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Abstract

The quark (gluon) – hadron duality constitutes a basis for the theoretical
treatment of a wide range of inclusive processes – from hadronic τ decays and
Re+e− , to semileptonic and nonleptonic decay rates of heavy flavor hadrons.
Theoretical analysis of these processes is carried out by using the operator
product expansion (OPE) in the Euclidean domain, with subsequent analytic
continuation to the Minkowski domain. We formulate the notion of the quark
(gluon) – hadron duality in quantitative terms, then classify various contri-
butions leading to violations of duality. A prominent role in the violations
of duality seems to belong to the so called exponential terms which, concep-
tually, may represent the (truncated) tail of the power series. A qualitative
model, relying on an instanton background field, is developed allowing one
to get an estimate of the exponential terms. We then discuss a number of
applications, mostly from heavy quark physics.
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1 Introduction

Nonperturbative effects have been analyzed in QCD in the framework of the operator
product expansion (OPE) [1, 2] since the inception of QCD. Recently a remarkable
progress has been achieved along these lines in the heavy quark theory (for reviews
see Ref. [3]). A large number of applications of OPE in heavy quark theory refer to
quantities of the essentially Minkowskian nature, e.g. calculations of the inclusive
decay widths, spectra and so on. Wilson’s operator product expansion per se is
formulated in the Euclidean domain. The expansion built in the Euclidean domain
and by necessity truncated, is translated in the language of the observables through
an analytic continuation. An indispensable element of this procedure, the so called
quark-hadron duality, is always assumed, most often tacitly. This paper is devoted
to the discussion of quark-hadron duality and deviations from it. Although the issue
will be considered primarily in the context of heavy quark theory, the problems we
will deal with are quite general and are by no means confined to heavy quark theory.
For instance, determination of αs from the hadronic width of τ – a problem of
paramount importance now under intense scrutiny [4] – falls into this category. It is
known [5] that deviations from duality may be conceptually related to the behavior
of the operators of high dimension in OPE. Unfortunately, very little is known
about this behavior in the quantitative sense, beyond the fact that the expansion is
asymptotic [5]. Therefore we are forced to approach the problem from the other side
– engineering a model which allows us to start discussing deviations from duality.
The model is based on instantons, but by no means is derivable in QCD. Moreover, it
does not exhaust all mechanisms which might lead, in principle, to deviations from
duality, focusing, rather, on one specific contribution – the so called exponential
terms. Nevertheless, it seems to be physically motivated and can serve for qualitative
analysis at present, and as a guideline for future refinements.

Indeed, the (fixed size) instanton contribution to correlation functions with large
momentum transfers can be interpreted as a mechanism in which the large external
momentum is transmitted through a soft coherent field configuration. Speaking
graphically, the large external momentum is shared by a very large number of quanta
so that each quantum is still relatively soft. It is clear that this mechanism is not
represented in the practical version of OPE [2], and, thus, gives an idea of how
strong deviations from duality might be.

One of the most interesting aspects revealed in this model is the distinct nature
of exponential contributions absent in practical OPE, both in the Euclidean and the
Minkowskian domains. If in the former the exponential effects die off fast enough, in
the latter, deviations from duality are suppressed to a lesser extent – the exponential
fall off is milder, and it is modulated by oscillations. These features seem to be so
general that most certainly they will survive in future treatments which, hopefully,
will be significantly closer to fundamental QCD than our present consideration.

If one accepts this model, at least for orientation, many interesting technical
problems arise. Instanton contributions in heavy quark theory were previously dis-
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cussed more than once [6, 7].
Although the corresponding analysis seemed rather straightforward at first sight,

it resulted in some apparent paradoxes; for instance, the instanton contribution
to the spectrum of the inclusive heavy quark decays seemingly turned out to be
parametrically larger than the very same contribution to the total decay rate [7,
8]. The puzzle is readily solvable, however: one observes that the problem lies
in the separation of the exponentially small terms from the “background” of the
power terms of OPE; this is a subtle and, generally speaking, ambiguous procedure,
particularly in the Minkowski domain, and depends on the specific quantity under
consideration. We will dwell on this issue at length in the present paper.

We begin, however, with a brief formulation of the very notion of duality (Sect.
2). Quantifying this notion is an important task by itself. In modeling deviations
from duality, the adoption of the following attitude is made so as to stay on safe
ground: we will try to develop a model yielding a conservative estimate on the upper
bound for deviations from duality. In other words, given the prediction for this or
that quantity based on duality (i.e. spectra, total inclusive widths and so on), one
establishes the accuracy with which this prediction is expected to be valid. In this
way one sets the lower limit on the energy release needed to achieve the required
accuracy. For this limited purpose even a crude model, such as the instanton model
to be discussed below, may be sufficient, perhaps, after some minor refinements.

Why is this attitude logical? If we knew in detail some specific mechanism
omitted in the theoretical calculations – whether associated with the truncation
of practical OPE, or due to other sources – we could include it in the theoretical
prediction for the cross sections and say that the actual hadronic cross section is
dual to this new improved prediction. Thus, paradoxically, the very nature of duality
implies that deviations from it are always estimated roughly. Analyzing deviations
from duality at each given stage of development of QCD is equivalent to analyzing
our ignorance, rather than our knowledge. At the present stage, as was already
mentioned, our knowledge is, more or less, limited to practical OPE.

A much more ambitious goal is developing a framework suitable for actual cal-
culation of extra contributions not seen in practical OPE. Although the instanton
model is sometimes used for this purpose as well, one should clearly realize that
quantitatively reliable results are not expected to emerge in this way. This is a
speculative procedure intended only for qualitative orientation. We will occasion-
ally resort to it only due to the absence of better ideas. One may hope that a
universal qualitative picture will be revealed en route, which will be robust enough
to survive future developments of the issue.

Although this problem – estimates of deviations from duality – is obviously of
paramount practical importance, surprisingly little has been said about this subject
in the literature. Apart from some general remarks presented in Ref. [5], an attempt
to discuss the issue in a different (exclusive) context was made in [9].

Our paper is organized below as follows: In Sect. 2 we outline the general
principles behind duality and its violation. Sect. 3 is devoted to general features of
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the exponential terms believed to be responsible for duality violation. In particular,
the distinction between their patterns in the Euclidean and Minkowskian domains is
explained here. In Sect. 4 we outline the instanton model we use as a framework to
generate exponential terms. Sect. 5 illustrates our main points in what is, probably,
the most transparent example: e+e− annihilation and the hadronic decays of the
τ lepton. In Sect. 6 we discuss the general features of heavy quark decays in the
instanton background. In Sect. 7, we begin the business of actual calculation – to
warm up, we consider a toy model where the spins of all relevant fields are discarded
to avoid technicalities. Section 8 is devoted to actual heavy quark decays in QCD.
The exponential contributions are estimated, both in the spectra, and in the inclusive
decay rates, for the transitions of the heavy quark into a massless one. In section 9 we
address the applied, but practically important, problem of deviations from duality
in the semileptonic decays of D and B mesons. There are good phenomenological
reasons to believe that in D decays these deviations are significant, of order 0.5.
Adjusting parameters of the model in such a way as to explain these deviations, we
conclude that deviations from duality in the B decays are expected to be negligibly
small (in the total semileptonic decay rate and in the similar radiative processes).
The effect seems to be larger – perhaps even detectable – in the inclusive nonleptonic
rates. The drawbacks and deficiencies of the model we use for the estimates of the
exponential terms are summarized in Sect. 10. We present some comments on
the vast literature treating the processes under discussion in Sect. 11. Section 12
summarizes our results and outlines problems for future explorations.

2 Duality and the OPE

Wilson’s OPE is the basis of virtually all calculations of nonperturbative effects in
analytical QCD. Since the very definition of duality relies heavily on Wilson’s OPE,
we first briefly review its main elements. For the sake of definiteness, we will speak
of the heavy quark expansion, although one should keep in mind that the procedure
is quite general; in other processes (e.g. the hadronic τ decays) the wording must
be somewhat changed, but the essence remains intact.

The original QCD Lagrangian is formulated at very short distances. Starting
from this Lagrangian, one evolves it down, integrating out all fluctuations with
frequencies µ < ω < M0 where M0 is the original normalization point, and µ will
be treated, for the time being, as a current parameter. In this way we get the
Lagrangian which has the form

L =
∑
n

Cn(M0;µ)On(µ) . (1)

The coefficient functions, Cn, represent the contribution of virtual momenta from
µ to M0. The operators, On, enjoy the full rights of Heisenberg operators with
respect to all field fluctuations with frequencies less than µ. The sum in Eq. (1) is
infinite – it runs over all possible Lorentz singlet gauge invariant operators which
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possess the appropriate quantum numbers. The operators can be ordered according
to their dimension; moreover, we can use the equations of motion, stemming from
the original QCD Lagrangian, to get rid of some of the operators in the sum. Those
operators that are reducible to full derivatives give vanishing contributions to the
physical (on mass shell) matrix elements, and can thus be discarded as well.

Speaking abstractly, one is free to take any value of µ in Eq. (1); in particular,
µ = 0 would mean that everything is calculated and we have the full S matrix, all
conceivable amplitudes, at our disposal. Nothing is left to be done. In this case
Eq. (1) is just a sum of all possible amplitudes. This sum then must be written
in terms of physical hadronic states, of course, not in terms of the quark and gluon
operators since the latter degrees of freedom simply do not survive scales below some
µhad ∼ ΛQCD.

Needless to say, present-day QCD does not allow the explicit evolution down to
µ = 0. Calculating the coefficient functions we have to stop somewhere, at such
virtualities that the quark and gluon degrees of freedom are still relevant, and the
coefficient functions Cn(M0, µ) are still explicitly calculable. On the other hand, for
obvious reasons, it is highly desirable to have µ as low as possible. In the heavy
quark theory there is an additional requirement that µ must be much less than mQ.

Let us assume that µ is large enough so that αs(µ)/π � 1 on the one hand, and
small enough so that there is no large gap between ΛQCD and µ. The possibility
to make such a choice of µ could not be anticipated a priori and is an extremely
fortunate feature of QCD. Quarks and gluons with offshellness larger than µ chosen
in this way will be referred to as hard.

All observable amplitudes must be µ independent, of course. The µ dependence
of the coefficient functions Cn must conspire with that of the matrix elements of
the operators On in such a way as to ensure this µ independence of the physical
amplitudes.

What can be said about the calculation of the coefficients Cn? Since µ is suffi-
ciently large, the main contribution comes from perturbation theory. We just draw
all relevant Feynman graphs and calculate them, generating an expansion in αs(µ)

Cn =
∑
l

alα
l
s(µ) . (2)

(Sometimes some graphs will contain not only the powers of αs(µ) but also powers
of αs ln(mQ/µ). This happens if the anomalous dimension of the operator On is
nonvanishing, or if a part of a contribution to Cn comes from characteristic momenta
of order mQ and is, thus, expressible in terms of αs(mQ), and we rewrite it in terms
of αs(µ).)

As a matter of fact the expression (2) is not quite accurate theoretically. One
should not forget that, in doing the loop integrations in Cn, we must discard the
domain of virtual momenta below µ, by definition of Cn(µ). Subtracting this domain
from the perturbative loop integrals, we introduce in Cn power corrections of the
type (µ/mQ)n by hand. In principle, one should recognize the existence of such
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corrections and deal with them. The fact that they are actually present was realized
long ago [2]. Neglecting them, at the theoretical level, results in countless paradoxes
which still surface from time to time in the literature. If it is possible to choose
µ sufficiently small, these corrections may be insignificant numerically, and can be
omitted. This is what is actually done in practice. This is one of the elements of a
simplification of the Wilson operator product expansion. The simplified version is
called the practical version of OPE, or practical OPE [2].

Even if perturbation theory may dominate the coefficient functions, they still
also contain nonperturbative terms coming from short distances. Sometimes they
are referred to as noncondensate nonperturbative terms. An example is provided by
direct instantons [10], with sizes of order m−1

Q . These contributions fall off as high
powers of ΛQCD/mQ (or ΛQCD/E where E is a characteristic energy release in the
process under consideration), and are very poorly controlled theoretically. Since the
fall off of the noncondensate nonperturbative corrections is extremely steep, basically
the only thing we can say about them is that there is a critical value of mQ (or E).
For lower values of mQ (or E) no reliable theoretical predictions are possible at
present. For higher values of mQ one can ignore the noncondensate nonperturbative
contributions. The noncondensate nonperturbative contributions are neglected in
practical OPE. In what follows, we will not touch upon these type of effects which are
associated with the (small-size) instanton contributions to the coefficient functions.
There is another, technical, reason why we choose not to consider these effects. Since
the small-size instantons represent hard field fluctuations, all heavy quark expansions
carried out in the spirit of HQET [11] become invalid; the corresponding theory has
to be developed anew. In particular, the standard HQET decomposition of the
heavy quark field in the form Q(x) = exp{imQvµxµ}Q̃(x) becomes inapplicable, as
well as the statement that all heavy quark spin effects are suppressed by 1/mQ, and
so on. This circumstance is not fully recognized in the literature. Due to these
reasons, we instead focus on effects due to large-size instantons. This will provide a
workable framework for visualizing the exponential term.

At very large mQ (or E), the exponential terms are parametrically smaller (in the
Euclidean domain) than the power-like non-condensate nonperturbative corrections
in the coefficient functions. One can argue, however, that this natural hierarchy
sets in at such large values of momentum transfer where both effects are practically
unimportant. At intermediate values of the momentum transfers – most interesting
from the point of view of applications – an inverse hierarchy may take place, where
the exponential terms are numerically more important.

Ignoring the nonperturbative contributions in the coefficient functions is not the
only simplification in practical OPE. The series of operators appearing in L (the
condensate series) is infinite. Practically we truncate it in some finite order, so
that the sum in the expansion we deal with approximates the exact result, but by
no means coincides with it. The truncation of the expansion is a key point. The
condensate expansion is asymptotic [5]. Therefore, expanding it to higher orders
indefinitely, does not mean the accuracy of the approximation to the exact result
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becomes better. On the contrary, as in any asymptotic series, there exists an optimal
order. Truncating the series at this order, we get the best accuracy. The difference
between the exact result and the series truncated at the optimal order is exponential.
Large-size instantons, treated in an appropriate way will, in a sense, represent the
high-order tail omitted in the truncated series.

The essence of the phenomenon – occurrence of the exponential terms – is similar
to the emergence of the condensates at a previous stage. Indeed, let us consider, first,
the standard Feynman perturbation theory. At any finite order the perturbative
contribution is well-defined. At the same time, the coefficients of the αs series grow
factorially with n, and this means that the αs series must be, somehow, cut off, i.e.
regularized. The proper way of handling this factorial divergence is by introducing
the normalization point µ and the condensate corrections which tempers the factorial
divergence of the Feynman perturbative series in high orders and, simultaneously,
bring in terms of order exp (−C/αs(mQ)) where C is some positive constant. Loosely
speaking, one may say that contributions of this type are related to the high-order
tails of the αs series. Similarly, the high-order tails of the condensate (power) series
correspond to the occurrence of the exponential terms. Correspondingly, OPE, even
optimally truncated, approximates the exact result up to exponential terms.

The exponential terms not seen in practical OPE appear both in Euclidean, and
Minkowskian quantities. Their particular roles and behaviors are quite different,
however. Technically, the rate of fall off is much faster in the Euclidean domain
than in the Minkowski domain, as we will see later. Conceptually, the exponential
terms in the Minkowski domain determine deviations from duality.

Let us finally now describe what we mean by duality in somewhat more detail.
Assume that the effective Lagrangian we work with includes external sources, so that
the expectation value of this Lagrangian actually yields the complete set of physical
amplitudes. The physically observable Minkowskian quantities (i.e. spectra, total
hadronic widths and so on) are given by the imaginary parts of certain terms in the
effective Lagrangian. These terms are calculated as an expansion in the Euclidean
domain. This is a practical necessity – since our theoretical tools are based on
the expansions phrased in terms of quarks and gluons, we have to operate in the
Euclidean domain. We then analytically continue in relevant momentum transfers to
the Minkowski domain. Of course, if we could find the exact result in the Euclidean
domain, its analytic continuation to the Minkowski domain would yield the exact
spectra, etc., – there would be no need in introducing duality at all. In reality,
the calculation is done using practical OPE. Both, the perturbative series in the
coefficient functions and the condensate series are truncated at a certain order. We
then analytically continue each individual term in the expansion thus obtained,
term by term, from the deep Euclidean domain to the Minkowski one, and take the
imaginary part. The corresponding prediction, which can be interpreted in terms
of quarks and gluons, is declared to be dual to physically measurable quantities in
terms of hadrons provided that the energy release is large. In this context dual
means approximately equal. The discrepancy between the exact (hadronic) result
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and the quark-gluon prediction based on practical OPE is referred to as a deviation
from (local) duality.

Reiterating, in defining duality, we first do a straightforward analytical continu-
ation, term by term. Defining the analytic continuation to the Minkowski domain
in this way, it is not difficult to see, diagrammatically, that those lines which were
far off shell in the Euclidean calculation remain hard in the sense that now they are
either still far off shell, or on shell, but carry large components of the four-momenta,
scaling like mQ, or large energy release. The sum of the imaginary parts obtained
in this way is the so called the quark-gluon cross section. This quantity serves as
a reference quantity in formulating the duality relations. When one says that the
hadron cross section is dual to the quark-gluon one, the latter must be calculated
by virtue of the procedure described above.

The contributions left aside in the above procedure are related, at least at a
conceptual level, to the high-order tail of the power (condensate) series. They can be
visualized with large-size instantons. A subtle point is that the large-size instantons
contribute not only to the exponential terms, but also to the condensate (power)
expansion. Our task is to single out the exponential contribution, since we have no
intention to use the instanton model to imitate the low-order terms of the power
expansion. Our instanton model is far too crude for that. In the next section
we proceed to formulating the instanton model, making special emphasis on this
particular element – isolating exponential contributions.

Beyond the simplest one-variable problems, like the correlation function of two
vector currents related to Re+e− or Rτ , very often one encounters a more complicated
situation when the amplitudes have several separated kinematical cuts associated
with physically different channels of the given amplitude, and one is interested only
in one specific channel. This situation is typical for the inclusive heavy quark decays
[12, 13]. The OPE-based predictions in this case require – additionally – a different
type of duality: one needs to assume that a particular cut of interest in the hadronic
amplitude is in one-to-one correspondence with the given quark-gluon cut. In other
words, it is assumed that different channels (in terms of the hadronic processes and
in terms of the quark-gluon processes) do not contaminate each other [13]. This was
called “global duality” 1. In practical OPE the cuts of the perturbative coefficient
functions carry clear identity, and the above assumption of “global duality” is easily
implementable. The above assumption can actually be proven in the framework of
practical OPE at any finite order, as was shown in [13]. However, most probably,
this “global duality” fails at the level of the exponential terms. In the present
paper we do not address the issue of “global duality” violations although instantons
can model this phenomenon as well. Such effects are probably smaller than the
deviations from local duality; in any case they deserve a dedicated analysis. It is
worth noting that for one-variable problems (e.g. the total e+e− annihilation cross
section), duality for various integrals over the cross section over a finite energy range

1Warning: the term global duality is often used in the literature in a different context.
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is still local duality, as will be discussed in Sect. 5.

3 Abstracting General Aspects

Before submerging into details of the instanton calculations, we outline the practical
motivation for inclusion of the corresponding effects from the general perspective of
the short distance expansion. It will also enable us to illustrate in a simple way
the divergence of the power expansion. Consider a generic two-point correlation
function Π(Q2), say, the polarization operator for vector currents:

Π(Q) =
∫
d4x eiqxΠ(x) = −

∫
d4x eiqx 〈G(x, 0)G(0, x) 〉0 (3)

where G are the quark Green’s functions in an external gauge field and averaging
over the field configurations is implied; we do not explicitly show the Lorentz indices.
Equation (3), and all considerations in this section, refer to Euclidean space.

The power expansion of Π(Q) in 1/Q is the expansion of the correlation func-
tion Π(x) in singularities near the origin. (This statement is not quite accurate
in Wilsonean OPE, it is correct, however, in practical OPE). Thus, one is inter-
ested in the small-x behavior of Π(x) or, equivalently, of G(x). In the leading,
deep Euclidean approximation, the Green’s functions are the free ones, xγ/x4, plus
perturbative corrections arranged in powers of αs(1/x2):

Gpt(x) =
1

2π2

xγ

x4

(
1 + a1αs(1/x

2) + ...
)

; xγ = xµγµ (4)

(a particular invariant gauge is assumed here; the correlator is gauge-invariant any-
way, and similar series can be written directly for the product of the two Green’s
functions). All terms in the perturbative expansion (4) have the same power of
x, and differ only by powers of log x2. Logarithms emerge due to the singularity,
1/x2, of the gluon interaction near x2 = 0. Upon making the Fourier transform the
perturbative corrections in Eq. (4) are converted into powers of logQ2.

Power corrections, 1/Qn, emerge from the expansion of Green’s functions near
x = 0: for example, in the Fock-Schwinger gauge

G(x) =
1

2π2

xγ

x4
+

1

8π2

xα

x2
G̃αβ(0)γβγ5 + ... (5)

where higher order terms contain higher powers of the gluon field, Gαβ , or its deriva-
tives at x = 0 (for a review see [14]). Since the additional terms in the expansion
contain extra powers of x (generically accompanied by log x2), it is clear that, re-
turning to the momentum representation, one gets additional powers of Q in the
denominator for extra powers of x in the expansion of Π(x). (The positive powers of
x in Π(x) are accompanied by log x2.) Thus, the 1/Q expansion obtained in practical
OPE is in one-to-one correspondence, in the coordinate space, with the expansion of
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Green’s function near the point x = 0. (This fact is absolutely explicit in ordinary
quantum mechanics, where the dynamics are described by a potential. In QCD
the power corrections to the inclusive heavy quark decay rates, for example, have a
similar interpretation: the leading 1/mQ correction, due to the Coulomb potential
at the position of the heavy quark, is absent because of a cancellation between the
initial binding energy and the similar charge interaction with the decay products in
the final state. Physically, the reason is conservation of color flow. Moreover, the
chromomagnetic term is determined by the magnetic interaction at the origin, and
so on.)

The question that naturally comes to one’s mind is whether the above expansion
in the x space is, in a sense, convergent. At best, it can have a finite radius of
convergence which, for the given external field, is determined by the distance to
the closest (apart from the origin) singularity in the complex x2 plane. On the
other hand, evaluating the Fourier transform (3) converting Π(x) into Π(Q), one
performs the integration over all x. Therefore, even for arbitrarily large Q, one
has to integrate Π(x) in the region where the expansion of the Green’s functions is
divergent. Although any particular power term 1/Qn can be calculated and is finite,
this leads to the factorial growth of the coefficients in the 1/Q expansion, and thus
explains its asymptotic nature.

Let us illustrate this purely mathematical fact in a simplified setting. Let us
consider the “OPE expansion” of a modified Fourier transform (the one-dimensional
integral runs from zero to infinity; such transforms are relevant in heavy quark
theory, see [5])

f(Q) =
∫ ∞

0
dx

1

x2 + ρ2
eiQx =

=
π

2ρ
e−Qρ +

1

2ρ
[e−QρEi(Qρ)− eQρEi(−Qρ)] , (6)

where Ei is the exponential-integral function. The integrand has a singularity in
the complex plane, at x = ±iρ and is perfectly expandable at x = 0. Expanding
the “propagator”, 1/(x2 + ρ2), in x2 we get the “OPE series”

f(Q) =
∫ ∞

0
dx

∞∑
k=0

(−1)k
x2k

ρ2k+2
eiQx =

i

ρ

∞∑
k=0

(2k)!

(Qρ)2k+1
. (7)

First of all note, that the “OPE series” has only odd powers of 1/Q. Comparing with
the exact expression (6) we see that the function f(Q) is not fully represented by
its expansion (7), which is obviously asymptotic. The exponential term is missing.
This exponential term comes from the finite-distance singularities of the integrand.
Indeed, one can deform the contour of integration over x into the complex plane; the
integral remains the same as long as the integration contour does not wind around
the singularity at x = ±iρ, whose contribution is

δf(Q) =
π

ρ
e−Qρ . (8)
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This is precisely the uncertainty in defining the value of the asymptotic 1/Q series
(7).

Since f(Q) is expanded only in odd powers of 1/Q, the symmetric combination
g(Q) = f(Q) + f(−Q) has no power expansion at all. The function g(Q) does not
vanish, however:

g(Q) = f(Q) + f(−Q) =
∫ ∞
−∞

dx
1

x2 + ρ2
eiQx = π

e−Qρ

ρ
. (9)

This expression is in agreement with the above estimate of the uncertainty of the
power expansion per se and demonstrates that the exponential terms are present.

The appearance of the terms exponential in Q in the example above bears some
resemblance to the renormalon issue – the factorial growth of the coefficients in
the perturbative expansions in QCD [15]. The Feynman graphs contain integration
over all gluon momenta k2; on the other hand, the expansion of αs(k2) in terms
of αs(Q2) is convergent only for k2 between some minimal and maximal scales,
Λ2
QCD

<∼ k2 <∼ Q4/Λ2
QCD. Although each particular term in the expansion can be

integrated from k2 = 0 to∞, yielding a finite number, the problem of divergence of
the original expansion of αs(k2) is resurrected as the factorial growth of the resulting
coefficients.

We conclude, therefore, that the divergence of the power expansion within practi-
cal OPE, and the presence of the exponential terms is a rather general phenomenon,
and is related, conceptually, to the singularities of Green’s functions in the coordi-
nate space at complex Euclidean values of x2 located at finite distances from the
origin. The question of the possible role of these finite distance singularities was
first raised in Refs. [16, 17] (see also [18]).

The analogy with renormalons in the αs perturbative expansions can be contin-
ued. In the renormalon problem, the proper inclusion of the condensates, within
the framework of OPE, eliminates the infrared renormalons altogether and makes
the infrared-related perturbative series well defined and, presumably, convergent.
One may hope that a consistent explicit account for the finite-x2 singularities would
also make the infinite power series well defined. From the theoretical perspective,
though, this problem has not been investigated so far.

Addressing practical applications, there are two general reasons to expect that
the inclusion of the exponential terms in the analysis can be important – even though
the power series analysis accounts, at best, for only a few leading terms in the
1/Q expansion. First, there exists some phenomenological evidence, to be discussed
below, indicating that the impact of the exponential terms in the Minkowski domain
may be more important numerically than that of the omitted condensate terms for
intermediate values of the momentum transfers. This statement is illustrated by the
τ example, see Sect. 5. Second, historically, this is not the first case where we have
encountered such a perverted hierarchy in QCD. It is quite typical that in the QCD
sum rules, the contribution of the (omitted) higher order αs terms, which formally
dominate over the condensates, is far less significant numerically than that of the
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condensates. This point is crucial – while the exponential terms die out fast in the
Euclidean domain, they decrease much more slowly in the physical cross sections
and, thus, often dominate over the condensate effects, the more so that the latter
often are concentrated at the end points, and are not seen at all outside the end point
region. This observation was emphasized in Ref. [17]. Indeed, the terms ∼ e−Qρ

oscillate, rather than decrease, when analytically continued from the Euclidean to
the Minkowski domain, Q→ iE.

Leaving aside such subtle theoretical questions as the summation of the infinite
condensate series, one may hope that including the principal singularities at the
origin and at finite x2 will lead to a description of the correlation functions at hand
which is good numerically. Indeed, the leading singularity at x2 = 0 is given by the
perturbative expansion, and subleading terms near x2 = 0 are given by practical
OPE. Adding the dominant singularity at x2 ∼ Λ−2

QCD in the complex plane we
capture enough information to describe the main properties of the function, and
thus provide a suitable approximation to the exact result, which may work well
enough for a wide range of x2, thus yielding the proper behavior of the correlation
function, Π(Q), down to low enough Q2. One should clearly realize, however, that
this procedure is justified only if we do not raise the subtle question formulated
above and keep just a few of the first terms in both the perturbative and condensate
expansions. Summing more and more condensate terms within this – rather eclectic
– procedure may not only stop improving the accuracy, but even lead to double-
counting of certain field configurations. Being fully aware of all deficiencies of this
approach at present, we still accept it for estimating possible violations of local
duality in a few cases of practical interest. Eventually, this approach may develop
into a systematic, and self-consistent phenomenology of the exponential terms, much
in the same way as the QCD sum rules represent a systematic phenomenology of
the condensate terms.

Technically, Green’s functions are obtained by solving the equations of motion in
the given background gauge field; in particular, quark Green’s functions are obtained
by solving the Dirac equation. Henceforth, the singularities outside the origin emerge
only at such (complex) values of x2 = 0 where the gauge field is singular. Instantons
provide an explicit example of such fields which are, of course, regular at real x2,
but have a singularity in the complex x2 plane 2. The singularities of the instanton
fields are passed to the Green’s functions, e.g. the singular terms in the spin-0 and
spin-1/2 Green’s function have the structure

Gs(x, y) ∼
1

((x− z)2 + ρ2)1/2
,

1

((y − z)2 + ρ2)1/2
,

Gf (x, y) ∼
1

((x− z)2 + ρ2)`
,

1

((y − z)2 + ρ2)`
, ` =

1

2
,
3

2
, (10)

where z is the center of the instanton, and ρ is its radius. The actual nature of
the singularity changes when one integrates over the position of the instanton, and

2The gauge potential itself may have singularities at real x2, but these are purely gauge artifacts
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over its orientation and size. The poles in Π(x) may change into more complicated
singularities (say, cuts). Interactions of different instantons will also affect the nature
of the singularities. One does not expect, however, the finite-distance singularities
to disappear. The precise position of the singularities, and their nature, depend on
the details of the strong dynamics.

The simplest finite x singularity in the physical correlator Π(x−y) one can think
of has the form

Π(x) =
1

(x2 + ρ2)ν
(11)

where ν is some index. (The cases of ν = 1 and 2 were discussed in Ref. [17].) Its
momentum representation,

Π(Q2) =
∫
d4x eiQxΠ(x) =

2π2

Γ(ν)

(
Qρ

2

)ν−2 K2−ν(Qρ)

ρ2ν−4
(12)

clearly exhibits the exponential behavior related to the singularity at x2 = −ρ2. The
function on the right-hand side is exponentially small in the Euclidean domain but
yields only an oscillating factor (damped by a modest power of 1/Q) upon analytic
continuation to the physical domain, Q2 = −s− i0,

Im Π(s) =
π3

Γ(ν)

(√
sρ

2

)ν−2
cos πν J2−ν(

√
sρ) + sinπν N2−ν(

√
sρ)

ρ2ν−4
=

=
π3

Γ(ν)

(√
sρ

2

)ν−2
Jν−2(

√
sρ)

ρ2ν−4
. (13)

Note that at ν = 1, the right-hand side of Eq. (13) implicitly contains δ(s). Here,
Bessel, McDonald, and Neumann functions are denoted by J , K, and N respectively.
Asymptotically, at large s,

Im Π(s) ' −
4
√

2π5/2ρ3/2

s5/4

1

Γ(ν)

(√
sρ

2

)ν cos
(√

sρ− (ν + 1/2)π
2

)
ρ2ν

. (14)

Certainly, the purely oscillating factor above is an extreme case. Any sensible smear-
ing over ρ (with a smooth weight function) will restore the decrement of the exponent
in the Minkowski domain (as discussed in Ref. [5]). Generically, therefore, we obtain
a decaying exponent, exp(−Eσ), modulated by oscillations. More exactly, we get
a sum of such terms. The index σ depends on dynamics and, in principle, can be
rather small numerically. If σ is small, the damping regime takes over the oscillating
regime at large values of E, after a few unsuppressed oscillations occur. At such
values of E, the powers of 1/E in the pre-exponent can make the whole contribu-
tion small. Therefore, starting our analysis with an extreme situation – a purely
oscillating factor times some power of 1/E in the pre- factor – is quite meaningful.
We will discuss all these details in a more specific setting of the instanton model.
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It is easy to see that causality requires singularities of Π(x2) to lie either on the
negative real axis of x2, or at larger arguments of x2, on the unphysical sheet; Π(x2)
must be analytic at | arg x2| < π. In the instanton model the singularities are on
the negative x2 axis. Smearing the instanton sizes with a smooth function weakens
the strength of the singularity near the purely imaginary

√
x2 and thus effectively

moves it further into the complex plane.
To summarize, we argued that the violations of local duality are conceptually

related to the divergence of the condensate expansion (practical OPE) in high or-
ders. Technically, they may occur due to the singularities of Green’s functions at
complex Euclidean values of x at finite distances from the origin. Accounting for
such singularities, in addition to the perturbative and the condensate expansion, is
a natural first step beyond the framework of practical OPE. In the next section we
will proceed to a specific model for this phenomenon based on instantons. Since they
are not necessarily the dominant vacuum component we try to limit our reliance on
instantons to the absolute minimum. In particular, their topological properties are
inessential for us, and even lead to certain superfluous complications.

4 Instanton Model

Here we will formulate our rules of the game. To get an idea of possible violations of
duality we will consider a set of physically interesting processes (two-point functions
of various currents built from light quarks, the transition operators relevant for the
inclusive heavy quark decays and so on). Our primary goal is isolating the finite-
distance singularities in x2, which will eventually be converted into the exponential
terms in the momentum plane. To this end it will be assumed that the quark Green’s
functions in the amplitudes under consideration are Green’s functions in the given
one-instanton background. The one-instanton field is selected to represent coherent
gluon field fluctuations for technical reasons – in this background Green’s functions
for the massless quarks are exactly known.

The instanton field depends on the collective coordinates – its center, color space
orientations, and its radius. Integration over all coordinates except the radius is
trivial, and will be done automatically. Integration over the instanton radius ρ
requires additional comments.

First of all, in all expressions given below, integration over ρ is not indicated ex-
plicitly unless stated otherwise. Any expression F (ρ) should be actually understood
as follows

F (ρ)→
∫ dρ

ρ
d(ρ)F (ρ) (15)

where d(ρ) is a weight function and integration over instanton position, d4z/ρ4, is
included in the definition of F (ρ).

If we were building a dynamical model of the QCD vacuum based on instantons,
we could have tried to calculate this weight function. As a matter of fact, for an
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isolated instanton the instanton density, d(ρ), was found in the pioneering work [19];
for pure gluodynamics,

d(ρ)0 = const (ρΛQCD)b, (16)

where b is the first coefficient in the Gell-Mann-Low function (b = 11/3 Nc for the
SU(3) gauge group). Of course, the approximation of the instanton gas [20] is totally
inadequate for many reasons – one of them is the fact that inclusion of the massless
quarks completely suppresses the isolated instantons [19]. This particular drawback
can be eliminated if one takes into account the quark condensate, 〈q̄q〉 6= 0. Then
the instanton density takes the form [21]

d(ρ) = const (〈q̄q〉ρ3)nf d0(ρ) (17)

where nf is the number of the massless quarks, and now b = 11/3Nc − 2/3nf . Note
the extremely steep ρ dependence of the instanton density at small ρ. The impact
of the quark condensates is not the end of the story, however, since for physically
interesting values of ρ, the vacuum field fluctuations form a rather dense medium
where each instanton feels the presence of all other fluctuations. In principle, one
could try to build a model of the QCD vacuum in this way, for instance, that is what
is done in the so called instanton liquid model (see [22, 23] and references therein).
The main idea is that the instanton density is sharply peaked at ρ ≈ 1.6 (GeV)−1,
where the classical action is still large, i.e. we can still consider individual instantons.
On the other hand, the interaction between instantons is also large, but still not large
enough so that the instantons melt. The extremely steep growth of the instanton
density at small ρ is cut off abruptly at larger ρ, due to interactions in the instanton
liquid. The proposed model density which captures these features is just a plateau
at ρ = ρc with the width δ � ρc.

We would like to avoid addressing dynamical issues of the QCD vacuum in the
present paper. Our task is to rely on general features, rather than on specific details,
and the instanton field, for us, is merely representative of a strong coherent field
fluctuation. For this limited purpose, we can ignore the problems of the calculation
of the instanton density, and just postulate the weight function d(ρ) in the simplest
form possible. The most extreme assumption is to approximate d(ρ) by a delta
function,

d(ρ) = d0 ρ0δ(ρ− ρ0), (18)

where d0 and ρ0 are appropriately chosen constants. In a very crude approxima-
tion this weight function is suitable, in principle, although it has an obvious draw-
back. If ρ is fixed, as in Eq. (18), the instanton exponential in the Euclidean
domain becomes cosine in the Minkowski domain, with no decrement. For instance,
(Qρ)−1K1(Qρ) → E−3/2 cos (Eρ− phase), where the arrow denotes continuing to
the Minkowski domain, taking the imaginary part, and keeping the leading term in
the expansion for large Eρ. If one wants to be more realistic, one should introduce
a finite width. A reasonable choice might be

w(ρ) = (ρ)−1N exp{−
α

ρ
− βρ} (19)
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where N is a normalization constant,

α =
ρ3

0

∆2
, β =

ρ0

∆2
, (20)

ρ0 is the center of the distribution, and ∆ is its width. Convoluting (Qρ)−1K1(Qρ)
with this weight function, one smears the cosine, which results in the exponential
fall off in the Minkowski domain,

(Qρ)−1K1(Qρ)→ N2E−1J1{
√

2α[
√
β2 + E2 − β]1/2}K1{

√
2α[

√
β2 + E2 + β]1/2}

(21)
where the meaning of the arrow is the same as above.

If

E �
1

∆

ρ0

∆
, (22)

the imaginary part reduces to

2NE−1J1(
√

2Eρ0
ρ0

∆
)K1(

√
2Eρ0

ρ0

∆
) , (23)

and falls off exponentially. If the weight function is narrow, (∆� ρ0), this exponen-
tial suppression starts at high energies, see Eq. (22). In the limit when ∆→ 0, with
E fixed, the exponential suppression disappears from Eq. (21), and we return to
the original oscillating imaginary part. Note also that the exponent at E � 1

∆
ρ0

∆
is

different from the one in the Euclidean domain (
√
E versus Q). In Sect. 5.2 we will

introduce the corresponding index, σ, characterizing the degree of the exponential
fall off in the Minkowski domain at asymptotically large energies.

Concluding this section, we pause here to make two remarks of general character.
The fact that smearing the scale with smooth functions of the type (19) produces
exponential fall off is not specific to the instanton-induced spectral density. Even
much rougher spectral densities (with appropriate properties), being smeared with
the weight function (19), become exponential. An instructive example is provided by
a model spectral density suggested in Ref. [5]. Consider the following “polarization
operator”

“Π” ∝ β

(
Q2 + Λ2

2Λ2

)
where β is the special beta function related to Euler’s ψ function,

β(x) =
1

2

[
ψ

(
x+ 1

2

)
− ψ

(
x

2

)]
=
∞∑
k=0

(−1)k

x+ k
. (24)

This fake polarization operator mimics, in very gross features, say, the difference
between the vector-vector and axial-axial two-point functions 3. At positive Q2, it is
expandable in an asymptotic series in 1/Q2, plus exponential terms. At negative Q2,

3In Ref. [5] the model spectral density (24) was suggested in the context of the heavy-light
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(positive s), it develops an imaginary part. The imaginary part obviously consists
of two infinite combs of equidistant delta functions – half of them enter with the
coefficient 1, the other half with the coefficient −1. Literally speaking, there is no
local (point-by-point) duality at any energies.

Let us smear the combs of the delta functions with the weight function (19).
Now, the imaginary part at negative x is smooth, exponentially suppressed, and
oscillating,

Im
∫ ∞

0
dρ w(ρ)β(ρx) =

π

x

∞∑
k=1

(−1)kw (k/|x|) ∝ Im e−
√
π/2 (1−i)

√
α|x|+const . (25)

Indeed, one can represent the sign alternating sum, (−1)kw(k/|x|), as the integral
of the function i/(2 sin(πz)w(z/|x|)), with complex variable z, over the contour
embedding the positive real axis [1,+∞). At large |x|, its value is determined by

large z; the integrand has two complex conjugated saddle points, z =
√

α|x|
π

e±iπ/4,
whose steepest descents lead to z = 0 and z = ±i∞. Evaluating the saddle point
integrals, one arrives at the above asymptotics.

Returning to the instanton model, we note that the weight function, (19), is con-
venient, because the contribution of the small-size instantons (which affect the OPE
coefficients and are not discussed in the present paper) are naturally suppressed.
The absence of these small-size instantons allows for a sensible expansion param-
eter, 1/(mQρ), which can be used in calculations with heavy quarks. It is worth
emphasizing again that at very large momentum transfers (energies, heavy quark
masses, etc.), the small-size instantons will always dominate over the exponential
terms. Thus, our model is applicable, if at all, only to intermediate scales.

In QCD, the instanton field configuration does not constitute any closed ap-
proximation. Therefore, one may question practically every aspect of the model we
suggest. Developing phenomenology of the exponential terms will help us under-
stand whether this approach has grounds. From the purely theoretical standpoint it
might be instructive to consider a formulation of the problem where the instantons
can be studied in a clean environment, rather than in the complex world of QCD.
Such an analysis was already outlined in the literature [25]. Let us assume that in-
stead of QCD, we study the Higgs phase, i.e. we introduce scalar colored fields which
develop a vacuum expectation value, and break color symmetry spontaneously. The
gluon fields acquire masses. If their masses are much larger than ΛQCD, we are in the
weak coupling regime, and the semiclassical approximation becomes fully justified.

two-point functions, and, accordingly, x was related to E, not Q2. In the heavy-light systems,
the model does not reproduce fine features either; in particular, the equidistant spectrum it yields
is not realistic. The separation between the highly excited states should fall off as 1/E. Such a
behavior immediately follows from the semiclassical quantization condition∫

(E −Λ2r)dr ∝ n .

Previously this pattern was noted in the two-dimensional ’t Hooft model [24].
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The instanton contribution to various amplitudes is well-defined now, and subtle
questions, which could not be reliably answered in QCD, can be addressed.

The pattern of the instanton contribution as a function of energy in this case was
studied in Ref. [25]. It is quite remarkable that the pattern obtained bears a close
resemblance to what we have in QCD, in particular, oscillations in the Minkowski
domain.

5 Deviations from duality in Re+e− or hadronic τ

decays

5.1 Instanton estimates

The peculiar details of local duality violations are more transparent in the simple
cases of e+e− annihilation cross section and inclusive hadronic τ decays. Several
rather sophisticated analyses of the instanton effects in these problems were carried
out recently [26, 27, 28, 29]. A more general consideration, rather close in ideology
to our approach, was given in [17] (in a sense the spirit of the suggestion of Ref. [17]
is more extreme). We further comment on these works in Sect.11. To see typical
features of the instanton-like effects we consider, for simplicity, the correlator of the
flavor-nonsinglet vector currents relevant to Re+e−; a similar correlation function
appears in the hadronic τ decays, alongside with its axial-vector counterpart. For
simplicity, we will mainly ignore the latter contribution and discuss the vector part
as a concrete example.

Let us define (Q2 = −q2 − i0)

Πµν(q
2) =

∫
d4x eiqx 〈 iT

{
J+
µ (x)Jν(0)

}
〉 =

1

4π2
(q2δµν − qµqν)Π(q2) ,

Π(Q2) = log
Q2

µ2
+ ... , (26)

R(s) = −
1

π
Im Π(Q2 = −s− i0) = 1 + ... .

For the purpose of our discussion the average 〈...〉 is not yet understood as averaging
over the physical vacuum; we, rather, calculate the correlation function in a partic-
ular external field, and average over certain parameters of this field (the invariant
tensor decomposition is appropriate in the latter case). The second equation shows
Π(Q2) in the absence of any field. In a given field, Πµν(x, y) is merely a trace of the
product of the two Green’s functions which are explicitly known for massless quarks
in the field of one instanton. Upon averaging over the positions and orientations of
the instanton of the fixed size ρ, one arrives at the known expression (integration
over ρ is shown explicitly) [30, 16]

Π(Q) = Π0(Q) + ΠI(Q) =
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= log
Q2

µ2
+ 16π2

∫
dρ

ρ
d(ρ)

[
1

3(Qρ)4
−

1

(Qρ)2

∫ 1

0
dt K2

(
2Qρ
√

1− t2

)]
(27)

where K2 is a McDonald function, and
∫
(d(ρ)/ρ5)dρ is to be identified with the

number of instantons per unit volume. The superscript I marks the instanton con-
tribution. The first term in the square brackets is “a condensate”, the second one,
on the contrary, does not produce any 1/Qn expansion. Considering Eq.(27) in the
Minkowski domain one has (E =

√
s)

R(E) = R0(E) + RI(E) =

1 + 8π2
∫
dρ

ρ
d(ρ)

[
1

2ρ2
δ(E2) +

1

(Eρ)2

∫ 1

0
dt J2

(
2Eρ
√

1− t2

)]
, (28)

where J2 is a Bessel function. Violation of local duality at finite E is given by the
last term. Expanding the Bessel function at large Eρ, and performing the saddle
point evaluation of the inner integral, we see that it oscillates, but decreases in
magnitude only 1/E3:

RI(E)|fixed ρ ' − 4π2 1

(Eρ)3
cos (2Eρ) , (29)

(we remind the reader that the true power corrections from OPE appear in the
imaginary part at large E only at the level α2

s/E
4 provided that the quarks are

massless, as we assume here). After averaging this result over ρ with a smooth
enough weight, the resulting RI decreases exponentially at E →∞; the decrement
is determined by the analytic properties of d(ρ). The behavior of the “exponential”
contribution, given by the last term in Eq.(28) at small E, is relatively smooth,

RI(E) ∼ −4π2 log (Eρ) . (30)

To visualize the above expressions, we plot in Fig. 1 the value of R(E) stemming
from Eq. (28) in the real scale E using the instanton density (18), with some
rather ad hoc overall normalization 4 d0, and ρ0 = 1.15 GeV−1. Figure 2 represents
experimental values extracted from the CLEO data [31]. Although our theoretical
curve does not literally coincide with the actual data, it is definite that the general
feature of the experimental curve – the presence of oscillations, and a moderate
falloff of their magnitude with energy – is captured correctly. The fact that our
model is not accurate enough to ensure the point-by-point coincidence was to be
anticipated. Obvious deficiencies of the model will be discussed in Sect. 10. Some
additional remarks concerning duality violations in the hadronic τ decays are given
in Sect. 9.1, see Eq.(105).

4In Sect. 9.1 we discuss our choice for d0. Our motivation is based on phenomenological analysis
of the duality violations in the semileptonic D decays, which may be as large as ∼ 50% .
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5.2 Three zones

A single glance at experimental data (a part of the data is presented on Fig. 2)
reveals a striking regularity of the inclusive cross section. We believe that this
regularity is a general phenomenon, and its discussion is very pertinent to the issue
of the duality violations. The same pattern of behavior is expected, say, in the
spectra of the radiative decays B → Xs + γ, and so on.

One can single out three distinct zones in the physical inclusive hadronic cross
sections, governed by different dynamical regimes. If we proceed from the low in-
variant masses of the inclusive hadronic state to high masses, the first zone we see is
a “narrow resonance” zone. It includes one, or at most two, conspicuous resonances.
It stretches up to a first boundary – call it s0. Crossing this first boundary, we find
ourselves in the second zone – the oscillation zone. The cross section here is already
smooth, and the point-by-point violations of the quark (gluon) hadron duality are
not violent. Still, these violations are quite noticeable (they may constitute a few
dozen percent), and have a very clear pattern – several clearly visible oscillations,
with relatively mild suppression,

R = ROPE + (const/Ek) sin(2Eρ + φ) .

The upper boundary of this zone will be referred to as s1. Finally, above this second
boundary, there lies a third domain – the asymptotic zone, where

R = ROPE + exp[−(2Eρ)σ] sin ((2Eρ′)σ + φ) or (1/E)γ , σ < 1 , γ � 1 .

Here ROPE is a smooth (practical) OPE prediction, k is an integer, σ and γ are
indices. Our model is intended for applications in the second (oscillation) zone.

It is worth noting that the precise values of the boundaries s0 and s1 are very
sensitive to dynamical details. For instance, in the imaginary world with infinite
number of colors, s0, is believed to go to infinity, and the regime of the second zone
never occurs.

5.3 Smearing and local duality.

In this section, we discuss another general, and crucial feature of the “exponential”
terms. What happens if, instead of considering the imaginary parts point-by-point,
we choose to analyze some integrals over a finite energy interval, with some weight?
Intuitively, it is clear that violations of the quark (gluon) – hadron duality are
expected to become smaller if the weight function is smooth enough and the energy
interval over which we integrate is large. The case when one integrates with a
polynomial weight (polynomial in s = E2) is of a particular practical interest. Let
us consider the finite-energy moments

Mn(s) = (n + 1)
∫ s

0
RI(t) tn dt . (31)

19



The deviations from duality are smallest at the upper edge of the integration
domain, and largest at the lower edge. Intuitively, it is clear that the deviations
from duality in the integral (31) are determined by deviations at the upper edge
of the integration domain. This result, however, is obtained only if one makes full
use of the analytic properties of the exponential contributions at hand. If one tries
to directly integrate the asymptotic instanton formulae over t, in a straightforward
manner, one gets a huge contribution determined by the lower end. This is the
essence of the so called “a part larger than the whole” paradox, observed in the
instanton calculations, say, in Refs. [7, 8], where the instanton contribution to the
decay spectrum turned out to be parametrically larger than that to the total decay
rate.

Let us elucidate the point in more detail. The moments, Mn(s), get contribu-
tions both from the usual OPE terms, which are located at small s ∼ Λ2

QCD (in our
case it is δ′(s) from the term 1/Q4 in Eq.(27) which survives only for n = 1), and
from the exponential part going beyond practical OPE. We are interested here only
in the latter piece and, therefore, subtract the condensate part. Using the large-s
expansion for R, one is literally in trouble: the integral over the imaginary part (29)
seemingly diverges at small s where this expression is not applicable, and must be
cut off at s0

<∼ 1/ρ2. At first sight, it then seems the result completely depends on
the lower limit s0, and on the precise way of implementing the cut off at s0. The
fact that we integrate over a large interval stretching up to s seems to be of no help
in suppressing the duality violations.

It is easy to see, however, that the large result above is obtained only because
we have used a wrong expression at small s. The asymptotic instanton formula is
definitely invalid at small s. If ρ is fixed, we could use, of course, the exact instanton
expression at small s which is (almost) not singular (see Eqs. (30) and (28)). We
would not trust the instanton result at small s anyway. Therefore, the prediction for
the moments,Mn(s), should be obtained without relying on the expicit expressions
at small s. To this end one invokes dispersion relations.

Whatever the origin of the exponential contribution under consideration is, it
must obey the dispersion relations. Take Π(Q) − ΠOPE(Q), where the “practical
OPE” piece, ΠOPE(Q), in our example is given explicitly by the single term

ΠOPE(Q) ≡
16π2

3ρ4

1

Q4
. (32)

(we omit the subscript I, since, in what follows we consider only instanton induced
contributions). Since Π(Q) − ΠOPE(Q) exponentially decreases at large Euclidean
Q2, one has an infinite number of constraints

lim
Q2→∞

Q2n (Π(Q)− ΠOPE(Q)) = (−1)n
∫ ∞

0
(R(s) −ROPE(s)) sn−1 ds = 0 .

(33)
In other words, all moments considered in the full s range from 0 to∞,Mn(∞), are
given completely by their OPE values, and the extra contribution from the non-dual
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piece is absent. (To define Mn ≡ Mn(∞) in the particular example one may need
to regularize integrals in (31), (33) by, say, introducing a damping exponent e−ε

√
s

with an infinitesimal ε.)
Using this property, one immediately concludes that the violation of duality in

the moments,Mn(s), is determined, parametrically, by the upper limit of integration
s :

Mn(s) = MOPE
n (s) − (n + 1)

∫ ∞
s

R(t) tn dt . (34)

This is, clearly, the most general property of the “exponential” terms which does
not depend on any details of a particular ansatz.

Formally, the relations of the type (33) and (34) for the imaginary part (obtained
by the analytic continuation of the Euclidean exponential terms) can be written as
follows:

R(s)−ROPE(s) =
∫ ∞

0
dt Φ(t)

[
δ(t− s)− e−t

∂
∂s δ(s)

]
, (35)

where Φ(t) vanishes at t ≤ 0 and coincides with the asymptotic instanton expression
at positive t,

Φ(s) = −4π2 1

(ρ
√
s)3

cos (2ρ
√
s) + O

(
s−2

)
. (36)

In other words, to do the smearing integrals properly one must substitute R(s) by
R(s) plus the whole tower of terms presented on the right-hand side of Eq. (35).

The representation (35) is convenient since it explicitly ensures the property (34),
which is the fact that the corresponding contribution to the correlator dies out faster
than any power in the deep Euclidean domain. It shows that any particular spectral
density generated at large s as a violation of local duality, must be necessarily accom-
panied by the corresponding OPE-looking terms located at small s; disconnecting
these seemingly different contributions is not consistent with analyticity.

Let us parenthetically note that similar relations, with delta functions at the
end point, must be used in the instanton calculations of the semileptonic spectra
in the heavy quark decays. The occurrence of the end-point delta functions in the
instanton expressions is reminiscent of what happens with the regular (OPE) power
corrections to the semileptonic widths [32]. The interaction with the final quark
magnetic moment does contribute to the inclusive lepton spectrum with a definite
sign in its regular part. And, yet, it is known to be absent in the total width. The
cancellation occurs due to the terms located at the end point of the spectrum which
– in the naive approach – are not seen in the 1/mQ expansion.

Loosely speaking, the part referring to low t in the integral (31) is eaten up by
the “condensates”.

Eq.(34) demonstrates that the deviations from duality in the finite-energy mo-
ments,Mn(s), are generically given by the accuracy of local duality at the maximal
energy scale covered, s. More exactly, the error is approximately given by the inte-
gral over the last half-period of oscillations. For the sign-alternating combination of
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the moments, similar to the one determining the hadronic width of the τ lepton,

Γhad(τ ) ∼ 2M0(m2
τ)/m

2
τ − 2M2(m2

τ )/m
6
τ +M3(m2

τ)/m
8
τ ,

it is likely to be larger and can be governed by a lower scale. Indeed, the resulting
weight function

wτ(s) = 2 ϑ(m2
τ − s) ·

(
1 + 2

s

m2
τ

)(
1−

s

m2
τ

)2

(37)

is saturated mainly at s <∼ m
2
τ/3. Therefore, s ∼ m2

τ/3 can be viewed as the actual
mass scale governing the duality violation in this problem. Numerically it is close
to the first pronounced resonance in the axial channel.

An obvious reservation is in order here. In real QCD, where the series of the
power corrections in OPE is infinite, and presumably factorially divergent, untan-
gling the exponential terms from the high-order tail of the series remains obscure.
There is no answer to the question “what is the summed infinite OPE series?”, even
in the Euclidean domain. Our approach to this issue is purely operational, and is
clearly formulated in simple problems: pick up the contribution of the finite x gular-
ity in the saddle point approximation. It is motivated by the general consideration
of Sect. 3.

6 Soft instantons in the 1/mQ expansion.

In this section, we briefly outline the generalities of the instanton induced expo-
nential corrections of heavy quark decays. The goal of this section is a “back of
the envelope” calculation presenting the functional dependence on the heavy quark
mass. More detailed calculations, which will provide us with all coefficients in the
pre-exponential factors, are deferred until Sects. 7 and 8.

The main feature of the problems at hand is the presence of a large parameter,
mQρ, which allows us to obtain sensible analytic expressions. As we have already
discussed in a general context, there are three types of contributions associated
with instantons: (i) Small size instantons affect the coefficient functions of OPE.
We are not interested in these terms. They will not appear in our calculations, since
instantons of small size are, by definition, excluded from our model density function
d(ρ), and we always assume that mQρ� 1. Technically, as was already mentioned,
small size instantons cannot be taken into account using the standard methods
of HQET. (ii) The terms proportional to powers of 1/(mQρ). They represent the
instanton contributions to the matrix elements of various finite-dimension operators
that are present in OPE. (In the present context these terms are actually pure
contamination, and so we will discuss only how to get rid of them). (iii) Finally,
there are exponential terms, of the form exp (−2mQρ). These terms are our focus.
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6.1 Decays into light quarks

Consider the generic form of an inclusive forward scattering amplitude which corre-
sponds to the decay of a heavy quark into a massless quark and a number of color
singlet particles, say, lν (Fig. 3),

T̂ = i
∫
Q̄(x)S(x, y)Q(y)Gs(x− y)d4(x− y)d4z . (38)

Here x and y are the position of the heavy quarks, and z is the instanton center (the
integration over x+y yields the δ-function in the transition amplitude expressing the
conservation of the total 4-momentum, which we do not write explicitly). Q(x) is
the field of a heavy quark with mass mQ in the instanton background, S(x, y) is the
Green’s function of the massless quark in the instanton background, and Gs(x− y)
represents the product of all color singlet particle (non hadrons) Green’s functions
produced in the decay. Note that all Lorentz indices are suppressed, as well as the
integration over the instanton parameters, other than its center. For simplicity, we
do not explicitly indicate the dependence of the fields and the quark Green’s function
on the instanton collective coordinates, except for position. In the following, we will
use the singular gauge for the instanton field. In principle, speaking of instantons
assumes that expressions are written in Euclidean space, but so far the exact nature
of the external field is inessential.

We will always assume the heavy hadron is at rest, and thus we can single out
the large “mechanical” part of the x-dependence in Q(x) :

Q(x) = e−imQtQ̃(x) . (39)

Calculating the width we will need to calculate the expectation value of the transition
operator between the heavy hadron state:

T =
1

2MHQ

〈HQ|T̂ |HQ〉 (40)

where now

T̂ = i
∫

¯̃
Q(x)S(x, y)Q̃(y)Gs(x− y) e imQ(x0−y0) d4(x− y) d4z . (41)

Since the product of the quark Green’s functions and nonrelativistic Q̃ fields does not
have an explicit strong dependence on mQ, we clearly deal with a hard (momentum
∼ mQ) Fourier transform of a certain hadronic correlator which is soft in what
concerns nonperturbative effects. Note that mQ can now be considered an external
parameter in the problem, for example, as an arbitrary, and even complex, number.
We are not yet formally ready, however, to consider the Euclidean theory since we
still have initial and final states. We shall address this issue a bit later, and now
proceed as if we deal with free heavy quarks, which are transferred to the Euclidean
domain without problems.
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Let us examine the propagator of the massless quark in the instanton back-
ground, which is calculated exactly for the case of spin 0, 1/2, 1 particles [33]. This
(Euclidean) Green’s function S(x, y) has a generic form

S(x, y) =
1

[(x− y)2]n
1

[(x− z)2 + ρ2]k1/2 [(y − z)2 + ρ2]k2/2
× S̃ (42)

where S̃ has no singularities at complex xα or yα (a polynomial). Using the Feynman
parametrization, we rewrite it as

S(x, y) =
Γ(k)

Γ(k1/2)Γ(k2/2)

1

[(x− y)2]n
S̃ ×

∫ 1

0
dξ ξk1/2−1(1− ξ)k2/2−1 1

[ξ(1− ξ)(x− y)2 + (ρ2 + z̃2)]k
, (43)

k =
k1 + k2

2
, z̃ = z − ξx− (1− ξ)y .

For the propagator of a spin 0 or 1/2 particle, the value of k is eventually 1 and 2,
respectively, and n = 1, 2. The large-momentum behavior of the Fourier transform
of the correlator, Eq.(41), depends on the analytic properties of the integrated
function. Let us first consider the analytic properties of S(x, y) in the complex
(x0 − y0) plane (Fig.4) - it has two different singularities. One singularity is on the
real axis, and corresponds to two quarks being at the same point. This is the same
singularity occuring in the Green’s function of free quarks, but upon integration, the
residue is softly modified by the instanton field. Picking up this pole and calculating
the amplitude, we will get instanton contributions to the usual power (1/mQρ)n

terms in OPE, which we are not interested in. Indeed, making a Taylor expansion
in (x−y)/ρ around this pole, we obtain a series of corrections ((x−y)/ρ)k/(x−y)2n,
which, integrated with the exponent, result in the above terms.

Another singularity lies on the imaginary (x0−y0) axis. It comes from the finite
quark separation

(x− y)2 = [ξ(1− ξ)]−1(ρ2 + z̃2) . (44)

In contrast to the perturbative or OPE pieces, this separation does not scale like
1/mQ, but stays finite in the heavy quark limit. Upon integration over d4z d4(x −
y) dξ this singularity, together with the factor eimQ(x0−y0) from the heavy fields,
produces the e −const mQρ terms in the (Euclidean) amplitude that we are looking
for. We then only need to determine the constant that enters the exponent, and the
pre-exponential factor.

Now with this general strategy in mind, let us outline the machinery in more
detail. We want to abstract from the complicated questions of the interrelation
of the instanton configurations to the particular heavy hadron structure, i.e. to
consider the simplest possible state similar to a quasifree heavy quark instead of a
real B or D meson or heavy baryon. On the other hand, the heavy quark,a priori,
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cannot be taken as free since the field Q(x) must obey the QCD equation of motion,
in particular, in the instanton field. It is clear that such a program can be carried
out consistently if the instanton size is small enough compared to the typical size of
the hadron ∼ ΛQCD, but still is much larger than m−1

Q . Having this choice in mind,
we neglect, in what follows, the fact that the heavy quark is actually bound in the
hadron although, eventually, the values of ρ will not be parametrically smaller than
the hadronic scale.

Thus we merely solve the equation of motion for the heavy quark in the instanton
field, as one would do for an isolated particle. The role of the initial hadronic state,
HQ, in Eq.(40) is played by the single heavy quark spread in space and evolving
in time according to the solution of the heavy quark Dirac equation analytically
continued from Euclidean to Minkowski space. In our actual calculations we, of
course, go in reverse: both the heavy quark field and the transition operator are
calculated in the Euclidean domain; the subsequent continuation to the Minkowski
space is performed in the final expression for the forward amplitude T . Technically,
we are able to solve the equation of motion for the heavy quark field since the
parameter mQρ� 1.

The heavy field Q̃(x0, ~x) can be written in the leading order as

Q̃(x0, ~x) = T e i
∫ x0

0
A0(τ,~x)dτ Q̃(0, ~x) +O (1/(mQρ)) ≡

U(x) Q̃(0, ~x) +O (1/(mQρ)) . (45)

The expression is written in Euclidean space, although we use Minkowski notations.
Using the explicit solution for the SU(2) instanton in the singular gauge, Eq.(62),
one gets the matrices U in the following cumbersome form:

U(x) = exp

{
i ~τ~n

[(
arctan

(
z0

|~z − ~x |

)
− arctan

(
z0 − x0

|~z − ~x |

))
−

−
|~z − ~x|√

(~z − ~x )2 + ρ2

arctan

 z0√
(~z − ~x )2 + ρ2

− arctan

 z0 − x0√
(~z − ~x )2 + ρ2


(46)

where ~n = (~x − ~z)/
√

(~x− ~z )2, z is the coordinate of the instanton’s center and

~τ/2 are the color SU(2) generators. The integration is simplified since along the
integration path ~x− ~z = const in Eq.(45), A0 is proportional to one and the same
color matrix ~τ (~x−~z ) and, therefore, the path-ordered exponent reduces to the usual
exponent of the integral of A0.

It is important that the expression for Q(x) is only valid in the leading order
in the expansion parameter 1/mQρ. If one considers the contribution of small size
instantons (as in Ref. [7]), then no legitimate expansion parameter is available. The
expansion in the heavy quark mass can only be obtained if instantons of size ρ < ρc
(where ρc is some parameter � 1/mQ) are absent. Otherwise, the corresponding
equations of motion need to be solved exactly.
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Even though we managed to solve the equations of motion for the heavy quarks
in the leading approximation, the solution governed by the color matrices U is not
analytic. The apparent singularities at x = z or y = z are, in fact, spurious and
merely an artifact of using the singular gauge for the instanton field; since the
amplitude we calculate is manifestly gauge invariant (it is nothing but the light
quark Green’s functions times the path exponent 5), this singularity is absent in the
full expression, being canceled by similar terms in the light quark Green’s functions.
However, in general, the propagation matrix U introduces additional exponential
corrections, since

arctan

(
t

√
~x 2 + ρ 2

)

has a (cut) singularity at t = i
√
~x 2 + ρ2, which is a point where the singularity in

the potential is not of the gauge type. The fortunate simplification which arises,
in the leading approximation in 1/(mQρ), is that the two factors U(y) and U−1(x)
are unity at the saddle point. This happens due to the fact that the saddle point
corresponds to the configuration where the instanton is situated right on the line (in
three-dimensional coordinate space) connecting ~x and ~y and thus ~x− ~z = ~y− ~z = 0
Eq.(48) Finally, picking up the pole in the complex (x0−y0) plane in the light quark
propagator in Eq.(43),

[((x− y)2 + [ξ(1− ξ)]−1(ρ2 + z̃2)]−k , (47)

we get an exponential factor

exp
(
−mQ

√
(ρ2 + z̃2)/(ξ(1− ξ)) + (~x− ~y )2

)
in the transition amplitude. The expression in the exponent has a sharp minimum
at

z̃ = 0, ξ = 1/2, (~x− ~y)2 = 0 . (48)

Evaluating it at this point we get the exponential factor

e−2mQρ .

The power of mQ in the pre exponent can be determined without actual calcula-
tions as well. The residue of the k-th order pole of the propagator yields the factor
mk−1
Q upon integration over x0− y0. The Gaussian integrals over (~x− ~y), x0− y0, z̃,

and ξ around their saddle points give m−4
Q ; on the contrary, all “free” propagators

5Since the path exponent over the straight line is unity in the Fock-Schwinger gauge, the
products we calculate are nothing else than the quark Green’s functions in the instanton field in
the Fock- Schwinger gauge. However, the fixed point of the gauge does not lie at the center of the
instanton, but, rather, at the external current point, x or y. For a review of the Schwinger gauge
see Ref. [14].
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(those of the color singlet final particles and the bare propagators of the quarks
produced) enter at a fixed separation ∼ −ρ2, and are mQ-independent. We thus get

T ∝ const ·mk−5
Q e−2mQρ . (49)

For example, the large size instanton corrections to the transition amplitude for the
semileptonic decays of heavy quarks has the form

Tsl ∝
e−2mQρ

m3
Q

. (50)

The pre exponent can be easily calculated in the same way and will be given for a
few cases of interest in the subsequent sections.

The same counting rules apply for the case when more quarks are present in
the final state. In the case of the vector correlator of the light quarks we have the
product of two light quark propagators instead of one, and eventually k = 4. Since
Πµν(Q) ∼ Q2Π(Q2), we get for Π(Q2) defined in Eq.(27)

Π(Q2) = 4π3 e−2
√
Q2ρ

( Q ρ )3
, (51)

in accordance with the explicit calculation of Eq.(27). In fact, the asymptotic
expression works accurately enough even in the Minkowski domain already at

√
sρ '

3; the corresponding approximate expression for 1
π
Im Π is plotted as a dashed curve

in Fig. 5. It is clear that the main effect of the subleading in 1/(Qρ) terms is a
phase shift in the oscillations.

Using the same counting techniques, one concludes that the non-OPE soft in-
stanton contribution to the forward amplitude describing nonleptonic decays of the
heavy quark (we have three light quarks in the final state i.e. k = 6) scales like

Tnl ∝ mQ e−2mQρ . (52)

In the next section, we give a more detailed calculation, and discuss total widths
and differential distributions.

A qualifying comment is in order here. So far, in calculating the exponential
terms, we assumed the heavy initial quark to be static (at rest). In this approxi-
mation the presence of the initial heavy quark does not affect our result at all; it
is the final quarks that fully determine the exponential terms. We know for sure,
however, that the initial heavy quark experiences a “Fermi” motion inside the heavy
hadron. In practical OPE, the first correction due to this Fermi motion comes from
the operator Q̄~π2Q. In other words, the accuracy of the static initial quark approxi-
mation is 1/m2

Q. An important question is how the exponential terms of the type we
focus on show up in those subleading effects proportional to 〈~π2〉 (and other similar
subleading effects).
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The expansion of the heavy quark propagator in 1/mQ leads, generally speaking,
to terms of the type (1/m2

Q)1/(x2 + ρ2), i.e. we get an extra singularity in the
amplitude due to the initial heavy quark. This extra factor enhances the overall
singularity of the amplitude in the complex plane and, thus, leads to a higher power
of mQ in the preexponent. The additional denominator, (x2 +ρ2), generates only the
first power of mQ, however, so the overall effect is suppressed by the small parameter
1/(mQρ).

In the Minkowski domain, inside the oscillation zone, the exponential factor is
not a suppression at all, so we must count only the pre-exponential factors. We see
that deviations from duality are parametrically relatively stronger in the 〈~π2〉 piece.
Still the original suppression of the 〈~π2〉 piece by 1/m2

Q is not completely lifted. We
lose one power of 1/mQ, but retain the other power. Thus, our approximation of
the static initial quark in the analysis of the exponential deviations from duality is
justified.

Nevertheless, it is interesting to note that the initial-state 1/mQ effects are less
suppressed in the exponential terms. This seems to be a general feature.

6.2 Decays into massive quarks

The case of the massive final state quark (e.g. b→ clν) does not differ conceptually
if treated in the 1/(Qρ) expansion, although a technical complication arises due to
the unknown explicit expression for the massive propagator in the instanton field.
Still, this is not a stumbling block in the analysis: the relevant singularity of the
c quark Green’s function can again only be at (x − z)2 = −ρ2 or (y − z)2 = −ρ2,
and the corresponding power of the displacements can be determined analytically
keeping trace of the singular terms in the massive Dirac equation. Only the exact
constant in front of this singular term constitutes a problem, and it can be evaluated
numerically. We shall address this case in detail elsewhere, and here only consider
a few limiting cases.

(i) Heavy and light quarks in the final state, e.g. b→ cdū

It is possible to see that, in this case, the exponential terms, in the leading
approximation, are associated with the light quark, and the presence of the heavy
quark in the final state has no impact apart from changing kinematics. Indeed, we
saw that the Green’s functions of the final state particles enter at large distances
|x| ∼ ρ (it will be also illustrated in more detail in the next section). In this
situation the interaction of the final heavy quark with the soft background field
reduces to the ordered exponential of i

∫
Aµ(ξ)dξµ along the heavy quark trajectory.

We have already calculated it and found to be unity (the exponent to vanish) in the
saddle point configuration. Therefore the final heavy quark can be taken as non-
interacting. The propagator of the non-interacting final c quark ∝ e−imc |x| (e−mc|x|

in the Euclidean time) will be multiplied by the light quark Green’s function, which
develops a pole in the complex x2 plane. This means that as far as the exponential
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terms are concerned, the effect of the final heavy quark is the replacement of mQ in
the Fourier transform by mQ −mc,

mQ → ∆ = mQ −mfin (53)

(in the general case, with a few heavy particles in the final state, ∆ = mQ−
∑
mfin ,

with the sum running over all heavy final state particles). Calculating the width, one
thus has, at the saddle point, the exponent of the form e−2∆ρ rather than e−2mQρ. It
is worth emphasizing that this result holds as long as the mass of the final state quark
involved exceeds 1/ρ, i.e. mfin ρ� 1, regardless of the actual hierarchy between mQ

and mfin. The very same kinematic change refers, of course, also to the case when
massive leptons (or other color-singlet particles) are present in the final state.

Such a result might seem counter-intuitive to the reader who would compare
it, say, with the free quark answer for the total width, where the final quark mass
appears only as a quadratic correction ∝ m2

fin/m
2
Q if mfin/mQ � 1, and the final

heavy quark is typically fast. As a matter of fact, there is no mystery – the oc-
currence of e−2∆ρ, instead of e−2mQρ, is a manifestation of a remarkable property
of the exponential terms discussed in Sect. 5. These terms are determined by the
highest possible invariant mass of the light quark system. In the case at hand this is
achieved when the final c quark is at rest, i.e. we are in the SV limit [34]. With this
picture, it is then no surprise that the exponential terms are determined by e−2∆ρ.

Since this result is rather unusual, we reiterate. In calculating the exponential
terms in the transitions of the type b → cūd we find ourselves in the situation of
the heavy quark symmetry [34, 35]. It is an extended symmetry, however, since it
applies to arbitrary color structure of the weak vertices, e.g. even when color flows,
say, from Q to the light quark q rather than from Q to the heavy final quark c
(the standard heavy quark symmetry works only for the color singlet b̄c currents).
Similar consideration applies even to the decays like b→ cc̄s.

(ii) SV limit.

In the SV limit, when the final heavy quark is slow, we can calculate the ex-
ponential terms analytically in a wider class of processes, e.g. in the nonleptonic
transition b→ cud.

This case can be treated as follows. The final heavy quark Green’s function is
given by the P exponent together with the “mechanical” phase factor (we write it
here in the Euclidean space):

GSV(x, 0) = m3
1 + ixγ|x|

2

e−m|x|

(2πm|x|)3/2
T e i

∫ x
0
Aµ(ξ)dξµ '

' m3
1 + ixγ|x|

2

e−m|x|

(2πm|x|)3/2
U+(x)U(0) . (54)
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The path exponent is again given by the U matrix presented in Eq.(46) 6. At the
saddle point when the instanton is on the line (~x, ~y ) the final heavy quark path
exponent equals to unity, and, therefore, the heavy quarks appear to be “sterile” –
they do not feel the instanton field at all. Thus, in nonleptonic decays in the SV
limit the appearance of exponential corrections is due - in the leading order - only to
the light quark interaction with the instanton. (Note also, in the semileptonic decay
in the SV limit the exponential terms are absent in the approximation accepted in
the present paper. To see them we have to go beyond the leading approximation
near the saddle point approximation. )

It is worth noting that, outside the exponential factor, in the pre-exponent, the
masses enter in a more complicated way than is indicated in Eq. (53). For example,

the integration over d3x near the saddle point produces m
−3/2
Q rather than the power

of the energy release.

6.3 Summary

Now we are ready to incorporate the effect of both massive and massless quarks in
the final state.

1) Each light (massless) quark contains a second order pole in its propagator
(43) and brings in two powers of energy release in the numerator.

2) Each heavy (static) quark propagator contains factor m3/2
fin

3) The scale of energy release in the exponent is set up by the masses of the
heavy quarks,

mQ −
∑

mfin

Exploiting Eq.(49) and discussion above it we obtain

T ∝ const ·
(
mQ −

∑
mfin

)2nl−7/2
m
−3/2
Q e−2ρ(mQ−

∑
mfin)

∏
m

3
2
fin (55)

where nl is the number of massless quarks; mQ

is the mass of the initial quark and mfin are the masses of the final heavy particles
(both quarks and leptons). If there are no heavy particles in the final state we return
to Eq.(49).

7 Heavy quarks – a toy model

Before proceeding to the actual calculation of the instanton contribution to heavy
quark decays, we will first perform the same analysis in the simple toy model of

6Here, we can first deform the integration contour over x0 into the complex plane and then use
the 1/mfin expansion for the quark propagator. Another clarifying remark: for massive particles,
the propagator entering at the saddle (effectively Minkowski) point is complex. In doing the saddle
point calculations, one should take its values at the “bottom” of the cut; we shall dwell on this
point elsewhere.
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scalar chromodynamics. Without any loss of physical content, we can simplify our
consideration by neglecting the spin degrees of freedom, as was suggested in Ref.
[36].

The weak Lagrangian,
LW = h Qq̄ φ+ h.c., (56)

describes the decay of a heavy scalar quark, Q, into a light (massless) quark, q,, and
a scalar “photon”, φ ; the coupling, h, has dimensions of mass. Both quarks are in
the spinor representation of the color group.

The basic strategy of our semiclassical calculation of the transition amplitude
has been outlined in the previous section; here we work out details. We calculate
the transition operator in Euclidean space using the semiclassical approximation,
considering scalar quarks in the background of an instanton field. Upon returning
to the Minkowski space, T will acquire an imaginary part related to the instanton
correction to the total decay width.

7.1 Inclusive width

Consider the transition amplitude,

T (r) =
1

2MHQ

〈HQ|T̂ (r)|HQ〉 =
1

2MHQ

〈HQ|
∫

d4x e−irx iT{LW (x)LW (0)}|HQ〉

(57)
where r is an arbitrary external momentum. Denote the 4-velocity of the heavy
hadron by vµ (~v = 0). Proceeding to the nonrelativistic fields, Q̃, and using Eq.(38),
we have

T̂ (r) = i
∫

¯̃Q(x)S(x, 0)Q̃(0)Gφ(x2) e i(mQv−r)x d4x d4z , (58)

where Gφ is the propagator of the scalar photon, and S(x, y) is the propagator of the
massless scalar quark in the external (instanton) field. We put y = 0. Addressing
the total width, we will only consider ~r = 0 and r0 arbitrary (and complex); the
more general case is relevant for differential distributions. For heavy quarks the
transition amplitude depends only on the combination mQ − r0 :

T (r) = T(mQ − r0) .

Choosing an appropriate r0, we select deep Euclidean kinematics and calculate the
amplitude in the presence of an instanton. To this end we write

mQ − r0 = ik0 , (x0, z0) → −i(x0, z0), (59)

and
T̂(k0) =

∫
¯̃Q(x)S(x, 0)Q̃(0) Gφ(x) e ikx d4x d4z, (60)

where now everything is in Euclidean space; in what follows it is assumed that
k0 ∼ mQ.
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The propagator of the massless scalar particle in the instanton background is
known exactly, and in the singular gauge takes the following form [33]

S(x, y) =
1

4π2(x− y)2
(1 + ρ2/x2)−1/2

(
1 +

ρ2(τ+x)(τy)

x2y2

)(
1 + ρ2/y2

)−1/2
(61)

where, to simplify the expression, we have assumed that the instanton is centered
at z = 0 and lies in a particular SU(2) color subgroup,

Aµa(x) =
2ηµνa(x− z)νρ2

(x− z)2((x− z)2 + ρ2)
(62)

and
τ = (~τ , i) τ+ = (~τ,−i) τ+

α τβ = δαβ + ηαβcτc , (63)

where ~τ are the Pauli matrices acting in the color subgroup.
The heavy quark field, Q̃(x), is the solution of the equation of motion in the

instanton background

iD0Q̃(x) =
1

2mQ

(iD)2Q̃(x)

which, in the leading order in 1/mQ, yields Eq.(45) with the matrices U given by
Eq.(46). For the heavy scalar quarks one has

1

2MHQ

〈HQ | Q̄Q | HQ〉 =
1

2mQ

. (64)

Now we take a closer look at the final state quark propagator, rewriting it using
the Feynman parametrization:

S(x, y) =
1

π

∫ 1

0
dξ [ξ(1 − ξ)]−1/2 1

ξ(1− ξ)(x − y)2 + ρ2 + z̃2
×

1

4π2(x− y)2

(
1 +

ρ2τ+(x− z)τ (y − z)

(x− z)2(y − z)2

) √
(x− z)2

√
(y − z)2 (65)

where
z̃ = z − xξ − (1− ξ)y .

Integrating in Eq.(60) over x0 we only pick up the pole at

x2 =
ρ2 + z̃2

ξ(1− ξ)

which yields the following exponential factor:

e−k0

√
(ρ2+z̃2)/(ξ(1−ξ))+~x2

. (66)
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At k0ρ ∼ mQρ � 1, the remaining integrations are nearly Gaussian, and run over
narrow intervals,

~x2 ∼
ρ

mQ

,

(
ξ −

1

2

)2

∼
1

mQρ
,

(
z −

x

2

)2

∼
ρ

mQ

. (67)

Thus, one performs the remaining integrations by merely evaluating all pre expo-
nential factors at the saddle point. In particular, this refers to the matrix U−1(x),
coming from the heavy quark propagation, which is now the path exponent from
the point (x0, 0 ) to (0, 0 ) . U−1(x) evaluated at the saddle point and is just the unit
matrix, and the color part of the light quark Green’s function Eq.(61) . The heavy

quark field, ¯̃Q(0, ~x ), according to Eq.(67), enters at distances ~x ∼
√
ρ/mQ � ρ and,

therefore, the transition operator is finally proportional to Q̄(0)Q(0) .
Collecting all remaining factors, one has

T̂(k0) = h2 Q̄(0)

{
Gφ(−4ρ2)

2π2ρ

∫
dξ d3~x d4z e−k0

√
(ρ2+z2)/(ξ(1−ξ))+~x2)

}
Q(0) , (68)

where

Gφ(x2) =
1

4π2x2
,

is the free scalar propagator. Performing the Gaussian integrations (which yield the
factor 4π4ρ3k−4

0 · e
−2k0ρ), and using Eq.(64), we finally arrive at

T (q0) = −
h2

16mQ

e−2k0ρ

k4
0

= −h2 e 2i(mQ−r0)ρ

16mQ(mQ − r0)4
. (69)

Let us note that the above equation shows the correct pre-exponential power of mQ.
The propagator of the scalar particle in the instanton background has a first order
pole, unlike the second order one of the spin-half quark, and matrix element (64)
has an additional power of m−1

Q . This leads to a result with two powers of mQρ less
then predicted in Eq.(50).

Now, we are interested in the decay width, which is given by the imaginary part
of T (r) at the physical Minkowski point r = 0. Since the singularity of the amplitude
we calculated is located far enough away, at r0 ' mQ, we perform a straightforward
analytic continuation by merely setting r0 = 0 and, thus, get

ΓI
scal = −h2 sin (2mQρ)

8m5
Q ρ

4
. (70)

In accordance with the general analysis of Sect. 3 the instanton contribution in the
width decreases only as a power of mQ and oscillates.
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7.2 Decay distribution

Here we address the calculation of the instanton-induced corrections to the “photon”
spectrum. The corrections blow up near the tree-level endpoint, where the semi-
classical approach is not applicable. On the other hand, the total width is given by
the integral over the whole spectrum and is calculable. The situation here is similar
to the one we discussed in the Sect. 5 for the finite energy moment integrals in the
e+e− cross section, and we closely follow this analogy in our analysis.

Let us denote the photon momentum by q, with q0 = Eγ . To find dΓ/dEγ , one
must consider the transition operator similar to the total width, but without the
photon propagator Gφ :

dT (r, q) =
1

2MHQ

〈HQ|dT̂ (q, r)|HQ〉 (71)

with
dT̂ (q, r) = i

∫
¯̃
Q(x)S(x, 0)Q̃(0) e i(mQv−q−r)x d4x d4z . (72)

The transition operator then clearly depends only on the sum of the four-momenta
q + r, but since calculating the differential decay rate we need to keep q2 = 0 and
q0 = Eγ > 0, such a temporary proliferation formally allows us to use the momentum
r for analytic continuation and is appropriate. In particular, we will keep ~q fixed,
say, directed along the z axis, assume ~r = 0, and again use the variable r0 to
make calculations in the Euclidean domain. Kinematically, the amplitude dT (r, q)
depends on two invariants, (r + q)2 and (r + q)0, or any two combinations thereof.

Technically, the calculation of the transition operator does not differ from the
case of the total width except for the fact that now the Euclidean momentum k

mQ − q0 − r0 = ik0 , ~q + ~r = ~k

has not only the zeroth, but also spacelike components. The saddle point calcu-

lation goes exactly in the same way if one replaces k0 by
√
k2 =

√
k2

0 + ~k 2, the
main contribution comes from the singularity of the light quark propagator and the
heavy quark matrix U still equals unity at the saddle point. For this reason, in the
leading approximation the amplitude dT (r, q) appears to depend, in fact, only on
one kinematic variable (mQv − r − q)2 = (p− q)2, and one has

dT (q, r) = π2h
2ρ2

mQ

e−2ρ
√
k2

k4
= π2 h

2ρ2

mQ

e 2iρ
√

(mQv−q)2

(mQv − q)4 ρ4
. (73)

In the last equation, we continued the result to the physical domain setting r = 0;
to be far enough from the singularity and ensure the applicability of the calculations
we must assume that (mQv − q)2ρ2 � 1.

The differential decay rate for the massless φ is given by

dΓ

dq0
=

1

2π2
q0 ϑ(q0) Im dT (q) =
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=
h2ρ2

2mQ

q0 ϑ(q0) · ϑ(mQ − 2q0)
sin

(
2ρ
√

(mQv − q)2
)

(mQv − q)4 ρ4
(74)

(remember, we fixed |~q | = q0). Eq.(73) (and (74) for the imaginary part), in fact, are
nothing but the soft instanton contribution to the massless (scalar) quark propagator
(in the Fock-Schwinger gauge, or dressed with the path exponent to make it gauge-
invariant in the general case).

In the approximation of free quark decay, the photon spectrum is monochromatic,
∝ δ(Eγ − mQ/2). Equation (74) yields a decay spectrum below the end point,
at Eγ < (mQ/2). The result for the spectrum is, as expected, oscillating (sign-
alternating). This does not lead to any physical problems, of course, because this
contribution is to be considered on the background of “normal” OPE corrections
(as well as the perturbative ones) which populate the spectrum below the two-body
endpoint. The main OPE contribution near the end point is related to certain
initial-state interactions of the heavy quark, and is interpreted as Fermi motion kNEW
[32, 36, 37, 38]. It produces a decay distribution which is unsuppressed, of order
unity, in the interval |Eγ−mQ/2| ∼ ΛQCD, and decreases fast only when mQ/2−Eγ
becomes larger than a hadronic scale. At (mQ/2) − Eγ � ΛQCD the perturbative
tail of the spectrum density takes over. In this domain our instanton calculations

are already legitimate, since there
√

(mQv − q)2 ∼
√
mQρ if ρ ∼ ΛQCD. However,

we emphasize that the corrections (73), (74) are not related to the Fermi motion:
the instanton effects in the latter appear in subleading orders in mQρ.

Equation (74), far enough from the end point, represents, in a sense, a purely
“exponential” effect. This is not the case anymore, however, if one attempts to
integrate over Eγ and find the contribution to the total decay width. This fact
is clearly revealed at the technical level when one compares the above calculation
with the preceeding calculation of the total width: in the case of Γtot one effectively
uses the x-independent photon propagator Gφ(x2) = −1/(16π2ρ2), whereas Eq.(74),
according to Cutkowski’s rules, corresponds to the propagator Gφ(q) = −1/q2, i.e.
Gφ(x2) = 1/(4π2x2). They differ explicitly by the presence of the singularity at
x = 0, which generates the normal OPE terms in Γtot. Of course, a thoughtful
instanton calculation of the integrated spectrum yields the same result as the direct
calculation of the total width. Starting from the differential spectrum one has to
resort to a special treatment of the OPE domain near the end point.

A straightforward attempt to calculate the total width by integrating the spec-
trum (74) seemingly faces a surprising problem: the correction grows fast toward
the end point [7, 8] where the light quark is soft (though carrying large energy), and
the integral seems to saturate at mQ/2 − Eγ ∼ 1/(mQρ

2), where the expansion in
1/Qρ fails, and the overall result completely depends on an ad hoc cutoff procedure;
the total contribution then would allegedly be governed by this soft scale, rather
than by mQ. This is similar to the apparent paradox in the finite energy moments
of R in the e+e− annihilation addressed in Sect. 5. The resolution of the paradox is
essentially the same: any exponential contribution in the hard part of the spectrum

35



is automatically accompanied by the corresponding OPE-like “counterterms” in the
end point region, which are superficially invisible. Although the exact spectrum in
the latter cannot be calculated, certain integrals are defined unambiguously. As a
result, the non-zero total width effect emerges only from the explicit (non analytic)
constraint on the photon energy at Eγ = 0, i.e. at small q, and, thus, the instanton
(exponential) contribution to the total width is indeed determined by the hard scale
mQ.

To reveal this conspiracy explicitly, we again exploit the fact that dT̂ exponen-
tially decreases in the Euclidean domain. In our concrete case, there is a technical
simplification: dT̂ (q) depends only on one kinematic variable κ2 = (mQv − q)2, the
“invariant mass squared” of the light final state quark. One can write the dispersion
relation over κ2,

dT (κ2) =
1

π

∫ ∞
0

Im dT (κ′2)

κ′2 − κ2
dκ′2 . (75)

The fact that dT (κ2) falls off exponentially in the Euclidean domain, dT (κ2) ∼

e−2
√
−κ2ρ, means that all moments of Im dT (κ2) vanish:∫ ∞

0
κ2n Im dT (κ2) dκ2 = 0 . (76)

On the other hand, ImdT (κ2) differs from dΓ/dq0 by only a simple kinematic factor.
For a massless φ, for example,

dΓ

dq0
=

1

2π2
q0 ϑ(q0) Im dT (q) , (77)

q0 =
m2
Q − κ

2

2mQ

, |~q | = q0 .

Therefore,

∫ MHQ
/2

E
dq0 q

n
0

dΓ

dq0
= −

1

4π2mQ

∫ ∞
m2
Q
−2mQE

(
m2
Q − κ

2

2mQ

)n+1

Im dT (κ2) dκ2 . (78)

We see that the instanton correction to the spectrum integrated from the very end
point down to some Emin is determined, not by the end point effects, but by the

lowest energy included, and one has in this case 2ρQ→ 2ρ
√
m2
Q − 2mQEmin . If one

integrates over the whole spectrum, the correction is parametrically minimal, and
reproduces the correction for the total width. Clearly, it is the most general feature
of the “exponential” effects which does not depend on the particular decay. As was
mentioned in Sect. 5, the constraints (76) can be written in the following compact
form

Im dT (κ2) =
∫ ∞

0
ds χ(s)

[
δ(s− κ2)− e−s

∂

∂κ2 δ(κ2)
]
, (79)
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where χ(s) is some smooth function vanishing at s ≤ 0. This expression automati-
cally satisfies the relation∫ κ2

0
Im dT (κ2)P (κ2) dκ2 = −

∫ ∞
κ2

Im dT (κ2)P (κ2) dκ2 (80)

for any appropriate analytic P (κ2). The saddle point instanton calculation carried
out above determins the asymptotics of the function χ(s) at s� 1/ρ2 :

χ(s) ' π2h2 ρ
2

mQ

sin (2
√
s ρ)

s2
. (81)

In such a saddle point way we cannot calculate Im dT (κ2) at κρ <∼ 1. According
to Eq.(79), however, we know certain integrals over the small virtuality domain.
For any particular “exact” χ(s) they are obtained as a series of δ functions and
derivatives of δ functions located at the end point, which, when summed, give a
certain more or less smooth function in the whole range, whose asymptotics are
given by Eq.(81).

For example, one can calculate the instanton contribution to the total width by
integrating the spectrum. We use the general relation of the type (76) or (78) to
write the total width as minus the integral of the right- hand side of Eq.(74) (without
step-functions) from q0 = −∞ to 0. In the leading order in mQρ, the integral is
easily performed by parts, and is determined near the vicinity of the point q0 = 0,
immediately yielding, exactly, the total width (70).

It is not difficult to see how this works in the most general case. Suppose we
study, for example, the “semileptonic decays” Q → q + ` + ν. If we can measure
momenta of both ` and ν, p`,ν , the differential distribution is merely given by

d2Γ = Φ(p`, pν) · Im dT (mQv − (p` + pν)) . (82)

Now we want to integrate over the momentum of neutrino and determine the in-
stanton contribution to the charged lepton spectrum. We then keep p` fixed and
integrate Im dT with the phase space, Φ, depending on pν . If the phase space fac-
tor were an analytic function of pν , the constraints (76) or (79) would ensure the
vanishing of the integral.

However, the phase space contains a step-function at Eν = 0, and only for this
reason does one get a nonvanishing integrated width due to exponential terms. Then
the relation (80) can be used to represent the integrated effect as the effect from the
kinematic boundary and above (i.e., over the domain where neutrino “carries away”
negative energy), which is a hard domain where the expansion is applicable 7. Since

7The same reasoning equally applies, of course, to the case of the massive final particles as well.
In this case it is convenient to phrase this consideration in the frame where mQv − p` has only a
timelike component. The phase space integral is not a polynomial anymore when mν 6= 0, but is
the step-function at Eν = mν multiplying a fractional power function. Then one merely must put
the corresponding phase space factor P in Eq.(80) under the sign of Im in the right hand side.
This does not change the general reasoning presented here.
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in this domain Im dT (κ2) is a rapidly oscillating function ∼ sin (2κρ), the integral
is determined by its lower limit; the expansion in 1/Q is obtained by integrating
by parts, and in the leading approximation given by the corresponding derivative
of Im dT (κ2), from which we must keep only the derivatives of sin (2κρ). The
exact coefficients combine to yield just the value of the neutrino propagator at the
point which enters in the direct calculation of the lepton spectrum, i.e. Gν(x) at
x = 2ρ(mQv − p`)/|mQv − p`| .

To illustrate the last assertion, we must remember that to get the total width in
the leading approximation, we need to integrate the differential width near pν = 0
keeping trace of only the non-analytic part due to the neutrino phase space, and

the oscillating part, sin (2ρ
√

(mQv − p` − pν)2), in the differential distribution. All
other constituents of the amplitude can be approximated by their values at pν = 0.

To see that this integration automatically yields the proper factor, we can use the
following trick: compare this integral with the calculation of the neutrino Green’s
function in the coordinate space by taking the Fourier transform of its momentum
representation. Let us take the Fourier integral by closing the contour of integration
over k0 by its physical residue (we assume here that the zeroth coordinate coincides
with the direction of the vector mQv − p`):

Gν(x) =
∫

d4k

(2π)4i
Gν(k) e ikx =

∫
d3k

(2π)32k0

Gν(~k) e ikx . (83)

The large-x asymptotics of the last integral is determined by the behavior of the
phase space factor d3k/k0 at small |k| where it is non analytic. This factor, on the
other hand, is exactly the same as in the double distribution if one identifies k in
the above calculation with pν (both are nothing but d4k δ+(k2−m2

ν)/(2π
4)). If one

chooses the coordinate x in such a way as to have the same oscillating exponent

e ikx on the right hand side of Eq.(83) as in dT ∼ e 2iρ
√

(mQv−p`−pν)2
, identifying

k with pν , the values of the integrals will also coincide. The last condition just
fixes the above stated value of the coordinate. This matching is rather obvious
since the oscillating factor in dT came originally from evaluating the exponential
e i(mQv−p`−pν)x at the saddle point x, which enters the neutrino Green’s function.

Therefore, integrating over the neutrino momentum in the decay, we recovered
our direct recipe of calculating the lepton spectrum, namely considering the problem
as a two-body one, but using dT given by the product of the quark propagator in the
instanton field, and the neutrino propagator at the saddle point x2 = −4ρ2. Since
the integrated effect comes from the zero momentum of neutrino, it is governed by
the same exponential (oscillating) factor determined by mQ and p, | mQv − p`|. We
can repeat the very same consideration once more integrating now over the energy of
the charged lepton; the leading term in the integral again comes from p` = 0, where
the phase space of the lepton is non-analytic, the nearby integration reproduces
G`(−2iρ, 0), the argument of the neutrino Green’s function becomes the same, and
we arrive at the total width obtained in the direct way in the preceeding subsection.
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8 Instanton Contribution to Heavy Quark Decay

Rates – Real QCD

We now proceed to the case of actual b and c quarks; the modification required here
is accounting for the quark spins. In principle, the analysis goes along the same
lines as for the scalar quarks. However, since we deal with instantons – topologically-
nontrivial configurations of the gauge field – the massless quarks acquire zero modes.
They manifest the intervention of the infrared, long-distance effects in the presence
of the instantons. This is an obvious defect of our simplified one-instanton ansatz. If
we used the topologically trivial (but nonperturbative) configurations, the problems
with the zero modes would be absent.

Technically, this problem emerges already at the very first step: the Green’s
function of the massless quark is not defined in the field of one instanton since the
Dirac operator has a zero mode. In order to perform estimates similar to the ones
described in the previous sections, we need to regularize the massless quark Green’s
functions in the infrared. We do it in the most naive way: introducing a small
mass term mq. Now, the Green’s functions are well-defined but they have terms
which behave like 1/mq, which show up wherever the chirality-flip quark amplitudes
occur. However, when the weak interactions of the quarks are purely left-handed,
the problem disappears since the zero modes do not contribute, and we can put
mq = 0 in the end. We are aware, of course, that this procedure is not fully self-
consistent, but, hopefully, it works satisfactorily for our limited purposes – revealing
the correct exponential dependence, as well as the power of mQ, in the pre-exponent.
It seems quite plausible that only the overall numerical coefficient will be modified
in a more accurate analysis.

Otherwise, the calculations go with minimal modifications. Let us outline the
treatment of the semileptonic width. Once again, we write the transition operator
(the integration over ρ will be restored at the very end)

T̂ (r0) =
G2
F |VQq|

2

2

∫
¯̃Q(x)ΓµS(x, 0)ΓνQ̃(0)Lµν(x) e i(mQv−r)x d4x d4z (84)

where the weak polarization tensor for the lepton pair Lµν and the weak vertices are

Lµν(x) = −
2

π4

1

x8
(2xµxν − x

2δµν) , Γµ = γµ(1− γ5) . (85)

The heavy quark fields, Q̃, are nonrelativistic as in Eq.(39), and are originally
bispinors. However, solving the Dirac equation of motion in the limit mQρ� 1 we
get the fields in the form of Eq.(45). The color matrix U has the same form as in
Eq.(46).

The Green’s function of the light quark in the instanton background, S(x, y), is
expanded in mq and has the following form [33, 30]:

S(x, y) = −
1

mq

P0(x, y) +G(x, y) +mq∆̃(x, y) +O(m2
q)
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where P0 is the projector on the zero modes (P0 does not contribute to Eq.(84) since
it flips chirality.) Therefore, we can merely put mq = 0 to arrive at

1− γ5

2
S(x, y)

1 + γ5

2
=

1− γ5

2
G(x, y)

1 + γ5

2

1− γ5

2

{
−∆γ

2π2∆4
(1 + ρ2/ζ2)−1/2

(
1 + ρ2/η2

)−1/2
·

(
1 +

ρ2(τ+ζ)(τη)

ξ2η2

)
+

−1

4π2∆2ζ2η2
(1 + ρ2/ζ2)−1/2(1 + ρ2/η2)−1/2

(
ρ2

ρ2 + η2
(τ+ζ)(τ∆)(τ+γ)(τη)

)}
(86)

where
ζ = x− z , η = y − z , ∆ = x− y .

Now, the calculation differs from the case of the scalar quarks in minor technical
details, namely, the different power of (x2 +ρ2) in the denominator, and the presence
of the γ matrices in the numerator. At the saddle point, U = 1 , the heavy quark
fields enter at the origin, the leptonic tensor must be evaluated at x∗ = (2iρ,~0), and
the final result is

T̂ (r0) =
G2
F |VQq|

2

4π2ρ8 (i(mQ − r0))
3 e 2i(mQ−r0)ρ Q̄(0)iγ0Q(0) . (87)

Since
〈HQ|Q̄ γ0 Q|HQ〉 = 2MHQ

we finally obtain

ΓI
sl =

G2
F |VQq|

2

2π2ρ8 m3
Q

sin (2mQρ) . (88)

In terms of the free quark semileptonic width,

Γ0 =
G2
Fm

5
Q|VQq|

2

192π3
,

we get

ΓI
sl = Γ0

96π

(mQρ)8
sin (2mQρ) . (89)

In a similar manner it is easy to find the expression for the differential distribu-
tions in the semileptonic decays. We quote here the expression for the instanton-
induced lepton spectrum (in its hard part, i.e. far enough from the end point) in
the same approximation,

mb

2Γ0

dΓI(b→ u`ν)

dE`
=

48π

(mbρ)5
ε2
(

1−
ε

2

) cos
(
2mbρ

√
1− ε

)
(1− ε)5/2

,

mc

2Γ0

dΓI(c→ s(d)`ν)

dE`
=

48π

(mcρ)5
ε2(1− ε)2

cos
(
2mcρ

√
1− ε

)
(1− ε)5/2

. (90)
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Here ε = 2E`/mb or ε = 2E`/mc for the two decays, respectively. It is immediately
seen explicitly, using the technique described in Sect. 7.2, that the integral over the
spectrum reproduces the total semileptonic width (88).

Now let us proceed to the nonleptonic decays with the massless quarks in the
final state. Repeating the derivation above we get the non-leptonic width 8

ΓI
nl =

3c2
+ + c2

−

4
Γ0

128π

15(mQρ)4
sin (2mQρ) (91)

where c± are the standard color factors due to the hard gluons in the weak vertex
[39].

For completeness we also give the instanton contribution to the inclusive radiative
rate of the type b→ s+ γ,

Γγ ' −Γγ0
12π

(mQρ)6
sin (2mQρ) . (92)

The above estimate refers to the yield of photons with all energies. In experiment one
cuts off the low-energy photons, however. According to the previous discussion, the
introduction of the lower cut off can change the estimate of the duality deviations.
We will not submerge into further details regarding this effect here.

9 Numerical estimates

In this section, we present numerical estimates of the possible violations of the local
duality in our model. The effects rapidly decrease with the energy release. They can
be quite noticeable at intermediate energies, however. The inclusive decay width of
the D meson, and is expected to be one of the prime suspects. Indeed, with the
mass of the c quark only slightly over 1 GeV, one can expect sizable violations of
duality. Another case of potential concern is the hadronic width of τ . This width is
also saturated at a similar mass scale. In these two cases, there exists at least some
(quite incomplete, though) empiric information. It is natural to treat one of them
as a reference point, in order to adjust the parameters of the model. Basically, we
have only one such parameter, the overall normalization of the instanton density d0,
see Eq. (18). We will use the semileptonic D decays for this purpose. Then the
second problem (τ decays) can be used as a check that the model is qualitatively
reasonable and does not lead to gross inaccuracies. As a matter of fact, this was
already demonstrated in Sect. 5.1. Encouraged by this success we then take the risk
to use the model for numerical estimates of the duality violating effects in various
B decays. Although our model is admittedly imperfect, the numbers obtained can
hopefully be viewed as valid order-of-magnitude estimates.

8We should note that here the subleading effects are probably significant: even within our simple
saddle point calculation we formally had to discard, e.g. terms of the type 9!!/(2Qρ)5 ' (4/(2Qρ))5.
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9.1 Γsl(D)

This decay was numerically analyzed in the heavy quark expansion more than once
[40]–[46], with quite controversial conclusions. We will summarize here our current
point of view [47], deferring a brief discussion of the literature until Sect. 11.

The parton semileptonic D decay width is given by

Γ0(D→ lνXs,d) =
G2
Fm

5
c

192π3
' 1.03 · 10−13 GeV at mc = 1.35 GeV , (93)

where the strange quark mass is neglected. The comparison with the experimental
value

Γexp(D → lνX) ' 1.06 · 10−13 GeV (94)

seems to be very good. However, there are corrections to the free quark estimate
(93); both the perturbative and nonperturbative corrections calculated within 1/mc

expansion work together to noticeably decrease the theoretical prediction.

(i) Perturbative corrections

The one-loop perturbative correction to the width in the four-fermion decay is
known since the mid-fifties [48]; for QCD one gets the factor ηpert multiplying the
theoretical formula for the width (i.e. Γ→ Γ0ηpert),

ηpert = 1−
2

3

(
π2 −

25

4

)
αs

π
. (95)

This factor obviously decreases the theoretical prediction for the width, the question
is how much. The answer for ηpert is not as obvious as it might seem, and depends
on how mc is defined.

Equation (95) implies that one uses the (one-loop) pole mass of the c quark in the
inclusive rate. (As well-known, the notion of the pole mass is ill-defined theoretically
[49, 50, 51]. It is safer to use the Euclidean mass, which also pumps away some of the
αs corrections from the explicit correction factor ηpert . This decreases the mass and
the coefficient in the correction simultaneously. The product m5

cηpert is numerically
stable, however, and for our limited purposes we can stick to Eq. (95) and the
one-loop pole mass.) The one-loop pole mass was numerically evaluated, say, in
the charmonium sum rules, yielding [52] the number 1.35 GeV quoted above. This
number is also in a good agreement with the heavy quark expansion for the difference
mb −mc [53],

mb −mc = MB − MD + µ2
π

(
1

2mc

−
1

2mb

)
+O

(
1

m2
Q

)
(96)

where

MB,D =
MB,D +MB∗,D∗

4
.
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Here, and in what follows, we use the notations

µ2
G =

〈B| b̄ i
2
σµνG

µν b |B〉

2MB

≈
3

4
(M2

B∗ −M
2
B) ,

and

µ2
π =

〈B| b̄(i ~D )2 b |B〉

2MB

. (97)

Substituting mpole
b ' 4.83± .03 GeV [54], and a reasonable value of µ2

π (see below),
in Eq. (96), we again end up with mpole

c ' 1.35 GeV.
Controversial statements can be found in the literature concerning the value of

µ2
π, (associated mainly with its different understanding) but the issue appears to be

numerically unimportant for our purposes.
Now, one has to establish the normalization point of αs in Eq. (95). Luke et

al. suggested [55] exploiting the BLM prescription [56] for this purpose; it must be
done in strict accord with the treatment of the mass. This leads to

ηpert ≈ (1− 0.25) (98)

(for further details see Ref. [46]). This number turns out to be stable against the
inclusion of the O(α2

s), and higher order corrections estimated in a certain approxi-
mation [57].

(ii) Nonperturbative corrections

Now let us examine the nonperturbative corrections. There are no corrections
to the width that scale like 1/mc , and the leading ones are given by the 1/m2

c terms

Γsl(D) = Γ0ηpert

(
1−

3µ2
G

2m2
c

−
µ2
π

2m2
c

)
. (99)

While µ2
G is known, see above, µ2

π is not yet measured in experiment. We have to
rely on theoretical arguments, which, unfortunately, are not completely settled yet.

The original QCD sum rules estimate [58] yielded

µ2
π = (0.5± 0.1) GeV2 . (100)

We believe that the value µ2
π ≈ 0.5 GeV2 is the most reasonable estimate available

at present. It matches a general inequality, [36, 59, 60]

µ2
π > µ2

G ' 0.36 GeV2 , (101)

and a more phenomenological estimate of Ref. [61]. Moreover, Eq. (100) is
marginally consistent with the first attempt of extracting µ2

π directly from data
[62], keeping in mind the theoretical uncertainties encountered there (other analyses
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are in progress now). In any case, the effect of the kinetic operator on the semilep-
tonic D width is modest, so that the impact of the uncertainties debated in the
literature can lead to at most ∼ 5% change in Γsl(D).

Assembling all pieces together, numerically we get

Γsl
th(D) ' Γ0 (1− 0.25− 0.3− 0.15) (102)

where the corrections in the parentheses stand for the perturbative correction, the
chromomagnetic and the kinetic energy terms, respectively. Thus, one is left with
less than a half of the experimental width. According to Ref. [47], the next order
nonperturbative O(1/m3

c) effects apparently do not cure – and possibly deepen –
the discrepancy.

Pushing the numerical values of the parameters above, within uncertainties, to
their extremes (but still, within acceptable limits), one can somewhat narrow the
gap, but it is certainly impossible to eliminate it completely. Therefore, it is natural
to conclude that the observed discrepancy in Γsl(D), at the level of several dozen
percent, is due to duality violations.

We will make this bold assumption. The instanton contribution to Γsl(D), Eq.
(89), is then convoluted with the instanton density (18) to yield

ΓI
sl(D) = Γ0 d0

96π

(mcρ0)8
sin (2mcρ0) . (103)

Ignoring the sine on the right-hand side 9, and requiring this contribution to be
0.5Γ0, we obtain

d0 ≈ 6× 10−2 (104)

(the values ρ = 1.15 GeV−1 and mc = 1.35 GeV are used). We will consistently
exploit the above values of d0 and ρ0 in all numerical estimates in Sect. 9.2.

If our approach is applied to the hadronic τ width, deviation from duality comes
out to be

ΓI(τ → hadrons)

Γ0 (τ → hadrons)
∼ d0

4π2

(mτρ0)6
≈ 4× 10−2, (105)

i.e. quite reasonable. The fact that the numbers come out qualitatively reasonable
in this case is also demonstrated by Fig. 1. Let us note in passing that the 4%
uncertainty in Γ(τ → hadrons) translates into ∼ 30% uncertainty in the value of
αs(mτ ).

9.2 Duality violation in b decays

What is the magnitude of the anticipated effects in other situations where they are
not yet determined experimentally, say, in beauty decays? Within our model the

9The value of sin (2mcρ0) is sensitive to how close the argument is to kπ. This proximity is a
very model-dependent feature, sensitive to small variations of parameters. Since we are aimed at
conservative estimates all sine factors here and below will be consistently put equal to unity.
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answer can be given. In what follows we will use expressions obtained in Sect. 8,
convoluted with the instanton density (18), ignoring sines and cosines in numerical
estimates. In this way we expect to get an upper bound on the duality violating
contributions. This expectation is based on the following: (i) smearing with a
more realistic finite-width instanton density will inevitably result in some extra
(exponential) suppression, compared to the delta-function density; if the instanton
density is distributed rather narrowly, the above suppression plays no role in D and
τ but will presumably show up at high energy releases characteristic to B decays;
(ii) substituting sines and cosines by unity we increase the estimated value of the
duality violations.

Let us first address the simplest case, b → u `ν semileptonic width, where the
energy release is the largest. To abstract as much as possible from the untrustworthy
details of the instanton model, we can merely use the scaling behavior Eq.(89).
In other words, in all expressions below we keep only the pre-exponential factors,
discarding all sines and cosines. Then

|ΓI(b→ u `ν)|

Γ0(b→ u `ν)
∼ d0

96π

(mbρ0)8
≈ 2× 10−5 . (106)

A similar estimate for the radiative transition, b → s + γ, based on Eq.(92),
yields

|ΓI(b→ s+ γ)|

Γ0(b→ s+ γ)
∼ d0

12π

(mbρ0)6
≈ 8× 10−5 . (107)

Next, we move on to processes with a heavy quark in the final state. Of partic-
ular interest are duality violating effects in the Kobayashi-Maskawa allowed b → c
transitions. Consider first the semileptonic decays B → Xc `ν. As was discussed in
Sect. 6.2, the instanton result for this process vanishes in the leading saddle-point
approximation, while the subleading terms near the saddle point have not been cal-
culated. To get an upper bound on the duality violations in the b→ c transition, in
a rough approximation, we neglect all these subtleties and merely use our expression
for the b→ u replacing mb by mb −mc,

|ΓI(B → c `ν)|

Γ0(B → c `ν)
∼ d0

96π

ρ8
0(mb −mc)8

≈ 3× 10−4 . (108)

Summarizing, the duality violating corrections are expected to be negligible in
the semileptonic and radiative B decays, and even in the b→ c transitions.

Let us proceed now to nonleptonic decays. Here, according to our model, the
situation may somewhat change: deviations from duality jump up. Intuitively it is
clear that the smallest effect is expected in the channel b → uūd where the energy
release is the largest. Specifically,

|ΓI(b→ uūd)|

Γ0(b→ uūd)
∼ d0

3c2
+ + c2

−

4

128π

45(mb ρ0)4
≈ 6× 10−4 , (109)
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where

Γ0(b→ uūd) = 3 Γ0 =
G2
F m

5
b |Vub|

2

64π3

and
c− = c−2

+ = {αs(mb)/αs(MW )}12/23 ≈ 1.3

The effect further increases in the case of Kobayashi-Maskawa allowed nonlep-
tonic transitions b→ cūd.

Considering the c quark as a static heavy quark which, according to section 6.2,
does not interact with the instanton field at the saddle point, we obtain the following
expression :

|ΓI(b→ cūd)|

Γ0(b→ cūd)
∼ 2d0

7c2
+ + 3c2

− + 2c+c−

12
×

16π5/2 (mb −mc)
1/2

m5
b ρ

9/2
0

(
mc

mb

)3/2

≈ 2× 10−3 . (110)

Here

Γ0(b→ cūd) ' 3 Γ0 · 0.5 = 0.5
G2
F |Vcb|

2 m5
b

64π3
,

with the factor 0.5 due to the kinematical suppression in the phase space associated
with the c quark mass. The peculiar expression with the c± factors above emerges
from the color matrices in the weak Lagrangian and in the quark Green’s functions
after averaging over orientations of the SU(2) instanton over the color SU(3) group.

However, one may worry that the c quark is not heavy enough since the parameter
mcρ ∼ 2 is rather close to unity. Then, we may also try to consider another limiting
case, and treat the c quark as massless, keeping mc only in the energy release. Then
applying the technique from section 6.1, we obtain

|ΓI(b→ cūd)|

Γ0(b→ cūd)
∼ 2d0

3c2
+ + c2

−

4

128π

45ρ4
0(mb −mc)4

≈ 4× 10−3 , (111)

which is very close, numerically, to the previous estimate. Note, the coefficients in
front of c+ and c− are different since the heavy quark does not have color structure
in the propagator while the massless quark does.

The instanton contribution is enhanced by an order of magnitude due to the
fact that the energy release is by a factor, (mb −mc)/mb ≈ 0.7, smaller then in the
channel with massless quarks, and due to the kinematical suppresion in the partonic
width.

Finally, let us discuss the duality violating contributions in the transition with
two heavy quarks in the final state, b → cc̄s, where they are believed to be the
largest, for an obvious reason: the energy release is the smallest 10. This natural
expectation does not contradict our model, although the enhancement is rather

10Phenomenological analyses of the b→ cc̄s channel are presented, e.g. in recent works [63].
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modest, cf. Eqs. (110) and (113). The SV approximation for the c quarks in the
transition b → cc̄s is justified; the simplest saddle point evaluation yields a non-
vanishing effect due to the presence of the s quark in the final state. Performing the
saddle point evaluation, one obtains

ΓI(b→ cc̄s (d)) ∼ − d0
2c2

+ + c2
−

3

G2
F |Vcb|

2 |Vcs|2m3
c

πm
3/2
b (mb − 2mc)3/2ρ5

0

sin (2ρ0(mb − 2mc)) ,

(112)
with

Γ0(b→ cc̄s) ' 3 Γ0 · 0.15 = 0.15
G2 |Vcb|2 |Vcs|2 m5

b

64π3
,

and 0.15 coming from phase space suppression due to two c quarks in the final state.
Numerically,

|ΓI(b→ cc̄s)|

Γ0(b→ cc̄s)
∼ 7 d0

2c2
+ + c2

−

3

64 π2

(mbρ0)5

m3
c

(mb(mb − 2mc))3/2
≈ 5× 10−3 . (113)

Concluding this section, let us reiterate our numerical findings. Using the saddle
point approximation, and the instanton model to determine the nature of the sin-
gularities in the quark propagators, in the complex (Euclidean) plane, we are able
to derive some scaling relations for the duality violating effects induced by “soft
background” fields. Keeping track of only the powers of relevant energies in the pre-
exponent, neglecting the rest, and normalizing the strength of the “soft background”
field by the D meson semileptonic decay, we observe the following hierarchy:

∆ΓI(b→ cc̄s) ∼ 2∆ΓI(b→ cud) ∼ 8∆ΓI(b→ uūd)

∼ 16∆ΓI(b→ clν) ∼ 60∆ΓI(b→ sγ) ∼ 250∆ΓI(b→ ulν) .

Our numerical estimates are expected to be upper bounds within the particular
mechanism of duality violations considered in the present paper. We hasten to
add, though, that there exist physically distinct mechanisms, e.g. due to hard non-
perturbative fluctuations, or those which may be somehow related to the spectator
light quarks in the initial state, and so on. They deserve a special investigation.

10 Drawbacks and Deficiencies of the Model

Our instanton model of duality violations has obvious shortcomings. Although qual-
itatively it correctly captures the essence of the phenomenon we want to model –
transmission of a large external momentum through a soft background gluon field –
the one-instanton ansatz itself is too rigid to be fully realistic. It has virtually one
free parameter, the instanton size, and this is obviously not enough for perfectly
successful phenomenology. The value of ρ we use is even somewhat smaller than

47



that usually accepted in the instanton liquid model [23]. Correspondingly, the os-
cillation period comes out too large. For instance, in R(s), Eq.(28), the oscillation
period is almost twice as large as one observes experimentally. Figure 2 suggests
that the typical oscillation length in R(s)exp is

√
s ∼ 0.6 GeV while from Fig.1 we get√

s ∼ 2.7 GeV . Even if we used the instanton liquid value, this would not narrow
the discrepancy in any significant way. Moreover, the data seems to suggest that
the oscillation length slowly varies as we move to higher energies. Our one-instanton
ansatz is certainly incapable of reproducing this feature. The lesson we learn is that
the soft background field has to be larger in scale and more sophisticated in shape.

Another manifestation of the unwanted rigidity of the one-instanton background
is the occurrence of zero modes for massless quarks. This phenomenon also leads to
some inconsistencies in our treatment. For instance, the two-point function of the
axial currents would not possess the necessary transversality properties. We essen-
tially ignored this problem, keeping in mind the emphasis we place on qualitative
aspects of duality violations. After all, our model is semi-quantitative, at best.

The soft gluon fluctuations crucial in the duality violations are definitely not the
ones constituting the dominant component of the vacuum. Indeed, if we used the
instanton weight (18), with d0 fitted to reproduce the duality violations in the D
meson semileptonic decay, as the instanton density in the liquid model we would
render this model disastrous. With our density in the instanton liquid model we
would get the value of the gluon condensate ∼ 20 times larger than it actually is.

In addition to the above negative features, the model obviously misses other
mechanisms which might also lead to violations of duality. The most noticeable is
the absence of the impact of the initial light quarks in b decays. At the very least,
one could suspect that they play a role in the formation of the soft gluon medium
which, after the decay, has to transmit a large energy release. The influence of the
initial light quarks would make the duality violating effects non-universal (they will
be different, say, in mesons and baryons). At the moment we have no idea how
to take into account this effect, nor we have any idea of how essential it might be
numerically.

On the positive side, we would like to stress again, that the model is general
enough. One considers instantons only as a source of finite distance singularities
in the quark Green’s functions, and for that purpose they may serve satisfactorily.
Our procedure has very little to do with the full-scale instanton calculations of the
type presented in Refs. [27] – [30]. In this sense, our calculations are much less
vulnerable than the standard instanton exercises. The finite-distance singularities
merely represent the mechanism of transmitting a large momentum through a large
number of soft “lines”, with no hard lines involved (so that this mechanism does
not appear in practical OPE). Our point of view is pragmatic: experimental data
clearly indicate duality violations, with an oscillating pattern, and so we reproduce
this physical effect through fixed-size instantons. Eventually, comparison with data
will lead to a better understanding of the relevant gluon field configurations and
emergence of a model free from the drawbacks summarized above.
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11 Comments on the Literature

The present work intertwines many aspects of QCD – purely theoretical and phe-
nomenological – in one junction; some of these aspects are quite controversial and
cause heated debates. Therefore, it is in order to briefly review the literature in
which the relevant issues were discussed previously.

We have already mentioned previous instanton calculations inRe+e− and τ decays
[30, 26, 27, 28, 29]. Technically, they are very instructive and advanced. There are
hardly any doubts, however, that the solitary instantons considered in these exercises
do not represent, in the dynamical sense, typical relevant vacuum fluctuations. The
fact that the corresponding estimates fell short of the experimentally observed effects
is neither surprising nor frustrating. At the same time, the provocative suggestion of
Ref. [17] to use instantons for abstracting finite-distance singularities in the quark
Green’s functions, was largely ignored. We try to develop this idea to its logical
limits.

Recently, the impact of the small-size instantons was analyzed in the spectral
distributions of the inclusive heavy quark decays, within the formalism of HQET
[7, 8]. The “part larger than the whole” paradox was first detected in these works:
the instanton contribution to the spectra was found to be parametrically larger
than the very same contribution to the decay rate. (The result was divergent at the
boundaries of the phase space. This divergence is due to the fact that the isolated
instanton density badly diverges at large ρ, and the instanton size is regulated by
the external energy release, which vanishes at the end points.) The solution of this
paradox was discussed at length above. The spectra near the boundaries of the
phase space can not be calculated point-by-point in the present-day QCD. Still,
the integrals over the spectra over a finite energy range touching the end-point are
calculable. Integrating the instanton contribution, taking into account its peculiar
analytical properties, automatically yields the effect which is determined by the
far side of the smearing interval, rather than by the end point domain. The main
subtlety lies in the process of separation of a “genuine” instanton contribution from
regular OPE. Our procedure automatically avoids double counting, an obvious virtue
which is hard to achieve otherwise.

The question of whether or not the semileptonic D decays are subject to no-
ticeable duality violations is more controversial and is debated in the literature.
Sometimes it is claimed that the OPE result (99) is compatible with experimental
data, with no additional terms. The price paid is rather high, however: the mass
of the c quark is then pushed up beyond 1.55 GeV (the value of µ2

π is pushed down
almost to zero). If the value of mc was that high, one would be in trouble in many
other problems, e.g. the charmonium sum rules [52], the analysis of the bb̄ threshold
region [54], and so on. Moreover, using a calculational scheme, which relies on large
mc, leads to poor control of the perturbative series – a fact noted in Ref. [55]. We
believe that the value of the product m5

cηpert used above is realistic, which inevitably
entails violations of duality in the D meson semileptonic decays in the ballpark of
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several units times 10−1. Let us emphasize that our standpoint is testable experi-
mentally. One of possible tests is analyzing, say, the average lepton energy in the
D meson semileptonic decays. This quantity is much less sensitive to the value of
mc than the total width. Therefore, the task of detecting deviations from OPE
becomes much easier. An indirect proof may be provided by confirmation of duality
violations in the τ lepton rate in the ballpark of several units times 10−2.

12 Conclusions and outlook

At high energies the inclusive decay rates (e.g. τ → ν+ hadrons, or B → Xu + `ν,
or nonleptonic B decays) are represented by the sum of the transition probabilities
into a very large number of possible final states. It looks like a miracle that these
complicated sums, with various threshold factors, final state interactions and so on,
reproduce a smooth quark (gluon) curve. This duality is explained by QCD. If the
quark (gluon) cross section is calculated by virtue of the procedure known as practical
OPE, one expects that the inclusive hadronic cross section coincides with the quark
(gluon) curve at large energy releases up to terms which are exponential in the
Euclidean domain, and have a very peculiar oscillating pattern in the Minkowskian
domain, where they fall off relatively slowly, at least in the oscillation zone (Sect.
5.2). Physically these exponential terms are associated with the transmission of large
external momenta through the soft gluon medium.

To model this mechanism mentioned above we suggest instanton-motivated esti-
mates. The instantons are used to abstract general features of the phenomenon and,
to some extent, to gauge our expectations. We associate duality violations with the
finite distance singularities in the quark Green’s functions due to soft background
field configurations. The instanton-induced finite distance singularities produce a
pattern of duality violations which closely resembles the indications (rather scarce,
though) provided by current experimental data on e+e− and τ decays. The free
parameters of the model are calibrated using these data.

Let us examine, for instance, Fig. 2. which presents the differential hadronic
mass distribution in τ decays. From the first glance it is clear that significant (up to
∼ 20÷30%) violations of local duality are present in the whole accessible range. As
a matter of fact, the “oscillating”, duality-violating part of the effective V−A× V−A
cross section, δRV−A, is well approximated, in the region 0.8 GeV2− 3 GeV2, by the
function

δRV−A ' 5

(
J1(7.5

√
s)

7.5
√
s
−

2

7.52
δ(s)

)
( s in GeV2 ) . (114)

The right-hand side is about −0.1 at s = 2.5 GeV2. If we take this function literally
at all s, and reconstruct the corresponding correlator δΠ in the complex plane, we
will find that it has no 1/Q2 expansion at all and, hence, would be omitted in any
calculation based on practical OPE. In the Euclidean domain, the corresponding
Π(Q2) decreases exponentially,
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− δΠ(Q2) ' 10
K1(7.5

√
Q2)

7.5
√
Q2

. (115)

We plot R(s) corresponding to Eq.(114) and Eq.(115) on Fig.6. Its value is extraor-
dinarily small, ∼ 3 · 10−4, already at Q2 = 1 GeV2. It reaches a “noticeable” 30%
level only at Q2 = 0.1 GeV2, at the mass of the two pion threshold! And it is still (at
least) as important as the usual perturbative corrections in the Minkowski domain,
in the physical cross section, at as large of values of s as s ' 2.5 GeV2! With some
reservations we can say that in the e+e− annihilation and in the τ decays we already
have direct experimental evidence that such effects are significant.

Less direct – but still quite convincing – arguments show that semileptonic charm
decays also exhibit a similar phenomenon. There are good reasons to believe that
such a situation is not exceptional. We argued that these effects represent typical
behavior of the strongly confining interacting theory in Minkowski space.

Accepting our model, with all its drawbacks, for qualitative orientation we were
able to achieve certain progress in relating various pieces of phenomenology to each
other. First, we found that the observed 20 to 30% deviations in e+e− annihilation
and in the spectra of the τ decays are consistent with significant corrections to the
inclusive semileptonic D decay rate. At the same time, our estimates of duality
violations rapidly decrease with increase of the energy scale, and produce seemingly
negligible effects in the inclusive decays of beauty.

The strongest duality violations are expected to occur in the non-leptonic decays
of B mesons, especially in those which contain two charmed quarks in the final state.
In the transitions b → c̄cs they are of order of 1%, while in the semileptonic and
radiative decay rates deviations from duality fall off in magnitude to several units
×10−4.

Although our estimates are universal – they do not distinguish, say, between B
mesons and Λb baryons – the model per se, taken seriously actually carries seeds
of “spectator-dependency”. Indeed, the presence of extra light quarks in the initial
state (baryons of the type Λb) can help lift the chiral suppression of instantons,
enhancing their weight compared to the meson case. In the case of Λb the spectator
quarks can naturally saturate the instanton zero modes for u and d quarks in the
diagram incorporating both “Pauli Interference” and “Weak Scattering”-type pro-
cesses. Then it is natural to expect stronger violations of duality. The argument
is quite speculative, of course. This issue has not been investigated in detail. A
dedicated analysis is clearly in order.

The instanton model we suggest for estimating duality violations relies only on
the most general features of instanton calculus, deliberately leaving aside concrete
details. Instantons are taken merely as representatives of a strong coherent field
configuration which have fixed size ρ� 1/Q, providing the quark Green’s functions
with finite-distance singularities. In this situation we get a transparent picture
of the corresponding duality violating phenomena. Technically, in the Minkowski
kinematics the effect of the finite-x singularities can be viewed as an additional
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emission of a spurious particle, a “ghost”, with an arbitrary mass κ. The mass of
the fictitious ghost has a smooth distribution, decreasing as some power of 1/κ, but
oscillating in a more or less universal way. Equation (114), with 7.5

√
s replaced by

2ρκ, is an example. The peculiarity of the κ distribution is a remarkable fact that the
overall decay rate, with emission of the “ghost”, is always saturated at the maximal
invariant mass of the ghost available in the process at hand. This qualitative picture
can actually be converted into a kind of special diagrammatic technique for the
ghost propagation. The instanton-motivated estimate of the strength of the “ghost
coupling” is probably too crude. However, we think that such an approach, in a
generalized form, may prove to be useful in describing violations of duality.

Exploring duality violations is a notoriously difficult task. This field practically
remains terra incognito, over the two decades since the advent of QCD. Our present
attempt is only the first step. The model itself has an obvious potential for im-
provement. Getting rid of the rigidity of the one-instanton ansatz, one may hope
to achieve phenomenological success in describing fine structure of the duality vio-
lating effects: the length of the oscillations and its modulations, and so on. (The
pattern of experimental data suggests, perhaps, the presence of more than one scale
of oscillations in the duality violating component. More accurate data that could
provide more definite guidelines, are still absent.)

To this end, it is necessary to consider as a background field a more generic
configuration, with more free parameters, say, an instanton molecule, or liquid type
configurations. It is clear that the configurations relevant to the phenomenon under
consideration 11 have at least two scales built in, and one of them is significantly
lower than 1 GeV. Such a project will require a lot of numerical work, however – an
element we wanted to avoid at the first stage.

Two other promising directions for explorations of duality violations are two-
dimensional models and weakly coupled QCD in the Higgs phase. Both directions
are much simpler than the actual QCD, and still the phenomenon is complicated
enough so that the answer is not immediately clear. The first attempt of using
the ’t Hooft model for this purpose was made in Ref. [24], which contains some
initial observations. The potential of the model is clearly far from being exhausted.
As for gauge theories with the spontaneous breaking of symmetry, calculation of
the inclusive two-particle scattering near the sphaleron mass, revealing the typical
pattern of the cross section, would be extremely instructive for QCD proper [25].

Let us note in this respect that lattice QCD, unfortunately, can add very lit-
tle, if at all, to the solution of the problem of duality violations. The reason is
quite obvious: all lattice simulations are done in the Euclidean domain, where all
“exponential” terms are indeed exponentially small. Physically interesting and nu-
merically important are these effects at large energies, deeply inside the Minkowskian
domain, and very far from the Euclidean domain where the lattice simulations are

11Remember, these configurations definitely have very little to do with those determining the
most essential features of the QCD vacuum.
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formulated.
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Figure 1: R(E), taking into account instanton contribution. The perturbative result
is normalized to unity.
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Figure 2: Experimental value of R(E).
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Figure 3: Forward scattering amplitude. Bold lines represent propagation of a
particle in the instanton field.
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Figure 4: Finite distance singularity of the Green’s function of massless particle in
the instanton background.
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Figure 5: Exact (solid line) and the asymptotic (dashed line) behavior of R(E).
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Figure 6: Experimental data, fit of R(s) with Bessel function, and corresponding
McDonald function for Euclidean Q2, D(Q2) = 1

π
(Q2d/dQ2)Π(Q2).
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