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ABSTRACT

The observed small value of the first moment of the polarized nucleon spin structure function g1

may be interpreted, in the Veneziano–Shore approach, as a suppression of the first moment χ′(0)
of the QCD topological susceptibility. I give an extension of the Witten–Veneziano argument
for the U(1) problem, which yields the O(1/N) correction to the N =∞ relation χ′(0)/F 2

0 = 1
(where F0 is the η′ axial vector coupling). The correction, although negative, seems too small
to account for the data. I further argue that the (η, η′) → γγ and J/ψ → (η, η′)γ decays
indicate an enhancement rather than a suppression of F0. A substantial gluon-like contribution
in 〈0|∂µj(0)

µ5
|γγ〉|q2=0, which could parallel a similar one in the corresponding nucleon matrix

element, is suggested.
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1 Introduction

The experimental discovery of a substantial suppression of the first moment Γ(p,n)
1 of the polar-

ized nucleon structure function with respect to the “näıve” (Ellis–Jaffe) OZI limit prediction
[1] has spurred a lot of theoretical interest (for reviews, see Refs. [2], [3]) in recent years.

Specifically, consider the full QCD expression [4] for Γ
(p,n)
1 (in the MS scheme with Nf = 3):

Γ
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1 (Q2) =

∫ 1

0
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where αs = αs(Q) and G
(i)
A are zero-momentum transfer form factors in the proton matrix

element of the axial vector currents: 〈p|j(i)
µ5
|p〉 = G

(i)
A p̄γµγ5p + . . .. I stress that the radiative

corrections in Eq. (1) imply that the scale independent, renormalization group–invariant singlet

axial vector current j
(0)
µ5,inv has been used to define G

(0)
A,inv . It is obtained from the current j(0)

µ5
(µ)

renormalized in the standard way at scale µ in the MS scheme by factorizing out the anomalous
dimension factor generated by the U(1) anomaly:

j(0)
µ5

(µ) = j
(0)
µ5,inv

[
1 + 0(αs(µ))

]
. (2)

The crucial feature of Eq. (2) is that j(0)
µ5

(µ) has a “parton model” (µ→∞, αs(µ)→ 0) limit,
owing to the special feature that the anomalous dimension starts only at O(α2

s). It follows that

G
(0)
A,inv (also denoted as ∆Σinv [4] or ∆Σ∞ [2]) is a physical, µ− independent constant, which

stands on the same footing as G(3)
A and G

(8)
A , and that the whole physical Q2 dependence is

entirely contained in the (renormalization group–invariant) series in αs(Q) in Eq. (1). (That

G
(0)
A,inv is a physical parameter should be clear from the observation that, at Q2 = ∞, Eq.

(1) gives the parton-model-like sum rule: Γ(p,n)
1 (Q2 = ∞) = 1

6
(±G(3)

A + 1√
3
G

(8)
A ) + 1

9
G

(0)
A,inv).

Experimentally, one finds [3] G
(0)
A,inv ' 0.25 (where I have taken into account the radiative

corrections), to be compared with the Ellis–Jaffe value G
(0)
A|OZI ' 0.58, i.e. G

(0)
A,inv/G

(0)
A|OZI '

0.43, roughly a factor of 2.

An interesting proposal to understand this suppression has been put forward in Ref. [5],
where it has been suggested that it may be a (target-independent) effect related to the first
moment of the QCD topological susceptibility χ(q2), namely (for three flavours):

G
(0)
A,inv

G
(0)
A|OZI

'

√
χ′(0)
Fπ√

6

(3)

where Fπ = 93 MeV,

χ(q2) ≡
∫
d4x eiq.x〈0|T ∗

(
Qinv(x)Qinv(0)

)
|0〉 (4)
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and Qinv(x) is the anomalous divergence of the singlet axial vector current:

∂µj
(0)
µ5,inv = 3

αs

4π
F F̃ ≡ 6Qinv . (5)

The basic physical assumption behind Eq. (3) is that large Zweig rule violations in G(0)
A,inv are

to be found mainly in the
√
χ′(0) factor, which embodies the typical qq̄ → 2-gluons annihilation

diagrams, which are supposed to most strongly violate the Zweig rule. In this note, I examine
new ways to test this assumption. In the next section, I first derive an extension of the Witten–
Veneziano argument ([6],[7]) for the solution of the U(1) problem, which determines the O(1/N)

correction to the relation
√
χ′(0)/F0|N=∞ = 1, where F0 is the physical, RG− invariant η′

singlet axial vector coupling to j(0)
µ5,inv

(in the chiral limit). Although the resulting correction

tends indeed to suppress
√
χ′(0) with respect to F0, it still appears to be a small perturbation

on the N =∞ result; it is thus likely to be insufficient to account for the observed suppression,
at least as long as the nonet symmetry relation (F0/F8)|N=∞ = 1 remains approximately valid

at N = 3 (the normalization is such that F8 ' Fπ/
√

6). Therefore, assuming
√
χ′(0)/F0 ' 1 the

remaining possibility is that there is a large suppression of F0/F8 itself at finite N . I examine
whether this assumption is phenomenologically viable in Section 3, where I point out that
even a moderate suppression of F0 would lead to severe difficulties with the current standard
model [8] for J/ψ → (η, η′)γ decays, given the large η− η′ mixing angle, which follows from an
analysis of the octet electromagnetic (e.m.) sum rule for the (η, η′) → γγ decays (too strong
a suppression of F0 is not favoured either by the singlet e.m. sum rule). In Section 4, I note

that the observed smallness of G(0)
A,inv might indicate a substantial glueball-like contribution to

G
(0)
A,inv, which should then cancel against that of the η′, assuming the latter to be of typical

G
(0)
A|OZI size if F0 is not suppressed (and could thus be identified to the quark spin piece ([9]–

[11]) of the nucleon in the chiral limit). I then draw a parallel with the occurrence of a sizeable
violation of the η − η′ saturation hypothesis in the 〈0|∂µj(0)

µ5,inv
|γγ〉|q2=0 matrix element.

2 χ′(0) at large N

Consider the dispersion relation:

χ(q2) = χ(0) + χ′(0)q2 +
q4

π

∫ ∞
q2
0

dq′2

q′2
Imχ(q′2)

q′2− q2
(6)

where two subtractions are needed, since χ(q2), which is of dimension 4, is O(q4) at large q2.
In the quarkless Yang-Mills theory, one can thus write (symbolically):

χYM(q2) = AYM +BY Mq
2 +

F 2
GM

4
G

M2
G − q2

+ . . . (7)

where FG and MG are the coupling and mass of the lowest-lying glueball state, and the dots
stand for more massive glueballs as well as continuum contributions, whereas in the presence
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of quarks, splitting out the η′ contribution:

χ(q2) =
F 2

0m
4
0

m2
0 − q2

+

[
A+Bq2 +

F 2
GM

4
G

M2
G − q

2
+ . . .

]
(8)

where m0 is the η′ mass in the chiral limit, and the subtraction constants (AYM , BYM ), (A,B)
(which are not reducible to the glueballs contribution) have been introduced. Taking the
N → ∞ limit in Eq. (8) at fixed q2 6= 0, one then expects (since quark loops are subleading
and decouple) χ(q2)→ χYM (q2). Indeed, the η′ contribution drops out, given that F 2

0 = O(N),
if one assumes [6] m2

0 = O(1/N), whereas the quantity within brackets in Eq. (8) approaches
χYM (q2)|N=∞, i.e., A → AYM |N=∞, B → BY M |N=∞ (and glueballs → glueballs|N=∞). The
implication for χ′(q2) is obtained by expanding Eq. (8) around q2 = 0:

χ(q2) =
[
F 2

0m
2
0 + (A+ F 2

GM
2
G + . . .)

]
+ q2

[
F 2

0 + (B + F 2
G + . . .)

]
+ 0(q4)

≡ χ(0) + q2χ′(0) +O(q4) . (9)

The basic QCD constraint (for massless quarks) χ(0) = 0 then gives:

χ(0) = F 2
0m

2
0 + (A+ F 2

GM
2
G + . . .) = 0 . (10)

Letting N →∞ in Eq. (10), one first recovers the relation ([6],[7]):

F 2
0m

2
0|N=∞ = −(AYM + F 2

GM
2
G + . . .)|N=∞ ≡ −χYM(0)|N=∞ , (11)

whereas for χ′(0) one obtains from Eq. (9) the additional relation1:

(χ′(0)− F 2
0 )|N=∞ = (BYM + F 2

G + . . .)|N=∞ ≡ χ′YM(0)|N=∞ . (12)

Since χ′YM(0) is O(1) and F 2
0 is O(N), Eq. (12) requires χ′(0) to be O(N) and positive, in

order that a cancellation takes place with F 2
0 . On the other hand, a lattice calculation [13], in

agreement with a QCD sum rule analysis [12], yields χ′YM (0) < 0. Writing Eq. (12) as:

χ′(0)

F 2
0

'

N →∞
1 +

χ′YM (0)

F 2
0

(13)

one thus finds the second term on the right-hand side gives the O(1/N) correction to the OZI
limit relation χ′(0)/F 2

0 |N=∞ = 1, and indeed tends to suppress χ′(0) with respect to F 2
0 , since

χ′YM (0) < 0. However, the correction appears numerically small (from Refs. [12] and [13] one
gets −χ′YM(0)/F 2

0 ' 0.1), which suggests that the OZI violations in χ′(0)/F 2
0 are probably

small and that the large-N expansion is reliable for this ratio. In the next section, I investigate
whether the assumption that there are instead large OZI violations that strongly suppress the
ratio F0/F8 at N = 3 is phenomenologically viable.

The results of this section suggest a simple model for the structure of χ(q2) at finite N 2 in
the presence of massless quarks, where it is written as the sum of the η′ pole contribution and

1This relation was first discovered in Ref. [12], where it was (interestingly) suggested by a QCD sum rule
analysis of χYM(0).

2I am indebted to G. Veneziano for stressing this point.
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the Yang–Mills topological susceptibility: χ(q2) = χYM (q2) + F 2
0m

4
0/(m

2
0− q

2), and χYM(q2) is
further approximated by dropping the glueballs contribution, and keeping only the subtraction
terms, namely taking:

χYM(q2) ≡ AYM +BY Mq
2 ≡ χYM(0) + χ′YM (0)q2 .

We thus get:

χ(q2) = χYM(0) + χ′YM (0)q2 +
F 2

0m
4
0

m2
0 − q2

. (14)

The constraint χ(0) = 0 yields χYM (0) + F 2
0m

2
0 = 0 [cf. Eq. (11)]. Since χ′(0) = F 2

0 + χ′YM(0)
[cf. Eq. (12)], Eq. (14) then becomes, after eliminating m2

0:

χ(q2) = q2

 χYM(0)

q2 + χYM (0)
F 2

0

+ χ′YM(0)

 . (15)

If χ′YM (0) is dropped, i.e. if one assumes χYM(q2) ≡ χYM (0), one recovers an ansatz given in
Ref. [14], which yields χ′(0) = F 2

0 ; the additional term χ′YM (0) accounts for the OZI violation
in this model.

3 Implication of a small F0 for J/ψ→ (η, η′)γ and (η, η′)→
γγ decays

An analysis [15] of η − η′ mixing using the anomalous Ward identities does indicate that a
large suppression of F0/F8 is indeed possible at large mixing angles, and at least appears to
favour a moderate suppression in this region (these results may, however, be changed by taking
into account [16] the recently calculated [17] O(m2

q) quark mass corrections at N = ∞). A
large mixing angle is itself supported [15] by the data on (η, η′) → γγ. However, even a
modest suppression of F0 is in strong disagreement with the current standard model [8] for
J/ψ → (η, η′)γ. The argument ([15], [16]) can be summarized as follows. From the octet e.m.
anomaly sum rule (assuming η − η′ saturation):

F8ηA(η → γγ) + F8η′A(η′ → γγ) =
1
√

3
(16)

[where F8p(p = η, η′) are the couplings to j(8)
µ5

], one can extract F8η′, using as input the exper-
imentally determined amplitudes [18]: A(η → γγ) = (0.993 ± 0.030)F−1

π and A(η′ → γγ) =
(1.280±0.085)F−1

π , as well as the crucial perturbation theory estimate [19]: F8η/Fπ = 1.3±0.05.
As an indication, using F8η/Fπ = 1.25, one gets sin θ ≡ −F ′8η/Fπ = 0.52, a rather large value.

Furthermore, the singlet couplings F0p can be constrained with the J/ψ → (η, η′)γ decays.
Indeed the current standard model [8] for the ratio Γ(J/ψ → η′γ)/Γ(J/ψ → ηγ) relates it to
f̃η′/f̃η (where the f̃p’s are the anomalous divergence couplings: 〈0|Q|p〉 = f̃pm

2
p):

R ≡
f̃η′

f̃η
'

Γ(J/ψ → η′γ)

Γ(J/ψ → ηγ)

(M2
J/ψ −m

2
η)

3

(M2
J/ψ −m

2
η′)

3

1/2
m2
η

m2
η′

; (17)
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This gives, using [18] Γ(J/ψ → η′γ)/Γ(J/ψ → ηγ) = 5.0± 0.6 : Rexp = 0.81± 0.05. But f̃p
can be expressed [15] in terms of the corresponding axial vector couplings Fip and the quark
mass ratios β/γ and γ/α:

f̃η′

Fπ
≡

F0η′

Fπ
−
f0η′

Fπ
'
F0η′

Fπ
−
β

γ

F8η′

Fπ

f̃η

Fπ
≡

F0η

Fπ
−
f0η

Fπ
'
F0η

Fπ
−
γ

α

F8η

Fπ
(18)

where the f0p’s are the “näıve divergence” couplings, α ≡ (2/3)(mu+md+4ms), β ≡ (4/3)(mu+
md +ms), γ ≡ −

√
2(α − β), and we have the estimates [19] β/γ ' 0.79 and γ/α ' −0.67. I

shall simply use the value (obtained by putting mu = md = 0): β/γ = γ/α = −1/
√

2. Then
one gets:

f̃η′

f̃η
'

F0η′

Fπ
− β

γ

F8η′

Fπ
F0η

Fπ
− γ

α

F8η

Fπ

=

F0η′

Fπ
− 1√

2
sin θ

F0η

Fπ
+ 1√

2

F8η

Fπ

. (19)

Assuming again F8η/Fπ = 1.25 and sin θ ≡ −F ′8η/Fπ = 0.52 from the octet sum rule, and

taking f̃η′/f̃η = Rexp ' 0.81, Eq. (19) then fixes F0η as a function of F0η′, and one finds
that unrealistically small values of F0η are required to fit Rexp. For instance, assuming the
moderately suppressed value F0η′/Fπ = 0.90, Eq. (19) gives F0η/Fπ = −0.23, which violates,
even in sign, the large-N expectation [15]: F0η ' −F8η′ ! Also, one still gets F0η = 0 even
for F0η′/Fπ as large as 1.1. Clearly, the model of Eq. (17) is incompatible with any kind of
suppression whatsoever of the singlet coupling F0η′, given the large input values of the octet
couplings F8η and −F8η′. Since the quark mass corrections that relate F0η′ to its chiral limit
F0 are small (they have been estimated [15] to be F0η′ ' 1.16F0), this observation probably
rules out the possibility that F0/F8 ' F0/Fπ be substantially suppressed. In fact, for F0η/Fπ =
0.50(' −F8η′/Fπ), Eq. (19) gives F0η′/Fπ = 1.49, hence F0/Fπ = 1.28, an enhancement! On
the other hand, the singlet e.m. sum rule (assuming again η, η′ saturation):

F0ηA(η→ γγ) + F0η′A(η′→ γγ) = 2

√
2

3
(20)

does favour a (moderate)3 suppression of F0η′, e.g., if one again assumes F0η/Fπ = 0.50, one
deduces from Eq. (20) F0η′/Fπ ' 0.89 (this suppression would not be sufficient anyway to

explain the magnitude of G(0)
A,inv). However, Eq. (19) then gives (taking the same values as

above for F8η and F8η′) R ' 0.38, still a factor of 2 below Rexp, in accordance with the previous
remarks (this potential conflict between the singlet e.m. sum rule and Rexp is further commented
upon in the next section).

3That is, too strong a suppression, such as the one needed to explain G
(0)
A,inv, is not favoured either by

Eq. (20), which would then lead to values of F0η too large, typically F0η/Fπ ' F0η′/Fπ ' 0.7 !
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4 On gluonic contributions to 〈0|∂µj(0)
µ5
|NN̄ 〉 and 〈0|∂µj(0)

µ5
|γγ〉

The smallness of G
(0)
A,inv may alternatively be seen as the result of a cancellation [20] between

the η′ and the (glueball + continuum) contributions (I consider for simplicity the chiral limit,

where the η decouples from G
(0)
A ). This picture can be given a precise content by using the

invariant definition of the singlet current (which removes [see also below] the inconsistencies
with renormalization group invariance discussed in Refs. [5] and [21]). One can define, splitting
out the η′ contribution (gη′NN is the η′-nucleon coupling):

〈0|∂µj(0)
µ5,inv|NN̄〉 ∝ ∆Σinv ≡ G

(0)
A,inv ≡ F0 gη′NN + ∆Γinv , (21)

where ∆Γinv represents the (glueball + continuum) contribution, and all quantities in Eq. (21)
are renormalization group-invariant. It is then attractive to identify the “quark contribution”
∆Σ′inv to the nucleon spin with the η′ contribution4 F0 gη′NN , while ∆Γinv would represent the
“gluon contribution” ([9]–[11]). If F0 is indeed not suppressed, one might further assume, in
the line of the latter references, that

∆Σ′inv = F0 gη′NN ∼ (F0 gη′NN)|OZI = G
(0)
A |OZI (22)

and attribute the small value of G
(0)
A,inv to the effect of a substantial (negative) ∆Γinv, i.e.

G
(0)
A,inv ' G

(0)
A|OZI

+ ∆Γinv (it could also be that both F0 gη′NN and ∆Γinv are suppressed, in
which case F0 gη′NN would still differ from ∆Σ′inv by some additional, non-perturbative ([22],
[2]) contributions, e.g. F0 gη′NN = ∆Σ′inv −NfΩ) 5. Such a proposal, which identifies ∆Γinv to

G
(0)
A,inv−F0 gη′NN , is complementary to the QCD-improved parton model approach of Refs. ([9]-

[11]), which starts from the implicit assumption that it is possible to define a (perturbatively
wise [24]) unique physical gluon distribution, which could independently be measured in suitable
hard processes.

There is an interesting parallel with the situation for the 〈0|∂µj(0)
µ5,inv|γγ〉|q2=0 matrix element:

the above-mentioned conflict between the singlet e.m. sum rule (which favours a moderately
suppressed F0) and Rexp (which favours an unsuppressed, or even enhanced, F0) may be resolved
by assuming that F0 is indeed not suppressed. The resulting discrepancy in the singlet sum
rule (where the η and η′ contribution now by itself exceeds the right-hand side) can then
be attributed to a substantial (negative) gluon-like contribution, as in the nucleon channel.
Actually, considering the standard µ-dependent renormalization of the singlet current, Eq.
(2), one may suspect that an independent subtraction constant ∆0(µ) enters the sum rule,
in addition to the glueball contribution, i.e. Eq. (20) should be replaced by:

〈0|∂µj(0)
µ5

(µ)|γγ〉|q2=0 ∝ F0η(µ)A(η→ γγ)

4In the presence of SU(3) breaking, one should also add the η contribution.
5Alternatively one could have ∆Σ′inv = F0 gη′NN small, with gη′NN suppressed, as suggested by the Skyrme

model [23].
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+F0η′(µ)A(η′ → γγ) + [FG(µ)A(G→ γγ) + . . .]

+∆0(µ) ≡ 2

√
2

3
. (23)

The introduction of ∆0(µ) appears necessary6 to resolve the conflict [21] between the multi-
plicative renormalizability of all the singlet axial vector couplings in the left-hand side of Eq.
(23), and the µ-independence of the right-hand side (then, letting µ → ∞ one recovers the
equation written in terms of the invariant couplings, with ∆0(µ) → ∆0,inv). This ∆0 is also
welcome to explain the conjectured existence of a sizeable discrepancy in the singlet sum rule
with respect to the η, η′ saturation hypothesis, since the glueballs by themselves are expected
to couple too weakly to the photons to be responsible for the entire discrepancy (∆0 also recalls
the necessary subtraction constant ([6],[15]) needed to cancel [see Eq. (10)] the η′ contribution
and implement the constraint χ(q2 = 0) = 0 in the chiral limit of QCD; a subtraction constant
has, however, no reason to be present in 〈0|∂µj(0)

µ5
|NN̄〉).

To conclude, the present analysis offers only scarce evidence for the suppression of χ′(0)
as implied by Eq. (3). Although χ′(0)/F 2

0 is indeed suppressed at next-to-leading order in
1/N , the correction appears small, and of typical perturbative (in 1/N) size. Furthermore,
F0 itself does not seem to be suppressed on phenomenological grounds, compared with F8

(and may even turn out to be predicted enhanced at large sin θ once the O(m2
q) corrections

are taken into account in the Ward identity analysis of η − η′ mixing ([15],[16]). Assuming
that F0 is not suppressed, an intriguing picture of large (negative) gluon-like contributions to
〈0|∂µj(0)

µ5
|NN̄〉|q2=0, 〈0|∂µj(0)

µ5
|γγ〉|q2=0 and χ(q2 = 0) tentatively emerges.
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