with a linear model and the transfer speed was measured
to be 41.5 MB/s. This value is not limited by the HiPPI protocol which should allow
100 MB/s but rather limited by the RIO system bus which transfers data at this rate
between the local memory and the HiPPI interface and represents 83% of the design max-
imum data rate of this bus.

Moving the actual data between the VME-HiPPI interfaces and the RAID processor was
only tested for theDst process. This was considered to be a test to check data errors in the
HiPPI transfer and to test the principle rather than a realistic data flow chain. This is
because the transfer between the HiPPI modules and the RAID processor is not optimized.
Nevertheless, different possibilities were tested:

• VME D32:
The simplest transfer is the single word access on VME bus where each single word of
the actual data is transferred independently.

• VME DMA:
Another method is using the DMA device of the RAID processor to move blocks of
data over the VME bus.

• RIO D32:
The HiPPI Module has a VME master interface which can be used to write words from
local memory into the RAID processors memory.

• RIO fly-by:
The RIO module VME master interface has a block move mode [RIO91].

FIGURE 4.19. Data Moving using DMA
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The data rate for the VME DMA method is shown in figure 4.19 compared to a pure DMA
test. One can clearly see that the data rate cannot be expressed any longer in a linear
model. This is due to the fact that the DMA was optimized for packets of 16 kByte and
uses chaining of blocks for bigger transfers [Buo93b]. The peak transfer rates of all the
different methods are summarized in table 4.2.

TABLE 4.2. Peak Rates of Data Moving

4.4  Parallel Event Building

The parallel event building system was used to measure the performance of several desti-
nations running in parallel. The effect of waiting for the interconnecting network to
become available can in particular be seen in the scaling behaviour with the number of
destinations. The simulation was used to find realistic parameters for the data flow pro-
cesses which are combinations of the overheads discussed in the previous section. Differ-
ent parameters like event fragment size distribution and the different data flow
management schemes were investigated.

4.4.1  Fixed Event Sizes

Figure 4.20 shows the measured maximum throughput of a parallel event building system
with three sources to a varying number of destinations with increasing event fragment
size. This figure first reveals that the parallel event building system runs fine and produces
good measurements. It furthermore shows the good scaling behaviour for event fragment
sizes above 10 kByte. This means that a system withn destinations hasn-times the perfor-
mance of a system with one destination. In other words, event building is performed in
parallel using several links of the interconnecting network concurrently if the event frag-
ment sizes are fixed and equal in all sources. This scalability, however, is limited for small
event fragment sizes only by the fact that all data flow processes run on a single processor
board.

The figure also shows the good agreement between the measurements and the simulations
which were carried out with the simulation program (see section 5.4). This model uses in
total 4 parameters. It was discovered that a single parameter to describe the latency is not
enough but that the complexity can be expressed in two parameters for the firmware and
two parameters for the data flow processes. The firmware parameters were taken from the
simple data transfers (see section 4.3.4) and describe the time which theSrc process needs

a. fly-by could not be tested

Method Maximum Data Rate (MB/s)

VME D32 ~1.6

VME DMA ~4.6

RIO D32 ~1.1

RIO fly-by -a
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to send the event fragment and the time theDst process needs to merge the event frag-
ment. The two parameters for the data flow process describe the time needed to handle an
interrupt and the time to generate new events. The values have been chosen to be in good
agreement with the measurements and to be unique for the whole set of measurements in
different configurations. They are shown in table 4.3.

FIGURE 4.20. Performance of the Event Building Prototype

There is only one time for the interrupt handling and the time for event generation follows
a linear law with 76µs overhead and 34µs per source. These times are combined from the
values of the overhead times measured in the simple data transfers (see section 4.3.4) and
reflect a realistic program. A more detailed simulation would require a complex parametri-
zation of the operating system and of the behaviour of the data flow processes. But these
two parameters are fully sufficient as can be seen in a comparison of the transfer times for
small event fragment sizes shown in figure 4.21. The differences between measurement
and simulation are less than 5% in most cases.

TABLE 4.3. Simulation Parameters for thePUSH scheme (all values inµs)

A detailed tracing of the EB program and analysis of the simulation program reveal that
the parallel event building system with fixed event fragment sizes turns itself into a barrel
shifter mode (see section 3.2.3). Each transfer takes the same time after which the status of
the switch is changed and the next fragments can be sent. This apart from the interrupt

#Src Interrupt Generation SrcFmw DstFmw

1 45 110 33 90

2 45 144 33 72

3 45 178 33 65
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handling time keeps all lines busy and assures maximum parallelism. The different switch
states are repeated in cyclic order and the buffer occupancy grows with the position of the
source in this cycle. The last source must be capable of holding at least as many event
fragments as there are sources in the event building system.

FIGURE 4.21. Transfer Times: Comparison between Measurement and Data

4.4.2  Event Size Variations

So far, fixed event fragment size has been used and all transfers take the same time. Of
course this will change in more realistic conditions when the event fragment size varies
from event to event and from source to source. Due to these fluctuations some sources
have to wait for others and the parallelism is disturbed, the maximum throughput
decreases.

Figure 4.22 shows this influence for different event models: independent Gaussian with
differentσrel or independent exponential event fragment size distributions. The exponen-
tial case can be regarded as some sort of worst case due to the long tails in the distribution
and the higher probability of having big differences within one event. In a 2×2 setup the
maximum throughput for exponential fragment sizes is reduced to 68% compared to fixed
event fragment sizes.

The influence of correlated event fragment sizes has been studied with some pattern of
Gaussian (σrel = 10%) distributed event fragment sizes and a fraction r of pathological
events. A pathological event has one event fragment being 10 time bigger than the others
but the average full event size is the same as before. If r equals 100% then the throughput
is only slightly better than exponentially distributed event fragments sizes as can be seen
in figure 4.23. The maximum throughput of a 2×2 setup is in this case 71% compared to
fixed the event fragment sizes.
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FIGURE 4.22. Influence of Event Fragment Size Variations

FIGURE 4.23. Event Fragment Size Correlations (see text)

For both types of event fragment size variation the agreement between measurement and
simulation is very good and differences in the two are less than 5%.

4.4.3  Destination Assignment

In the previous measurements only thePUSH scheme with a round-robin destination
assignment has been used. Assigning the destination randomly in a 2×2 setup is more inef-
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ficient and the maximum throughput is only about 66% compared to round-robin, as can
be seen in figure 4.24. This decrease in performance is due to the fact that one particular
destination can be assigned to several full events in sequence which reduces the parallel-
ism and thus the maximum throughput.

FIGURE 4.24. Random Destination Assignment

Figures 4.25 and 4.26 show the performance for thePULL andSYNC schemes. Good scal-
ability can be seen which in the case ofPULL is even valid for smaller event fragment
sizes down to about 1 kByte.

FIGURE 4.25. Event Building Performance,PULL Scheme

(fixed size)

fixed size event fragments
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The simulations were carried out with the same parameters as before (see table 4.3). For
thePULL scheme is has been taken into account that the event generation is always done
after an interrupt and the two times have been added. In theSYNC scheme one interrupt
signals the end of a transfer and another one signals the generation of a new event. Inter-
rupt time and event generation time have to be added. The agreement between measure-
ment and simulation is good in both cases.

FIGURE 4.26. Event Building Performance,SYNC Scheme

A comparison of all three schemes for a 2×2 setup and individual exponential event frag-
ment size distributions is shown in figure 4.27.

FIGURE 4.27. Comparison of Different Destination Assignment Schemes

fixed size event fragments
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No essential differences can be seen for the 2×2 setup and the little differences there are
can be explained by the fact that the data flow processes have to deal with a different num-
ber of interrupts. For this setup each event creates only one interrupt in thePULL scheme,
2 in thePUSH and 3 in theSYNC scheme.

Figure 4.28 shows a setup of two sources with a varying number of destinations using the
PULL scheme. Interesting, here, is that three destinations have a higher performance than
two. This is due to the fact that a HiPPI/S module can send the next event fragment after
33 µs while the HiPPI/D module will still be busy for another 72µs to merge the event. So,
if there are more destinations than sources, the merging process of the previous event frag-
ment and the sending of the next event fragment can be done concurrently. The maximum
throughput is increased for event fragment sizes between 1 and 200 kByte. This covers also
the event fragments sizes expected in ATLAS event building system (see section 2.4.5).

FIGURE 4.28. Event Building Performance,PULL Scheme

4.4.4  Fault Tolerance

Errors in the event building prototype can occur on the level of control and data signals,
the level of data bursts and connections and on the level of the data flow management.
They can have different sources and different detection mechanisms have been imple-
mented as well as different measures to recover from an error condition.

Control signals were transported via VME interrupts. In normal operation there were no
problems. But with other users in the same crate there could be clashes on the VME bus
leading to bus errors. These stopped the whole crate and had to be recovered by re-setting
the crate. Furthermore, the multitude of VME interrupts from the VME-HiPPI interfaces
could only be handled by using different interrupt levels because otherwise some modules
would not be handled at all due to the bus arbitration. The internal signals in the EB pro-
gram were handled by the EP/LX and shared memory which were stable and safe.
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The HiPPI protocol detects transmission errors by a byte-to-byte parity check and one
LLRC word per burst. These checks are carried out in hardware and not a single error was
detected in the estimated 1012 Bytes sent in total. The software in any case would have
tagged the event fragment and have continued without any loss in performance. No viola-
tions of the HiPPI protocol on the burst level were detected.

The protection against errors on the connection level consists of time-outs which have to
be longer than the longest full event transfer times (around 1 s for 1 MB events!). Such
errors could be emulated by switching off a VME-HiPPI interface or by re-configuring the
switch. In such cases a retry worked well but was quite slow due to the long time-outs.
Anyway, errors of this kind can be detected easily as they lead to dedicated messages in
the firmware or can even be read from the front panel of the VME-HiPPI interfaces.

On the data flow level the biggest problem was the fact that the data flow processes were
single-threaded. No status information is available while they are waiting for a signal from
the VME-HiPPI interfaces. Future data flow processes should be multi-threaded to allow
status requests even while waiting for events. StoppedSrc processes were in principle no
problem as the others carry on sending event fragments. Some algorithm nevertheless has
to make sure that theDst processes will detect the missingSrc process. Otherwise the
build event buffer (BvtBuf) will overflow with half built events and no more full events
will be sent out. StoppedDst processes were no problem forPULL andSYNC schemes as
they just stop sending requests and lose probably one event. ThePUSH scheme, however,
will block on the stoppedDst process and only after some time-out finally skip the dead
Dst process and carry on, probably having lost some events due to overflowing buffers or
having introduced some deadtime.

In general the whole setup can be deemed as rather robust. Error detection and recovery
on several level was provided by the hardware (HiPPI and VME) and software (EP/LX,
firmware, data flow processes). While some parts were already there, others had to be
added to make the event building system safe. Very rarely a complete failure due to
cabling problems could be detected rather quickly and re-set fast.

4.5  Conclusions

A parallel event building prototype system based on a commercially available technology
has been operated successfully. High speed interconnects using the HiPPI standard and a
switch have been integrated in a VME environment. The system which uses HiPPI for fast
data transfers and VME for control flow was integrated with an extendable and modular
software. This consists of the data flow processes and of a three-layered data flow man-
agement: one layer is technology dependent while the other two can be used with other
high speed interconnect standards.

Though the prototype shows in principle successful operation of a parallel event building
system using commercially available technology based on high speed interconnects and
switching elements, more studies with bigger prototypes in realistic environments are
needed to conclude on the feasibility of this technique for event building systems of exper-
iments at the LHC. The main significance of this prototype, however, is that it provides a
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parametrized model of behaviour in terms of overheads and link speed. This model will be
used for large-scale simulations of event building systems like needed in the ATLAS
experiment. The model will likewise be valid for similar systems using connection-ori-
ented networks and crossbar switches (e.g. Fibre Channel class 1).

A data flow management has been developed. It was successfully used to adapt a particu-
lar technology to the requirements of a parallel event building system. The generic levels
of the data flow management contain event format, buffer management and event assem-
bly which could also be used in future event building systems and which could partly
migrate to hardware. The real-time UNIX operating system EP/LX has proven to be a
very good tool for signal handling as well as a development environment.

Simple data transfers from one source to one destination were used to measure the mini-
mum latency to be 49µs. This is mainly due to the HiPPI protocol, the switch itself con-
tributes with less than 1µs. The interrupt handling could be measured to be minimally
32 µs, so that the latency betweenSrc process andDst process is 81µs in total. The maxi-
mum frequency for sending events is 30.3 kHz, and for receiving events 23.8 kHz. The
link speed is 41.5 MB/s and the transfer time can be described in a linear model using a
link speed and overhead. For small numbers the performance of the parallel event building
system scales with the number of destinations for event fragments size bigger than 1 to
10 kByte. The system has mechanisms for error detection and recovery and runs safely.

The measurements from the prototype could be compared to a simulation program which
uses only a few parameters for link speed and overheads of about 100µs. The agreement
of prototype measurements and simulations with different event fragment sizes and differ-
ent data flow management schemes is good and there is confidence in the model which
will be used with the same parameters for large-scale simulations of ATLAS-like systems.

The prototype, however, had some limitations: the EB program is only running on one
processor board which leads to performance restrictions especially for small event frag-
ment sizes. This cannot be regarded as realistic because future parallel event building sys-
tems must use several boards. Unfortunately, the system was not big enough to test more
realistic event fragments size distributions as expected from physics with their special cor-
relations. Running under realistic data taking conditions in an environment with several
sources and destinations, changing running conditions and unforeseen pathological situa-
tions will have to be tested to draw conclusions on the scalability of the system.

Nevertheless, the prototype is the first one of this kind working and it can be hoped that
the next-generation prototypes will go beyond it in performance and complexity. This, at
the moment, can only be achieved by means of simulations which are based on and veri-
fied with the measurements from this prototype.
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5.0  Simulation Program

Simulations are used to study parallel event building systems on the scale needed for the
experiments at the LHC. They are used to compare and evaluate different architectures,
technologies and data flow management schemes before the systems are actually built.
Simulations are complementary to building prototypes in the sense that the simulation
models are validated with the help of prototype measurements before they are extrapo-
lated to scaled-up setups.

The simulation model of a generic event building system (see section 3.1) is described in
terms of a configuration, an input data stream and a set of performance indices. The con-
figuration of an event building system describes its architecture, the data flow manage-
ment and the timing parameters for data transfer, processing and buffering. The input data
stream is described in terms of distributions for the arrival time and for the size of event
fragments. These distributions can be based on simple parametrizations using random
number generators or come directly from the off-line simulations of the detector. The per-
formance indices are the result of the simulation.

FIGURE 5.1. Simulation of Event Building Systems

5.1  Little’s Law

Although an event building system can in principal be described as a network of queues
the details of the interconnecting network and the interdependence of the queues are diffi-
cult to express in mathematical probability functions. The approach of queueing theory is
therefore not followed here and only one result from queueing theory will be reported: Lit-
tle’s law. This states [Kle75]:

The average number of customers in a queueing system N is equal to the average arrival
rate of customers to that systemλ, times the average time spent in that system T:

This law which can be understood intuitively is a formal result of queueing theory and
does not depend on any specific assumptions regarding the arrival time distribution, the
service time distribution, the number of servers or the queueing discipline. For an event
building system it relates the number of full events NFvt to the latency L:

(EQ 5.1)

where f is the input frequency (see section 3.1.3). Little’s law can also be applied for the
event fragments:

(EQ 5.2)
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Using the relation of latency and fragment latency (equation 3.3) and Little’s law in the
two forms one can derive a relation between buffer occupancy and latency:

(EQ 5.3)

5.2  Discrete Event Simulation

A simpler description of event building systems can be made using discrete-event simula-
tions which were utilized throughout this work.

5.2.1  Definition

Discrete-event simulations are based on a model that describes the system in terms of log-
ical relationships and state changes of the elements at certain points in time. The whole
simulation can be carried out as a sequence of events, with an event being a certain point
in time when an element changes its state.

The events are ordered by simulation time which is not to be confused with the wall clock
time. The events are scheduled in a time-ordered list. At any instant of simulation time
there can be multiple concurrent events and any event can cause other events to be sched-
uled or de-scheduled. The simulation is carried out by effecting all necessary state changes
at a given simulation time and after that, advancing the simulation time to the next event
pending on the list.

From the point of view of formulating the model, there exist two different approaches. In
the event-oriented approach the programmer must define the events in time which are not
allowed to spend time themselves. The list of events is directly accessed. In the process-
oriented approach the programmer has to define processes which contain at least two dif-
ferent events separated in simulation time. Thus the process becomes a time spending
action. The user has no direct influence on what is put on the list of events but is concerned
about how long an action takes and how it interacts with others. Both approaches are equiv-
alent in terms of the simulations. The element of random is introduced in discrete-event
simulations by use of random times for processes. The random times are sampled from ran-
dom number generators.

Usually the simulations are carried out with the help of a simulation language which con-
tains syntactical elements to describe the model and its actions, a compiler that compiles
the description into computer executable code and some runtime facilities that allow the
handling of events in a more or less comfortable way. Examples of such languages are
Verilog [VER90], VHDL [VHD87], Simscript [SIM90] and MODSIM II [MOD91]. Of
course, high level programming languages such as FORTRAN,C or C++ [Ver93] can be
used to do discrete-event simulations.

5.2.2  MODSIM II

MODSIM II [MOD91] is a proprietary, general purpose, high level language for discrete-
event simulations. It has a modular structure, is block oriented and is based on
MODULA 2 with object-oriented features like encapsulation and inheritance.

B〈 〉 f〈 〉 L〈 〉⋅≤
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In addition it has syntactic elements to describe time elapsing methods (WAIT DURATION).
It is process-oriented with the processes containing one or more of these statements. The
processes can be started synchronously (WAIT FOR) or asynchronously (TELL) in which
case several processes can be active at the same time. Arbitrary synchronization between
processes can be achieved with the help of a trigger object. Scheduled activities can be
interrupted and the reaction of an interrupted action can be defined.

MODSIM II has a library of predefined objects like the already mentioned trigger object
and a resource object which is used for simulation of the basic case of processes compet-
ing for a limited-capacity object. The library also contains various list objects and various
random number generators. It also provides I/O facilities for the reading of parameters and
the printing of results. MODSIM II has a script which only re-compiles the modules that
actually need compilation and links them with the runtime scheduler which is the heart of
the discrete-event simulation. It can also run a debugger and be interfaced with a graphics
tool for graphical objects and animation.

It is used in the HEP community for simulations of data acquisition systems. In the
ATLAS collaboration it was chosen to be used for simulations of the functional model of
the ATLAS data acquisition system and is the basis for several detailed studies on differ-
ent technologies [Hun95]. It is used throughout this work.

5.3  DAQ Simulation Library (DSL)

The DAQ Simulation Library [Spi93][Amb94b] is a high level tool based on MODSIM II.
The DSL (with the graphical user interface and the tracing facility) is a high-level descrip-
tion language for simulations of DAQ systems. It can be used for simulations of any kind
of DAQ system and has the possibility to include lower level hardware descriptions. The
GUI allows an easy configuration, initialization and on-line monitoring of a simulation
program. The tracing facility allows a highly flexible analysis of the output.

5.3.1  Elements

The DAQ Simulation Library consists of generic objects to describe any kind of DAQ sys-
tem. The basic elements are:

• Items are information carrying data accumulations that are passed in a DAQ system,
e.g. event data, trigger signals.

• Processes are the active objects in a DAQ system passing items and acting on them,
e.g. readout or recording process.

• Resources are the limiting factors the processes have to compete for in order to fulfill
their task, e.g. cpu, buffer, transfer media.

• Control  elements are abstract objects controlling the processes and carrying informa-
tion on the data flow, e.g. timers, allocation algorithms.

The main idea of the DSL is to use the smallest indivisible (“atomic” ) processes that can
then be used to build up any DAQ system. A dozen“atomic”  processes have been defined
and constitute the core of the DSL.
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The DSL has a generic level consisting of objects for a generic description of DAQ sys-
tems, and a user level where inheritance is used to combine the generic objects with user
dependent features. Thus the DSL allows the possibility to refine the objects and to
include hardware dependent features.

5.3.2  Graphical User Interface

A graphical user interface [Dji94a] based on the graphical objects in MODSIM II is used
to easily configure the simulation model, to initialize each object and to monitor parame-
ters on-line. The GUI has three windows:

• the library window  displays the objects of the DSL;

• the configuration window is a canvas on which the configuration to be simulated is
built;

• the display window monitors parameters while running the program.

FIGURE 5.2.  Configuration Window with an Example

Figure 5.2 shows an example of the configuration window with a part of data acquisition
system and the input window for the parameters of one of the elements. Additional fea-
tures are available

• for saving and reloading whole configurations and their initialization values;

• for grouping of objects (very useful for copying parts of the configuration);

• for organizing views in a hierarchial way (very useful for complex configurations).

While the GUI can be used to build a configuration and to debug it, there is also a fast ver-
sion available which can be used to run the program without graphics, thus increasing the
performance for time consuming simulations.
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5.3.3  Tracing Facility

The tracing facility is a tool that allows each single “atomic” process to report on its activ-
ity by writing a trace record in a file. This facility can be switched on and off for each indi-
vidual process. The format of the trace record can be extended by the user.

The trace file can have binary or ascii format and can be processed off-line (i.e. after run-
ning the simulation) by a tool which is implemented as a C program. This tool can:

• reproduce each individual trace record;

• produce general statistics, e.g. number of events generated, size of the events, etc.;

• produce statistics on each type of trace record, e.g. event generation frequency, buffer
usage over time, etc.;

• can order the records on an event-by-event basis, e.g. latencies, lifetime of event, etc.

The results of the various analyses are written inntuple format and can be visualized with
the help ofPAW [Bru93].

5.3.4  Example

As an example of an application of the DSL the readout of the combined RD6/RD13 test-
beam in November 1993 has been simulated [Spi94a]. This setup (figure 5.3) consisted of
a single chain of data flow using a HIPPI link and had a total data rate of 1.5 MB/s. This
example was used as a proof of principle: it showed the easy mapping between reality and
simulation and the consistency between the values measured and the values simulated.
The simulation could then be used for changes of parameters and extensions of the setup.

FIGURE 5.3. RD6/RD13 Testbeam Setup
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The DSL has been successfully used for simple examples. It was used for simulations of
functional models of the whole ATLAS readout, LVL-2 triggering, event building and
LVL-3 triggering [Koz94]. Many of the ideas of DSL have been influencing the ATLAS
simulation program which is also MODSIM II based [Hun95].

5.4  Simulation Program for Event Building Systems (SIMEB)

SIMEB is a program for simulations of event building systems1. It uses a subset of simpli-
fied DSL objects. The simplifications of the objects were applied in two ways: first, the
high-level hierarchy of inheritance was moved into a single level and the objects are no
longer inherited from abstract objects. Second, some objects were grouped together in
order to facilitate the communication between them and have less TELL and WAIT state-
ments.

The simulation program implements a model of a generic event building system and can
simulate different input event fragment size distributions and different data flow manage-
ment schemes. It is fully configurable in the number of sources and destinations as well as
their parameters. The DSL graphical user interface is not used and the program therefore
performs better. The DSL tracing facility is replaced by collecting dedicated statistics of
buffer occupancies and latencies.

5.4.1  Elements

The simulation program implements the following objects:

• The EvtFragmentObj represents the event fragment. It contains the event descriptor
with identifiers, information concerning the size and kind of data and concerning rout-
ing. This object also has some timing information for collection of statistics.

TheEvtFragmentObjs are actually not allocated and de-allocated at run-time. A pool of
event fragments with pre-allocated objects is used instead to improve the performance.

• TheEvtGeneratorObj is the motor of the simulation program. It generates event frag-
ments and sends them to theSrcProcObjs. The time between two consecutive events
can be fixed, exponentially distributed or at maximum rate in which case a new event is
created whenever one is needed (see table 5.1). The event fragment size can be fixed,
exponentially or Gaussian distributed. Dedicated patterns can be generated (see section
6.3.3) or the distributions can be read from a file coming from off-line simulations of
the detector. In case of a static destination assignment scheme this is also done in the
EvtGeneratorObj.

• The SrcProcObj implements theSrc process (see section 3.4.1) of an event building
system. It has a buffer to store incoming event fragments, has a connection to theData-
FlowMgmtObj to receive destination requests and/or information about the destination
status and an outgoing connection to the interconnecting network. This part, called the
source port, can have a buffer for event fragments queued to the destinations and con-
nects directly to the destination port of theDstProcObj.

1.  The first version of this program was written by W. Greiman [Gre94].
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• The DstProcObj implements theDst process (see section 3.4.1) of an event building
system. It has an incoming connection from the interconnecting network which receives
connection requests and data from theSrcProcObjs and implements the link model and
the arbitration mechanism. There are no additional switching objects betweenSrcProc-
Obj andDstProcObj in order to minimize the number of objects in the simulation. In
addition to the destination port theDstProcObj has a buffer for the event assembly and
a connection to theDataFlowMgmtObj to send requests or status change information.
An outgoing connection is not modelled. The fully built events are put directly back into
the pool of events.

SrcProcObj andDstProcObj are composed objects. They have a cpu object to spend
time for their various actions. They are a realistic model of the corresponding processes
in the prototype (see section 4.4.1).

• The DataFlowMgmtObj implements the data flow management scheme (see section
3.4.3). It connects to theSrcProcObjs andDstProcObjs and manages the destination
assignment.

FIGURE 5.4. Elements of the SIMEB Program

5.4.2  Configuration

The simulation program can be configured in two steps: at compilation time and at run-
time.

TABLE 5.1. Options for the Pre-Compilation of the Simulation Program

Mode Option Meaning

destination assignment PUSH source-initiated

PULL destination-initiated, queue event fragments on source port

SYNC destination-initiated, synchronize with source port

DFM use data flow manager (see section 7.2.3)

cpu CPU SrcProcObjs andDstProcObjs have cpu and spend time

PROTO allSrcProcObj andDstProcObj share one single cpu

event generation MAXRATE generate event fragments whenever needed
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A pre-compilation step is used to specify the destination assignment scheme, the cpu and
event generation mode. Table 5.1 shows the possible options. A littlemake script (UNIX)
will run the C pre-processor on the source code and generate the MODSIM II code which
will then be compiled and linked to an executable program. The executable program can
read parameters from the command line or from a file. It uses flags for the parameters
some of which are shown in table 5.2.

TABLE 5.2. Some Input Parameters of the Simulation Program

5.4.3  Collection of Statistics

The collection of statistics is done in theEvtGeneratorObj, theSrcProcObj and theDst-
ProcObj. The values reported at the end of the program are the following:

• the total simulation time, the total amount of data transferred and the total throughput
achieved;

• the latency of full events and the latencies of event fragments in the individual buffers
of theSrcProcObjs;

• the time weighted average and maximum number of full events in the event building
system;

• the time weighted average and maximum buffer occupancies in theSrcProcObjs,
expressed in number of event fragments as well as in size.

A little awk script (UNIX) can be used to extract the numbers and to prepare them for
input withPAW [Bru93] which can then be used to present the different results from simu-
lation runs with different parameters.

Flag Input Parameter

-i number ofSrcProcObjs

-o number ofDstProcObjs

-r input frequency

-e average event fragment size

-l link speed

-d link dead time (due to firmware)

-p processing time for interrupt because of new event

-q processing time for interrupt at end of transfer

-t processing time for merging event fragments
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6.0  Simulation of Event Building Systems

The SIMEB program presented in the previous section (5.4) is used to simulate large-scale
systems based on a realistic model of the ATLAS event building system as presented in
section 2.4.5.

In the data acquisition system of the ATLAS detector, the ROBs together with the LVL3-
links of the readout crates act as sources. The switch-farm interfaces are the destinations.
The model presented in this section is based on the assumption that the event building sys-
tem is completely decoupled from the up-stream and down-stream data acquisition sys-
tem. This implies that buffers are large enough or equivalently that trigger processing of
events is fast enough not to require any feedback or throttling of the input. The model of
the switch and the parameters from the prototype measurements are used for the simula-
tion, notably the fact that the switching delay is negligible and that the transfer time can be
described in terms of an overhead and a link speed.

All simulations presented in the following section were performed with the SIMEB pro-
gram, using 100 sources and destinations and an average full event size of 1 MByte. The
input frequency varied between 0.5 and 4.0 kHz. Realistic parameters for the intercon-
necting network were taken from the event building prototype (see section 4.3.4): the
transfer speed was assumed to be 40 MB/s and the overhead of the transfers 100µs. The
default contention resolution in the switch is made in a round-robin manner and the
default destination assignment scheme is aPUSH algorithm like in the prototype with the
destinations being assigned in a round-robin manner.

6.1  Simple Model

First, a simple model is used to investigate the influence of the different parameters. This
model consists of a 100×100 setup with an event fragment size of 10 kByte per source.
The arrival time is on average 1 ms, corresponding to a frequency of 1 kHz. It can either
be constant or exponentially distributed, leading to a Poisson distributed number of events
in a given time interval.

6.1.1  Warm-up and Convergence

Before doing any simulations, the simple model was used to investigate the convergence
of the results: an important feature in discrete-event simulations of queueing systems is
the fact that the queues are usually empty in the initial state of the simulations. When the
simulations are started the queues fill up until they reach a certain occupancy depending
on the system’s throughput and the statistical fluctuations. This, of course, is only the case
if the system has a stable state, otherwise the queues will grow indefinitely.

The phenomenon of filling queues at the beginning of the simulations is called “warm-up”
and has to be taken into account when interpreting the results of a simulation. Figure 6.1
shows the evolution of the full event frequency shortly after the start of the simulation of
the simple model with exponential size distributions and an exponential arrival time distri-
bution. It can be seen that the frequency in the first ~ 0.3 s is much lower than expected.
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Only after that, the frequency reaches the expected value around which it fluctuates statis-
tically.

FIGURE 6.1. Warm-up Effect

There are at least two ways to take the warm-up into account: one can either start the sta-
tistics collection only after some time when the system has already become stable, or one
can make long runs in which the influence of warm-up becomes negligible. The influence
of warm-up on the total throughput of the same setup as before is shown in figure 6.2. This
shows the deviation of the simulated throughput at 1 kHz from the expected throughput
versus the number of events simulated. It can be seen that this deviation is less than 1% for
more than 20,000 events and less than 0.5% for more than 30,000 events.

FIGURE 6.2. Convergence of Throughput
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All simulations in this section were carried out with 30,000 events. The simulations of
throughput are supposed to have a better resolution than 0.5%. The latencies have been
checked with different random sequences to be statistically stable within 1%. The maxima
of latency and buffer occupancy quoted are always obtained for 30,000 events.

6.2  Ideal Event Building System

In the ideal event building system the event fragment sizes are constant. This corresponds
to a detector which does not do any sparsification but reads out all the channels all the
time. Ideally the transfer of an event fragment does not have any overhead and the transfer
time is only determined by the link speed.

The simulated total throughput of the ideal event building system is shown in figure 6.3 in
dependence of the input frequency. As expected, the throughput increases linearly with the
input frequency until the switch becomes saturated and all links are fully used. The maxi-
mum throughput is then given by the link speed only and is Tmax = NDst ⋅ speed=
3.91 GB/s which corresponds to a maximum input frequency of fmax= 4.10 kHz. In the
ideal event building system the switch runs in barrel shifter mode (see section 3.2.3) with
the states of the switch being repeated in fixed time slots. The event fragments are sent to
the destination always in the same order.

FIGURE 6.3. Throughput vs Input

The throughput does not show any difference if simulated with constant or exponential
arrival time and the maximum throughput is the same as before, 3.91 GB/s. The latencies,
on the other hand, differ: if the arrival time is constant the latency is constant. Each event
takes the same time to be sent to the destination, the time being given by the link speed:
L = NSrc ⋅ size / speed = 24.4 ms. If the arrival time is exponentially distributed the num-
ber of events in a given time interval fluctuates and sometimes events arrive faster than the
switch can handle them. In this case the input buffers derandomize the input traffic and
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store the events. The event fragments have to wait and the latency increases. The average
latency deviates from the constant case in particular as the input frequency approaches the
maximum because then frequently events arrive faster than they can be handled. The max-
imum latency for 1 kHz is about 4% larger than average and about 29% larger for 3.5 kHz.
Due to the long tails in the exponential distribution the maximum latency is not finite
when the input frequency approaches the maximum.

FIGURE 6.4. Latency vs Input for Different Arrival Times

The latency is larger than with constant arrival time due to the additional waiting time that
can only be greater or equal to 0, but the throughput is in both cases the same. This is
because events arriving faster than average will be stored and will be sent to the switch
with maximum input frequency. In times when the events come less frequently than aver-
age, the additional events will be sent, so that in total, the throughput is the same as with
constant arrival time.

FIGURE 6.5. Little’s Law for Full Events

Figure 6.5 shows the validity of Little’s law for the number of full events in the event
building system (equation 5.1). The behaviour of the buffer occupancy in the ideal event

b) exponentiala) constant
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building system is similar to the behaviour of the latency. For constant arrival time any
given source has to hold as many fragments as its position in the barrel shifter cycle has.
The maximum occupancy is twice as large as the average and is equal to the number of
sources for the maximum input frequency.

FIGURE 6.6. Buffer Occupancy vs Input for Different Arrival Times

If the arrival time is exponentially distributed then the average occupancy remains similar
to the constant arrival time but the maximum occupancy reflects the effect of derandomi-
zation and therefore can be more than 2 times the average occupancy and exceed 100
event fragments. For 1 kHz about 47 event fragments are stored at maximum, about 80%
more than with constant arrival time, at 3.5 kHz 128 need to be stored, 50% more than
with constant arrival time. As with the latency, the buffer occupancy is not finite when the
input frequency approaches the maximum. There is no stable state.

FIGURE 6.7. Little’s Law for Event Fragments

As for the full events Little’s law is also valid for the event fragments (equation 5.2). Lit-
tle’s law only allows to calculate an upper limit for the buffer occupancy using the latency

a) constant b) exponential
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and the input frequency (see equation 5.3). In the ideal event building system there is a
simple relation between average buffer occupancy and average latency which will be
deduced in the following based on the fact that the ideal event building system works in
barrel shifter mode and the event fragments are strictly ordered.

FIGURE 6.8. Barrel Shifter Mode

The full event to a given destination is completely sent before the next one arrives for the
same destination, so that there is no waiting time and the fragment latency can be calcu-
lated:

(EQ 6.1)

(EQ 6.2)

wheresrc is the position of the source in the barrel shifter cycle andtime the constant
transfer time per event fragment (= 244.1µs). The average fragment latency can now be
calculated with the number of sources NSrc to be

(EQ 6.3)

The maximum latency of an event fragment is:

(EQ 6.4)

Using the definition of the latency (see equation 3.3 in section 3.1.3) it follows:

(EQ 6.5)

Using this relation and Little’s law for full event and event fragments, one gets the follow-
ing relation, strictly valid in the ideal event building system with constant arrival time:

(EQ 6.6)

The ratio of full event latency and the latency of an individual event fragment for maxima
and average is shown in figure 6.9, for exponential arrival time distribution. The ratio of
maxima has to be exactly equal to 1 by definition (equation 3.3). The ratio of averages is
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close to 2, though equation 6.6 cannot be derived for exponential arrival times because
waiting times of the event fragments have to be considered. It seems, however, that their
influence is negligible when the input frequency is smaller than the maximum input fre-
quency (< 90%), leading to the empirical law:

(EQ 6.7)

This is valid only with a certain accuracy for big NSrcand with input frequencies smaller
than the maximum input frequency. With the exponential arrival times in the ideal event
building system it has an accuracy of 1% for frequencies < 3.5 kHz. As a rule of thumb
this formula can be useful.

FIGURE 6.9. Latency/ Fragment Latency vs Input (exponential arrival time distribution)

FIGURE 6.10. Scaling Behaviour (exponential arrival time distribution)
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The scaling behaviour with the number of sources and destinations is shown in figure 6.10.
The maximum throughput increases linearly with the number of sources and destinations in
square systems. The increase in number of sources is also followed by an increase in the full
event size. This scaling law shows that for the ideal event building system the maximum
input frequency is only determined by the link speed and the event fragment size: fmax =
speed/size = 4.10 kHz. If the number of sources is kept constant at 100 and the number of
destinations is increased no change can be seen.

The latency, both average and maximum, scale as well with the number of sources, as is
shown in figure 6.10b) for 1 kHz. In the case of 100 sources and a varying number of des-
tinations the latency stays the same because in the ideal event building system runs in bar-
rel shifter mode and if the input frequency is smaller than fmax the latency can be
calculated as L = NSrc⋅size/speed. The latency even stays the same if the number of desti-
nations is decreased. This is due to the fact that at 1 kHz, the maximum rate for 50 destina-
tions is not reached, which would be at 2.05 kHz.

6.2.1  Overhead and Processing Times

One assumption for the ideal event building system was that there are no overheads. This
section will try to understand the influence of overheads on the performance of an event
building system. Three different sets of overheads were simulated, the arrival time is
always exponentially distributed:

• No Overhead:
This is the ideal event building system presented before.

• Single Overhead:
In this case each transfer time is increased about the constant time of 100µs. Both,Src
andDst process are busy for that time.

• Detailed Overheads:
In this case different overheads for different tasks are used: 45µs for theSrc process to
handle a new event signal and 33µs to send the data, and 54µs for theDst process to
merge the event at the end of each transfer. These times were derived from the proto-
type (see section 4.3.4).

TABLE 6.1. Maximum Throughput with Different Overheads

Overhead
Maximum
Throughput

[GB/s]

Efficiency
[%]

no overhead 3.906 100

overhead = 100µs 2.762 71

detailed overhead 2.654 68
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The maximum throughput and efficiency for the three sets are summarized in table 6.1.
For a single overhead they can be calculated with a formula similar to equation 4.4:

(EQ 6.8)

where (EQ 6.9)

The influence of the overheads leads in the two cases of single and detailed overhead to an
efficiency of about 70%. In the case of the detailed overhead this cannot be calculated eas-
ily because the processes run concurrently. The maximum input frequency for a given
event size can be calculated from the maximum throughput divided by the size. However,
for very small event fragment sizes (like in the ATLAS LVL2 system, see section 2.4.4)
the overhead directly determines the maximum input frequency, e.g. for 100µs fmax is
10 kHz.

FIGURE 6.11. Latency vs Input with Different Overheads

Figure 6.11 shows the influence of the overhead on the latency. For the single overhead the
average latency can be estimated as:

(EQ 6.10)

Therefore the latency is 100× 100µs = 10 ms larger than in the ideal case. The average
latency for the detailed overheads is about 8 ms more, which is less than for the single
overhead. The maximum latency shows a similar behaviour as before, growing faster as
the input frequency reaches the maximum at a lower value.

Little’s law is true for full events and event fragments. The buffer occupancy is larger
because the transfer times and therefore the latencies are longer. The maximum buffer
occupancy for both overheads at 1 kHz input frequency is about 65 events which corre-
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sponds to 650 kByte which is 30% more than with no overhead. The ratio of full event
latency to latency of an individual event fragment is still close to 2 (equation 6.7) with an
accuracy of about 2%. The scaling behaviour with the number of sources and destinations
is the same as shown in the previous section.

FIGURE 6.12. Buffer Occupancy vs Input with Different Overheads

The sets with a single overhead and detailed overheads show differences which are negli-
gible compared to the difference they both have in comparison to the ideal event building
system. For further simulations throughout this section the single overhead was used as an
approximation for the detailed overhead.

6.3  Event Size Variations and Correlations

Another important parameter is the event fragment size. So far only constant event frag-
ment sizes have been considered. But what happens if the event fragment sizes are not
constant from event to event and not even from source to source? Constant fragment event
sizes are good assumptions for detectors which read out all the channels regardless of
wether they were hit or not. This is a good assumption for some of the detectors in
ATLAS, but others, especially the ones with a low occupancy, will only read out channels
with a signal above a certain threshold. This will reduce the total amount of data but it will
also introduce a new phenomenon: varying event fragment sizes.

6.3.1  Full Event Size

Before actually varying the event fragment size on an event-to-event and source-to-source
basis, the influence of the event size as such was investigated. Therefore, equal and con-
stant event fragment sizes between 1 and 20 kByte were simulated. The maximum
throughput varies with the event fragment size as shown in figure 6.13. It increases slowly
and approaches the maximum throughput of the ideal event building system. This is
because the efficiency can be described with equation 6.9. The efficiency converges to 1

(30000 events)
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when the event fragment size is so big that the transfer time is dominated by the speed and
the overhead becomes negligible. Figure 6.13 also shows the maximum input frequency.
This is only determined by the link speed as before and with equation 6.9 one gets:

(EQ 6.11)

The maximum input frequency is 1 kHz for event fragment sizes of 36.9 kByte.

FIGURE 6.13. Maximum Throuhput and Maximum Input Frequency vs Event Size

FIGURE 6.14. Variation of Event Fragment Size (fixed size, 1 kHz)

The latency (see equation 6.10) at 1 kHz increases linearly with the event fragment size
until it approaches the limit of 36.9 kByte where it becomes infinite. Beyond this limit it
will increase proportionally with time. The buffer occupancy, now expressed in size,
increases consequentially∝ size2 (Little’s Law) and needs a maximum buffer space of
about 1.8 MByte for event fragment sizes of 20 kByte.

f
max εoverhead

speed
size

--------------- 1
overhead size speed⁄+
------------------------------------------------------------=⋅=

(30000 events)
(30000 events)

a) Latency b) Buffer Occupancy
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6.3.2  Event Size Distributions

The influence of event fragment size variations on a source-to-source basis was investi-
gated with statistical distributions. The average event fragment size per source was kept
constant at 10 kByte and the sources were treated independently. Two different distribu-
tions were tested:

• Gaussian:
In this sample independent Gaussian distributions were used withσrel of 10%, 50% and
100%. The distributions were limited to a minimum of 4 Byte and a maximum of
20 kByte. The minimum limit can be regarded as an “empty buffer” message. The max-
imum comes from the maximum buffer size. Former experiments show that event sizes
are Gaussian distributed [Map95b].

• Exponential:
In this sample independent exponential distributions were used. These were only lim-
ited to a minimum of 4 Byte but not to any maximum. These somewhat artificial distri-
butions turn out to be quite useful. Due to the long tails in the distribution they can be
regarded as a worst case and are good to test the performance of the system.

The maximum throughput for the different event fragment size distributions is summa-
rized in table 6.2., which also contains the relative efficiency compared to the constant
event fragment sizes; i.e. the efficiencies are factorized as a contribution from the over-
head and one from the size variations andεtotal is the product ofεsize andεoverhead:

(EQ 6.12)

It can clearly be seen that the fluctuations of the event fragment sizes decrease the
throughput and thus the link efficiency. This comes from the fact that the switch still run-
ning in barrel shifter mode will have to adapt the time slot to the largest fragments at a
given time. The smaller fragments will not use their time slot fully and the throughput
decreases. The exponential size distribution with its long tail towards the big event frag-
ments reduces the link efficiency to about 60% of the value with the single overhead and
constant size, this is in total about 42% of the theoretical throughput.

TABLE 6.2. Throughput of Different Event Fragment Size Distributions

Event Size Variations
Maximum
Throughput

[GB/s]

εtotal
[%]

εsize
[%]

fixed event size 2.762 71 100

Gaussian,σrel = 10% 2.603 67 94

Gaussian,σrel = 50% 2.176 56 79

Gaussian,σrel = 100% 2.080 53 75

exponential 1.623 42 59

Treal
max εsize εoverhead Tideal

max⋅ ⋅=
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Since the maximum throughput is decreased, the maximum input frequency is also
decreased. An input frequency of 1 kHz is much closer to the maximum where latency and
buffer occupancy become infinite. This maximum is 1.70 kHz for the exponential distribu-
tions, an input frequency of 1.5 kHz already sees a strong increase in the latency and
buffer occupancy. For 1 kHz input frequency the latency increases about 32% on the aver-
age value, and about 86% on the maximum value. The average buffer occupancy increases
between 10 and 20% and for an exponential size distribution and 1 kHz input frequency a
maximum buffer of 900 kByte must be provided. For both sets, Little’s law was checked
to be true for full events and event fragments. The relation between latency and latency of
an individual event fragment (equation 6.7) is also still valid.

FIGURE 6.15. Latency for Different Event Fragment Size Distributions

FIGURE 6.16. Buffer Occupancy for Different Event Fragment Size Distributions

a) average b) maximum
(30000 events)

(30000 events)
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The buffer occupancy can also be expressed as the probability that an event gets lost if the
buffer has a fixed size. This is shown in figure 6.17 where the event loss probability versus
the buffer size is shown. It can be seen that for example for an input frequency of 1 kHz a
buffer of 600 kByte would lead to 1% of the events to be lost, at 1.5 kHz this would lead
to every 5th event being lost. If the events are not to be lost, the event building system has
to send a signal to the up-stream data acquisition system, in which case the event loss
probability translates into a contribution to the deadtime.

FIGURE 6.17. Event Loss Probability (exponentially size distribution)

6.3.3  Event Size Correlations

The event size distributions investigated so far, were all based on independent distribu-
tions. Three other sets have been simulated to take into account correlations between the
sources:

• Pattern A:
One event fragment is 10 times bigger than the others. The source for this big fragment
is distributed uniformly over the 100 sources per event. Fluctuations of a Gaussian dis-
tribution with aσrel of 10% were used to sample the event sizes and the average event
fragment size 10 kByte.

• Pattern B:
A subset of 10 sources was sampled with Gaussian distributed event fragment sizes of a
σrel of 50%. The other 9×10 sources were then correlated to this subset with a correla-
tion factor of 1 with a 5% Gaussian fluctuation.

• Pattern C:
This is similar to pattern B, but the event sizes were scaled in groups of 10 with factors
of 0.1, 0.5, 1.0, 1.5 and 1.9. The full event size on average was left unchanged. This
pattern simulates correlated sources with different average event fragment sizes.

The maximum throughput achieved for these patterns is summarized in table 6.3 together
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with their efficienciesεsize. These efficiencies are similar to the varying event sizes. The
correlation of event fragment sizes seems not to create an additional overhead.

TABLE 6.3. Throughput for Correlated Event Fragment Sizes

From the latencies one can see that pattern A is very similar to the independent exponen-
tial distributions while pattern B is somewhat worse than the independent Gaussian distri-
butions. The influence due to the correlations is, however, not as large as the influence of
the fluctuations in general, as can be seen especially pattern A. It is the differences in the
event fragment sizes that change the timing of the barrel shifter mode and lead to ineffi-
ciencies. This can also be seen in pattern C which has big differences in the event frag-
ment sizes and thus the worst efficiency.

FIGURE 6.18. Latency for Correlated Event Fragment Sizes

The latencies and buffer occupancies for the correlated event fragment sizes are shown in
figure 6.18 and 6.19. As expected they show a very similar behaviour as before. Pattern A
is actually very similar to the exponential case and the maximum occupancy for pattern B
is almost identical to the Gaussian case withσrel = 50%. Pattern C also has some similari-
ties to the exponential distributions. The buffer occupancies, expressed in memory size,
are worse due to the bigger event fragments. For 1 kHz input frequency a buffer size of
1.25 MByte is required to lose less than one event out of 30,000 (probability≤ 3⋅10-5).

Pattern
Maximum
Throughput

[GB/s]

εsize
[%]

pattern A 1.751 63

pattern B 2.186 79

pattern C 1.594 58

a) average b) maximum
(30000 events)
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FIGURE 6.19. Buffer Occupancy for Correlated Event Fragment Sizes

Little’s law was verified for both, full events and event fragments. The relation between
latency and latency of an individual event fragment is again given as in equation 6.7 but
due to the big fluctuations the probability of overlapping events increases and the rule is
only valid within 5%.

6.3.4  Link Speed

The dependance of the maximum throughput on the link speed is shown in figure 6.20a)
which also shows the efficiency contributionεsize. Figure 6.20b) shows the latency in
dependance on the link speed. It can also be estimated with equation 6.10 and it thus
decreases when the link speed increases.

FIGURE 6.20. Variation of Link Speed

a) Maximum Throughput b) Latency (1 kHz)
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6.3.5  Scaling Behaviour

The scaling behaviour was checked with independent exponential event fragment size dis-
tributions. It can be seen that the efficiency for a square switch is about 42%, independent
of the number of sources and destinations. For a constant number of sources, however,
varying the number of destinations has some influence and increasing the number of desti-
nations increases the maximum throughput. This is because the probability of two full
events to wait for the same destination decreases when there are more destinations and
sources can be free due to the fact that they did not use their time slot fully. But the maxi-
mum throughput increases slower than the aggregate bandwidth and thus the total effi-
ciency degrades.

FIGURE 6.21. Scaling Behaviour (exponential size distribution)

The latency for exponential event fragment size distributions for square switches is scal-
able as before. It stays the same even when changing the number of destinations and leav-
ing the number of sources constant.

As in section 6.3.1 the influence of the event fragment size was checked. A very similar
behaviour as before was observed when changing the average event fragment size from 1
to 15 kByte. The maximum input frequency is scaled down with the 60% efficiency and
reaches the 1 kHz line already at 20.1 kByte. Similar to equation 6.11 one has:

(EQ 6.13)

The only visible influence the exponential distribution shows is that the maximum
throughput is smaller by about 60% which is why latencies and buffer occupancies grow
faster. For 15 kByte event fragments, however, a buffer space of 1.8 MByte would still
lead to an event loss probability of less than 3⋅10-5.

a) Maximum Throughput b) Latency (1 kHz)

f
max εsize

overhead size speed⁄+
------------------------------------------------------------=
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FIGURE 6.22. Event Size Dependence (exponential size distribution): Maximum Throughput and
Maximum Input Frequency

FIGURE 6.23. Event Size Dependence (exponential size distribution, 1 kHz)

6.4  ATLAS Model

In the previous section it has been shown that the event fragment size distributions play an
important role in the performance of an event building system. ATLAS off-line simula-
tions were used to get more realistic event fragment size distributions. These simulations
were carried out with physics events and a detailed detector geometry. They deliver hit
distributions which can be used to estimate the amount of data per ROB (see section
2.4.2), the variations from event to event and the correlations among the different sources.

(30000 events)
(30000 events)

a) Latency b) Buffer Occupancy
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6.4.1  Off-line Simulations

The ATLAS SCT was simulated which due to its low hit occupancy of 1% per event will
only read out the channels actually hit and lead to varying event fragment sizes. The phys-
ics events taken for this simulation were events which had passed the LVL1 calorimeter
trigger for isolated electrons. They represent about 55% of the expected LVL1-accepted
trigger rate [ATL94]. An additional LVL2 trigger was not run because otherwise the statis-
tics would have been too low. It can be hoped that the event fragment sizes do not change
significantly between LVL1-accepted events and LVL2-accepted events. SIMEB was used
to read in the event fragment sizes on an event-to-event basis and simulations were carried
out as before. The off-line simulations were carried out in several steps:

1. Generation of physics events:

The event generator used was PYTHIA [Ben87]. Two-jet events were produced with
pT(hard) > 35 GeV and |η(hard)| < 2.5. Minimum bias events have been generated with
GENCL [Aln87] with  = 14 TeV.

2. Detector Simulation:

The detector simulations were performed with the SLUG/DICE/GEANT package
[ATL95]. The detector layout used was the DICE “INNE” 3 layout - the baseline layout
for the technical proposal [Bai94]. The size of the Silicon wafers is 6×12 cm2 in rϕ×z.
Each wafer contains 800ϕ-strips. The wafers are organized in layers at radii of 30, 40,
50 and 60 cm. The number of channels, only reading out the strips aligned inϕ, is
2.4⋅106, as can be seen from table 6.4.

TABLE 6.4. Parameters of the SCT (onlyϕ-layer)

3. Trigger Simulation:

The trigger simulations were performed with the ATRIG program [Car94]. The hits
from the jet sample and an average of 18 minimum bias events per event, to simulate
high luminosity running and to give realistic occupancies in the detector, were superim-
posed and digitized. A hit in the SCT was defined if there was any energy deposit in the
channel. This is an overestimation of the number of hits, especially as no charge divi-
sion and readout noise were simulated which could reduce the number. On the other
hand no cross-talk between channels and no additional noise hits were simulated either.

A first level calorimeter trigger was applied to identify isolated electrons with |pT| >
35 GeV [Bor93]. Only events passing this trigger were considered for further analysis.

Layer
Nominal Radius

[cm]
Number of Wafers

[rϕ×z]
Number of
channels

1 30 36×14 403,200

2 40 48×14 537,600

3 50 60×14 672,000

4 60 72×14 806,400

total 3072 2,419,200

s
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The standard ATRIG program was modified to perform the mapping of hits onto
sources of the event building system and to write the event fragment sizes event-by-
event to an ASCII file with a simple format based on keywords.

A total of ~ 1,000 already pre-filtered two-jet events were used with a total of ~ 3,000
minimum bias events in the way described above. A total set of 3075 full events were
obtained with their event fragment size distributions.

6.4.2  Readout Buffer Mapping

The Silicon detectors will be read out with one optical fibre for every two wafers. This
fibre could have a low bandwidth and any of them could be multiplexed onto high band-
width fibres going to one ROB each [Haw95]. Several ROBs sitting in the same readout
crate will have one link to the event building system. The mapping of fibres to ROBs has
not yet been defined. So, the assumption was made that all fibres belonging to the same
physicalη×ϕ segment are actually read out by the same ROB. The collection of ROBs in
readout crates was made so that every source covers a square array of anη×ϕ segment. In
total 4×4 sources were used.

FIGURE 6.24. Source Mapping

The amount of data per hit transferred, is given by an overhead containing the fibre identi-
fier and then per digitization, an identifier and the pulse heights. The number of bits trans-
ferred per wafer is 31 + 36⋅Nhits, where Nhits is the number of hits on this wafer [Haw95].

This value is calculated per fibre and since there are 189 fibres in the source and reading
out the stereo-angled strips as well, this leads to

(EQ 6.14)

The presampler, electromagnetic calorimeter and hadronic calorimeter in the barrel region
have 139,264 channels [ATL94]. They will be read out completely with 3 words per chan-
nel [Boc95]. After a LVL2-accept the data should be sparsified by a factor 2 [Map95a].
For a 4×4 array of sources one yields an average fragment size of 12.75 kByte. Due to
fluctuations in the sparsification this will also vary. It is assumed that the fluctuation will
be of Gaussian shape with aσrel of 10%.

φ

η
0

2π

-0.7 +0.7

∆η×∆ϕ = 0.35×1.5
4 layers, 189 wafers
151,200 channels

size evt src,( ) 2 732 4.5 Nhits⋅+( )⋅= Byte
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6.4.3  Event Size Distributions

The simulations with 18 minimum bias events lead to an average occupancy of the detec-
tor of about 0.4% as can be calculated from the number of hits per event, shown in figure
6.25. The occupancy per fibre is shown in figure 6.26. The average flow of data per fibre
can be estimated to be about 1.72 MB/s, assuming a LVL1-accepted trigger rate of
100 kHz. This value is in agreement with earlier simulations [Haw95].

FIGURE 6.25. Occupancy in the SCT

FIGURE 6.26. Hits per Fibre

Every source has on average 626 hits in each event. Using equation 6.14 leads to an aver-
age event fragment size of 6.93 kByte. Figure 6.27 shows the shape of the event fragment
size distribution. It has anrms of about 40%, the maximum event fragment size can be cal-
culated to be 19 kByte (= 2,000 hits) which is about 3 times the average size. The shape is
of the distribution is not exactly Gaussian but rather little extended towards bigger event
fragments. Nevertheless, this distribution is quite “well behaved” and does not have very
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long tails. This comes from the fact that so many channels are being added up that the law
of big numbers can be applied.

FIGURE 6.27. Event Fragment Size Distribution

6.4.4  Results

The ASCII files containing the occupancy in the sources were used for input with SIMEB.
The set of 3075 events was randomized by skipping on average 5 events, thus allowing the
simulations to run for the required 30,000 events without repeating the events in the same
order. Three different sets of simulations were performed:

• Set A (SCT):
The files were read as they are, i.e. the simulation had 16 sources with a realistic event
fragment size distribution.

• Set B (SCT+CALO):
The SCT sample was used and 16 additional sources to represent the calorimeters.
They had independent Gaussian event fragment distributions around an average of
12.75 kByte withσrel = 10%. The minimum event fragment size was 4 Byte and the
maximum 25.5 kByte. In total an average of 9.84 kByte per source resulted.

• Set C (4SCT+4CALO):
This set was similar to set B, but three additional sets of each subdetector were intro-
duced. These were sampled from the first set using a correlation factor of 1 with a
Gaussian fluctuation ofσrel = 5%. In total 128 sources were used and the full event size
was 1.23 MByte. This set comes very close to the values defined in table 2.9.

The maximum throughput, input frequency and efficiency for the different sets of events
are summarized in table 6.5.εoverhead has been calculated using equation 6.9 to be about
70% andεsize was calculated using equation 6.12 to be about 80% which is thus compara-
ble to a Gaussian distribution withσrel = 50%.
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TABLE 6.5. Maximum Throughput of Realistic Event Fragment Sizes

The latencies are shown in figure 6.28. They show normal behaviour and can be estimated
with equation 6.10. Only when approaching the maximum input frequency will they
increase drastically. For 1 kHz in set C, the average is about 47 ms and the maximum
about 65 ms which is about 40% more than average.

FIGURE 6.28. Latency for Realistic Event Fragment Sizes

FIGURE 6.29. Buffer Occupancy for Realistic Event Fragment Sizes

Set
Number of

Sources

Full Event
Size

[MByte]

Maximum
Throughput

[GB/s]

fmax

[kHz]
εsize
[%]

A 16 0.10 0.32 3.001 81

B 32 0.31 0.71 2.365 81

C 128 1.23 2.82 2.350 80

a) average b) maximum
(30000 events)

a) average b) maximum
(30000 events)
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The buffer occupancies are shown in figure 6.29. As expected they are quite similar to the
buffer occupancies shown in section 6.3.2. For 1 kHz in set C a maximum buffer of
0.9 MByte is needed for 1 kHz and this increases to 1.7 MByte for 2 kHz which is still a
reasonable value. The buffer occupancies expressed in event loss probability are shown
for set C in figure 6.30. For an input frequency of 1 kHz a buffer of about 650 kByte is
needed to lose less than 1% of the events. For 2 kHz this must be 1.4 MByte.

FIGURE 6.30. Event Loss Probability for Realisitic Event Fragment Sizes

6.5  Conclusions

Simulations of parallel event building systems based on the switch model from the proto-
type measurements were performed. The model is based on the assumptions that the
switching delay is negligible and that the transfer times depend linearly on the link speed
and the overhead. The destinations were assigned in a round-robin manner and it was
assumed that theSrc andDst processes are completely independent from the up-stream
and down-stream data acquisition system.

Values from the prototype measurements of 40 MB/s for the link speed and of about
100µs for the overhead were used. To simulate the full-scale ATLAS-like event building
systems, setups of 100 sources and 100 destinations have been simulated with a full event
size of 1 MByte and an input frequency of 1 kHz. The influence of different parameters
and the scaling behaviour of the event building system were measured starting from an
ideal event building up to a realistic detector setup with realistic event fragment sizes. A
model for the event building system is given which is expressed in relations between the
performance indices.

With the assumptions made in the simulations, the event building system runs in barrel
shifter mode. The efficiency which is defined as the usage of the ideal switch has two con-
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tributions: from the overhead and from the event size distributions or correlations. The
first contribution can be calculated (equation 6.9) and comes from the time the link is not
used because of some overheads in the software and hardware. The second contribution
comes from the fact that varying event fragments lead to a varying time slot of the barrel
shifter mode and the time slot which will not be used fully by all the event fragments. This
cannot easily be calculated, but values for typical statistical distributions have been mea-
sured (table 6.2). This efficiency can get closer to 100% if the design of event building
system takes into account a uniformity of the event fragment sizes.

The latency and buffer occupancy have a smooth behaviour as long as the input frequency
is far from the maximum. The latency can be estimated with equation 6.10. Little’s laws
were verified for full events and event fragments and a simple approximate relation
between average buffer occupancy and latency was deduced (equation 6.7). When the
input frequency approaches the maximum all values grow infinitely and no stable state is
reached at the maximum input frequency.

Based on the assumption that the switching delay is negligible, the event building systems
were found to be scalable in number of sources and destinations. They also show a scal-
able behaviour with the full event size if the total throughput is far from the maximum.
The behaviour of the system was checked in the range of 10 to 300 sources, respectively
0.1 to 20 MByte full event size for input frequencies between 0.5 and 4 kHz and no devia-
tions were detected.

The influence of arrival time fluctuations is small: there is no effect on the efficiency if the
buffers of the sources are capable of derandomizing the input traffic. Latency and buffer
occupancy can be explained. The overhead on the contrary leads to an efficiency of about
70% with the parameters chosen. The efficiency contribution of the event size variations
has typical values of 60 to 90% for some statistical distributions. The independent expo-
nential distributions are the worst case which can be used as a benchmark test. Event size
correlations do not have a further effect. They are fully described by the event fragment
size fluctuations.

Realistic event size distributions were obtained from off-line simulations. In a system with
128 sources and a full event size of 1.23 MByte the total efficiency is about 56% which
comes from a contribution to the overhead (εoverhead ≈ 70%) and to the size variations
(εsize≈ 80%). The latter is comparable to a Gaussian event size variation withσrel = 50%.
Typical values for the latency are between 45 and 55 ms. The buffer occupancy has an
average of around 0.3 kByte at 1 kHz and is smaller than 1.8 MByte at maximum for
2 kHz.

These results show that under the assumption of the model obtained from the prototype
measurements, full-scale ATLAS-like parallel event building systems become feasible.
Expected increases in the link speed and improvements in the processing times for future
hardware and software will increase further the performance. But next-generation proto-
types with more sources and destinations and further studies including the up-stream and
down-stream data acquisition system have to show that the model is still valid for big sys-
tems.
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7.0  Simulation of Data Flow Management

As mentioned before (see section 3.4), the data flow management of an event building sys-
tem has to implement some control functions to ensure that the event fragments will be
correctly transmitted and assembled. The data flow management covers the way the inter-
connecting network resolves contention, the way destinations are assigned, the way the
event fragments are buffered and sent to the interconnecting network and finally how the
network is organized, if it has one big switch or a network of several smaller switching
units.

While in the previous section the contention resolution was always made in a round-robin
manner and the destination assignment was done by theSrc process statically in a round-
robin manner, this section will investigate alternative data flow management schemes and
their influence on the performance of a parallel event building system.

The simulations performed were based on a 100×100 setup with the parameters from the
prototype measurements (see section 4.4.1), i.e. a link speed of 40 MB/s, a transfer over-
head of 33µs, an event assembly of 54µs and an event handling time of 45µs in the data
flow processes. The detailed overheads were chosen in this case because for the different
data flow management schemes the individual contributions to the total overhead are
important. If not mentioned otherwise, the event fragment size was sampled from inde-
pendent exponential distributions with an average of 10 kByte. This was used because the
exponential distributions showed the biggest differences in performance and the influence
of the different data flow management schemes can be seen easily.

7.1  Contention Resolution

When within the interconnecting network two or more sources want to send an event frag-
ment to the same destination, contention occurs and the network has to decide which
source it will serve next. Several algorithms of contention resolution have been compared:
Round-robin, Random, Fifo and Priority (see section 3.4.2 for the definition).

TABLE 7.1. Different Contention Resolution Modes

Mode
Maximum

Throughput
[GB/s]

Latency (1 kHz)
[ms]

Buffer Occupancy (1 kHz)
[kByte]

Average Maximum Average Maximum

Round-Robin 1.607 43.0 57.1 220.9 1026.8

Random 1.608 43.1 57.6 221.4 931.1

Fifo 1.610 43.1 59.4 221.4 937.5

Priority - 43.1 58.7 221.4 939.6
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Table 7.1 shows the performance values for these contention resolution algorithms in a
PUSH scheme. For the priority algorithm no maximum throughput could be simulated
because the highest priority source will always send event fragments while the others can
never send any. This algorithm is unsuited for an event building system.

In general, all algorithms have very similar performance values within the statistical fluc-
tuations. For fixed event size they are even equal (not shown in table 7.1). This means that
the influence of the contention resolution is negligible, assuming that the time for the arbi-
tration is in all cases very small compared to the other overheads. Therefore in the follow-
ing simulations only the round-robin algorithm will be considered which is also the
algorithm that the switch in the prototype system used.

7.2  Destination Assignment Schemes

When a source has received an event fragment it needs to know which destination to sent
it to. The destination assignment has to make sure that at any time there is a unique rela-
tion between any full event and a destination. This can be achieved in different ways. The
previous section used a source-initiated algorithm with destinations being assigned in a
round-robin manner.

7.2.1  Random Destination Assignment

As an alternative to assigning destinations in a round-robin manner, they could be sampled
randomly. In order to assure the event building functionality, all event fragments belong-
ing to the same full event have to be assigned to the same destination. Thus in random
assignment the actual assigning can only be done in an earlier stage of the data flow, prob-
ably using the trigger broadcasting mechanism to send the destination identifier. TheSrc
process will then only look up a field in the event descriptor and send the fragment to the
assigned destination.

TABLE 7.2. Random Destination Assignment

Table 7.2 summarizes the performance values for random destination assignment in com-
parison with round-robin assignment. It is obvious that random assignment is much less
efficient, has much higher latencies and needs much larger buffer space. This is true in
both cases, with fixed and exponential event fragments sizes and comes from the fact that
with a certain probability the same destination will be assigned twice (or more often) in

Mode
Event Size
(10 kByte)

Maximum
Throughput

[GB/s]

Latency (1 kHz)
[ms]

Buffer Occupancy (1 kHz)
[kByte]

Average Maximum Average Maximum

Round-Robin fix 2.590 33.3 35.0 168.1 620.0

exp 1.607 43.0 57.1 220.9 1026.8

Random fix 1.416 250.8 435.8 1241.3 4090.0

exp 1.299 276.6 432.0 1374.7 4144.4
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sequence. The event building system cannot any longer work in barrel shifter mode and
will not use the links in parallel. It is interesting to note, that fixed and exponential event
size have a very similar inefficiency with random assignment (εfix = 36%,εexp = 33%). In
this case the influence of the destination assignment is much bigger than the influence of
the event size fluctuations.

7.2.2  Destination-Initiated Assignment

Instead of theSrc process assigning the destinations, theDst processes could “pull” the
event fragments by sending a request when they are ready to receive and assemble the
next event. This assignment has the advantage of taking the actual status of the destina-
tions into account but on the other hand it requires a network to transfer the destination
requests to theSrc process.

Two schemes have been implemented, thePULL and theSYNC scheme which are identi-
cal to the schemes of the same names used in the prototype (see section 4.2.4). In both
schemes theSrc processes store the event fragments until they receive a request from aDst
process. The difference between the two schemes is in sending the event fragments asyn-
chronously or waiting till the preceding event fragment has been sent successfully. In this
sense theSYNC scheme is in the middle between thePUSH and thePULL scheme. In both
destination-initiated assignment schemes, however, it is assumed that the broadcasting
network between destinations and sources sends all request without any delay and pre-
serves their order. This way no additional synchronization between theSrc processes, or
between theDst processes is needed and the sources will assign the “next” event fragment
to a given destination request.

Table 7.3 summarizes the maximum throughput and efficiencies of the two schemes in
comparison to thePUSH scheme. The influence of the overhead times on the efficiency
differs in the three cases. This is due to the fact that in each scheme a different number of
signals are received by theSrc process for sending an event fragment: in thePULL scheme
it receives one signal from the destination and in thePUSH scheme one for having sent the
event fragment; in theSYNC scheme it receives both. Nevertheless theSYNC scheme is
still more efficient than thePUSH scheme because it takes the status of the destinations
into account.

TABLE 7.3. Maximum Throughput for Different Destination Assignments Schemes

Mode

Maximum Throughput
[GB/s]

εfix ≡
εoverhead

[%]

εexp

[%]

εfix/εexp≡
εsizeºº
[%]fix exp

PUSH 2.590 1.607 66.3 41.1 62.0

PULL 2.868 1.737 73.4 44.5 60.6

SYNC 2.632 1.670 67.4 42.8 63.4
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The contribution of the event size variation to the efficiency was calculated as the ratio of
efficiencies of the fixed size and the exponential size samples. The results are within 2%
aroundεsize = 62%. The influence of the event size variations is in all schemes very similar.

FIGURE 7.1. Different Destination Assignment Schemes (exponential size distribution, 1 kHz)

Figure 7.1 shows the latencies and buffer occupancies for exponential event size distribu-
tions at 1 kHz in the three different schemes. ThePULL scheme has the lowest latency and
buffer occupancy while the PUSH andSYNC scheme are slightly higher. In general, only
differences of less than 10% exist between the different schemes. This is also reflected in
figure 7.2 which shows the event loss probability. In all three schemes a buffer of about
600 kByte is needed to lose less than 1% of the events with an input frequency of 1 kHz. At
this frequency a buffer of 1 MByte will lose events with a probability less than 10-5.

FIGURE 7.2. Different Destination Assignment Schemes: Event Loss Probability

a) Latency b) Buffer Occupancy
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7.2.3  Data Flow Manager

A data flow manager (DFM) could also be used to do the destination assignment. This
manager would be connected to the sources and destinations. It would act as a supervisor
which keeps track of the status of the sources and destinations and keeps lists or tables of
the events assigned. TheSrc processes would make requests (GetDst) by sending an event
identifier and waiting for a destination identifier as a reply. TheDst processes would send
messages (SetDst) to indicate that they are ready to accept another event.

An actual implementation of a data flow manager requires a network connecting the
sources and destinations with the data flow manager and it also needs the data flow man-
ager itself. The network could physically be the same as the interconnecting data network
for data transfer if it has a low latency for message passing and allows messages in both
directions. The data flow manager could be a centralized process or distributed among the
sources and destinations and must be capable of handling messages and lists in a short
time. For each full event a total number of NSrc+1 messages are exchanged at least. At a
frequency of 1 kHz this means that the time to handle one such message is less than 10µs.
If the data flow manager task is distributed among the sources and destinations they will
each keep independent lists of events and destinations. Synchronization methods using
broadcast or multicast messages with latencies of less than 10µs have to be used to keep
the tables consistent.

A possible implementation of a protocol between the sources and destinations and a cen-
tralized data flow manager could look as follows: after the data flow manager has received
the GetDst request it will check wether the event, with the given identifier, has already
been assigned. If not, it will check if there is a free destination. If no free destination is
available it will put the source on a waiting list and send back a message causing the
source to wait until further notice. This is necessary because if the source was kept waiting
on the data flow manager it would block other requests which could be served. This has
been tested and it was found that the maximum throughput in this case is only 1.15 GB/s
or εexp = 29%. If the data flow manager receives aSetDst message it will put the destina-
tion on the free list if there is no source waiting. If there is a source waiting then it will
take the first from the list, assign it to the new destination, update the event table and scan
the whole list and notify all sources waiting for the same event identifier.

FIGURE 7.3. Data Flow Manager

The maximum throughput of the ideal data flow manager spending no time to handle the
messages is given in table 7.4. The performance is very close to thePUSH scheme.

Src Dst

DFM
FreeDstList

EvtDstList SetDst
GetDst

DstId or
Wait

WaitSrcList
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because the synchronization sending the event fragments is included and the source will
only send a fragment at a time. The contribution of the size variations is calculated as
before and has the same value as in thePUSH scheme.

TABLE 7.4. Maximum Throughput for an Ideal Data Flow Manager

The performance, of course, changes if the data flow manager spends time. This is shown
in figure 7.4 for the maximum throughput and in figure 7.5 for the latencies and buffer
occupancies with exponential size distributions at 1 kHz input frequency. For small pro-
cessing times the maximum throughput is unchanged and completely dominated by the
overhead and size distributions. At around 6µs this changes and the throughput decreases
rapidly with increasing processing time. At a processing time of 10µs the total throughput
is below 1 GB/s which corresponds to an input frequency of less than 1 kHz.

FIGURE 7.4. Influence of Processing Time: Maximum Throughput

The latencies do not change much if the processing time increases. This is because each
source makes its request independently and in barrel shifter mode they arrive at different
times. The total latency is only increased by about 2% for 2µs compared to thePUSH
scheme. The buffer occupancy seems constant. Only when the processing time approaches
10 µs, latency and buffer occupancy become infinite and grow proportional to time
because then the input frequency is larger than the maximum input frequency.

Mode
Event Size
(10 kByte)

Maximum
Throughput

[GB/s]

εtotal
[%]

εsizeºº
[%]

DFM fix 2.590 66.3 100.0

exp 1.606 41.1 62.0

(exponential size distribution)
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FIGURE 7.5. Influence of Processing Time (exponential size distribution, 1 kHz)

The model of the data flow manager can also be used to understand the influence of a non-
negligible switching delay: if the interconnecting network has to process each source
request on a single resource with a time of more than 6µs this will have the same effect as
discussed above because the source requests get serialized, the switch is not used in paral-
lel and the performance degrades.

7.3  Traffic Shaping

It has been shown that the ideal event building system as presented in section 6.2 works in
barrel shifter mode. The size variations lead to varying time slots of and some event frag-
ments will not use it fully leading to wasted bandwidth and decreased efficiency.

Instead of wasting parts of the time slots by waiting on the next event fragment in the
scheme, an attempt could be made to use the time slots more efficiently by breaking the
order of the event fragments. There might be an event fragment which has already been
assigned to a destination which is free. Sending this one instead will use bandwidth other-
wise wasted. The efficiency could be increased and the latency and buffer occupancy
reduced, because the event fragments do not have to wait for the others.

The scheme to decide which event fragment to send next is logically independent from the
destination assignment scheme and works only on event fragments that have already been
assigned. The basic idea behind such a scheme is to smooth out the fluctuations in the
input traffic by breaking the time correlations between the event fragments. With a more
uniform input traffic some of the bandwidth otherwise wasted might be recovered.

7.3.1  Definition

The term traffic shaping comes from studies on event building system based on packet-
oriented networks where it is a suitable method to increase the performance of a switching
network [RD31/93]. The event fragments will be segmented by theSrc process into many

a) Latency b) Buffer Occupancy
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packets (about 100 to 1000, depending on event fragment size and packet size in the net-
work standard). The flow of these packets is strongly concentrated in an event building
system. The concentration can be broken by shaping the input traffic according to two
principles:

1. allocating an average bandwidth from any source to all destinations, such that the
aggregate bandwidth at any destination does not exceed the available bandwidth at the
destination;

2. breaking the instantaneous time correlation between the individual packets, thus level-
ling the traffic from the sources.

An example is shown in figure 7.6. Each source has a queue for event fragments going to
one destination. The segmentation works on all event fragments in a round-robin manner.
With the sources being synchronized, the switching network can work in barrel shifter
mode. Other schemes are presented in [RD31/93]. Some of them do not even require syn-
chronization of the sources and can easily be implemented in hardware and run efficiently.
Simulations of these schemes show that they increase the total throughput, decrease the
latency and buffer occupancy and decrease the packet loss, which in packet-oriented net-
works without flow control is an important performance parameter.

FIGURE 7.6. Packet-Based Barrel Shifter [RD31/93]

The studies carried out in this work are based on a connection-oriented network where
each event fragment is sent in one connection. Schemes proposed for systems in which the
event fragment is segmented into many packets cannot easily be adapted. Other schemes
have to be envisaged.

7.3.2  A Possible Algorithm

The HiPPI standard as well as the Fibre Channel (class 1) standard define flow control and
allow a check wether a destination is busy or not. This could be used for a possible algo-
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rithm for traffic shaping: an event fragment whose destination is busy will be skipped tem-
porarily and put back in the buffer behind the next waiting. This one will be tried instead.

Such a traffic shaping scheme has been implemented in the simulation by applying two
modifications:

1. Sending of event fragments to the interconnecting network is no longer achieved in a
simple fifo mode but rather under the control of an algorithm.

2. Every event fragment descriptor has a skip counter which is incremented each time the
event fragment is skipped.

The skipping algorithm is called each time a new event fragment arrives at theSrc pro-
cess’ input buffer or a previous transfer of an event fragment is terminated. It will take the
next event fragment from the buffer and check if its destination is free. If it is, then it will
send the event fragment immediately. If not and if there is no other event fragment waiting
or the skip counter of the event fragment is at the maximum allowed value, the source will
send the request and wait until the destination becomes idle. If there is another event frag-
ment in the buffer then it will increment the skip counter of the event fragment and add it
after the next one in the buffer. This will be tried instead and handled in the same way.

FIGURE 7.7. Skip Algorithm

The skip counter has to make sure that no event fragment can be skipped too often which
would result in increasing latencies and buffer occupancies. At the same time this algo-
rithm requires the destinations to be capable of building several full events concurrently
because the order of the event fragments is changed. The time for checking a destinations
status was taken into account by using the firmware overhead of 33µs (see section 4.3.3).

7.3.3  Performance

The SKIP algorithm was applied to two destination assignment schemes, thePUSH and
the PULL scheme. The maximum allowed skip count has been varied. Figure 7.8 shows
the maximum throughput obtained for different values for the maximum allowed skip
count. For a value equal to 0 the original values are obtained. For values of less than 5 the

dst free?
dst busy!

loop
if Buffer not empty

take evt from buffer
if evt.Dst = idle or Buffer = empty or evt.Skip = MaxSkip

wait for evt to be sent
 else

evt.Skip++
add evt to buffer (after first, if any)

end if
end if

end loop

Src
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maximum throughput increases and reaches a new value around a skip counter of 10. The
improvement forPUSH is about +15%, and forPULL +18%.

FIGURE 7.8. Maximum Throughput with Skipping

The latencies and buffer occupancies are shown in figure 7.9. The latency decreases
slightly for PUSH, about -8%, and forPULL about -11%. The buffer occupancy stays
nearly constant. After having decreased to a minimum at a skip counter of 5 latency and
buffer occupancy seem to increase again. For bigger values some event fragments can be
skipped more often and are kept in the buffer for a longer time.

FIGURE 7.9. Skipping (exponential size distribution, 1 kHz)

Testing if the destination of an event fragment is busy or not costs some time and it will
not always be useful to implement a scheme like this when the testing takes longer than
the waiting would have been. This can be seen in figures 7.10 and 7.11 where theSKIP

(exponential size distribution)

a) Latency b) Buffer Occupancy
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scheme is shown for fixed event size. Though latency and buffer occupancy at 1 kHz are
not affected the maximum throughput is. When running at maximum speed, checking if a
destination is busy or not costs time which could be used more efficiently just waiting.

FIGURE 7.10. Maximum Throughput with Skipping

FIGURE 7.11. Skipping (fixed size, 1 kHz)

7.3.4  Summary and Outlook

The simpleSKIP scheme has shown that it can improve the performance of the event
when event sizes are varying. The time it takes to check a destination’s status, however, is
important and can have a negative effect, as can be seen with fixed size samples. Wether
an improvement is achieved depends on the variations in the event size.

Other more sophisticated schemes can be envisaged, where more than one event can be
skipped, or the whole list of waiting and already assigned event fragments is scanned for
one which can be sent immediately. These algorithms must not spend much time and must
make sure that a particular event fragment is not skipped too often, or even always.

(fixed size)

a) Latency b) Buffer Occupancy
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All algorithms of traffic shaping lead to disordering the event fragments. As a result the
Dst process must be capable of building several full events concurrently which leads to
more buffer space needed and more processing time for searching theBvtBuf. At maxi-
mum, the number of events to be built in parallel equals the number of times an event
fragment can be skipped.

7.4  Two-Stage Event Builder

The event building systems presented so far are based on one single large switch. It is still
an open question wether such large switches will be available and what their cost will be.
It is not clear either if these big switches will have the same behaviour as small ones or if
they will have a non-negligible switching delay or even a common internal resource which
the sources send their requests to. The use of a single large switch presents also system
development, integration and reliability problems. As an alternative to a single large
switch a system could be build based on a network of smaller switching units.

7.4.1  Model

An architecture for a two stage event building system is shown in figure 7.12. It has 100
sources and 100 destinations and the interconnecting network consists of two stages each
one being built from 10 switches with 10×10 ports. The destinations of the first stage are
connected to the sources of the second stage in such a way that full interconnectivity is
realized. In a realistic setup the first stage could build event fragments for a subdetector
while the second would assemble full events.

FIGURE 7.12. Two-Stage Event Building System

Two destination assignment schemes have been simulated with this setup:
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• PUSH:
In thePUSH scheme the destinations are assigned in a static way. The destination of the
first stage is given in round-robin manner so that all switches are loaded in a uniform
way, the second destination is assigned round-robin on each switch of the second stage,
i.e. event fragments on the second stage go to the first destination of the first switch,
then to the first destination of the second switch and so on. In a certain sense, the new
scheme uses the oldPUSH scheme on both stages.

• PULL:
In thePULL schemes the destination of the second stage make requests to the sources
of the first stage. Since there is only one unique way from a source in the first stage to
the destinations of the second stage, the second routing is thus defined completely and
the second stage uses the oldPUSH scheme. In order to have good load-balancing the
destination requests at the start were sent in a round-robin manner as explained above.

FIGURE 7.13. Destination Assignment Schemes of the Two-Stage Event Building System

The synchronization of thePUSH scheme was synchronous, like before. For thePULL
scheme the first stage is asynchronous but the second is synchronous. The SIMEB pro-
gram was changed to accomplish the new setup and the new schemes. The modifications
were applied in the hard-coded configuration, all data flow processes were left unchanged.
The parameters were as before, i.e. 40 MB/s link speed, detailed overheads and input traf-
fic of 10 kByte fragments on average.

7.4.2  Performance

The maximum throughput of the two-stage event building system is summarized in
table 7.5 for the two destination assignment schemes and for fixed and exponentially dis-
tributed event sizes.

TABLE 7.5. Maximum Throughput of a Two-Stage Event Building System

Mode
Maximum Throughput

[GB/s]
εfix ≡

εoverhead
[%]

εexp

[%]

εfix/εexp≡
εsizeºº
[%]

fix exp

PUSH 2.590 1.668 66.3 42.7 64.4

PULL 2.872 1.578 73.5 40.4 60.0

Src Dst Src
PUSH PUSH

Dst

Src Dst Src
PULL PUSH

Dst

PUSH

PULL
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The efficiencies are in both cases similar to the single big switch. The only difference is in
thePULL scheme: in this case the two-stage event building system is performing less well
than a single big switch. This is due to the fact that theDst processes make their request to
the first stage and are idle while the subdetector events are built in the first stage. These
results are not in contradiction to previous results presented in [Gre94] which used a ran-
dom destination assignment scheme.

In contrast to the efficiency, the latency shows a difference compared to the big switch.
This is shown in figure 7.14. At 1 kHz the latency for fixed and exponential size distribu-
tions is around 19 ms which is 12% and 33% less respectively than in the single switch.
This reduction comes from the fact that on the first stage the transfer of 10 event fragments
can be done in parallel and on the second stage the overhead time is only spent 10 instead
of 100 times.

FIGURE 7.14. Latency of Two-Stage Event Building System

The buffer occupancies are shown in figures 7.15 and 7.16 for the first and second stage
respectively. Since the subdetector events which are sent to the second stage are around
10 times bigger, the efficiency contribution from the overhead on the second stage isεover-

head = 96% and in total 45% bigger. The maximum throughput on the second stage is big-
ger and the buffer occupancy does not increase as fast with the input frequency as in the
single switch system. It is the throughput of the first stage that actually limits the system
and defines the maximum throughput.

For the exponential event fragment size distribution a buffer space of around 400 kByte on
the first and around 800 kByte on the second stage must be provided to lose events with a
probability of less than 10-5. This buffer space has to be provided for each node of the two
stages of the event building system. And though each buffer can be smaller than in the sin-
gle switch (around 900 kByte, see section 6.3), in total the two-stage system needs about
30 MByte more buffer space. Regarding the development of prices for memory [Mor95]
this might, however, not be an important issue. There are twice as many data flow pro-
cesses as in the single stage system. The intermediate processes between the two stages
require resources like buffer space and processing power. They have to run on interface

a) Fixed Size b) Exponential Size Distribution
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boards which provide these resources and have links to the first and second stage of the
interconnecting network.

FIGURE 7.15. Buffer Occupancy for First Stage

FIGURE 7.16. Buffer Occupancy for Second Stage

7.5  Conclusions

Different data flow management schemes have been simulated based on the model
obtained from the prototype extrapolated to a 100×100 setup and an average of 10 kByte
event fragment size per source. These data flow management schemes covered the conten-
tion resolution of the interconnecting network, the destination assignment and the syn-
chronization between the data flow processes and the interconnecting network. The last
includes in particular the order of event fragments and if the interconnecting network runs
in barrel shifter mode or not. Finally a two-stage system was compared to a single big
switch.

The contention resolution in the switch has no visible influence on the performance. The

a) Fixed size b) Exponential Size Distribution

a) Fixed Size b) Exponential Size Distribution
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destination assignment schemes show only small differences depending on the different
numbers of actions to be taken by the data flow processes. The exception is the random
assignment which performs significantly less well than source-initiated or destination-ini-
tiated schemes. In a scheme using a data flow manager the same performance is obtained
if the processing time of the data flow manager to deal with the various source and desti-
nation requests does not exceed a certain value. This is equally true if the data flow man-
ager is implemented as a task distributed among the data flow processes. The tables would
be distributed among theSrc andDst processes and synchronization messages would have
to be exchanged to keep them consistent. This can equally be regarded as a requirement
for an event building system which uses a single resource for the switching.

Traffic shaping schemes like those proposed for packet-oriented networks cannot directly
be applied on the systems presented in this work which are connection-oriented. A possi-
ble scheme using the HiPPI protocol as an example was implemented in the simulation
program. It breaks the time correlation between the event fragments by skipping frag-
ments if their destination is busy. It was found that this can increase the performance if the
event fragment sizes vary and the increase depends on the time to check the status of a
destination in comparison with the variations of the event fragment sizes.

A two-stage event building system can be built from smaller switching units. The effi-
ciency is similar to a single big switch with the destination assignment schemes used. But
the latency is smaller and the second stage will perform better because it receives more
uniform and bigger sized data. Nevertheless, such a system will require more data flow
processes, resources and thus more interface boards. However, as the cost and availability
of big switches are not known today this might be a valuable alternative to pursue.
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8.0  Conclusions and Outlook

At the LHC with a centre-of-mass energy of = 14 TeV and a luminosity of L =
1034 cm-2s-1 a new field of research in high energy physics will be opened up. Amongst
other interesting aspects in and beyond the standard model the discovery of the Higgs
boson, if it exists, will become possible in the mass range of 90 GeV < mH < 1 TeV.

Indispensable for the discovery of the Higgs boson with a general-purpose experiment at
the LHC is a sophisticated trigger and data acquisition system. Event building techniques
required for a total bandwidth of 1 to 10 GB/s have been investigated in the present work.
Parallel event building systems using commercially available high speed interconnects
and switches were studied in two complementary ways: prototyping and modelling.

The prototype was based on the HiPPI standard and was built from off-the-shelf modules.
Modular and scalable software was developed and the setup could be operated as a paral-
lel event building system of limited size. It was shown that the behaviour of the switch can
be described in a linear model: the transfer times are determined by an overhead and a link
speed, the switching delay is negligible. The total throughput in small-scale setups was
measured to be scalable with the number of destinations. The measurements were used to
obtain realistic parameters and to verify the simulation program with different event size
distributions and different data flow management schemes. A summary of the results is
presented in section 4.5.

The simulation program is based on the linear model and the parameters obtained from
prototype measurements and was used to simulate a realistic event building system of the
ATLAS detector with realistic event size distributions from off-line simulations. It was
shown that, under the assumptions of the model, a total throughput of 2.8 GB/s or equiva-
lently an input frequency of 2.4 kHz can be achieved. Other simulations were used to
study the influence of different parameters and of different data flow management
schemes and summaries of the results are presented in sections 6.5 and 7.5.

These results show that small-scale parallel event building system can successfully be
built using a commercial standard for high speed interconnects and switches. A particular
technology was chosen, but the results should also be valid for similar techniques, in par-
ticular for Fibre Channel (class 1) which is a successor to the HiPPI standard. It can be
expected that the technological development will improve on the parameters of link speed
and overhead and provide more bandwidth. Though it is not clear if the linear model is
still valid for full-scale systems the simulation results show that commercially available
high speed interconnects and switches are a promising candidate for building the parallel
event building system of a detector at the LHC.

There are still open questions, like how a switch-based event building system will work in
a realistic multi-detector environment under changing running conditions and synchroni-
zation and error conditions unobservable with small laboratory setups. A next-generation
prototype will have to show how a switch-based event building system can be integrated
with different detectors and how it can work under realistic conditions of data taking, e.g.
in a testbeam environment.

s
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The model presented in this work assumed a complete statistical decoupling of the event
building system from the up-stream and down-stream data acquisition system. Further
studies need to show how fluctuations in the processing times at the LVL3 trigger and lim-
ited buffer space in the switch-farm-interfaces can influence the performance and what
kind of data flow management will become necessary to throttle the data flow to an over-
loaded destination. Another assumption was the negligible switching delay which was
observed in the HiPPI switch, which is not negligible with some of today’s available
switches, e.g. the Ancor Fibre Channel switch has a switching delay of 67µs [Cha95].
The manufacturers, however, promise to reduce this value in coming generations of
switches to a fewµs and the development of this important parameter has to be followed
attentively.

The results of the studies carried out in this work are encouraging a use of commercial stan-
dards for high speed interconnects and switching elements for parallel event building sys-
tems. The final technological choice for the event building system of the LHC experiments
will have to be made in a few years (~1999). Until then, further studies of the issues men-
tioned above will have to be addressed and the technological developments to be observed
so that a decision based on the best performance over cost ratio can be made.
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