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Abstract

Within a Liouville approach to non-critical string theory, we discuss space-time foam ef-

fects on the propagation of low-energy particles. We find an induced frequency-dependent

dispersion in the propagation of a wave packet, and observe that this would affect the

outcome of measurements involving low-energy particles as probes. In particular, the max-

imum possible order of magnitude of the space-time foam effects would give rise to an error

in the measurement of distance comparable to that independently obtained in some recent

heuristic quantum-gravity analyses. We also briefly compare these error estimates with the

precision of astrophysical measurements.
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1 Introduction

Two of the most important problems of Modern Physics are the lack of a consistent
quantum theory of gravity, and a satisfactory description of the quantum measure-
ment process. As regards the first of these problems, so far there is no mathematically
consistent local field theory of gravity which is compatible with quantum mechanics.
Although the classical limit of gravity, General Relativity, has been verified experi-
mentally with good accuracy, profound difficulties arise when one seeks to combine it
with the quantum features of our world. These difficulties have many aspects. The
absence of a (renormalizable) path integral for quantum geometries in four space-
time dimensions is a very basic formal issue [1]. Puzzles and inconsistencies arise
even in certain weak-coupling limits of general relativity with quantum mechanics.
One such example is the semiclassical quantization of macroscopic black holes: when
one quantizes the fields of low-energy point particles in such backgrounds, there ap-
pears Hawking radiation due to quantum evaporation of the black hole [2]. The latter
results in entropy production and therefore the apparent evolution of pure quantum-
mechanical states to mixed ones. As the macroscopic black hole evaporates, the
energy and entropy of the radiation field increases. Obviously, such a situation can-
not be described by treating the quantum field theory subsystem as closed. Indeed,
the general view is that there is information loss across the event horizon surrounding
the black hole.

This apparent difficulty also presents another problem associated with the ill-
defined nature of the quantum-gravitational path-integral measure. If microscopic
Planck-scale fluctuations of the black hole type exist, which is to be expected since
they exist classically, the possibility arises then that the associated Hawking radiation
will affect the purity of quantum-mechanical states interacting with this quantum-
gravitational space-time foam [3, 4]. At present there is no known consistent way
of formulating scattering-matrix elements for the propagation of quantum matter in-
corporating recoil effects in black hole backgrounds. And the black hole is but one
example of a topologically non-trivial gravitational fluctuation: there are likely to be
others that could cause similar or worse problems.

The measurement problem is one of the great mysteries of quantum theory it-
self, even if gravitational interactions are ignored. Quantum mechanics is a non-
deterministic theory, whereas the physical laws governing the macroscopic limit of the
observable world have deterministic formulations. Many physicists have attempted
to shed some light on this question by exploring various mechanisms that could lead
to the transition from the microscopic quantum world to the macroscopic classical
world. The most influential idea in the field is that of the decoherence of a quantum
system in interaction with a macroscopic measuring apparatus [5, 6]. The idea is
that, during a measurement process, the quantum system is an open system, and as
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such it should be described by a density matrix. After some time tD, characteristic
of the system, the off-diagonal elements of its density matrix decay exponentially in
time. The time tD is inversely proportional to the number of ‘atoms’ of the mea-
suring device [6]. Hence, the collapse time for macroscopic systems is diminished
significantly, and the transition to classicality is achieved.

Until recently, there were objections [5] to this approach to classicality based on the
argument that the decoherence (or density matrix ) approach refers to an ensemble
of theories, and hence does not describe correctly the behaviour of a single quantum
mechanical system, which should in principle be described by a state vector. As
a counterargument, we would emphasize that the above approach - which is more
general than the state vector approach - is the correct one, since the interaction with
the measuring device opens up the microscopic system. This means that one must
average over possible histories in the path integral, and hence over theories [7]. The
state-vector picture is inadequate in such a case, whilst the density-matrix picture is
an appropriate description.

A mathematically satisfactory approach which formally reconciles the two pictures
has been developed recently in ref. [8]. It was shown that, for quantum mechanical
systems in interaction with an environment whose details are irrelevant to a major
extent, a state-vector picture can be written down, but the time evolution is not
of Schrödinger type. Instead, it resembles stochastic evolution of the Ito type [8],
known previously for open statistical systems. The importance of this formulation is
that it leads, under some rather generic assumptions, to localization of the quantum
system in one of its states [8]. This localization occurs independently of the pres-
ence of a measuring apparatus, and may be viewed as a state-vector representation
of the environment-induced decoherence previously described in the density matrix
approach [4, 6]. According to the theorem of ref. [8], the passage to classicality - in
the above sense - will occur for all non-isolated quantum systems, i.e., for all realistic
physical systems in our world. However, this approach does not deal with the accu-
racy (uncertainty) in the measurement. It is important to note, as we shall discuss
later on, that localization in this state-vector approach does not necessarily imply
that the uncertainy in, say, length measurements, will be reduced as a result of de-
coherence. On the contrary, the opposite seems true. Indeed, it has been known for
some time that decoherence effects may lead to uncertainties in length measurements
that depend on the size of the distances measured [9].

It seems natural, in the light of the above discussion, to expect that quantum grav-
ity, in solving the apparent incompatibility between quantum mechanics and classical
gravity, leads to a mechanism for decoherence [6, 4, 10]. This can be realized by think-
ing of quantum gravity as providing a space-time ‘medium’ through which low-energy
quantum-mechanical particles propagate [11]. The suggestion that quantum gravity
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induces decoherence finds encouragement in some analyses of thought experiments,
in which the only assumption was that quantum gravity should reproduce smoothly
quantum mechanics and classical gravity in their respective limits of validity. These
analyses indicate [9, 12, 13, 14] that a length L can only be defined operationally
in quantum gravity up to an uncertainty min{δL} that is L-dependent, with the
largest contribution to this uncertainty [13, 14] growing with L like

√
L. Moreover,

it is known [12, 9] that such an L-dependence in min{δL} can be associated with
decoherence effects.

In recent years, a candidate quantum-gravity model leading naturally to decoher-
ence has been provided by a non-critical formulation of string theory, exemplified by
a treatment of quantum black holes [11]. At present, string is the only apparently
consistent quantum theory incorporating gravity along with the rest of the funda-
mental interactions. It should be noted that non-critical strings constitute a more
general framework than critical ones, and that their precise quantum structure is still
not known. The approach of ref. [11] includes a treatment of the nature of time in
such non-critical strings. It has been argued [11] that time may be identified with a
renormalization-group scale on the world sheet of the first-quantized version of the
string. As such, the passing of time is associated with entropy production, reflecting
information loss across event horizons, microscopic as well as macroscopic.

In this picture, space-time foam is a medium of global, non-propagating gravita-
tional stringy degrees of freedom, which interact with propagating low-energy parti-
cles via stringy gauge symmetries. In the specific example of two-dimensional black
hole studied in ref. [11], these global Planckian modes fail to decouple from the
propagating low-energy modes in the presence of microscopic black-hole space-time
backgrounds. Quantum coherence can be preserved only when the infinite set of such
modes are taken into account. This can be done in the two-dimensional quantum
field theory on the world sheet, but local space-time scattering experiments cannot
detect these non-propagating gravitational modes. Thus, the low-energy world is ef-
fectively an open system, and decoherence arises in a stochastic way for specifically
stringy reasons [11]. This is the first explicit realization of the idea that the peculiar
features of quantum gravity may provide a ‘medium’ for the propagation of ordinary
matter. Attempts have been made to use these two-dimensional stringy black-hole
models as building blocks in the construction of realistic four-dimensional quantum-
gravity backgrounds in string theory [11, 15]. This is still an open issue, though,
and should not be considered as complete at this stage. For our purposes, however,
we shall view the two-dimensional non-critical string [11] as a concrete example of a
stochastic formulation of quantum gravity.

In this paper we discuss issues related to uncertainties in measurement in the
presence of quantum gravity entanglement of the stochastic type mentioned above.
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We shall derive bounds on the precision with which lengths can be measured, that
are in agreement with the general arguments concerning quantum-gravity-induced
decoherence which were mentioned above. The structure of the article is as follows:
in section 2 we review the results of refs. [13, 14] on the growth of the measurement
error min{δL} with L like

√
L. Then, in section 3 we review the type of vacuum

entanglement present in the non-critical string theory of ref. [11], discuss from various
points of view its maximum possible order of magnitude, and motivate the ensuing
modification of the state-vector formalism of conventional quantum mechanics. As
we discuss in more detail in section 4, this suggests that low-mass particle waves
may experience dispersion as they propagate through the space-time foam. If this
has the maximal order of magnitude discussed earlier, we show in section 5 that it
leads naturally to min{δL} ∼

√
L as in the previous approach to combining quantum

mechanics and classical gravity.

This striking observation adds support to both approaches. It is important for
the generic approach of ref. [14], because it provides a candidate microscopic the-
ory which leads to bounds on measurement errors of similar order of magnitude to
those derived previously on the basis of heuristic considerations on the low-energy
limit of quantum gravity. For the string framework [11], it is important because the
derivation of the measurement bounds relies, as we shall see, on an as yet unveri-
fied assumption on the maximal order of magnitude of quantum-gravity effects. The
compatibility of the bounds derived within the two different approaches constitutes
an additional argument in favour of the correctness of these order-of-magnitude esti-
mates for low-energy physics. Section 6 contains a summary of our results, presents
some conclusions, and compares the distance uncertainty derived here with various
astrophysical limits.

2 Bounds on the Possible Accuracy of Distance

Measurements from Heuristic Considerations in

Quantum Gravity

Difficulties in introducing local observables in quantum (and even classical) gravity
originate from the fact that general coordinate invariance washes away the previous
specification of individual points of the space-time manifold using a coordinate sys-
tem. This specification of individual points can be regained by labelling them using
particles of matter1, i.e., introducing a material reference system (MRS), but then
one must take into account the dynamics of this matter and its back-reaction on the
space-time manifold [16].

1This is an idea which has been discussed extensively in the quantum gravity literature. Refs. [16,
17] recently reviewed this subject, presenting various viewpoints.
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The problem of measuring distances in such a conceptual framework was discussed
in ref. [14], and bounds were derived on the accuracy with which distances can be
measured in an abstract MRS composed of identical bodies, defining the space points,
with some internal physical variables, defining the time instants [16]. The measure-
ment procedure considered in ref. [14] (see also ref. [13]) involves the exchange of a
“light signal”, i.e., a signal propagating at the speed of light and so composed of
massless particles, between two of the bodies composing the MRS. Using 40-year-
old purely quantum-mechanical arguments [18], it was shown that the uncertainty
in measuring the distance between two such MRS bodies must satisfy the following
inequality:

δL ≥

√
L

M
, (1)

where M is the common mass of the identical bodies composing the MRS, and we
use natural units such that h̄=c=1. The condition (1) follows from the fact that, as
their mass is increased, the bodies of the MRS behave more and more classically with
respect to the other systems (clocks, detectors, etc.) participating in the measurement
process. The classical laboratory limit is reached [14], in complete consistency with
quantum mechanics2, in the M →∞ limit, in which case it is possible to have δL ∼ 0.

However, as discussed in ref. [13, 14], the ideal scenario δL ∼ 0 cannot be realized
in presence of gravitational interactions, since the required large values of the mass M
necessarily lead to great distortions of the geometry. Well before reaching the M→∞
limit, the measurement procedure can no longer be accomplished in the way envisaged
in conventional quantum mechanics. In particular, the minimal requirement[14] that
a horizon should not form around the bodies constituting the MRS leads to the
condition

M ≤
s

L2
P

, (2)

where s is the common size of the bodies. Eqs. (1) and (2) combine to yield the
following measurability bound:

δL ≥

√
LL2

P

s
. (3)

In particular, since LP ∼ 10−33cm is expected to be the minimum length attainable
in a single-scale theory of quantum gravity such as may be provided by string theory,

2Conventional quantum mechanics is a theory that predicts the results of measurements of
(quantum) observables by some classical (infinitely-massive) apparatus. In this non-gravitational
quantum-mechanical framework there are no measurability bounds: any observable can be measured
with perfect accuracy, at the price of renouncing all information on its conjugate observable. The
effects we discuss in this paper go beyond this traditional uncertainty principle.
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it is interesting to consider the special case s ∼ LP . In this case, eq. (3) reduces to

δL ≥
√
LLP . (4)

As we shall see shortly, a bound of the same order may be obtained from entirely
different considerations within certain stochastic approaches to quantum gravity.

3 Space-Time Foam Effects on the Propagation of

Low-Energy Particles

In this section we shall take a different approach, discussing the propagation of
low-energy particles through space-time foam in the light of an analysis of possible
coherence loss in quantum gravity, which is supported by one formulation of non-
critical string theory [11].

As we mentioned briefly in the Introduction, in this approach we identify time
with a Liouville field which serves as a (local) renormalization-group scale for non-
critical strings, leading to a stochastic evolution in time which causes initially-pure
quantum-mechanical states to become mixed, with accompanying entropy produc-
tion [11]. A concrete example of such evolution at a microscopic level is provided by
two-dimensional target-space string theory in black-hole backgrounds [19, 11]. In this
theory, the only propagating degrees of freedom, to be associated with observables
in local scattering experiments, are massless scalar fields. However, due to the per-
sistence of infinite-dimensional stringy W∞ gauge symmetries in target space, there
are non-trivial couplings between the propagating degrees of freedom and the ‘envi-
ronment’ of global, delocalized stringy states, which may be interpreted as solitons
and figure among the higher-level string states [11]. These couplings disappear in
flat space-times, and appear only in the presence of microscopic fluctuations in the
space-time background, represented in this case by black holes. This phenomenon
constitutes an explicit realization of the idea that quantum gravity generates a space-
time foam ‘medium’, through which low-energy matter propagates with non-trivial
couplings. It is suggested that there are observable consequences of this evolution,
which follow from the fact that low-energy dynamics will be inherently open, due to its
couplings to quantum-gravitational degrees of freedom, which find an explicit model
representation. In this approach, time itself is a measure of information loss/entropy
production due to the interaction with this microscopic environment. As a result, an
open-system modification of conventional quantum-mechanical time evolution, with
genuine CPT violation [20], will characterize the temporal evolution of the low-energy
(observable) world. The stochastic nature of the quantized renormalization-group
flow on the world sheet yields stochastic time evolution according to this picture.
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We provide below a brief review of the corresponding modifications of low-energy
quantum mechanics believed to be induced by such an approach to quantum gravity,
specifically in the context of the non-critical string analysis of ref. [11]. Our intention
here is only to recapitulate briefly the basic results of the approach for the benefit
of the non-workers in the field, and to estimate the maximum possible order of mag-
nitude of deviations from conventional quantum mechanics. Further details can be
found in ref. [11].

The evolution of pure states into mixed ones necessitates the introduction of density
matrices ρ(t) for the description of low-energy dynamics [4]. The modified form of
temporal evolution may be deduced [11] from the renormalization-group invariance
of physical quantities in non-critical string theory, and may be written as a modified
quantum Liouville equation for ρ(t) [11, 21]:

Q
∂

∂t
ρ ≡ Qρ̇ = i[ρ,H] + δH/ρ ; δH/ ≡ iQġiGij [g

j, ]

Q =

√
|25− c[g, t]|

3
(5)

where the gi are fields representing string couplings, Gij is a metric on the space
of these couplings, and c[g] is the running central charge of the non-critical string.
It is important to stress that the first-quantized approach to non-critical strings
entails quantization of the background fields gi, as a consequence of resummation
over higher-genus world-sheet topologies in the Polyakov path integral over string
histories. The quantities Qġi ≡ βi are the world-sheet renormalization-group β-
function coefficients in a formulation of non-critical string theory in terms of general
two-dimensional field theories (σ models) on the world sheet. In critical string theory,
the coefficients βi vanish, as a result of world-sheet conformal invariance. In the
presence of fluctuations in the space-time background, such as quantum black holes,
however, apparent conformal invariance is lost for a low-energy observer who observes
only propagating fields. From the explicit example of two-dimensional (spherically-
symmetric four-dimensional) stringy black holes, we know that conformal invariance is
guaranteed only if the infinite set of global string modes is turned on as backgrounds.
The latter cannot be observed by localized scattering experiments. When these are
not taken into account, the result is that the effective βi do not vanish, inducing
Liouville field- (scale-) dependence of the renormalized coupling/fields gi, as described
in ref. [11]. In a quantum theory of non-critical strings, such apparent violations of
world-sheet conformal invariance are allowed, in the sense that one can dress up the
theory with Liouville scale factors so as to restore conformal symmetry. It is this
dressing that leads to the flow of time in the interpretation of ref. [11, 21], and it
is the semi-group nature of the renormalization group that causes this time flow to
have an arrow, accompanied by coherence loss and entropy gain.
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At present we are not in a position to calculate reliably the order of magnitude of
any such deviation from conformal invariance. However, various different methods
point towards similar estimates, as we now discuss.

• In the non-critical-string framework [11], within which the mechanism for the
‘opening’ phenomenon is traceable directly to Planckian physics, we expect that
the string σ-model coordinates gi obey renormalization-group equations of the
general form

Qġi = βiMP : |βi| = O

(
E2

M2
P

)
(6)

where the dot denotes differentiation with respect to the target time, measured
in string (LP = M−1

P ) units, and E is a typical energy scale in the low-energy
observable matter system. Since the metric Gij and the couplings gi are them-
selves dimensionless numbers of order unity, we expect that

|δH/ | = O

(
E2

MP

)
(7)

in general. This is a maximal estimate for such effects. Formally, (6) stems from
a (target-space) derivative expansion of the closed-string βi, of the generic form∑∞
n=1 cn(α′∂2

XM )n, where we keep only the first term. However, the coefficient
c1 is not at present known for any physical system. There are expected to
be system-dependent numerical factors that depend on the underlying string
model, |δH/ | might be suppressed by further (E/MP )-dependent factors, and
it could even vanish for some systems. Nevertheless, equation (7) gives us a
natural order-of-magnitude estimate for the decoherence effects due to stringy
quantum gravity in a generic physical system.

• More heuristic quantum gravity considerations yield a similar order-of-magnitude
estimate. The term proportional to δH/ in (5) can be interpreted as a non-
canonical contribution to the rate of change of the density matrix ρ due, in
some sense, to ‘scattering’ off evanescent black holes [4], which one might be
able to estimate by the generic formula

δ(Qρ̇) ' σNρ (8)

where σ is the ‘scattering cross section’, and N is the number density of mi-
croscopic ‘target’ black holes. Within this heuristic approach, it is natural to
expect that σ would be proportional to the square of some ‘scattering ampli-
tude’ obtainable from some effective particle/black hole interaction. The latter
could be expected to contain a factor O(1/M2

P ), as for example in a four-fermion
interaction of the generic form [4, 6]

L = O(
1

M2
P

)ψ̄ψψ̄ψaBH + h.c. (9)
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where the ψ are fermionic fields, ai is a black hole annihilation operator, and
the corresponding creation operator appears in the Hermitian conjugate term
in (9). Squaring the generic ‘scattering amplitude’ generated by the interaction
(9) yields a factor O(1/M4

P ) in the cross section σ in (8). We would expect that
the black hole density

N = O(M3
P ) (10)

corresponding toO(1) microscopic Planck-mass black hole per Planck volume in
space, in much the same way as one expects one QCD instanton per unit volume
' Λ3

QCD in the strong-interaction vacuum. We know of no evidence from generic
quantum-gravity considerations, or more specifically from string theory, which
would argue for any parametric suppression of the generic estimate (10), e.g.,
of the form e−1/α or e−1/

√
α. Combining (9) and (10), therefore, we arrive [6] at

the estimate

δ(Qρ̇) = O(
E2

MP

) (11)

where the energy factors in the numerator follow from naive dimensional anal-
ysis.

• The above estimates receive some support from a semi-classical black-hole cal-
culation, in which a scalar field with gauge interactions is quantized in a four-
dimensional black-hole background. Calculating the dependence of the density
matrix for the external scalar field on the radius of the black-hole horizon, and
recalling that the latter evolves with time as a result of Hawking radiation, we
have arrived [22] at the same order-of-magnitude estimate for the ‘open’ term
in the modified quantum Liouville equation (5).

The next step is to explore the consequences of this estimate for the propagation
of what would normally be a coherent quantum-mechanical wave. Although we have
used above the density-matrix formalism, which is in many applications the most
appropriate for a description of mixed states, it is also possible to cast the problem
of environmental entanglement in a state-vector formalism, and this turns out to be
instructive for a first discussion of wave propagation. We follow the approach due
to Gisin and Percival [8], which involves stochasticity. As we argued above, stochas-
ticity is an essential feature of the identification of target time with a (stochastic)
renormalization group scale variable on the world sheet.

The Lindblad formalism [23, 4] admits a state-vector picture involving a modified
Schrödinger equation [8]. If |Ψ > is the state vector, environmental entanglement
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may be represented as a stochastic differential Ito process for |Ψ > [8]:

Q|dΨ >= −
i

h̄
H|Ψ > dt+

∑
m

(< B†m >Ψ Bm −
1

2
B†mBm −

1

2
< B†m >Ψ< Bm >Ψ) |Ψ > dt+

∑
m

(Bm− < Bm >Ψ) |Ψ > dξm) (12)

where H is the Hamiltonian of the system, and B, B† are ‘environment’ operators. In
our case, these may be defined as appropriate ‘squared roots’ of the various partitions
of the operator βjGij . . . g

i [11], and the dξm are complex differential random variables,
associated with stochastic white-noise Wiener or Brownian processes, which represent
environmental effects averaged out by a low-energy local observer. In our quantum-
gravity/string-theory picture, such effects are due to global Planckian modes [11] of
the string which cannot be detected by local scattering experiments. As such, these
effects are therefore inherently stringy/quantum gravitational.

It is clear from (12) that among the effects of the environmental/quantum-gravity
entanglement represented by the operators B are extra, frequency-dependent phase
shifts in the Schrödinger wavefunction for the modes gi, defined by < gi|Ψ >= Ψgi,
as well as attenuation effects on the amplitudes of the waves. All such effects are
expected to be of the generic order of magnitude O[B†B] = O[βi . . . Gijg

j ]. The
frequency-dependent attenuation effects can be shown to lead to decoherence, in the
sense of an exponential (with time) vanishing of the off-diagonal elements of the
density matrix [6] in (5). In the case of interest here, the precise order of such effects
can be found in principle by solving (12) in the case of massless modes propagating
in a stringy quantum gravity medium, as appropriate for the gedanken experiments
of section 2.

4 Wave Dispersion in Non-Critical String Back-

grounds

A more detailed discussion of the possible dispersive effects of space-time foam on
wave propagation requires a deeper discussion of the non-critical string approach [11]
than we have provided so far in this paper. We will now recall some relevant features
of this formalism, and then explore their specific consequences for wave dispersion.

An appropriate quantum formalism for discussing non-critical string is that of
generalized σ models on a fixed lowest-genus topology of the world sheet, with dressing
by a Liouville field φ, which in the interpretation of ref. [24, 11, 21] plays the rôle
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of target time. The relevant formalism is that of non-conformal deformations Vi of
σ-model actions S[g]:

S[g] = S[g∗] +
∫
d2z
√
γgiVi (13)

where the {gi} denote massless background fields in the string target space, {g∗}
represents an equilibrium conformal solution around which we perturb, and γ is the
world-sheet metric. In the approach of ref. [11], for generic curved world sheets
the renormalization scale may be taken as a local function on the Riemann surface,
which then is quantized to incorporate fluctuating topologies. This necessitates the
introduction of the Liouville mode φ, which in this approach plays the rôle of a
covariant quantum renormalization scale [11, 21]: γ = eφγ∗, where γ∗ is a reference
world-sheet metric. The renormalization-group picture we adopt is that of Wilson,
according to which non-trivial scaling follows from integrating out degrees of freedom
in an effective theory consisting of the massless modes {gi} only.

Coupling the theory (13) to two-dimensional quantum gravity restores conformal
invariance at the quantum level, by making the gravitationally-dressed operators
[Vi]φ exactly marginal, i.e., ensuring the absence of any covariant dependence on a
world-sheet scale. The final result for the gravitationally-dressed matter theory is
then

SL−m = S[g∗] +
1

4πα′

∫
d2z{∂αφ∂

αφ−QR(2) + λi(φ)Vi} (14)

where α′ is the inverse of the string tension. To order O(g2), the gravitationally-
dressed couplings λ(φ) are given by:

λi(φ) = gieαiφ +
π

Q± 2αi
cijkg

jgk φ eαiφ + . . . (15)

with

α2
i + αiQ = sgn(25− c)(hi − 2) (16)

where the hi − 2 are the scaling dimensions of the operators Vi before Liouville
dressing. The operator product expansion coefficients cijk are defined as usual by
coincident limits of the products of pairs of vertex operators Vi:

limσ→0Vj(σ)Vk(0) ' cijkVi(
σ

2
) + . . . (17)

where the completeness of the set {Vi} is assumed.
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From the quadratic equation (16) for αi, only the solution

αi = −
Q

2
+

√
Q2

4
− (hi − 2) (18)

for c ≥ 25 is kept, due to the Liouville boundary conditions. It is worth noticing that
the case c ≥ 25 automatically implies a Minkowski signature for the Liouville mode
φ, enabling it to be interpreted as target time [11, 24]. Indeed, equation (5) was
derived [11] by identifying the physical Minkowski time t with −iφ, an identification
which has been supported by model black-hole calculations.

The structure of eq. (15) suggests that the effects of the non-criticality are quite
complicated in general. However, the form of the Liouville time dependence im-
plies that one of the physical effects of the non-criticality is a modification of the
time-dependence of the λi, which may be described to order O(g2) by the following
approximation to (15):

λi(t) ∼ giei(αi+∆αi)t (19)

where the ∆αi depend on the cijk, which encode the interactions with quantum-gravity
fluctuations in the space-time background.

We are now ready to discuss the issue of wave dispersion. From a target-space point
of view, the gi may be viewed as the Fourier transforms, i.e., the polarization tensors,
of target-space background fields, and the vertex operators are wave operators 3. For
instance, for a deformation corresponding to a scalar mode T (X), one can write∫

d2z
√
γgiVi ≡

∫
d2z
√
γ
∫
dDkeikMX

M (z,z̄)T̃ (k) (20)

where the summation over i includes target-space integration over k, on a D-dimensional
Euclidean space. For massless string modes, as opposed to higher modes, hi − 2 =
kMkM . For our purposes, it suffices to consider the case of an almost flat space
time with small quantum-gravity corrections coming from the interactions of mass-
less low-energy modes with the environment of Planckian string states, implying that
the string is close to a fixed point for which Q2 = c[g∗]− 25 = 0. This is the case in
certain cosmological backgrounds of interest to us [25]. In such a case, we see from

(18) that αi ∼ |~k|.

3Here the concepts of Fourier transforms and plane waves should be understood as being appropri-
ately generalized to curved target spaces, with the appropriate geodesic distances taken into account.
For our purposes below, the details of this will not be relevant. We shall work with macroscopically-
flat space-times, where the quantum-gravity structure appears through quantum fluctuations of the
vacuum, leading simply to non-criticality of the string, in the sense of non-vanishing βi functions.
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Our basic working hypothesis, which has been confirmed explicitly in the two-
dimensional string black hole example [11], is that the matter deformations in such a
black-hole background are not exactly marginal unless the couplings to non-propagating
Planckian global modes are included in the analysis. This implies that the set of
the operator product expansion coefficients cijk in (15) includes non-zero couplings
between massless and Planckian modes in the presence of non-trivial metric fluctu-
ations of black-hole type, and more generally in the presence of structures with a
space-time boundary. These couplings arise in string theory from the infinite set of
stringy gauge W∞ symmetries mentioned in the previous section. They imply that
the massless modes constitute an open system, and that they lose information to
these non-propagating higher-level modes which are not detected in local scattering
experiments, inducing apparent decoherence [11].

The order of magnitude of such couplings is not known at present, and precise
calculations would require a full second-quantized string theory. However, in the
same spirit of the maximal estimate (7), which was also adopted in ref. [11, 20], one
may assume that

∆αi ∼ η
|~k|2

MP

(21)

with η a dimensionless quantity, which parametrizes our present ignorance of the
quantum structure of space time.

For the purposes of the present work, we restrict ourselves to non-critical strings
on fixed-genus world sheets, in which case η in (21) is real. This should be viewed
as describing only part of the quantum-gravity entanglement, namely that associ-
ated with the presence of global string modes [11]. The full string problem involves
a summation over genera, which in turn implies complex η’s, arising from the ap-
pearance of imaginary parts in Liouville-string correlation functions on resummed
world sheets, as a result of instabilities pertaining to microscopic black-hole decay in
the quantum-gravity space-time foam [11]. Such imaginary parts in η will produce
frequency-dependent attenuation effects in the amplitudes of quantum-mechanical
waves for low-energy string modes. This type of attentuation effect leads to deco-
herence of the type appearing in the density-matrix approach to measurement the-
ory [6, 11]. For our purpose of deriving bounds on the possible accuracy of distance
measurements, however, such attenuation effects need not be taken into account, and
the simple entanglement formula (21), with real η, will be sufficient.

The value of η depends in general on the type of massless field considered. In
particular, in the case of photons η is further constrained by target-space gauge
invariance, which restricts the structure of the relevant σ-model β function. With
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this caveat in mind, (21) represents a maximal estimate of ∆αi, compatible with the
generic structure of perturbations of the σ-model β functions for closed strings.

The equations (15), (20) and (21) indicate that the dressed σ-model deformation
(14) corresponds to waves of the form4

e
i|~k|t+i~k. ~X+iη

|~k|2

MP
t

(22)

The corresponding modified dispersion relation

E∼|~k|+ η|~k|2/MP , (23)

which was dictated by the overall conformal invariance of the dressed theory, implies
that massless particles propagate in the quantum-gravity ‘medium’ with a velocity
that is effectively energy-dependent: v∼1 + ηE/MP .

5 Distance Measurement Errors within the Non-

Critical String Approach

We now use the result (22) to derive bounds on the precision with which macro-
scopic distances can be measured, from the quantum-gravity point of view suggested
by our non-critical approach to string theory. For comparison with the previous
estimate of section 2, we consider the use of massless probes propagating through
space-time foam, modelling the latter as a stochastic environment. We consider only
contributions to the distance uncertainty that are associated with the emission and
propagation of such probes. All other possible contributions to the uncertainty, asso-
ciated, for example, with the finite extent of the ‘clock’ used to measure time delays,
will be ignored.

We start by considering the contribution to the distance uncertainty associated
with the vacuum entanglement of the probe during its motion between the bodies
whose distance is to be measured. The fact that (22) describes particle propagation
with an energy-dependent speed v(E), leads to a (positive or negative, depending on
the sign of η) time shift, with respect to conventional relativistic v= 1 propagation.
After a time t, this shift amounts to

∆t ∼ η LP E t . (24)

4Note that eq. (22) is consistent with target-space gauge invariance, since it may describe one of
the polarization states of the photon, and the transversality condition on the photon polarization
tensor, kµAµ = 0, can be maintained.
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From the point of view of an observer attempting to use the time of travel T of one
such probe to measure a length L, this correction can be taken systematically into
account. However, an uncertainty in the relation between T and L is introduced by
the quantum uncertainty in the energy of the probe. Specifically, the time of travel
of a wave packet of energy spread δE exchanged between two bodies whose distance
L is being measured, has an uncertainty

δL1 ∼ η LP δE T ∼ η LP δE L , (25)

where we have used on the right-hand side the fact that the time of travel is, for
a typical experimental set up, of order L. We also keep track of the fundamental
uncertainty for a low-energy observer, in quantum gravity [26] and string theories [27],
due to the natural cut-off in lengths set by the Planck or string length:

δL2 ∼ LP . (26)

In the measurement analysis, these contributions of quantum-gravitational origin
must be combined with the other, well known, purely quantum-mechanical contribu-
tions to the uncertainty. In particular, it follows from the time-energy uncertainty
principle that

δEδT emission ∼ 1 (27)

where δT emission is the uncertainty in the time of emission of the probe. Since this
obviously contributes to the uncertainty in the time of travel measured in the exper-
iment, from (27) one finds the contribution

δL3 ∼
1

δE
(28)

to the uncertainty in the measurement of L.

From (25), (26), and (28) one finds a total uncertainty in the length measurement
that may be written as

δLtotal ≥ ηLPLδE +
1

δE
+ LP (29)

The observer can minimize the uncertainty (29) only by tuning δE, i.e., by preparing
a suitable wave packet. It is, then, straightforward to see that the following bound
holds for the error in the measurement of L:

min{δL} ∼
√
ηLLP + LP . (30)

in the context of the non-critical string approach to quantum gravity outlined in the
previous section.
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If, possibly as a result of string-theoretical cancellations as yet unknown, the ac-
tual wave dispersion due to space-time foam turned out to be weaker than the max-
imal order-of-magnitude estimate (7), a correspondingly weaker dependence on L
of min{δL} would be found. For example, as the reader can easily verify, if (7) is

replaced by |δH/ | = O( En

Mn−1
P

), one finds that min{δL} ∼ L1/nL
1−1/n
P .

6 Summary and Conclusions

We have derived bounds on the precision of macroscopic distance measurements
which follow from a stochastic approach to quantum gravity, motivated by the for-
mulation of non-critical string theory in ref. [11]. Within this approach, distance
uncertainties arise from the observation that propagating particles are subject to
dispersion by the foamy ‘medium’ of microscopic fluctuations in space time, caus-
ing them to acquire an energy- and time- dependent phase shift. This is a result of
their entanglement with the quantum-gravitational ‘environment’, and such disper-
sion would lead to an L-dependent limit on the accuracy with which a macroscopic
length L could be measured.

We have reviewed and developed previous arguments suggesting a specific maximal
estimate (7) for the order of magnitude of the quantum-gravitational entanglement,
which leads to a limit on the accuracy of distance measurement that is proportional
to
√
L. Interestingly, this is of the same order as the bound predicted by a previous

independent analysis combining quantum mechanics and classical general relativ-
ity [13, 14], which we briefly reviewed in Sec.2. We find this similarity remarkable,
because the two physical mechanisms involved in deriving the

√
L-dependent bound

are a priori different and independent. This agreement could even be construed as
providing additional support for the assumption (7).

It is important to note that the type of vacuum entanglement effects appearing in
(7) are within the range allowed by the present experimental accuracy. For instance,
for lengths of the order of the size of the present Universe, 1010 light years, the formula
(30) predicts a distance uncertainty of only η

1
2 10−3 cm. Even the most accurate

astrophysical experimental data appear to constrain only marginally the value of our
phenomenological parameter η. Pulsars provide an excellent long-distance laboratory,
because of their excellent timing. However, even for 1 GeV signals, at the upper end
of the energies of observed pulsar signals, and for a pulsar distance of the order of
104 light years, which would correspond to a pulsars on the other side of our galaxy,
the energy-dependent time delay described in (24) is only of order η 10−8s. Similarly,
(24) predicts that the neutrinos from supernova 1987a, which had energies of order
10 to 100 MeV and came from a distance of about 1.6 105 light years, might have

16



experienced a time dispersion of only about η 10−7s as a result of their entanglement
with the quantum-gravity medium/vacuum.

This brief discussion indicates that a value η ∼ 1, corresponding to the maximal
estimate (7), may not be in contradiction with any present data. However, a more
systematic investigation of terrestrial and astrophysical data is needed to set an ac-
curate experimental bound on η. To the extent that the maximal estimate (7) cannot
be excluded, experimental searches for quantum-gravity effects in particle and other
laboratory physics motivated by this estimate should not be discouraged. We would
cite in particular the searches for open quantum-mechanical CPT violation in neu-
tral kaons[20], which could even be on the verge of experimental observation, if (7)
holds, and also possible searches in macroscopic quantum-mechanical systems such
as SQUIDs [6, 28].
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