
ar
X

iv
:h

ep
-p

h/
96

06
42

9v
2 

 2
6 

Ju
n 

19
96

UTHEP-95-0801
August 1995

Gauge Invariant YFS Exponentiation of (Un)stable
W +W− Production At and Beyond LEP2 Energies†

S. Jadach
Institute of Nuclear Physics, ul. Kawiory 26a, Kraków, Poland

CERN, Theory Division, CH-1211 Geneva 23, Switzerland,
W. P laczek⋆

Department of Physics and Astronomy,
The University of Tennessee, Knoxville, Tennessee 37996-1200,

M. Skrzypek
Institute of Nuclear Physics, ul. Kawiory 26a, Kraków, Poland

B.F.L. Ward
Department of Physics and Astronomy,

The University of Tennessee, Knoxville, Tennessee 37996-1200,
SLAC, Stanford University, Stanford, California 94309

Abstract

We present the theoretical basis and sample Monte Carlo data for the YFS expo-
nentiated calculation of e+e− → W+W− → f1f̄

′
1 + f̄2f

′
2 at and beyond LEP2 energies,

where the left-handed parts of fi and f ′
i are the respective upper and lower components

of an SU2L doublet, i = 1, 2. The problem of gauge invariance of the radiation from the
unstable charged spin 1 W± is solved in an entirely physical manner. Our formulas are
illustrated in a proto-typical YFS Monte Carlo event generator YFSWW2, wherein both
Standard Model and anomalous triple gauge boson couplings are allowed.

To be submitted to Physical Review D

† Work partly supported by the Polish Government grants KBN 2P30225206 and 2P03B17210 and
by the US Department of Energy Contracts DE-FG05-91ER40627 and DE-AC03-76ER00515.

⋆ On leave of absence from Institute of Computer Science, Jagellonian University, Kraków, Poland.

UTHEP-95-0801
August 1995

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CERN Document Server

https://core.ac.uk/display/25197892?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/hep-ph/9606429v2


1 Introduction

The problem of the precision calculation of the process e+e− → W+W− + n(γ) →
4fermions + n(γ) at and beyond LEP2 energies is of considerable interest in connection
with the verification and tests of the SU2L × U1 model of Glashow, Salam and Wein-
berg [1] of the electroweak interaction. Indeed, these processes are the primary objective
of the initial LEP2 physics program, providing as they do both a window on the most
precise measurement of the W rest mass and a window on the most precise test of the
fundamental non-Abelian triple and quartet gauge field self-interactions in principle, for
example. In this paper, we present the theoretical basis of the rigorous Yennie-Frautschi-
Suura (YFS) [2] Monte Carlo approach [3] to these processes. For completeness, we shall
illustrate our results with a proto-typical Monte Carlo event generator which will be exact
in the infrared regime and will be of leading logarithmic accuracy through O(α2) in the
hard radiative regime. A more accurate realization of our results will appear elsewhere [4].

Referring now to the results in Refs. [5, 6], it is clear that there are problems of
principle in carrying through a manifestly gauge invariant realization of the production
and decay of massive charged spin 1 boson pairs in e+e− with the presence of radiation.
Indeed, some controversy did exist in the literature on just how one should proceed even in
the stable particle case [5, 6], where for example the current splitting approach of Ref. [5]
has been questioned as to accuracy and appropriateness in Ref. [6]. We note that recently
it has been verified [7] that the approach in Ref. [5] is indeed accurate enough for the
requirements of the LEP2 physics program as it is currently envisioned. We will show
that the YFS theory will afford us an arena in which we can resolve this controversy.

While we were preparing this manuscript, we became aware of independent and related
results by Baur and Zeppenfeld (B-Z) [8] for the problem of quark-pair annihilation into
W± followed by a lepton-pair W± decay, a process of interest in hadron-hadron collider
physics for example. We will therefore compare our approach with that of B-Z in what
follows. We shall see that the two approaches are consistent with one another. Moreover,
during this same period, we became aware of an independent derivation in Ref. [9] of
the solution to the gauge invariance problem for radiative corrections to the processes of
interest to us here. We will therefore use the results of Ref. [9] in what follows, as they are
in complete agreement with our work insofar as the issue of gauge invariance is concerned.

In addition, in the original YFS paper [2], there is no explicit discussion of charged
spin 1 massive radiation. Thus, we will need to extend the the rigorous YFS theory to
this case as well. This means that our analysis is of theoretical interest in its own right
as a study of the infrared limit of massless vector radiation from massive charged vector
fundamental particles.

Our work is organized as follows. In the next section, we set our notational conventions.
In section 3, we derive the extension of YFS theory to spin 1 charged particles. In
section 4, we derive the corresponding YFS formula for the processes e+e− → W+W− +
n(γ) → 4fermions+n(γ) and show that it is manifestly gauge invariant. In section 5, we
illustrate our YFS formula with Monte Carlo data based on the proto-typical MC event
generator YFSWW2 [10], which uses the Born level cross section of Ref. [11] as an input
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to achieve LL accuracy in the hard radiative regime and exactness in the infrared regime.
Section 6 contains our summary remarks and, finally, some useful formulae are collected
in appendices.

2 Preliminaries

In this section we review the relevant aspects of our YFS Monte Carlo methods as they
pertain to the problem of extending our methods to the W+W− pair production processes
of interest to us here. In this way we also set our notation and define our kinematics.
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Figure 1: The process e+e− → W+W− → 4fermions = f1 + f̄ ′
1 + f̄2 + f ′

2, where
(

fi

f ′

i

)

, i = 1, 2,

are SU2L doublets. Here, pA is the 4-momentum of A, A = fi, f
′
i , p1(q1) and p2(q2) are the 4-

momenta of e+(e−) and W+(W−) respectively. We use the notation CL ≡ PL C ≡ 1
2(1− γ5)C for

any C.

More precisely, the problem we study herein is illustrated in Fig. 1, together with the
respective kinematics: e+ +e− → W+ +W− +n(γ) → 4fermions+n(γ) at CMS energies√

s ≥ 2MW , so that we may neglect m2
e/s compared to one. This corresponds to the

case of LEP2 and of the NLC (level 0 designs of the NLC now are in progress at several
laboratories [12]). Let us focus for the moment on W+W− pair production part of Fig. 1.
In Refs. [13, 14], for the case that the W ’s are replaced by the fermion pair f f̄ , of rest
masses mf and of charges ±Qfe, we have realized by Monte Carlo methods the process
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e+ + e− → f + f̄ + n(γ) via the fundamental YFS formula

dσ = e2αℜB+2αB̃

∞
∑

n=0

1

n!

∫ n
∏

j=1

d3kj

k0
j

∫

d4y

(2π)4
eiy(p1+q1−p2−q2−

∑

j kj)+D

β̄n(k1, . . . , kn)
d3p2d

3q2

p0
2q

0
2

, (1)

where the real infrared function B̃ and the virtual infrared function B are given in Refs. [2,
13, 15, 16, 17], and where we note the usual connections

2α B̃ =

∫ k≤Kmax d3k

k0
S̃(k),

D =

∫

d3k
S̃(k)

k0

(

e−iyk − θ(Kmax − k)
)

(2)

for the standard YFS infrared emission factor

S̃(k) =
α

4π2

[

QfQf ′

(

p1

p1k
− q1

q1k

)2

+ . . .

]

(3)

if Qf is the electric charge of f in units of the positron charge. Here, the “. . . ” represent
the remaining terms in S̃(k) obtained from the one given by respective substitutions of
Qf , p1, Qf ′ , q1 with corresponding values for the other pairs of the respective external
charged legs according to the YFS prescription in Ref. [2] (wherein due attention is taken
to obtain the correct relative sign of each of the terms in S̃(k) according to this latter
prescription) and in Ref. [13, 14], f 6= e, f ′ = f̄ .

The YFS hard photon residuals β̄i in (1), i = 0, 1, 2, are given in Refs. [13, 14] for
YFS2, YFS3 so that these latter event generators calculate the YFS exponentiated exact
O(α2) LL cross section for e+e− → f f̄ + n(γ) with multiple initial, (initial+final) state
radiation respectively using a corresponding Monte Carlo realization of (1). In the next
sections, we use explicit Feynman diagrammatic methods to extend the realization of (1)
in YFS2, YFS3 to the corresponding Monte Carlo realization of the respective application
of (1) to e+e− → W+W− + n(γ) → 4fermions + n(γ).

3 YFS theory for massive charged vector particles

In this section, we present the required formulas for extending the exact O(α2) LL Monte
Carlo realization of the hard photon residuals β̄n in YFS2, YFS3 [13, 14] to the corre-
sponding Monte Carlo realization for the W+W−-pair production processes. We begin by
deriving the respective YFS real and virtual infrared functions for these latter processes.

Referring to the kinematics in Fig. 1 and to the definition of the YFS infrared functions
S̃(k), S(k) in Ref. [2], we see that to extend the infrared YFS calculus to W ’s it is enough
to show that in the respective infrared regime for an emitted photon of 4-momentum k the
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amplitude for spin 1, charge QW e and mass MW for the emitting particle is related to that
for spin 1/2, charge Qfe and rest mass mf by the substitutions of the respective Lorentz
group representation factor, the charge, the corresponding 4-vectors and radiationless
(Born) amplitude. From this result, it is immediate that the formulas given in Ref. [2]
for for S̃(k), S(k) for spin 1/2 hold also for spin 1 with the corresponding substitution of
charges and massive 4-vectors. Let us now establish this correspondence of the infrared
regimes of spin 1/2 and spin 1 massive, charged particles.
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Figure 2: Infrared emission of a photon of 4-momentum k by (a) an incoming fermion of mass mf ,
charge Qfe and 4-momentum p, (a′) an incoming spin 1 charged boson of mass MW , charge QW e

and 4-momentum p, (b) an incoming anti-fermion of rest mass mf , charge −Qfe and 4-momentum
p, and (b′) an incoming spin 1 charged boson of rest mass MW , charge −QW e and 4-momentum
p. Here, the components of p of course must change in passing from the fermion cases to the vector
boson cases if the incoming lines are on-shell, for example.

The relevant situations are illustrated in Fig. 2, where in (a) we have the emission of
a photon of 4-momentum k by an incoming fermion of charge Qfe, rest mass mf , and
4-momentum p to be compared with the analogous situation in (a′) where we have the
emission of a photon of 4-momentum k by an incoming spin 1 vector boson W− of charge
QWe, rest mass MW and 4-momentum p. In (b), we have the emission of a photon of
4-momentum k by an incoming spin 1/2 anti-fermion of charge −Qfe, rest mass mf , and
4-momentum p to be compared with (b′) wherein we have the emission of a photon of
4-momentum k by an incoming spin 1 vector boson W+ of charge −QW e, rest mass MW

and 4-momentum p as well. From the standard Feynman methods, for Fig. 2(a), we have
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the amplitude, for f = e for definiteness,

M2a = · · · i

6p′ − me + iǫ
(−iQeeγ

µ)u(p)

= · · · (Qee)

−2kp + k2 + iǫ
( 6p− 6k + me)γ

µu(p)

= · · · (Qee)

k2 − 2kp + iǫ
[2pµ − kµ + iσµαkα]u(p)

⇒ lim
IR

M2a = · · · (Qee)

k2 − 2kp + iǫ
(2pµ − kµ)u(p), (4)

where we define
lim
IR

A(k) ≡ lim
k→0

A(k),

for any function A(k). For Fig. 2(a′), we get the corresponding result

M2a′ = · · · (−i)(gα′′α′ − p′α
′′

p′α
′

/M2
W )

(p′2 − M2
W + iǫ)

(iQW e)

[gα′β(2p − k)µ + gµ
α′(−p + 2k)β + gµ

β(−p′ − 2k)α′ ]ǫβ
−(p)

= · · · (QW e)(gα′′α′ − p′α
′′

p′α
′

/M2
W )

(k2 − 2kp + iǫ)
[gα′β(2p − k)µ

+ 2kβg
µ
α′ − 2kα′gµ

β − p′α′g
µ
β ]ǫβ

−(p)

⇒ lim
IR

M2a′ = · · · (QW e)

(k2 − 2kp + iǫ)
(2pµ − kµ)ǫα′′

− (p). (5)

Similarly, for Fig. 2(b), we get the infrared limit as

M2b = v̄(p)(−iQee)γµ i

− 6p+ 6k − me + iǫ
· · ·

=
v̄(p)Qeeγ

µ(− 6p+ 6k + me)

k2 − 2kp + iǫ
· · ·

=
Qeev̄(p)[−γµ 6p− 6pγµ + (6p + me)γ

µ + 1
2
( 6kγµ + γµ 6k) + 1

2
(γµ 6k− 6kγµ)]

k2 − 2kp + iǫ
· · ·

=
Qeev̄(p)[−2pµ + kµ − iσµαkα]

k2 − 2kp + iǫ
· · ·

⇒ lim
IR

M2b =
v̄(p)Qee(−2pµ + kµ)

k2 − 2kp + iǫ
· · · , (6)
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whereas for Fig. 2(b′) we compute the infrared limit as

M2b′ = · · · (−i)(gα′′β − p′α
′′

p′β/M2
W )

(p′2 − M2
W + iǫ)

(iQW e)[

gβα(−2p + k)µ + gµ
α(p′ + 2k)β + gµ

β(p − 2k)α]ǫα
+(p)

= · · · (QW e)(gα′′β − p′α
′′

p′β/M2
W )

(k2 − 2kp + iǫ)
[gβα(−2p + k)µ

+ 2kβg
µ
α − 2kαgµ

β + p′βgµ
α]ǫα

+(p)

⇒ lim
IR

M2b′ = · · · (QW e)

(k2 − 2kp + iǫ)
(−2pµ + kµ)ǫα′′

+ (p). (7)

This shows that the stated correspondence holds.
It follows that we obtain the YFS infrared functions [2] S̃(k) and S(k) for real and

virtual soft photon emission from W+,−-lines by substituting the respective mass MW into
the corresponding expressions for these functions for emission from e+,−-lines:

(∼)

S (k)eē|m=MW
=

(∼)

S (k)W−W+,

(∼)

S (k)ee|m=MW
=

(∼)

S (k)W−W−, (8)

(∼)

S (k)ēē|m=MW
=

(∼)

S (k)W+W+ ,

where the subscripts indicate the respective YFS infrared functions for eē, ee, ēē, W−W+,
W−W− and W+W+ in the obvious manner.

One important point needs to be discussed before we turn to the application of (8)
to W± pair production. This concerns the so-called Coulomb effect [18] — the enhanced
1/β behavior of the O(α) virtual correction to the Born cross section due to the exchange
of k → 0 virtual photons, where β is the CMS velocity of one of the W ’s. Since the
YFS virtual infrared function 2αBW−W+ ≡

∫

(d4k/(k2 −m2
γ + iǫ))S(k)W−W+, where mγ is

our photon infrared regulator mass, describes precisely this regime of the virtual photon
phase space as well, we need to remove this Coulomb effect from BW−W+ so that it can be
treated via the methods of Ref. [18] as accurately as one desires without double counting
it. This we do by defining the analytic subtraction

B′
W−W+(β) = BW−W+(β) − θ(βt − β)

β
lim
β→0

βBW−W+(β)

= BW−W+(β) − π

4β
θ(βt − β), (9)

where θ is the usual step function and here we determine βt, the transition velocity which
separates the non-relativistic regime from the relativistic one insofar as the Coulomb cor-
rections are concerned, by the requirement that the O(α2) Coulomb correction, (πα

β
)2/12,

is less than 0.03% for β ≥ βt — this gives βt
∼= 0.382. For β ≥ βt, the Coulomb cor-

rection series is a well-behaved part of the usual perturbation series and does not need
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special treatment in our analysis. Our requirement that the O(α2) Coulomb correction
stay below 0.03% for β ≥ βt is determined with an eye toward an ultimate goal of 0.1%
total precision on our calculations — this goal is however beyond the scope of the current
paper. It is apparent that B′

W−W+ and BW−W+ contain the same infrared divergences so
that we may use B′

W−W+ in our YFS exponentiation algebra without any change in the
cancellation of infrared singularities to all orders in α so that such a use of B′

W−W+ is
fully justified by the original YFS arguments [2] — the resulting cross sections are fully
independent of the substitution of B′

W−W+ for BW−W+ when the theory is summed to all
orders in α as it is proved in the original YFS paper. Thus, we will make this substitution
here and treat the Coulomb effect entirely according to the methods in Ref. [18]. It can
therefore be seen that our procedure for arriving at a smoothe transition, in our complete
cross section, within the limits of its physical precision tag, between the Coulomb dom-
inated β → 0 regime and the relatavistic β → 1 regime of the W+,− charge form factor
is entirely consistent with the smoothe interpolation of Schwinger in Ref. [19] between
the analogous regimes of the respective charge form factors for spin 0 and spin 1

2
massive

charged particles.
We now turn to the application of the results in this section to the realization of our

YFS Monte Carlo approach to multiple photon radiative effects in e+e− → W+W−+n(γ)
at LEP2 and NLC energies.

4 Gauge invariant YFS Monte Carlo for e+e− → W +W−+

n(γ)

In this section we apply the results of the preceding section to develop a Monte Carlo
event generator, YFSWW2 [10], which realizes the YFS exponentiated multiple photon
radiation in the process e+e− → W+W− + n(γ), where we will also allow the W ’s to
decay to four-fermion final states. In the development presented here, we shall work to
the leading log β̄0 level in the respective YFS hard photon residuals β̄n in (1) as it is
applied to W -pair production via the substitutions in (8).

Specifically, on using the results in (8), we arrive at the representation, for the process
e+e− → W+W− + n(γ) → f1 + f̄ ′

1 + f ′
2 + f̄2 + n(γ), of the fundamental YFS cross section

formula

dσ = e2α Re B+2α B̃

∞
∑

n=0

1

n!

∫ n
∏

j=1

d3kj

k0
j

∫

d4y

(2π)4
eiy(p1+q1−p2−q2−

∑

j kj)+D

β̄n(k1, . . . , kn)
d3pf1

d3pf̄ ′

1
d3pf ′

2
d3pf̄2

p0
f1

p0
f̄ ′

1

p0
f ′

2

p0
f̄2

, (10)

where, referring to the kinematics in Fig. 1, we have the identifications p2 = pf1
+pf̄ ′

1
, q2 =

pf ′

2
+pf̄2

, for the W+, W− 4-momenta, respectively. The YFS infrared functions B̃(Kmax),
D, and B, by (8), are obtained from the the corresponding ones for the process e+e− →
f + f̄ + n(γ) as given in (3) and in Refs. [13, 17] via the substitutions: (Qf , pf , mf ) →
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(QW−, q2, MW ), (Qf̄ , pf̄ , mf) → (QW+ , p2, MW ). Their analytical representations are given
in Appendix A. The hard photon residuals β̄n now contain both the production and the
decay of the W ’s, which may of course occur either on or off the W mass-shell. We will
work to the β̄0 level and we have the identification

1

2
β̄0 =

dσBorn

dΩ+dΩ−

, (11)

where dΩ+(−) is the differential decay solid angle of f1(f ′
2) in the W+(−) rest frame for

example. Here, we take the respective Born cross section, dσBorn, from Ref. [11] for
definiteness. The result (10) has been realized via the YFS MC methods of two of us, see
for example Ref. [3, 13], in the program YFSWW2 [10].
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Figure 3: The imaginary parts necessary to include in the amplitude for e+e− → W+W− →
4fermions = f1 + f̄ ′

1 + f̄2 + f ′
2 in order to maintain gauge invariance in the presence of radiation

by the W ’s themselves. Here, the notation is identical to that in Fig. 1 and the vertical dotted line
indicates the standard Bjorken-Landau-Cutkosky isolation of the respective imaginary part.

Before we illustrate the type of predictions which we make with YFSWW2 for the
LEP2/NLC physics scenarios, let us address one further important theoretical point con-
cerning the fundamental result (10). Specifically, the reader may note that the W± decay
width ΓW does not appear in the YFS infrared functions B and B̃ as they are given via
the result (8). Yet, evidently, when a W± of 4-momentum p′ = p + k emits radiation of
4-momentum k, the propagator denominator that would most naively be present imme-
diately preceding the emission vertex would be DW (p′) = p′2 −M2

W + ip′2ΓW /MW and for
p2 = M2

W this does not reduce to the YFS [2] infrared algebraic form k2 +2kp. The atten-
dant problems with electromagnetic gauge invariance are now well-known [5, 6, 8, 9]. The
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solution to this apparent dilemma is already presented in Refs. [8, 9]. Whenever the W±

radiate, one can include their decay width in their propagation provided one also allows
the radiated photon to couple to charges in the graphs which generate the non-zero width
to its respective order as well, see Refs. [8, 9] for a detailed discussion of these graphs,
which are illustrated in Fig. 3 for the case that ΓW is computed to O(α) for example. The
net effect, as explained in detail in Refs. [8, 9] and as we have independently verified, is
that the emission vertex for the photon in question is multiplied by a factor which replaces
the pre-emission denominator DW (p′) = p′2 − M2

W + ip′2ΓW/MW for p2 = M2
W with the

desired YFS infrared algebraic form k2 + 2kp, thereby maintaining electromagnetic gauge
invariance.

We turn now to sample Monte Carlo data from YFSWW2 in the LEP2 and NLC type
energy regimes. This we do in the next section.

5 Sample Monte Carlo data for e+e− → W +W−+n(γ) →
4fermions + n(γ)

In this section, we present sample Monte Carlo data for the process e+e− → W+W− +
n(γ) → 4fermions + n(γ) in the LEP2/NLC type energy regimes. We have used our
Monte Carlo event generator YFSWW2 as presented above and we have had in mind in
particular the illustration, among other things, of the effect of the W± contribution to
the YFS real and virtual infrared functions in (10), as this effect has not been presented
elsewhere.

ECM [GeV ] ISR ISR + Coul. corr. ISR + Coul. corr. + Y ′-corr.

175 0.4906 ± 0.0002 0.5046 ± 0.0002 0.5053 ± 0.0002
0.4898 ± 0.0002 0.5037 ± 0.0002 0.5048 ± 0.0002

190 0.6060 ± 0.0007 0.6193 ± 0.0007 0.6217 ± 0.0007
0.6034 ± 0.0007 0.6166 ± 0.0007 0.6195 ± 0.0007

205 0.6359 ± 0.0008 0.6480 ± 0.0008 0.6514 ± 0.0008
0.6315 ± 0.0008 0.6436 ± 0.0008 0.6476 ± 0.0008

500 0.2910 ± 0.0003 0.2946 ± 0.0003 0.2970 ± 0.0004
0.3538 ± 0.0004 0.3582 ± 0.0004 0.3591 ± 0.0004

Table 1: The results of the 105 (except for ECM = 175GeV , where it is 106) statistics sample
from YFSWW2 for the total cross section σ [pb]. The upper results at each value of energy are for
Standard Model couplings constants, while the lower ones are for anomalous couplings constants
(δκ = δλ = 0.1). See the text for more details.

Specifically, we will use the 4-fermion final state f1 = c, f ′
1 = s, f2 = νe, f ′

2 = e for def-
initeness. With an eye toward studies of the triple gauge boson couplings in the standard
model SU2×U1 theory of Glashow, Salam and Weinberg [1], we further follow the notation
of Ref. [11] and compute our results for no anomalous 3-gauge boson couplings and for
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the values δκ = 0.1, δλ = 0.1 for the deviations of the coupling parameters κ, λ away from
their tree-level standard model expectations of 1.0, 0.0, respectively, in the notation of
Ref. [11]. This we do for three LEP2 type CMS energies

√
s = 175, 190, 205 GeV and for

the NLC-type energy 500 GeV . The cross sections which we obtain from our simulation
with YFSWW2 were each determined from 105 events (except for 175 GeV , where we had
106 events) and for the full solid angle acceptance for each of the 4-fermions in the final
state. The results were computed for both the pure initial state YFS exponentiated β̄0-
level case, as in Ref. [20], referred to as the ISR case in the following, and in the case when
the W± contribution to the soft YFS exponentiated radiative effects is treated exactly,
which we refer to as the ISR+Y′ case in the following. Furthermore, for definiteness, and
clarity, the effect of the Coulomb correction, as given in Ref. [18], is also illustrated in our
results, both for the simple YFS form factor ISR case and for the full YFS form factor
ISR+Y′ case — the presence of the Coulomb correction is indicated by “Coul.” in the
following. The corresponding results are illustrated in Table 1.

What we see is that the effect of the full YFS form factor is at the level of 0.14%,
0.39% and 0.52%, respectively beyond the usual Coulomb effect at the LEP2 energies
175 GeV , 190 GeV and 205 GeV and is at the level of 0.81% beyond the usual Coulomb
effect at NLC energies for the case of the SM couplings, giving a total effect beyond
initial state radiation of 3.00%, 2.59%, 2.44% and 2.06% for the CMS energies 175 GeV ,
190 GeV , 205 GeV and 500 GeV , respectively. For the case of the anomalous couplings of
δκ = δλ = 0.1, the corresponding results are 0.22%, 0.47%, 0.62% and 0.25%, respectively
beyond the usual Coulomb effect for total corrections of 3.06%, 2.67%, 2.55% and 1.50%,
respectively for the same CMS energies. Thus, we see that at LEP2 and NLC energies,
the full form factor does indeed modulate the effect of the anomalous couplings; this
enhances its importance at both LEP2 and NLC energies. Since the targeted accuracy
of the theoretical precision for the LEP2 WW -pair production cross section is 0.5% [7],
evidently, the full form factor effect is very important for LEP2 physics scenarios.

Indeed, we have looked into the manifestation of these effects in the W± production
angular distributions. We show in Figs. 4, 5 four respective differential distributions for
the total cross sections in Table 1 for the LEP2 energy of

√
s = 190 GeV and for the NLC

energy of
√

s = 500 GeV , where we feature the W− production angle distribution in the
CM system for all three SM coupling scenarios in Table 1 and with the final “ISR+Coul.
corr.+Y′-corr.” scenario for the anomalous coupling case. We see in these figures that
the full formfactor effect modulates the distributions most strongly near their peaks, near
the forward direction for the W− when the incoming electron direction is used as the
reference direction. As the anomalous couplings modulate these distributions over a large
range of the respective production angles, we see that the smaller (larger) values of the
full formfactor effects in Table 1 for the anomalous cases relative to the SM cases for
NLC (LEP2) energies is consistent with the shapes of the distributions in Figs. 4, 5. Also
evident in the figures is the more pronounced anomalous coupling effect at NLC energies,
as expected.

We end this section by noting that we have also implemented the full YFS form factor
effect and the anomalous couplings as well in an unpublished version of the program
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Figure 4: W− angular distributions for ECM = 190GeV . See the text for more details.

KORALW [20] of three of us (M.S., S.J. and W.P.) and we have checked that the results
from YFSWW2 and from this new version of KORALW [21] are in agreement within the
statistical errors of the simulations. This is an important cross-check on the results in
this paper it will be presented in detail elsewhere [21].

6 Conclusions

In this paper we have developed the YFS theory of charged, spin 1 bosons in the presence
of possible non-zero widths. We have applied our theory to the LEP2/NLC process
e+e− → W+W− + n(γ), allowing for the W-pair to decay to 4 fermions. The result is the
description, via the Monte Carlo event generator YFSWW2, of the respective n(γ) effects
on an event-by-event basis, in which the infrared singularities are cancelled to all orders
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Figure 5: W− angular distributions for ECM = 500GeV . See the text for more details.

in α.
Specifically, in our realization of the YFS theory for charged spin 1 bosons, we have

maintained the electromagnetic gauge invariance of the SU2L × U1 theory following the
works in Refs. [8, 9]. In addition, we have also avoided any doubling counting of the so-
called Coulomb effect by removing it analytically from the YFS virtual infrared function
B. This resulted in the definition of a new YFS virtual infrared function B′. We have
illustrated our calculations with explicit Monte Carlo data at the LEP2 CMS energies√

s = 175 GeV, 190 GeV, and 205 GeV and at the NLC energy
√

s = 500 GeV , for both
Standard Model and anomalous V WW vertices, V = γ, Z. We find in all cases that the
effect of the radiation by the W± themselves is important, both in the production angular
distributions and in the over-all normalization. In our YFS Monte Carlo realization of
this effect, we have worked to the leading β̄0 level in the current analysis. The higher
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order hard photon residuals β̄n, n ≥ 1 will be considered elsewhere [4] in this connection.
In summary, our Monte Carlo event generator YFSWW2 now calculates, on an event-

by-event basis, the multiple photon effects in the process e+e− → W+W− + n(γ) →
4fermions + n(γ) and includes, for the first time ever, the effects of the radiation by
the W± themselves in the respective YFS exponentiated soft photons, without doubling
counting the so-called Coulomb effect and without spoiling the electromagnetic gauge in-
variance of the SU2L×U1 theory. This program is available from the authors at the WWW
URL http://enigma.phys.utk.edu/pub/YFSWW/ and we look forward with excitement
to its application to imminent LEP2 data.
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A YFS infrared functions

In this section we present some analytical representations of the YFS infrared (IR) func-
tions corresponding to emission of virtual and real photons for the W+W−-pair production
in the e+e− annihilation. An important feature of these representations is that they are
stable and fast in numerical evaluation. Thus, they are particularly suited for Monte
Carlo implementations.

A.1 Virtual photon IR function for s-channel

The s-channel virtual photon YFS IR function ℜB(s) for any two charged particles with
four-momenta p1, p2 and masses m1, m2 reads

2αℜB(s, m1, m2) =
α

π

{

(

1

ρ
ln

µ(1 + ρ)

m1m2
− 1

)

ln
m2

γ

m1m2
+

µρ

s
ln

µ(1 + ρ)

m1m2
+

m2
1 − m2

2

2s
ln

m1

m2

+
1

ρ

[

π2 − 1

2
ln

µ(1 + ρ)

m2
1

ln
µ(1 + ρ)

m2
2

− 1

2
ln2 m2

1 + µ(1 + ρ)

m2
2 + µ(1 + ρ)

− Li2

(

2µρ

m2
1 + µ(1 + ρ)

)

− Li2

(

2µρ

m2
2 + µ(1 + ρ)

)

]

− 1

}

,
(12)

where

µ = p1p2, s = 2µ + m2
1 + m2

2,

ρ =

√

1 −
(

m1m2

µ

)2

, (13)

and mγ is a fictitious photon mass used to regularize the IR singularity.
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A.2 Virtual photon IR function for t and u -channels

The t-channel virtual photon YFS IR function ℜB(t) for two charged particles with four-
momenta p1, p2 and masses m, M , where m ≪ M, |t|, reads

2αℜB(t, m, M) =
α

π

{

(

ln
|t|

mM
+ ln ζ − 1

)

ln
m2

γ

m2
+

ζ

2

(

ln
|t|

mM
+ ln ζ

)

− 1

2
ln

|t|
m2

ln
|t|
M2

− ln
M

m

(

ln
|t|

mM
+ ln ζ +

ζ − 3

2

)

− ln ζ

(

ln
|t|

mM
+

1

2
ln ζ

)

+ Li2

(

1

ζ

)

− 1

}

, (14)

where

ζ = 1 +
M2

|t| , t = (p1 − p2)
2. (15)

The u-channel IR function ℜB(u) can be obtained simply by replacing t → u in the above
formula.

A.3 Real photon IR function

The YFS IR function B̃ corresponding to the emission of real photons with energy Eγ ≤
Kmax in a process involving any two charged particles with four-momenta p1, p2 and masses
m1, m2 can be expressed as

2αB̃(p1, p2; Kmax) =
α

π

{

(

1

ρ
ln

µ(1 + ρ)

m1m2
− 1

)

ln
4K2

max

m2
γ

+
1

2β1
ln

1 + β1

1 − β1
+

1

2β2
ln

1 + β2

1 − β2

+ µA4(p1, p2)

}

, (16)

where βi =
√

1 − m2
i /E

2
i , and µ and ρ are defined in Eq. (13). The most complicated part

of the above expression is the function A4(p1, p2). It can be expressed as a combination of
some number of logarithms and dilogarithms1 (see also Ref. [22] for a similar calculation)

A4(p1, p2) =
1

√

(Q2 + ω2)(Q2 + δ2)

{

ln

√

∆2 + Q2 − ∆
√

∆2 + Q2 + ∆

[

X14
23 (η1) − X14

23 (η0)
]

+ Y (η1) − Y (η0)
}

, (17)

1By using some identities we managed to reduce the number of dilogarithms to 8 only!
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where

X ij
kl(η) = ln

∣

∣

∣

∣

(η − yi)(η − yj)

(η − yk)(η − yl)

∣

∣

∣

∣

,

Y (η) = Z14(η) + Z21(η) + Z32(η) − Z34(η) +
1

2
X12

34 (η)X23
14 (η), (18)

Zij(η) = 2ℜLi2

(

yj − yi

η − yi

)

+
1

2
ln2

∣

∣

∣

∣

η − yi

η − yj

∣

∣

∣

∣

,

and

η0 =
√

E2
2 − m2

2, η1 =
√

E2
1 − m2

1 +
√

∆2 + Q2,

y1,2 =
1

2

[

√

∆2 + Q2 − Ω +
ωδ ±

√

(Q2 + ω2)(Q2 + δ2)
√

∆2 + Q2 + ∆

]

, (19)

y3,4 =
1

2

[

√

∆2 + Q2 + Ω +
ωδ ±

√

(Q2 + ω2)(Q2 + δ2)
√

∆2 + Q2 − ∆

]

,

where we used the following notation

∆ = E1 − E2, Ω = E1 + E2,

δ = m1 − m2, ω = m1 + m2, (20)

Q2 = −(p1 − p2)
2.

The only approximation used in deriving the above formulae is mγ ≪ Kmax.
As one can easily check the dependence of the above functions on the IR regulator mγ

cancels out in the sum 2αℜB + 2αB̃ which is used to construct the YFS formfactor.
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