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Tracking of transverse motion of charged particles in storage ring lattices which contain nonlinear elements may
diverge if mappings are applied over too large time steps. The convergence limits depend on the strength of the
nonlinearities as well as on the initial conditions. For one-dimensional motion, where an exact solution can be
found, these limits are given by the poles in the complex time plane. For two-dimensional motion in realistic
magnets, for which no analytic solution is known, viable tests to determine this limit do not exist except repeated
computer runs. Here we find the limits of convergence of tracking of coupled betatron motion in thick nonlinear
lenses by expansion of the unknown solution into a Laurent series. The location of the "moving singularities" ­
which determine the convergence limits - can then be obtained from the solution of a set ofpolynomial equations.
The method is applied to the case of LHC dipole magnets with quadrupolar and sextupolar field errors. In the
appendix, we discuss a special case of transverse motion in nonlinear elements which is bounded in all directions.
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1 INTRODUCTION

We investigate the convergence properties ofparticle tracking through focusing structures of
storage rings by repeated application of Taylor series maps. To our knowledge, the problem
has first been raised in Ref. 1. In that paper, the author applied a mapping technique to the
case of the mathematical pendulum which is solvable in closed form using Jacobian elliptic
functions. He expanded the solution of the one-dimensional problem

x+ sin x = 0 (1)

into a two dimensional Taylor series in the phase space variables x and x. From this series
he defined the mapping

( xn+ l
) "" -+ k ·1. = L..J L..J fkl (ti.t )Xn Xn

Xn+l k 1

223

(2)
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where Xn = nt1t, and t1t is the time step over which the map is calculated. In his paper,
Talman used a map for a rather large time step - about 0.8 times the small amplitude period
of the pendulum. In accelerator physics, this would correspond to a map over almost a full
betatron period. Even with rather high-order Taylor maps, the results obtained diverged
quite rapidly - depending on the choice of the initial angle - from the exact solution
given by

x(t) = 2arcsin[k· sn(K(m) + tim)]; (3)

On the other hand, we found that, by using sufficiently small time steps t1t, one gets
excellent agreement of tracking with the exact solution of the pendulum motion over many
periods. Talman's conclusion from his observation was that "map iteration is notpromising
for long-term predictions - unless the pendulum system is atypical". He further stated that
it would be desirable "to show the characteristics of nonlinear systems that allow useful
application of map-prediction techniques". This was done in a companion paper which
appeared in the same issue,2 where it was shown that there exists a maximum time step for
the mapping beyond which the results diverge.

To find the limiting step size, the exact solution of the pendulum equation was expanded
into a one-dimensional Taylor series in the time step !:it. For such a series, the radius of
convergence is given by the distance from the expansion point to the closest pole of the
exact solution of the problem in the complex plane. Applying this criterion, due to Cauchy
and Weierstrass, to Equation (3), one finds the convergence limit simply from the complex
poles of the Jacobian elliptic functions. 3 It is thus possible to give an analytic expression
for the radius of convergence as function of the initial conditions, and it was found to be
always less than half the small amplitude period of the pendulum. Since the time step used
by Talman was larger, this led to his divergent results.

In Ref. 2, the same approach was applied also to the one-dimensional motion of charged
particles in thick sextupoles and octupoles. Exact solutions for these can again be expressed
in terms of elliptic functions, as shown in Appendix A. For the corresponding Taylor series
maps, the convergence depends not only on the size of the time step, but also on the strength
of the nonlinearity.

Although these results are very instructive, they give the convergence limits only for those
cases for which the exact solution is already known. It would be more useful to extend the
method to dynamical systems for which the solution cannot be found analytically, because
only for such systems a numerical integration is really necessary. A first step in this direction
was taken in Ref. 4. Besides several other interesting considerations, the authors use the
quotient criterion to obtain the convergence limits of infinite series describing betatron
motion in lattices containing nonlinear magnetic elements. For this purpose, they examine
the behaviour of the expansion coefficients of the numerical solutions with increasing
step size. They actually get quite good agreement with tracking for several one and two­
dimensional cases. However, obtaining these coefficients requires repeated computer runs,
and the criterion is only rather approximate.

In the present paper we derive a direct estimate for the convergence limit, again using the
theory of Cauchy and Weierstrass. We develop a method to determine poles of the solutions
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of differential equations which are not known in explicit form, and we apply the method to
several cases of nonlinear focusing magnets used in storage ring lattices.

In Section 2 we define the problem, and we demonstrate that Taylor series expansions
are equivalent when expressed in powers of the time step ~t or in the phase coordinates
(displacements and their derivatives at an initial position). The representation in the time
step has the big advantage to remain one-dimensional in all cases, even if the underlying
problem has more than one dimension in real space. Thus one can always use the theory
of one-dimensional Taylor series, which is much more straightforward than the equivalent
theory in a higher number of expansion variables.

In Section 3 we introduce Laurent series to expand the solution around unknown poles
in the complex time domain. We introduce the concept of moving poles, i.e. poles whose
positions depend on the initial conditions of the dynamical system. We apply the theory to
simple examples of first and second order differential equations.

In Section 4 we apply these results to the case of the superconducting LHC dipole
magnets with strong nonlinear multipole components. We study the problem in two real
space dimensions (coupled horizontal and vertical motion), for which no analytic solution
of the equations of motion is known. We derive expressions for the maximum permissible
step size of tracking codes as function of the multipole components and of the betatron
amplitudes in both planes. For the estimated random and systematic quadrupolar and
sextupolar components of an LHC dipole, the approximate convergence limits - expressed
in the initial transverse coordinates - are found to be safely outside the vacuum chamber.
Although it has not been shown in detail, these results justify the replacement of a long
dipole by one or two thin lens kicks. However, concatenation of several elements could lead
to divergence unless proper techniques are used to guarantee both the symplecticity and the
convergence of repeated application of the maps.

2 EQUATIONS OF MOTION AND MAPPINGS

Describing dynamical systems like the focusing structure of an accelerator lattice can be
done by a system of nonlinear, second order, differential equations. Since such equations
are in general not solvable analytically, one has to revert to numerical methods to evaluate
the solution as function of the initial conditions. All known numerical integrators work by
reducing a differential equation

x = P(x) (4)

(or the equivalent system in case of higher dimensions) to an algebraic mapping of the form

where X n and xn denote value and derivative of the function x (t) at times

tn = n~t

(5)

(6)
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when t1t is a finite time step. In applications related to the motion of charged particles in
focusing and bending magnets of accelerators, P (x) in Equation (4) can be approximated
by a polynomial

N

P(x) = LanXn

n=l
(7)

for which P (0) = 0, because the equations of betatron motion inside a focusing magnet
just describe small deviations from an ideal orbit normalized to x = O. In this situation
there are basically two possibilities to construct mappings of the form of Equations (5), (6).
We may either expand the solution x(t, xn, xn) into a one dimensional Taylor series with
respect to the time steps t1t, or into a two dimensional series with respect to the coordinates
Xn and xn.

For the Taylor series in time steps this is a rather straightforward procedure. We may
write

00 1 dkx I
Xn+l = Xn + xnt1t + L - -k t1t

k

k=2 k! dt f=O

. . ~ 1 dkx I k-l
Xn+l = Xn + L...J - -k kt1t

k=2 k! dt f=O

This mapping, although it contains all derivatives of the solution, is only a function of X n

and xn since all higher derivatives can recursively be expressed by the two lowest ones.
This can be demonstrated by successive differentiation of Equation (4):

d2x
12 = -2 = P(x)

dt

d3x .,
13 = dt3 = x P (x)

d4x14 = -4 = xP'(x) +x2p lI (x) = P(x)P'(x) +x2p lI (x)
dt

(9)

Provided that t1t is smaller than the convergence radius of the series Equation (8), this
mapping represents the exact solution to arbitrary precision. The expansion w.r.t. the
coordinates can be directly derived from the Taylor series representation (8) by expanding
the k-th derivative d kx / dtk = Ik (xn, xn) itself into a two dimensional power series w.r.t.
the coordinates. Then the Taylor mapping becomes
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00 A k 00 N ( ) aN .f.. tit N Jk N-M.M
Xn+l =xn +xn t1t+ L-, L L M N-M 0M Xn Xn

k=2 k. N=l M=O aXn aXn

00 looN ( ) aN .f... k-l N Jk N-M·M
Xn+l =Xn + Lk,kli.t L L M N-M 0MXn Xn

k=2 . N=l M=O aXn aXn

227

(10)

where the partial derivatives of fk are evaluated at Xn = in = O. In the convergent region
of the Taylor expansion in t1t (i.e. for sufficiently small t1t) one may change the order of
the infinite sums to obtain

[

00 t1t
k

afk ] . [ 00 t1t
k

afk ]
Xn+l =Xn 1+L-,- +xn t1t+ L-,-.

k=2 k. aXn k=2 k. aXn

(11)

We conclude that expanding the differential equation (4) either in time steps t1t or in the
coordinates Xn and in leads to equivalent mappings. It is straightforward to prove that this
equivalence holds also for the case of a system of coupled equations. In the following
chapters we use only expansions in the time step, since in this manner the problem can
always be treated as one-dimensional, even if two spatial directions are considered. As
an illustrative example we present the simple case of one-dimensional motion in a thick
sextupole

(12)

where a is a real constant. We first derive a mapping by expanding in the coordinates X n

and in. This is done by rewriting Equation (12) as a system of integral equations

~t ~t

Xn+l = Xn + xnli.t - otf f x2
dtdt'

o 0

~t. . f 2dXn+1 = Xn - a x t

o

(13)

We can solve these Volterra type integral equations approximately with an iteration
procedure on x. This consists in choosing an initial solution x (0) (t), inserting it into the
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integrands and evaluating the quadratures. Then we repeat the same procedure with the new
approximation as often as required. In order to obtain results correct up to second order in
Xn and xn, we must use a starting function x(O) (t) correct up to first order in these variables.
This condition is evidently fulfilled by the free-space solution

(14)

Inserting Equation (14) into the integral equation then gives the result valid to second order:

. . 2 2· a f1t
3

·2
Xn+l = Xn - f1taxn - af1t xnXn - -3-Xn (15)

For the expansion in time steps as in Equation (8), we need the derivatives of x. Here we
proce~d up to fourth order in f1t. Hence

d2x
12 = - = -ax

dt2

d3x
13 = - = -2axx

dt3

d
4
x ( . 2 .. 2' 2 3)

14 = dt4 = -2a x +Xx) = - a(x -ax

The final mapping then reads

. . 2 2· a f1t
3

·2 3
Xn+l = Xn - f1taxn - af1t XnXn - -3-(Xn - axn)

and we see that the two mappings agree up to the second power in the coordinates.

3 EVALUATION OF SINGULARITIES

The convergence breakdown of Taylor series mappings of the form

(16)

(17)

(18)
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was investigated in Ref. 2. Here

229

(19)

is the solution vector taken after n time steps. According to the Cauchy theorem offunctional
theory, this series (18) will diverge if the time step t1t becomes larger than the distance
from the origin to the closest singularity in the complex time plane. We demonstrated this
behaviour for the special cases of simple 1-D differential equations, like the mathematical
pendulum or I-D motion of a charged particle in a thick sextupole, for which it is possible
to express the exact solutions in closed form. Evidently in this case also the exact location
of singularities in the complex time plane are known and it is easy to predict convergence
breakdown of Taylor series mappings related to such equations. However, in practical cases
we are normally concerned with equations of motion for which the analytical solution is
not known (otherwise we would not need a numeric integrator). Therefore we search for a
method to find the location of complex and real poles without knowing the solution of the
underlying differential equations.

The basic method to perform this task comes once more from functional theory. We use
the fact that one always can express a complex function jet) close to a pole of finite order
N using a Laurent series of the form

(20)

where to is a pole of order N. The first sum in (20) is called main part of the expansion
while the second sum is called Taylor part. The coefficient a-I in the main part is called
residuum of jet) with respect to to. We can in principle make use of this expansion by
inserting (20) with an unknown pole to of order N into a given differential equation of first
order

x == F(x, t); x == jet) (21)

expanding F into a new Laurent series and comparing like powers of (t - to). However,
we must also take into account that for general nonlinear equations the complex poles of x
will depend on the initial condition x (0) == xo. Such poles are well known in the literature
as moving poles because they move around the complex plane as xo varies.

If we denote the expansion quantity t - to in (20) by t1, Equation (21) can be written as

x == F(x, to + t1) (22)

Next we perform the following steps:

• We choose the order N of the unknown pole to we wish to look for. It turns out that
only if we chose the order of the unknown pole correctly we obtain Laurent series in
which not all the an disappear.
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• We write x as a Laurent series

• We formulate the moving pole condition

N 00

~ a-n ~ n
x(O) = xo = L..t-- + L..tan(-tO)

n=I (-to)n n=O

(23)

(24)

which constitutes the relation between the initial condition and the poles location as
discussed above.

• We insert (23) into (22), and expand the resulting right hand side of Equation (22) into
a new Laurent series with respect to t1.

• We compare equal positive and negative powers in t1 to obtain an infinite algebraic
system for the expansion coefficients an. It is possible to show that this algebraic
system is always recursive linear and thus can be solved exactly.

• We finally use the moving pole condition (24) to extract the desired pole to.

We demonstrate this method for the example

(25)

We look for.the location of first order poles, hence N = 1. The moving pole condition can
be written as

With

we find

00
a-I ~ n

xo = -- + L.Jan(-to)
to n=O

00
a-I ~ n

X =~ + L..tant1
n=O

. dx dx a-I ~ n-I
x = dt = dli. =-~ + t=rnanli.

(26)

(27)

(28)
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Inserting these expressions into the differential equation (25) we get

1 [ 2] 2a
2 1 ~ [ 1 ]~2 -a-l + 2tOa_l + ;; + L...J an(n + 4toa_l)~n- + 4a_lan~n

n=O

231

00 00

+ L L 2anam [to~n+m + ~n+m+l] = 0 (29)
n=O m=O

Comparing equal powers in ~ leads to the following recursive linear system for the an:

~ -2 :--+ -a-l + 2toa:l == 0

~ -1 :--+ 4tOa-laO + 2a:l == 0

~0 :--+ al +4a-lal tO+ 2toa5 == 0

Truncating the expansion at this level we obtain

(30)

1
a-I == ­

2to

1
ao ==-­

4t2
o

(31)

Inserting these results into (26) results in a single algebraic equation for the unknown pole
to as

7
xo=-­

8t2
o

which gives two purely imaginary poles of first order:

!J: 0.9354i
to==±i -~±---

8xo ,JXO

(32)

(33)

Let us check this result against the exact solution of (25) which can be found by separation
of variables to be

xo
x(t) == ---

1 + xot2

Its two first order poles are given by the condition

2 i
1 +xot == 0 --+ to == ±--

,JXO

(34)

(35)



232

3

2.5

2

1.5

0.5

o

J. HAGEL and B. ZOTTER

FIGURE 1: Analytic landscape representation of z(t)=I/(l+t2 ).

It is straightforward to demonstrate that the infinite system of algebraic equations defined
by (29) and (26) gives a sequence of approximations for to:

tON = ±i (36)

where N is the index at which the expansion is truncated. For N -+ 00, the sequence tON

converges to the correct result given in (35). In Figure 1 we show an analytical landscape
representation of the exact solution for xo = 1 and one can see the two first order poles of
Iz(t)1 at t = ±i where Izi becomes infinite.

3.1 Quadrupole with octupole component

Next we treat the case of a long magnetic quadrupole containing an octupolar component.
The equation of motion for a charged particle in the horizontal plane x as function of the
longitudinal variable s is given by

, dx
x =-

ds
(37)

where KI and K3 are the constant quadrupole and octupole strengths in units of 11m2 and
11m3 respectively. Although this equation can in principle be solved in closed form in terms
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of Jacobian elliptic functions (see Appendix A), the expressions are rather complex and a
numeric integrator based on a Taylor expansion using moderate truncation order will require
less computer time than evaluating the analytic results.

Since Jacobian elliptic functions contain no poles of higher than first order, we may put
N = 1 and write the Laurent series as in the previous example as

00

a-I '""" nx(s) = -- + L..Jan(S - so)
S - So n=O

(38)

Since we are concerned with a second order differential equation (37), the moving
singularities will depend on both xo and xb so that we have to use two conditions:

00

a-I '""" n nxo = -- + L..J an(-l) So
So n=O

(39)

If we wish to truncate the Laurent expansion at a given index n = M, we may rewrite
Equation (40) as

M-I
a-I '""" n n M Mxo = - - + L..J an(-l) So +aM(-l) So
So n=O

M-I
, a-I '""" n n M Msoxo = - - - L..J nan(-l) So - MaM(-l) SO'

So n=O

(40)

where we have taken the M -th terms out of the sums to see that we can eliminate aM from
Equation (41), to get a single equation for the unknown pole:

M
, a-I '"""Mxo + soxo = -(M + 1)- + L..J(M - n)an(-l)n sO .

So n=O
(41)

After multiplication of this equation with So we find a polynomial algebraic equation of
M-th order (note that we redefined the summation index n):

M

Mxoso +xbS6= -(M + l)a-I - L(M - n + l)an-I(-l)nso ' (42)
n=I

Hence we need to know the M + 1 coefficients a-I, ao, aI, . . . ,aM-1 in order to determine
the solution of (42). In order to obtain the recursive system for determining the an we insert
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(38) into (37), expand everything w.r.t. ~ = (s - so), and compare equal powers in ~. The
relation for the coefficients an then reads:

+ ~ [n(n - l)a ~n-2 + K a ~n + K3 a2 a ~n-2]L...J n 1 n 2 -1 n
n=O

By comparison of equal powers in ~ we find thus

A -3 '. 2 1K 3 0
ti ~ a-I +"6 3a -l =

A -2 '. 1K 2 0
ti ~ 2 3a_l ao =

From this system follows for a-I #- 0:

(43)

(44)

(45)

Truncating the Laurent expansion (38) at indices increasing from 1 to 3 then results in a
sequence of improving approximations for the unknown first order pole So as function of
the initial conditions Xo and xb as well as the expansion coefficients. Assuming xb = 0
we get

M=l :

M=2:

M=3:

2a-1
soxo + 2a-l = 0 ~ So = --­

XQ

2 - 4xo ± J16x1; - 48ala-l
alSo + 2soxo + 3a-1 = 0 ~ So = ---------­

4al
(46)
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Substituting for the Laurent coefficients from Equation (45), we obtain

235

M=l : So = - 4iIf (47)
Xo K3

M=2: -3i /¥[ 16x2 + 96Kl]So = -- -- - 4xo ±
4K1 3 o K3

M=3: -3i /¥[ 2 64Kl]So = -- -- - 3xo ± 9x +--
4K1 3 o K3

We now use the analytic expression (48) obtained by truncating the Laurent series after the
term of order (s - sO)3 to derive the maximum possible integration step ~s which provides
a convergent Taylor series based mapping of the initial value xo, xb = O. The following
table shows the maximum ~s = Isol (which in fact represents the distance of the origin
s = 0 to the closest pole in the complex plane) as function of Xo for K1 = 1 m-2 and
K3 = 500 m-3 . The numerical results have been obtained by inspecting the absolute values
of the Taylor series contributions

f3N = dNx I ~sN
ds n X=Xo,x'=o N!

using the approximate quotient criterion

I
f3141 = 1
f312

(48)

(49)

where the contributions f312, 14 have been found as function ofXo (xb = 0) by use of symbolic
differentiation of the equation of motion.

Xo [m] ~san [m] 8snum [m]

0.02 2.93 3.48

0.04 2.49 2.74

0.06 2.13 2.26

0.08 1.85 1.92

0.10 1.62 1.66

0.12 1.43 1.45

0.14 1.28 1.29

0.16 1.15 1.16

0.18 1.04 1.05
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Let us finally discuss the meaning of the first order pole (48) of the solution of (37). If we
consider a focusing quadrupole magnet (K1 > 0) then So will be purely imaginary if also
the octupole is focusing (K3 > 0). In this case our theory predicts that inside the magnet
the (horizontal) motion will be bounded for all s since no pole exists on the real axes. This
fact is well known and can be seen by inspection of the first integral of (37)

(50)

which for Kl,3 > 0 represents a set of closed concentric curves in the phase plane (x, x').
For K3 < 0 we have to distinguish two cases:

1.

8~1Ixol < - -
3 K3

(51)

2.

In this case the root in (48) becomes imaginary and So is complex. Also in this case
the solution is bounded.

8~
Ixol 2: 3'1 K; (52)

In this case the root is real, and we have a pole on the real axes. This means that the
solution becomes infinite at a finite location of s.

4 MODEL FOR THE LHC-DIPOLE MAGNET

Next we consider the example of the LHC-dipole magnet with multipole errors of
quadrupole and sextupole components. The equations of motion for the coupled betatron
motion in the horizontal and vertical plane x and y neglecting the end fields can be written

,,[1 ] 1 2 2x + p2 + Kl x + 2K2 (x - y ) = 0

y"-KIy- K 2XY=0 (53)

where p represents the radius ofcurvature and K 1 and K2 are the quadrupolar and sextupolar
multipole errors (systematic + random), see Ref. 5 respectively. We split the task into two
parts. First we consider the motion in the horizontal plane (y = 0) which is one dimensional
and is described by

(54)
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After that we tum to the fully two dimensional case of the coupled betatron motion. Finally
we shall use the measured nonlinear multipole components of the LHC - dipole magnet
and compute the maximum length over which a single integration step leads to a meaningful
result when using a Taylor series based tracking code.

4.1 The one dimensional case

As can be seen by inspection of Equation (54) the solution xes) can only have poles of
second order. This is due to the fact that the function I / s2 becomes I / s4 when it is squared
by the x 2 term in Equation (54) and becomes proportional to l/s4 when being two times
differentiated by the x" term. Thus the comparison of equal powers in (s - sO)-2 will lead
to a nonzero result for the Laurent coefficient a-2. Hence we are obliged to use the ansatz:

00

a-2 a-I '""" nx(s)== 2+ +ao+L..Jan(S-SO)
(s - so) (s - so) n=I

If we truncate the infinite sum at n == M, we may write x and x/ as

M-I
a-2 a-I '""" n M

xes) == 2 + + aO + L..J an(s - so) + aMeS - so)
(s - so) (s - so) n=I

2 M-I
/ a-2 a-I '""" n 1 M 1x (s) == - 3 - 2 + L..J nan(s -so) - + MaM(s -so) -.

(s - so) (s - so) n=I

(55)

(56)

Substituting s = 0 into these equations results in two moving pole conditions. With
x(O) = xo, x/CO) = xb we get:

M M M-I
a-2 a-I '""" n n M MMxo = --2- - -- + L..J Man(-I) So + MaM(-I) So
So So n=O

2 M-I
/ a-2 a-I '""" n n M Msoxo = -2- - - - L..J nan(-I) So - MaM(-I) so·

So So n=O

Adding these equations leads to a single algebraic equation for the unknown pole so:

(57)

M-I

Mxos5 + sgxb = (M + 2)a-2 - (M + I)soa-I + L an(-I)n(M - n)s3+2 (58)
n=O

We just need to know the Laurent coefficients a-2, a-I, ... ,aM-I, insert them into the
algebraic equation (29) and solve the equation to obtain so. Insertion of the Laurent series
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into the equation of motion (54) and comparing equal powers in ~ == s - So leads to the
recursive system

~-4: a-2 (!a-2 K2 + 6) == 0

~-3: a-I (!a-2 K2 + 2) == 0

~ -2: a=-1 K2 + 2a-2aoK2 + 2a-2Kl = 0

~-1: a-laoK2 + a-l Kl + a-2al K2 = 0

~0
: 2a-lal K2 + 2a-2a2K2 + a5 K2 + 2aoKl + 4a2 = 0

~1: a-la2K2+a-2a3K2+aoalK2+alKl+6a3==0

~2: 2a-la3 K2 + 2a-2a4K2 + 2aoa2K2 +ai K2 + 2a2Kl +24a4 == 0

For a-2 =1= 0, the unique solution of this system up to a3 is

(59)

a-I == 0
K 2

a2 == __1_
20K2

a3 == 0 (60)

With these results the algebraic equation (58), truncated at M == 4, becomes a single
biquadratic equation

with the solution

1 Kl 4 ( KI) 2 72- -so + 4 XQ + - So + - == 0
10 K2 K2 K2

(61)

Since we are only interested in the absolute value of So, we may omit the ± sign in front
of the first root. In addition we expect the poles which become zero for xo ----+ 00 to be the
ones who limit the convergence of a tracking code applied to Equation (54). This is the case
if we choose the + sign for the inner root in (62) so that finally
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FIGURE 2: Comparison between the analytic (full line) and numeric (diamonds) convergence limit of a tracking
code applied to Equation (54) when Kl =1.14.10-5 m-2 and K2=4.06·10-3 m-3 .

For the case that the dimensionless quantity K 1/(XOK2) fulfills the condition

(64)

we may use a first order Taylor expansion in this quantity, and we obtain the location of the
second order pole as

Note that in Ref. 2 we found an exact expression for poles location when K 1 = 0

5.87
Isol = .J21xoK21

(65)

(66)

which is rather close to the present result. In Figure 2 we show a comparison between
the analytic result for Isol from Equation (63), and the numeric result for the convergence
breakdown for which we used the same criterion as in the previous section. For K 1 and K 2
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the data for an LHC - dipole magnet5 have been used. We see a good agreement between
theory and experiment for this case. For a betatron amplitude of xo = 1 em we find a
maximum step size of about 600 m, well beyond the actual magnet length.

4.2 The two dimensional case

We now tum to the fully two dimensional case which is described by Equation (53). We
have to look for poles in both planes, and denote the unknown poles of second order by
sox and SOy in the horizontal and vertical plane respectively. Each of the two Laurent series
will in general contain information about SOx and SOy since Equation (53) are coupled. We
therefore have to use the following general ansatz:

x(s) = a-20 + a-21 + _a_-_2_2_
(s - sox)2 (s - sOx)(s - SOy) (s - SOy)2

a-IO a-It+ +---
(s - SOx) (s - SOy)

+ ao + aIO(s - SOx) + all (s - SOy)

+ a20(s - sOx)2 + a21 (s - SOx)(s - SOy) + a22(s - SOy)2

b-20 b-21 b-22
y(s) = + +---

(s - sOx)2 (s - SOx)(s - SOy) (s - SOy)2

b-IO b-II+ +---
(s-SOx) (s-SOy)

+ bo + bIO(S - SOx) + bII (s - SOy)

+ b20(S - sOx)2 + b21 (s - SOx)(s - SOy) + b22(S - SOy)2 (67)

Inserting x and y into the equations of motion we obtain, as before, linear recursive systems
for the a, bmn . If we use

~x = s - SOx ~y = s - SOy

the comparison of equal powers in ~r; ~~ gives:

-4 { 1a:20 K2 + 6a-2o -1b:20K2 = 0
~x --+

b-20(6 - a-2oK2) = 0

This system for a-20 and b-20 has two nontrivial solutions:

1.

(68)

(69)

b-20 = 0
12

a-20 =-­
K2

(70)
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Using this solution leads to zero for all bmn and to nonzero values for the amn . This
case corresponds to the one dimensional case treated in the previous section.

2.

(71)

(72)

This case leads to the Laurent coefficients for the fully coupled motion in the x, y
plane.

For the remaining coefficients we find the following linear systems:

-3.J3b_21 + 4a-21 = 0 }
a-21 = b-21 = 0

-2b_21 - 3.J3a-21 = 0

-3.J3b-IO + 4a-Io = O}
a-IO = b-IO = 0

-2b-IO - 3.J3a-Io = 0

a-22 - .J3b-22 = 0 }
a-22 = b-22 = 0

.J3a-22 + b-22 = 0

.J3b-IO + a-II = 0 }
a-II = b-ll = 0

b-ll + .J3a-11 = 0

-.J3bo + ao = _Kt} KK2 I

bo +.J3ao = -.J3~~ ao = - K2 bo = 0

-.J3bIO + alO = 0 }
alO = blO = 0

blO + .J3alo = 0

-.J3bll + all = 0 }
all = bll = 0

bll + .J3all = 0

(73)

(74)

(75)

(76)

(77)

(78)

(79)

-.J3b21 + a21 = 0 }
a21 = b21 = 0

b21 + .J3a21 = 0

-.J3b22 + a22 = 0 }
a22 = b22 = 0

b22 + .J3a22 = 0

(80)

(81)
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Note that in the case of a vanishing quadrupole component K 1 = 0 we find that all
coefficients a and b become zero except a-20 and b-20 which are given in (71). Hence
there exists a singular solution in the 2-D case given by

6
x(s) = ; y(s) = J3x(s)

K2(S - sO)2
(82)

which can easily be verified by inserting these functions into the equations of motion
(53). In Appendix B to this paper we demonstrate that every motion starting in the plane
(xly = ±J3x) is integrable and can be expressed in terms of known functions.

With these results the two Laurent series for x and y become (truncating at a40, b40):

b-20 2 4
y(s) = -2- + bo + b20~y + b40~y

~y

(83)

Using x, x and y, y together with s = 0, we obtain the moving pole conditions (assuming
xb = yb = 0)

(84)

Using the above values for a-20, ao, a20 as well as b-20 and b20 results in

(85)

with the solutions

1
SOx =-

Kl

(86)

1
SOy =­

Kl
22 [6.J3 4YoK2 + 324 ]16y2 K 2 + _K2

o 2 22 1

If the two quantities Kl/(xoK2) and Kl/(yoK2) are small w.r.t unity we may expand
these expressions to obtain in lowest order
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3J2 I Kl I 35
/
4 J2

ISOx I = .J2IK2XOI 1 - 2xoK2 ; ISOy I = .J2IK2YOI
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(87)

For the LHC-dipole magnet these conditions are fulfilled at xo > 0.5 cm and YO > 0.5 cm.
The convergence limit in tis for the tracking code is given by the closest pole from the
origin, so we must deal with the minimum of SOx and SOy, hence

tismax = Min(sox , SOy)

= (3.J2) Min [ 1 11 __K_I_I ' ~3::;:;;1/==4::::::;::]
.J21K2Xol 2xoK2 .J21 K2Yol

(88)

In practice it is not possible to use a tracking code with a time step close to the limit of
convergence, because the convergence properties then become very bad. This means that
we need to go to very high orders which unavoidably leads to long execution times of the
codes as well as to serious numerical problems (addition and subtraction of big numbers).
Therefore we chose as the practical limit one tenth of the theoretical convergence radius
described by Equation (88).

In Figure 3 we show the results for the case of the LHC-dipole magnets with quadrupolar
and sextupolar field errors. Each of the rectangles describes the points for which the given
magnet length represents one tenth of the convergence radius. The dashed line in this plot
represents the actual dimensions of the LHC vacuum chamber. From the figure we realize
that according to the theory a mapping for a length of the dipole up to L = 50 m would
be tolerable, i.e. one may use a tracking code with a time step up to this limit. For the real
length of the dipole of 14 m we therefore conclude that it is possible to integrate in one step
over the full length with a code using a moderate order of expansion, and that it is therefore
also permitted to replace the whole magnet by one (or two) localized kicks in order to save
computer time in tracking codes.

5 CONCLUSIONS

In the present paper we develop a method which allows to determine the maximum permitted
time step of a numeric integrator, based on a Taylor expansion of the solution of a given
equation of motion

x= F(X, t) (89)

The method is based on the theorem of Cauchy and Weierstrass which determines the
convergence radius of a Taylor series. For this purpose it is necessary to determine the
location of the singularities of the solution in the complex time plane (Re(t) , Im(t)). This
task can be achieved by expanding the solution around the unknown poles using a Laurent
series. Together with the concept of moving singularities, it is then possible to derive a
single polynomial equation for the location of the complex (or real) poles. Comparison with
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FIGURE 3: Convergence limits for tracking codes applied to LHC-dipole magnets of different lengths.

analytically solvable cases show excellent agreement of the theoretical predictions and the
exact location of the poles. The theory was applied to the case of the superconducting LHC
dipole magnets with quadrupolar and sextupo~ar field errors. We found that tracking over
the full length of the magnet is possible in one single integration step.

However, more work still remains to be done. First we would like to include higher
order multipoles in the theory (multipolar components up to order 22 can be measured, and
have been included in tracking codes). In addition skew components should be taken into
account.

The main question to be investigated is how many elements ofa given nonlinear lattice can
be concatenated and described by a single truncated Taylor mapping. In order to answer this
question we must extend our method to equations with explicit time (or s) dependence since
the magnetic focusing strength varies along the lattice. These investigations are planned for
the near future.
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APPENDIX A: SOLUTION OF PARTICLE MOTION IN THICK SEXTUPOLES
WITH JACOBIAN ELLIPTIC FUNCTIONS

The equation of 1-D (e.g. horizontal) motion in a thick sextupole is given by the nonlinear,
second-order differential equation

(90)

It can be solved by first rewriting it the differential equation in terms of v = dx / dt and x
to yield

dv 2
v- - K2X = 0

dx

This can be integrated once to yield

1 2 K2 3 1
-v - -x = -Cl
2 3 2

(91)

(92)

where Cl is an integration constant to be determined from the initial conditions XQ

A, x'(O) = v(O) = B. We thus find Cl = B 2 - 2K2A3/3 and define

We solve for v = dx / dt and integrate to get

f3

f dx'
at = + C2Jx3 + fJ3

x

(93)

(94)

where C2 is a second integration constant~ and the RHS is an elliptic integral. The result
can be inverted and solved for x(t) in terms of elliptic functions
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x(t) = fJ [1 -J31- cn(U1m)] (95)
1 + cn(ulm)

where cn(ulm) are the elliptic cosines of the argument u = ys + 8 and modulus
m = (2 + J3)/4. The parameters are defined by

2 2fJ
Y =-K2
~

8 = F(l/Jlm)

fJ(~-1)+A
cos<jJ=-----

fJ(~+1)-A
(96)

Although this expression appears rather complicated, it can be readily evaluated by
computer.

Similar solutions can also be derived for 1-D particle motion in a thick octupole. There are
several different expressions valid for different regions of the initial conditions, all having
terms containing elliptic functions, which will not be shown here.

APPENDIX B: BOUNDED TRANSVERSE MOTION OF CHARGED PARTICLES
IN THICK SEXTUPOLES

The Hamiltonian for the transverse motion ofa charged particle inside a sextupole ofstrength
K2 can be written

(97)

from which we obtain the equations of motion

(98)

For motion in a plane we make the ansatz y = ax. Substitution into the equations of motion
yields 2 equations which are consistent only if a 2 = 3 or

The Hamiltonian then becomes

y = ±J3x

'2 4 3
H = 2x - -K2X

3

(99)

(100)
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and the equation of motion becomes that of the 1-D motion

For the particular case H == 0, the Hamiltonian yields directly

dx 3
- == 2a2 K 2x
ds

where

The expression for ds can be integrated to yield

1
x(s) == --­

(a2 s + C)2

where

1
c==-

y'XO

247

(101)

(102)

(103)

(104)

(105)

to fulfill the initial condition x(O) == xo, and hence also y(O) ±v"3xo. The initial

condition for the derivatives then are also determined as x' (0) == - 2a2x~/2 and y' (0) ==
- ± 2v"3a2x~/2. The square roots require that x > 0 for K2 > 0 and vice versa.

This solution shows the astonishing property of decreasing monotonically towards zero
with increasing s. However, it is only valid for one particular pair of slopes for a pair of
initial amplitudes xo, YO located in the two planes y == ±v"3x.

The equations can also be solved for more general initial slopes for initial conditions in
the same two planes. Dropping the limitation H == 0, the equation of motion can be solved
in terms of Jacobian elliptic functions. The solution can be expressed in terms of the elliptic
cosine function cn as

x (t) == {3 [1 _v"3_1_-_c_n(_u_1m_) ]
1 + cn(ulm)

(106)

where the parameter {3, the argument u and the modulus m were defined in Appendix A.
We quote this result only to show the existence of solutions for any initial slope x' (0) at
any initial value x (0) - but restricted to the planes y == ±v"3x.

The motion ofparticles with arbitrary initial slopes can also be found directly by numerical
integration of Equation (101), and is shown in Figure 4.

As can be seen from the figure, the trajectories near the special solution for H == 0
start to converge towards zero, but eventually break away and grow without bounds. If the
sextupole is shorter than this turning point, the motion will nevertheless remain bounded in
both planes y == ±v"3x for a finite range of initial slopes.
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FIGURE 4: Transverse particle motion in a thick sextupole for various initial slopes.

A similar consideration can be made for 2-D motion in octupoles. The Hamiltonian there
is

X'2 + y'2 K3 4 2 2 4
H = + - (x - 6x y + y )

2 24
(107)

where K3 is the strength of the octupole. The equations of motion become

" K3 3 2x +6(x -3xy)=0

" K3 (3 2 3) 0Y -- x y-y =
6

(108)

The ansatz y = ax leads to consistent results only if a = ±1. The equation of motion again
becomes identical to that for the 1-D motion

x" - K3 x 3 = 0
3

(109)

and can be solved in terms of elliptic functions. The particular solution for H = x'2 ­
K3X4/6 = 0 becomes
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1
x=----

1jxo± (l3 S
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(110)

(111)

One of the solutions diverges for s = 1j (l3XO and is not monotonic, but the other one
describes bounded motion in octupoles, similar to the one found to exist in sextupoles.




