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Abstract

In these lectures I give a short review of the main theoretical ideas
underlying the extensions of the Standard Model of elementary
particle interactions.

1. INTRODUCTION

Studying physics beyond the Standard Model means looking for the conditions

of the Universe in the �rst billionth of a second, when its temperature was above 1014

K. This clearly requires a gigantic intellectual leap in the investigation. It is even more
striking that modern accelerators can reproduce particle collisions similar to those that

continually occurred in the thermal bath in the very �rst instants of our Universe. We
are now entering the age in which, with the joint e�ort of experiments and theory, we are
likely to unravel the mystery of the fundamental principles of particle interactions lying
beyond the Standard Model.

The Standard Model [1] describes the interactions of three generations of quarks
and leptons de�ned by a non-Abelian gauge theory based on the group SU3�SU2�U1. The
precision measurements at LEP have given an extraordinary con�rmation of the validity
of the Standard Model up to the electroweak energy scale (for reviews, see ref. [2]), and

we have no �rm experimental indications for failures of this theory at higher energies. Our
belief that the Standard Model is a low-energy approximation of a new and fundamental
theory is based only on theoretical, but well-motivated, arguments.

First of all, the electroweak symmetry breaking sector is not on �rm experimental

ground. The Higgs mechanism, which is invoked by the Standard Model to generate the Z0

andW� masses, predicts the existence of a new scalar particle, still to be discovered. From
the theoretical point of view, the Higgs mechanism su�ers from the so-called \hierarchy"

or \naturalness" problem which, as discussed in sect. 5, leads us to believe that new
physics must take place at the TeV energy scale.

Furthermore, the complexity of the fermionic and gauge structures makes the Stan-
dard Model look like an improbable fundamental theory. To put it in a less qualitative

way, the Standard Model contains many free parameters (e.g. the three gauge coupling
constants, the nine fermion masses and the four Cabibbo{Kobayashi{Maskawa mixing
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parameters); these correspond to important physical quantities, but cannot be computed
in the context of the model. Simplifying the Standard Model structure and predicting its
free parameters are therefore basic tasks of a successful theory.

In these lectures I review the main current ideas about theories beyond the Stan-
dard Model, keeping the discussion at a qualitative level and making no use of advanced
mathematics. More comprehensive reviews can be found in refs. [3] (for GUTs), [4] (for
supersymmetry) and [5] (for technicolour).

2. GUT SU5
The �rst attempts to extend the structure of the Standard Model have led to

the construction of Grand Uni�ed Theories (GUTs) [6]. The basic idea is that gauge
interactions are described by a single simple gauge group, which contains the Standard

Model SU3 � SU2 � U1 as a subgroup and as a low-energy manifestation. At �rst this
may seem impossible, since a simple gauge group contains a single coupling constant
gX and the strong, weak and electromagnetic couplings have di�erent numerical values.

However it should be remembered that, in a quantum �eld theory, the coupling constants
depend on the energy scale at which they are probed, as a consequence of the exchange
of virtual particles surrounding the charge. The evolution of the gauge coupling constants
as a function of the energy scale can be computed using renormalization group techniques

and perturbation theory, and the relevant equations are described in sect. 7. There, we
will also �nd that, as we include the quantum e�ects of all Standard Model particles, the
three gauge coupling constants approach one another as the energy scale is raised. For the
moment, let us assume that the three gauge couplings meet at a single value for a speci�c

energy scale (MX) and study possible GUT candidates describing the physics above MX

with a single gauge coupling constant gX .
The simplest example of a GUT is based on the group SU5. Each fermion fam-

ily is contained in a 10 + �5 representation of SU5. This can be understood from the

decomposition in terms of the Standard Model group:

SU5 ! SU3 � SU2 � U1
10 ! (�3;1;�2

3
)uc

R
+ (3;2; 1

6
)qL + (1;1;1)ec

R

�5 ! (�3;1; 1
3
)dc

R
+ (1;2;�1

2
)`L :

(1)

Here the numbers inside the brackets respectively denote the SU3 and SU2 representations
and the U1 quantum numbers. Equation (1) shows that the degrees of freedom for all the
(left-handed) �elds in one Standard Model family are described by the two SU5 �elds

10 and �5. In GUTs not only is the gauge group uni�ed, going from SU3 � SU2 � U1 to
SU5 in this speci�c example, but also the fermionic spectrum is simpli�ed. As quarks in
QCD come with di�erent colours, in GUTs di�erent quarks and leptons are just di�erent
aspects of the same particle. This also explains the simple integer relations among the

electric charges of di�erent quarks and leptons.

3. EXPERIMENTAL TESTS FOR GUTs

Theoretical elegance is of course not a su�cient argument to convince us that GUTs

have anything to do with Nature. We need to establish GUTs predictions which can be
confronted with experimental data. The basic idea of GUTs, gauge coupling uni�cation,
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provides such a prediction. Indeed at the GUT scaleMX we can compute the weak mixing
angle:

sin2 �W � e2

g2
=

Tr(T 2

3
)

Tr(Q2)
=

3

8
: (2)

Here T3 is the third isospin-component and Q is the electric charge. The trace in eq. (2),
taken over any SU5 representation, follows from a correct normalization of the GUT

generators. Before comparing eq. (2) with experiment, one has to rescale it to the low
energies where coupling constants are measured. We will do this in sect. 7, and show
that eq. (2) gives a successful prediction for a class of theories which we have not yet
introduced, supersymmetric GUTs. We anticipate here that, if gauge coupling uni�cation

has any chance to succeed, the uni�cation scaleMX must be extremely large, of the order
of 1015{1016 GeV, which, in the thermal history of our Universe, brings us to consider
events occurring in the �rst 10�35{10�38 s.

Since we have promoted the gauge group to SU5, we expect new gauge bosons and

therefore new forces which may have experimental consequences. The decomposition of
the SU5 gauge bosons in terms of Standard Model ones is:

SU5 ! SU3 � SU2 � U1
24 ! (8;1;0)g + (1;3;0)W + (1;1;0)B + (3;2;�5

6
)X + (�3;2; 5

6
) �X

: (3)

Together with the familiar degrees of freedom for the gluons (g) and the electroweak gauge

bosons (W�;W 0; B), we �nd new particles (X and �X) which carry both colour and weak
quantum numbers. The gauge bosons X and �X a�ect weak interactions, but modify
standard processes only by an amount (MW =MX)2, a fantastically small number, whose
e�ect is completely undetectable even in the most precise measurements. Nevertheless, the

X-mediated interactions may not be so invisible. Let us inspect the interactions between
X; �X and the fermionic currents, which are dictated by SU5 gauge invariance:

L =
gXp
2

n
X�
�

h
�dR�

�ecR +
�dL�

�ecL + "���u
c
L 

�u
�
L

i
+

+ �X�
�

h
� �dR�

��cR � �uL�
�ecL + "���u

c
L 

�d�L

i
+ h:c:

o
: (4)

Notice that one cannot assign a conserved baryon (B) and lepton (L) quantum number
to X and �X ; the new interactions violate both B and L. In the Standard Model B and L

are accidental global symmetries, in the sense that they are just a consequence of gauge
invariance and renormalizability. It is not surprising that B and L are then violated in
extensions of the Standard Model, in particular in GUTs where quarks and leptons are
di�erent aspects of the same particle.

The experimental discovery of processes that violate B and L would be clear evi-
dence for physics beyond the Standard Model. One of the most important of such processes
is proton decay, which has the dramatic consequence that ordinary matter is not stable.
It is easy to see from eq. (4) that the X boson mediates the transition uu! e+ �d. When

dressed between physical hadronic states, this transition is converted into the proton de-
cay modes p! e+�0; e+�0; e+�; e+�+��, and so on. The calculation of the proton lifetime
yields

�p = (0:2 � 8:0)� 1031
�

MX

1015 GeV

�4
yr : (5)

185



The uncertainties in the numerical coe�cient in eq. (5) come mainly from the di�culty in
estimating the matrix elements relating quarks to hadrons. For reasonable GUT masses,
MX ' 1015{1016 GeV, eq. (5) predicts a proton lifetime 1021{1025 times larger than the

age of the Universe. It is fascinating that experiments can probe such slow processes by
studying very large samples of matter. The present experimental bound on the lifetime
of the decay mode p! e+�0, the dominant proton decay channel in SU5, is [7]

� (p! e+�0) > 5:5� 1032 yr : (6)

This bound already sets important constraints on possible GUT models.
GUTs also provide a framework in which the creation of a primordial baryon asym-

metry can be understood and computed. Although this is not an experimental test, it is
clearly a very attractive theoretical feature. Observations tell us that the present ratio
of baryons to photons in the Universe is a very small number, nB=n = 4{7 � 10�10. If
nB=n is then extrapolated back in time following the thermal history of the Universe, one

�nds that the excess of baryons over antibaryons at the time of the big bang must have
been �B � (nB � n �B)=nB � 3� 10�8. We �nd it disturbing to consider that the present
observed Universe is determined by a peculiar initial condition prescribing that for each
three hundred million baryons there are three hundred million minus one antibaryons.

The hypothesis of baryogenesis is that �B = 0 at the time of the big bang and
that the small cosmic baryon asymmetry was dynamically created during the evolution
of the Universe. The physics responsible for the creation of �B must necessarily involve

interactions which violate B. GUTs are therefore a natural framework for baryogenesis
and it has been proved [8] that they have all the necessary ingredients to generate the
observed value of the present baryon density.

4. SO10 AND NEUTRINO MASSES

I have presented SU5 as the simplest GUT, but models based on larger groups can
also be constructed. Probably the most interesting of them [9] is based on the orthogonal
group SO10, which contains SU5 as a subgroup. The 16-dimensional spinorial representa-

tion of SO10 decomposes into 10 + �5 + 1 under SU5. We recognize the fermion content
of one Standard Model family. It is quite satisfactory that quarks and leptons with their
di�erent quantum number assignments can be described by a single SO10 particle, for
each generation.

In addition to the ordinary quarks and leptons contained in the 10 + �5 of SU5, the
spinorial representation of SO10 contains also a gauge singlet. This can be interpreted as
the right-handed component of the neutrino, allowing the possibility of Dirac neutrino
masses. The neutrino mass term can now be written in the form

(��L��
c
L)M (�cR�R) + h:c: ; (7)

where, for simplicity, we are considering only the one-generation case. The di�erent entries

of the neutrino mass matrixM

M =

 
T D

DT S

!
(8)

can be understood in terms of symmetry principles. The term S transforms as a singlet
under the Standard Model gauge group and therefore is naturally generated at the scale
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where the SO10 symmetry is broken, S �MX . The other two terms, T and D, transform
respectively as a triplet and a doublet under the weak group SU2; therefore they can
be generated only after the Standard Model gauge group is broken. However, vacuum

expectation values of triplet �elds lead to an incorrect relation between the strengths
of neutral and charged weak currents. We conclude therefore that T ' 0 and D ' mf ,
where mf is a typical fermion (quark or charged lepton) mass. After diagonalization of the
matrix in eq. (8), we �nd one heavy eigenstate with mass of order MX and one (mainly

left-handed) eigenstate with mass [10]:

m� '
m2

f

MX

= 10�6eV
�
mf

GeV

�
2

 
1015GeV

MX

!
: (9)

In the context of the SO10 GUT, not only do we expect neutrinos to be massive,
but we also understand in terms of symmetries why their masses must be much smaller

than the typical scale of the other fermion masses.

5. THE HIERARCHY PROBLEM

The hierarchy (or naturalness) problem [11] is considered to be one of the most
serious theoretical drawbacks of the Standard Model and most of the attempts to build
theories beyond the Standard Model have concentrated on its solution. It springs from the
di�culty in �eld theory in keeping fundamental scalar particles much lighter than �max,

the maximum energy scale up to which the theory remains valid.
It is intuitive to require that if a particle mass is much smaller than �max, there

should exist a (possibly approximate) symmetry under which the mass term is forbid-
den. We know an example of such a symmetry for spin-one particles. The photon is,

theoretically speaking, naturally massless since the gauge symmetry A� ! A� + @��

forbids the occurrence of the photon mass term m2A�A
�. Similarly, we can identify

a symmetry which protects the mass of a fermionic particle. A chiral symmetry, un-

der which the left-handed and right-handed fermionic components transform di�erently
 L ! ei� L;  R ! ei� R; � 6= �, forbids the mass term m � L R + h.c. Scalar particles
can be naturally light if they are Goldstone bosons of some broken global symmetry since
their non-linear transformation property '! '+ a forbids the mass term m2'2.

In the case of the Higgs particle, required in the Standard Model by the electroweak
symmetry breaking mechanism, we cannot rely on any of the above-mentioned symmetries.
In the absence of any symmetry principle, we expect the Higgs potential mass parameter
m2

H to be of the order of �2

max
. Even if we arti�cially set the classical value of m2

H to zero,

it will be generated by quadratically divergent quantum corrections:

m2

H =
�

�
�2

max
; (10)

where � measures the e�ect of a typical coupling constant.

One may argue that in a renormalizable theory, the bare value of any parameter
is an in�nite (or, in other words, cut-o� dependent) quantity, without a precise physical
meaning. Since all divergences can be reabsorbed, one can just choose the renormalized
quantity to be equal to any appropriate value. However, we believe that a complete de-

scription of particle interactions in a �nal theory will be free from divergences. From this
point of view, the cancellation between a bare value and quadratically divergent quantum
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corrections looks like a conspiracy between the infra-red (below �max) and the ultraviolet
(above �max) components of the theory. We do not accept such a conspiracy, but, on the
other hand, we know that the parameter m2

H sets the scale for electroweak symmetry

breaking and it is therefore directly related to m2

W . We thus require that the quantum
corrections in eq. (10) do not exceed m2

W . This implies an upper bound on �max:

�max
<�
r
�

�
MW ' TeV : (11)

We can conclude that the Standard Model has a natural upper bound at the TeV scale,

where new physics should appear and modify the ultraviolet behaviour of the theory.
The hierarchy problem becomes most apparent when one considers GUTs. Here

the Higgs potential of the model contains two di�erent mass parameters: one is of order
MX and sets the scale for the breaking of the uni�ed group; the other is of order MW and

sets the scale for the ordinary electroweak breaking. By explicit calculation, one can show
[12] that these parameters mix at the quantum level and the hierarchy of the two mass
scales can be maintained only at the price of �ne-tuning the parameters by an amount
(MX=MW )2.

6. SUPERSYMMETRY

Supersymmetry [13], contrary to all other ordinary symmetries in �eld theory,
transforms bosons to fermions and vice versa. This means that bosons and fermions sit

in the same supersymmetric multiplet. In the simplest version of supersymmetry (the
so-called N = 1 supersymmetry), each complex scalar has a Weyl fermion companion
and each massless gauge boson also has a Weyl fermion companion; similarly the spin-2

graviton has a spin-3/2 companion, the gravitino. Invariance under supersymmetry implies
that particles inside a supermultiplet are degenerate in mass. It is therefore evident that,
in a supersymmetric theory, if a chiral symmetry forbids a fermion mass term, it forbids
also the appearance of a scalar mass term, such as the notorious Higgs mass parameter.

The hierarchy problem discussed in the previous section can now be solved. Indeed, it
has been proved that a supersymmetric theory is free from quadratic divergences [14].
The contribution to m2

H proportional to �2

max
in eq. (10) coming from a bosonic loop is

exactly cancelled by a loop involving fermionic particles. Since the dependence on �2

max

has now disappeared, we can extend the scale of validity of the theory without provoking
any hierarchy problem.

It should also be mentioned that when supersymmetry is promoted to a local sym-
metry, which means that the transformation parameter depends on space-time, then the

theory automatically includes gravity and is called supergravity. Because of this character-
istic, supersymmetry is believed to be a necessary ingredient for the complete uni�cation
of forces.

Here we are interested in the minimal extension of the Standard Model compatible
with supersymmetry. Each Standard Model particle is accompanied by a supersymmetric
partner: scalar particles (squarks and sleptons) are the partners of quarks and leptons,
and fermion particles (e.g. gluinos) are the partners of the Standard Model bosons (e.g.

gluons). Supersymmetry also requires two Higgs doublets, as opposed to the single Higgs
doublet of the Standard Model, and their fermionic partners mix with the fermionic
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partners of the electroweak gauge bosons to produce particles with one unit of electric
charge (charginos) or no electric charge (neutralinos).

Supersymmetry ensures that the couplings of all these new particles are strictly

related to ordinary couplings. For instance, the couplings of squarks to one or two gluons,
of gluinos to gluons, of squarks and gluinos to quarks are solely determined by �s, the
QCD gauge coupling constant.

The supersymmetric generalization of the Standard Model is therefore a well-

de�ned theory where all new interactions are described by the mathematical properties of
the supersymmetric transformation. As such, however, the theory is not acceptable since
it predicts a mass degeneracy between the ordinary and the supersymmetric particles;
in Nature, therefore, supersymmetry is not an exact symmetry. In order to preserve the

solution of the hierarchy problem we need to break supersymmetry while maintaining the
good ultraviolet behaviour of the theory. It has been shown [15] that if only a certain set
of supersymmetry-breaking terms with dimensionful couplings are introduced, then the
quadratic divergences still cancel, but the mass degeneracy is removed. Let us generically

call mS the mass that sets the scale for the dimensionful couplings which softly break
supersymmetry. This scale has a de�nite physical meaning, since all new supersymmetric
particles acquire masses of order mS. It is the energy scale at which supersymmetry has

to be looked for in experiments.
By explicit calculation one �nds that, in a softly broken supersymmetric theory,

quadratic divergences cancel, but some �nite terms of the kind (�=�)m2

S remain. From
eq. (10) we recognize that mS behaves as the cut-o� of quadratic divergences in the

Standard Model. This is not entirely surprising since, in the limit mS !1, all supersym-
metric particles decouple and one should recover the ultraviolet behaviour of the Standard
Model. Therefore we conclude that, in a softly broken supersymmetric theory, the cut-o�
of quadratic divergences has a physical meaning since it is related to mS, the mass scale of

the new particles. Moreover, following the same argument that led us to eq. (11) we �nd
that these new particles cannot be much heavier than the TeV scale, if supersymmetry
solves the hierarchy problem. In sect. 8, I will make this argument more quantitative.

Although technically successful, it may appear that the introduction of the soft

supersymmetry-breaking terms is too arbitrary to be entirely satisfactory. But, on the
contrary, it has a very appealing explanation [16]. Let us �rst promote supersymmetry
to supergravity, possibly a necessary step towards complete uni�cation of forces. Then

assume that supergravity is either spontaneously or dynamically broken in a sector of the
theory that does not directly couple to ordinary particles. In this case, gravity commu-
nicates the supersymmetry breaking, and the low-energy e�ective theory of the super-
symmetric Standard Model contains exactly all the terms which break supersymmetry

without introducing quadratic divergences.
From this point of view, the appearance of the soft-breaking terms can be under-

stood in terms of well-de�ned dynamics. However, we do not yet know which mechanism
breaks supersymmetry and therefore we are not able to compute the soft-breaking terms.

This is unfortunate because these de�ne the mass spectrum of the new particles. All we
can do now is to keep them as free parameters and hope they will be determined by
experimental measurements or calculated, if theoretical progress is made. In the minimal
version of the theory, there are only four such parameters but, if some assumptions are
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relaxed, the number of free parameters can grow enormously.

7. SUPERSYMMETRIC UNIFICATION

In the previous section, we have extended the Standard Model to include super-
symmetry in order to solve the hierarchy problem. We can now incorporate within this

model the ideas of grand uni�cation, and construct a supersymmetric GUT [17].
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Figure 1: Gauge coupling constant uni�cation predictions obtained by varying
log10MX (as shown by the numbers inside the bands) for the Standard and
supersymmetric GUT theories. The bands represent the uncertainties in the
prediction. Also shown are the present experimental data and the data available

in 1981. (Courtesy S. Dimopoulos).

As discussed in sect. 3, the �rst test of a GUT is gauge coupling uni�cation. At the
one-loop approximation the evolution of the SU3 � SU2 � U1 gauge coupling constants

with the energy scale Q2 is given by

d�i

dt
= � bi

4�
�2i ) �i(t) =

�i(0)

1 + bi
4�
�i(0)t

; i = 1; 2; 3; (12)

where t = log(M2

X=Q
2). The coe�cients bi take into account the numbers of degrees of

freedom and the gauge quantum numbers of all particles involved in virtual exchanges.
For the Standard Model, we �nd

b3 = �7 + 4

3
(Ng � 3) ; b2 = �19

6
+
4

3
(Ng � 3) ; b1 =

41

6
+
20

9
(Ng � 3) ; (13)

where Ng is the number of generations. In the supersymmetric case all new particles

inuence the running of the gauge coupling constants and modify the bi parameters,

b3 = �3 + 2(Ng � 3) ; b2 = 1 + 2(Ng � 3) ; b1 = 11 +
10

3
(Ng � 3) : (14)

Assuming Ng = 3 and gauge coupling uni�cation, i.e. �3(0) = �2(0) = 5=3�1(0), we can
compute the QCD coupling �s(MZ)(� �3(MZ)) and sin2 �W (� [1 + �2(MZ)=�1(MZ)]�1)
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as a function of MX , taking ��1(MZ) = 127:9 � 0:1 (��1 � ��1
1

+ ��1
2
). The results

of the theoretical calculations in the Standard and supersymmetric models are shown
in �g. 1, together with the experimental result [7]. Uni�cation of couplings is clearly
inconsistent with the Standard Model evolution for any value of MX . This rules out any
simple GUT which breaks directly into SU3�SU2�U1, with only ordinary matter content.

Inclusion of additional light particles or intermediate steps of gauge symmetry breaking
may reconcile the Standard Model with the idea of uni�cation. Of course, in this case,
any prediction from gauge coupling uni�cation is necessarily lost. More interesting is the
supersymmetric case in which uni�cation is achieved in the minimal version of the model,

with MX ' 1016 GeV. From the historical point of view, it is amusing to notice that in
1981, when supersymmetric GUTs were �rst proposed, the experimental data [18] were
compatible with standard GUTs, but disfavoured supersymmetric uni�cation; see �g. 1.

8. ELECTROWEAK SYMMETRY BREAKING

As a realistic theory of particle interactions, the supersymmetric model should de-

scribe the correct pattern of electroweak symmetry breaking. This is obtained by the Higgs
mechanism. As already mentioned in sect. 6, supersymmetry requires two Higgs doublets,
as opposed to the single one of the Standard Model. Along the neutral components of the

two Higgs �elds, the scalar potential is:

V (H0

1
;H0

2
) = m2

1
jH0

1
j2 +m2

2
jH0

2
j2 �m2

3
(H0

1
H0

2
+ h:c:) +

g2 + g0

8

�
jH0

1
j2 � jH0

2
j2
�
2

(15)

where g; g0 are respectively the SU2 and U1 gauge coupling constants. The mass parameters

m2

1
;m2

2
and m2

3
originate from soft-breaking terms and are therefore of the order of mS,

the mass scale introduced in sect. 6. The stability of the potential for large values of �elds
along the direction H0

1
= H0

2
requires

m2

1
+m2

2
> 2jm2

3
j : (16)

Since electroweak symmetry is broken, the origin H0

1
= H0

2
= 0 must correspond to an

unstable con�guration, which implies:

m2

1
m2

2
< m4

3
: (17)

It is often assumed that the soft-breaking terms satisfy some universality condi-
tions around MX . Notice that, should for instance m2

1
= m2

2
, eqs. (16) and (17) cannot

be simultaneously satis�ed and electroweak symmetry remains unbroken. Nevertheless,
before drawing any conclusion, we have to include the renormalization e�ects of changing

the scale from MX to the electroweak scale MW . These e�ects are important as they
are proportional to a large logarithm, log(M2

X=M
2

W ), and they have been systematically
computed up to two loops [19]. Generically, the e�ect of gauge interactions is to increase

the masses as we evolve from MX to MW . Therefore, if all masses are equal at MX , we
expect gluinos to be heavier than charginos and neutralinos, and similarly squarks to be
heavier than sleptons, because of the dominant QCD e�ects. On the other hand, Yukawa
interactions decrease the masses in the renormalization from high to low energies. There-

fore, the stops will be the lightest among squarks, since the top quark coupling gives the
dominant Yukawa e�ect.
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Let us now consider the evolution of the Higgs mass parameters. As they do not feel
QCD forces at one loop, their gauge renormalization is not very signi�cant. The Yukawa
coupling e�ect is important for m2

2
, because H2 is the Higgs �eld responsible for the top

quark mass, but not for m2

1
. Therefore, as an e�ect of the heavy top quark, m2

2
decreases

and it is likely to be driven negative around the weak scale, while m2

1
remains positive. For

m2

1
> 0 and m2

2
< 0, eqs. (16) and (17) can be easily satis�ed and electroweak symmetry

is broken [20].

In conclusion, the supersymmetric model is consistent with electroweak symmetry
breaking and the mechanism involved is appealing in several ways. First of all, the breaking
is driven by purely quantum e�ects, a theoretically attractive feature. Then it needs a
heavy top quark, which agrees with the Tevatron discovery. Finally, we have found that

the dynamics itself chooses to break down SU2. In a supersymmetric theory, colour SU3
could spontaneously break if squarks get a vacuum expectation value, but this does not
happen since squark masses squared receive large positive radiative corrections.

The minimization of the Higgs potential in eq. (15) gives:

M2

Z

2
� g2 + g0

8
v2 =

m2

1
�m2

2
tan2 �

tan2 � � 1
; (18)

sin2 � =
2m2

3

m2

1
+m2

2

; (19)

where
hH0

1
i = vp

2
cos� ; hH0

2
i = vp

2
sin � : (20)

Equation (18) can be interpreted as a prediction ofMZ in terms of the soft supersymmetry-
breaking parameters (ai) which determinem2

1
;m2

1
, and m2

3
. Unfortunately, we are not able

to compute supersymmetry breaking, and therefore we can only use eq. (18) as a constraint

which �xes one of the parameters ai in terms of the others.
We can also use eq. (18) to de�ne a quantitative criterion for obtaining upper

bounds on supersymmetric particle masses from the naturalness requirement [21]. It is

intuitive that, as the supersymmetry-breaking scale mS grows, eq. (18) can hold only with
an increasingly precise cancellation among the di�erent terms. We therefore require, for
each parameter ai: ����� aiM2

Z

@M2

Z

@ai

����� < � ; (21)

where M2

Z is given by eq. (18) and � is the degree of �ne tuning. Equation (21) can now

be translated into upper bounds on the supersymmetric particle masses. Independently
of speci�c universality assumptions on supersymmetry-breaking terms, we �nd [22], for
instance, that the chargino and the gluino are respectively lighter than 120 and 500 GeV,
if �ne tunings no greater than 10% (� = 10) are required.

9. HIGGS SECTOR

Supersymmetry requires two Higgs doublets and therefore an extended spectrum of
physical Higgs particles. Out of the eight degrees of freedom of the two complex doublets,

three are eaten in the Higgs mechanism and �ve correspond to physical particles. These
form two real CP-even scalars (h;H), one real CP-odd scalar (A), and one complex
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scalar (H+). As we have seen in the previous section, the Higgs potential contains three
parameters (m2

1
;m2

2
;m2

3
) and one of them is �xed by the electroweak symmetry-breaking

condition, eq. (18). Therefore, all tree-level masses and gauge couplings of the �ve Higgs

particles are completely described by only two free parameters.
Another important feature of the supersymmetric Higgs potential is that the quartic

coupling is given in terms of gauge couplings, see eq. (15). In the Standard Model case,
the quartic Higgs coupling measures the Higgs mass. Therefore, it is not surprising to �nd

that in supersymmetry the mass of the lightest Higgs is bounded from above:

mh < MZj cos 2�j : (22)

Supersymmetry does not only provide a solution to the hierarchy problem by stabilizing
the Higgs mass parameter, but also predicts the existence of a Higgs boson lighter than
the Z0.

Note that eq. (22) holds only at the classical level. There are important radiative
corrections to the lightest Higgs mass proportional to m4

t [23]:

�m2

h '
3

�2
m4

t

v2
log

mS

v
: (23)

The upper bound given in eq. (22) is then modi�ed, and the result is shown in �g. 2 [25].
For extreme values of the parameters, mh can be as heavy as 150 GeV, but it is generally

much lighter.
This is an excellent opportunity for LEP2, where the Standard Model Higgs boson

can be discovered via the process e+e� ! hZ0 in essentially the entire kinematical range
mh <

p
s�MZ . In the supersymmetric case, the search is more involved, because of the

extended Higgs sector. For tan � close to 1, the supersymmetric Higgs boson resembles
the Standard Model counterpart and the LEP2 search is unchanged. For large values
of tan �, the cross-section for e+e� ! hZ0 is reduced and can become unobservable at
LEP2. However, at the same time, the CP-odd Higgs boson A becomes light and the cross-

section for the process e+e� ! hA is then sizeable. The two di�erent Higgs production
mechanisms are therefore complementary and allow the search for the supersymmetric
Higgs boson at LEP2 for most of the parameters. Nevertheless, a complete exploration

of the whole supersymmetric parameter space will be possible only at the LHC, at the
beginning of the next millenium.

The discovery of a light Higgs boson is certainly not a proof of the existence of
supersymmetry at low energies. However, in the Standard Model, vacuum stability im-

poses a lower bound on the Higgs mass as a function of the top quark mass [24]. This is
shown in �g. 2 [25], where the validity of the Standard Model is assumed up to the Planck
mass. For comparison, the upper bound on the supersymmetric Higgs mass is also shown
in �g. 2. Notice that, for mt < 175 GeV, the Higgs discovery can discriminate between

the supersymmetric model and the Standard Model with �max = MP l. Although this is
not strictly true for mt > 175 GeV, it is clear that the Higgs search can in general give
good indications about the scale of new physics.

10. SUPERSYMMETRY AND EXPERIMENTS

If the Higgs search is certainly an important experimental test, evidence for low-

energy supersymmetry will come only from the discovery of the partners of ordinary
particles.
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Figure 2: Left: Lower bound on the Standard Model Higgs boson mass (thick

lines) from metastability requirements, as a function of the top quark mass,
for a cut-o� scale � = 1019 GeV. Upper bound on the supersymmetric Higgs
boson mass (thin lines) for mS < 1 TeV. The dashed lines show the uncertain-

ties in the bounds. Right: Lower bounds on the Standard Model Higgs boson
mass from the metastability requirements, as a function of the cut-o� scale � for
mt = 170; 180; 190; 200 GeV (lines from bottom to top). (Courtesy M. Quiros)

The most important feature of supersymmetry phenomenology is the existence of
a discrete symmetry, called R-parity, which distinguishes ordinary particles from their
partners. This is not an accidental symmetry, in the sense that it is not an automatic

consequence of supersymmetry and gauge invariance. Nevertheless, it is usually assumed,
or else dangerous B- or L-violating interactions are introduced. It can be understood
as a consequence of gauge symmetry in GUT models which contain left-right symmetric
groups. If R-parity is indeed conserved only an even number of supersymmetric partners

can appear in each interaction. As a consequence, supersymmetric particles are produced
in pairs and the lightest supersymmetric particle is stable.

In most of the models, this stable particle turns out to be the lightest neutralino

(�0). This is fortunate for the model, since the present density of electric- or colour-
charged heavy particles is very strongly limited by searches for exotic atoms [26]. A
stable neutral particle is not only allowed by present searches but also welcome since it
can explain the presence of dark matter in the Universe (see ref. [27]). From the point

of view of collider experiments, �0 will behave as a heavy neutrino which escapes the
detector, leaving an unbalanced momentum and missing energy in the observed event.
The distinguishing signature of supersymmetry is therefore an excess of missing energy
and momentum. For example, in e+e� colliders, charginos and sleptons are pair-produced

with typical electroweak cross-sections and then decay, giving rise to events such as:

e+e� ! �+�� ! isolated leptons and=or jets + E= ;

e+e� ! ~̀+ ~̀� ! isolated leptons + E= : (24)

Using these processes, LEP1, working at the Z0 peak, was able to rule out the existence of
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these particles with masses less thanMZ=2 [7]. LEP2 should cover most of the kinematical
range, and discover or exclude �+ and ~̀+ with masses almost up to

p
s=2. This is certainly

going to be a very critical region since, as we have seen in sect. 8, the 10% �ne-tuning

limits place the weakly-interacting supersymmetric particles at the border of the LEP2
discovery reach.

Strongly-interacting particles, such as squarks and gluinos, can be best studied at
hadron colliders where they are produced with large cross-sections. The signature is again

missing transverse energy carried by the neutralinos produced in the decays of squarks
and gluinos. Tevatron experiments have set limits on the masses of these particles of about
150{200 GeV, depending on the particular model assumptions. At the LHC squarks and
gluinos can be searched even for masses of several TeV, well above the 10% �ne-tuning

limits.
It is worth pointing out that although e+e� colliders are the ideal machines for a

systematic search of new weakly-interacting particles, charginos and neutralinos may also
be discovered at hadron colliders, for instance in the process:

p�p! ��
1
�0
2
; ��

1
! `���0

1
; �0

2
! `+`��0

1
: (25)

The signal of three leptons and missing transverse energy in the �nal state has almost no
Standard Model background, when su�cient lepton isolation requirements are imposed.

However, it is di�cult to obtain lower bounds on the new particle masses, because the
leptonic branching ratios of charginos and neutralinos depend strongly on the model
parameters.

In conclusion, this generation of colliders is testing the theoretically best-motivated

region of parameters in the supersymmetric model. We can be con�dent that, after the
LHC has run, either low-energy supersymmetry will have been discovered or it must be
discarded, since its main motivation is no longer valid.

11. THE FLAVOUR PROBLEM

The Standard Model Lagrangian for gauge interactions is invariant under a global

U5

3
symmetry, with each U1 acting on the generation indices of the �ve irreducible fermionic

representations of the gauge group (qL; ucR; d
c
R; `L; e

c
R)i, i = 1; 2; 3. This symmetry,

called avour (or generation) symmetry, implies that gauge interactions do not distin-
guish among the three generations of quarks and leptons. In the real world, this symmetry

must be broken, as quarks and leptons of di�erent generations have di�erent masses. How-
ever, the breaking must be such as to maintain an approximate cancellation of Flavour-
Changing Neutral Currents (FCNC). This is called the avour problem.

In the Standard Model the avour problem is solved in a simple and rather elegant

way. The avour symmetry is broken only by the Yukawa interactions between the Higgs
�eld and the fermions. After electroweak symmetry breaking, these interactions give rise
to the various masses of the three generations of quarks and leptons. The attractive feature

of this mechanism is that all FCNC exactly vanish at tree level [28]. This is a speci�c
property of the Standard Model with minimal Higgs structure and it is not automatic
in models with an enlarged Higgs sector. Small contributions to FCNC are generated at
loop level and generally agree with experimental observations. Athough this mechanism

provides a great success of the Standard Model, it prevents us from computing any of the
quark or lepton masses, as these are introduced in terms of some free parameters.
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In supersymmetry, the solution of the avour problem is more arduous. Most of
the soft-breaking terms introduced in sect. 6 generally violate the avour symmetry and
give too large contributions to the FCNC. This can be understood by recalling that, in

a softly-broken supersymmetric theory, the mass matrices for quarks and squarks are
independent and therefore cannot be simultaneously diagonalized by an equal rotation of
the quark and squark �elds. Thus neutral currents involving gluino{quark{squark vertices
can mediate signi�cant transitions among the di�erent generations. Only if squarks and

gluinos were heavier than 10{100 TeV could generic soft-breaking terms be consistent with
observations of FCNC processes. Since, as discussed in sect. 8, the very motivation for low-
energy supersymmetry implies that squarks and gluinos must be lighter than 500{1000
GeV, we have to postulate that the supersymmetry-breaking terms have some speci�c

property.
The �rst possibility is that the supersymmetry-breaking terms respect the avour

symmetry in the limit of vanishing Yukawa couplings. This possibility is often advocated
in models based on supergravity, on the basis of the hypothesis that all gravitationally-

induced interactions are avour-invariant. However, this hypothesis has been shown to
be incorrect both in supergravity models with generic K�ahler metrics [29] and in models
derived from superstrings [30]. Nevertheless, this is an interesting possibility, since it

signi�cantly reduces the number of free parameters in the supersymmetry-breaking terms
and allows sharp predictions testable at future colliders.

The other possibility is that the supersymmetry-breaking terms violate the avour
symmetry but are approximately aligned with the corresponding avour violation in the

fermionic sector (e.g. with the Yukawa couplings). This can be the result of some new
symmetry [31] or some dynamical mechanism [32].

It is likely that the solution of the avour problem is linked with the mechanism
of supersymmetry breaking and therefore it will only be unravelled after signi�cant the-

oretical developments. Now we can only speculate that an understanding of the avour
problem may help us to calculate the amount of avour breaking and ultimately all quark
and lepton masses.

12. TECHNICOLOUR

We have seen how supersymmetry can cure the hierachy problem of the Standard
Model by stabilizing the mass scale in the Higgs potential. Technicolour [33] o�ers a

di�erent solution to the hierarchy problem, based on the idea of removing all fundamental
scalar particles from the theory. The mass scale which sets the electroweak breaking is
dynamically determined in a strongly interacting gauge theory with purely fermionic
matter.

The presence of light scalars (mesons) in the hadronic spectrum does not pose a
problem of hierarchy. The description of mesons as fundamental particles is valid only up
to about �QCD. Above this scale, physics is described in terms of quarks and gluons, and

hadrons have to be interpreted as composite particles. Technicolour aims to describe the
Higgs boson as a composite particle, similarly to the case of mesons in QCD.

In order to illustrate the main idea of technicolour, let us consider as a toy model
QCD with only two massless avours (mu = md = 0). In this limit, the theory has a chiral

SU(2)L � SU(2)R invariance, in which the left-handed and right-handed components of
the up and down quarks are rotated independently. As QCD becomes strongly-interacting
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at Q2 <� �2

QCD
, the quark condensates are formed:

hu�ui = hd �di = O(�3

QCD
) : (26)

If the two condensates are equal, the chiral symmetry is broken to the vectorial part
SU(2)L+R. Goldstone's theorem ensures the existence of three massless scalar particles
in the spectrum, the pions �0; ��. In the real world, quark masses explicitly break chiral

symmetry and give small masses to the pions. Also, if the strange quark is included, the
chiral symmetry SU(3)L�SU(3)R is broken to SU(3)L+R, giving rise to the meson octet
as approximate Goldstone bosons.

Let us turn on weak interactions in our toy model. Since the W boson couples

to quarks, it also interacts with the pions. This coupling can be obtained from PCAC,
which determines the matrix element of the broken current (ja�) in terms of the pion decay
constant f�:

h0jja�j�bi = f�q��
ab : (27)

Here a; b are SU(2) indices and q� is the pion four-momentum. From eq. (27) and the
coupling of the W boson to the weak current, we obtain the coupling between W a

� and
�b:

g

2
f�q��

ab : (28)

Consider now the correction of one-pion exchange in the W propagator:

1

q2
+

1

q2

�
g

2
f�q

�

�
1

q2

�
g

2
f�q�

�
1

q2
: (29)

The �rst term corresponds to the uncorrected massless W propagator and the second

term corresponds to the exchange of a massless pion between two W propagators with
the coupling given in eq. (28). We can insert an in�nite number of pion exchanges, but it
is not di�cult to sum the whole series:

1

q2

1X
n=0

"�
g

2
f2�

�
1

q2

#n
=

1

q2 �
�
g

2
f�
�
2
: (30)

Equation (30) shows that the e�ect of the pion exchange is to shift the pole value of the

W propagator to

MW =
g

2
f� : (31)

The W boson has acquired mass, which is not a surprising result if we think that we have
promoted a global broken symmetry to a local invariance. The value for theW mass given
by eq. (31) is about 30 MeV, certainly too small to explain the experimental data.

We can use the result of this toy model and explain the physical value of MW , if
we introduce a new force, called technicolour. Technicolour behaves in a similar fashion to
the ordinary colour forces but it becomes strong at a much larger scale �TC ' 500 GeV.
The simplest technicolour model is very easy to construct. Take a doublet of fermions

with the same electroweak quantum numbers as the up and down quarks, assign to them
a technicolour charge and call them techniquarks U and D. The condensates

h �UUi = h �DDi = O(�3

TC) (32)
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generate three composite Goldstone modes, which become the longitudinal degrees of free-
dom of the W and Z gauge bosons. We have then built a model of electroweak symmetry
breaking with no fundamental Higgs boson. The experimental signature is the presence

of strongly interacting dynamics at the TeV scale, which produces new resonances similar
to those found in the hadronic spectrum at the GeV scale.

Although the mechanism for generating electroweak breaking in technicolour is
very elegant, several di�culties have prevented the construction of a fully realistic model.

The �rst problem is the communication of electroweak breaking to the quark and leptonic
sectors of the theory. This can be done via new interactions, called extended technicolour
(ETC) forces [34], which couple quarks to techniquarks. If the ETC symmetry is broken
(possibly by some dynamical mechanism) at a scale METC larger than �TC, quarks and

leptons receive masses of the order of

mf � hF �F i
M2

ETC

� �3

TC

M2

ETC

; (33)

where hF �F i is the corresponding technifermionic condensate. The trouble is that measure-

ments of FCNC processes generally impose stringent lower bounds on METC, of the order
of 100 TeV. This means that the ETC mechanism can generate the masses for the �rst
generation of fermions, but has di�culties to explain the larger masses of the second and
third generations. The task is particularly arduous for the top quark, since a dynamical

mechanism which explains the large isospin breaking in the di�erence between mt and mb

generally leads to large corrections to the � parameter, the ratio between the strengths
of the neutral and charged weak currents. Finally, the e�ect of the strong technicolour

dynamics always gives sizeable corrections to the electroweak precision data in LEP1,
which have been shown to agree with the Standard Model with great accuracy [2].

The hope is that these problems can be cured in technicolour theories with dynam-
ics substantially di�erent from a scaled-up QCD. There has been some e�ort in this direc-

tion, trying to construct theories in which the ultraviolet behaviour of the technifermion
self-energy enhances the quark mass contribution, while the infra-red behaviour deter-
mines the W mass. This may occur in theories with slowly running coupling constants
(the so-called walking technicolour [35]) or in �xed-point gauge theories [36], although the

non-perturbative nature of the problem prevents us from making reliable calculations.
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