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1 Introduction

Impressive results over the last year on non perturbative properties of N = 2 supersym-
metric Yang-Mills theories[ll, P] and their extension to string theory[B]-[f] through the
notion of string-string duality|[], §], have used the deep underlying mathematical struc-
ture of these theories and its relation to algebraic geometry [f]- [Lg].

In the case of N = 2 vector multiplets, describing the effective interactions in the
Abelian (Coulomb) phase of a spontaneously broken gauge theory, Seiberg and Witten
[M have shown that positivity of the metric on the underlying moduli space identifies the
geometrical data of the effective N = 2 rigid theory with the periods of a particular torus.

In the coupling to gravity it was conjectured by some of the present authors [J, f] and
later confirmed by heterotic-Type II duality [[[1], [3, [§, [[J], that the very same argument
based on positivity of the vector multiplet kinetic metric identifies the corresponding
geometrical data of the effective N = 2 supergravity with the periods of Calabi-Yau
threefolds.

On the other hand, when matter is added, the underlying geometrical structure
is much richer, since N = 2 matter hypermultiplets are associated with quaternionic
geometry[2]], P2, B3], and charged hypermultiplets are naturally associated with the gaug-
ing of triholomorphic isometries of these quaternionic manifolds [24], PJ].

It is the aim of this paper to complete the general form of the N = 2 supergravity
lagrangian coupled to an arbitrary number of vector multiplets and hypermultiplets in
presence of a general gauging of the isometries of both the vector multiplets and hyper-
multiplets scalar manifolds. Actually this extends results already obtained years ago by
some of us [24], that in turn extended previous work by Bagger and Witten on ungauged
general quaternionic manifolds coupled to N = 2 supergravity[R]]], by de Wit, Lauwers
and Van Proeyen on gauged special geometry and gauged quaternionic manifolds obtained
by quaternionic quotient in the tensor calculus framework @], and by Castellani, D’Auria
and Ferrara on covariant formulation of special geometry for matter coupled supergravity

7.

This paper firstly provides in a geometrical setting the full lagrangian with all the
fermionic terms and the supersymmetry variations. Secondly, it uses a coordinate in-
dependent and manifestly symplectic covariant formalism which in particular does not
require the use of a prepotential function F(X). Whether a prepotential F'(X) exists or
not depends on the choice of a symplectic gauge[f]. Moreover, some physically interesting
cases are precisely instances where F(X) does not exist[f].

Of particular relevance is the fact that we exhibit a scalar potential for arbitrary
quaternionic geometries and for special geometry not necessarily in special coordiantes.
This allows us to go beyond what is obtainable with the tensor calculus (or superspace)
approach. Among many applications, our results allow the study of general conditions for
spontaneous supersymmetry breaking in a manner analogous to what was done for N =1
matter coupled supergravity [2§]. Many examples of supersymmetry breaking studied in
the past are then reproduced in a unified framework.

Recently the power of using simple geometrical formulae for the scalar potential was
exploited while studying the breaking of half supersymmetries in a particular simple
model, using a symplectic basis where F'(X) is not defined[9]. The method has poten-
tial applications in string theory to study non perturbative phenomena such as conifold



transitions [[7], p-forms condensation [B0] and Fayet-Iliopoulos terms [29, B7].

N = 2 supergravity displays a high degree of complexity in its structure, based however
on the simplicity of few principles. The supersymmetric Lagrangian and the transforma-
tion rules are indeed quite involved but all the couplings, the mass matrices and the
vacuum energy are completely fixed and organized in terms of three geometrical data:

1. The choice of a special Kdhler manifold SM describing the self-interactions of the
vector multiplets

2. The choice of a quaternionic manifold HM describing the self-interaction of the
hypermultiplets

3. The choice of a gauge group G, that in the non abelian case must be a subgroup of
the isometry group of the scalar manifold Meqior = SM Q@ HM with a block diag-
onal immersion in the symplectic group Sp(2m + 2,1R) of electric-magnetic duality
rotations (see eq. p.4).

For this reason we devote the first and largest part of the paper (sections 2-7) to review
and discuss, in a way independent from supersymmetric Lagrangians and supersymmetry
algebras, the geometrical ingredients of the construction that we listed above. This part
of the paper can be read as an independent essay and should be quite accessible to math-
ematicians as well as to readers who have no background or interest in supersymmetry.

The second part of the paper (sections 8-9) presents instead the Lagrangian and super-
symmetry transformation rules for both N = 2 supergravity and N = 2 matter coupled
rigid Yang—Mills theory that is retrieved from supergravity in the infinite Planck mass
limit 4 — oo. The theory is presented in a completely explicit component formalism,
and no formulae employ or require the use of superfields, superspace or conformal tensor
calculus. All items entering such formulae are rather geometrical objects whose nature
and properties were described and explained in previous sections.

The reader interested in applications of N = 2 supergravity or Yang—Mills theory can
directly jump to sections 8-9, that are self-contained, and insert, in the ready-to-use for-
mulae the specific geometrical data corresponding to the problem considered. References
to formulae in previous sections are given to fix normalizations.

The derivation of the results presented in sections 8-9 was obtained by means of the
geometric (“rheonomic”) approach (for a general review see the book by some of us [B1]).
The details of the derivation are given in the Appendices for the interested reader, while
the results are presented in the main text. It is indeed one of the main advantages of
the geometrical approach to supersymmetry that the final outcome of the construction is
directly written in space—time component formalism.

As emphasized our results are general and apply to generic choice of the scalar mani-
fold. As an illustration of our formulae in the appendix we specialize them to the case of
the manifolds [[.I. More specifically, our paper is organized as follows:

1. Section 2 reviews duality rotations and symplectic covariance in field theory.

2. Section 3 describes the symplectic embedding of the homogeneous spaces,in par-
ticular the special symmetric spaces which appear at tree level in heterotic string
theory.



3. Section 4 reviews Special Kahler geometry, both for rigid and local supersymmetry.

4. Section 5 describes the geometry of hypermultiplets, their associated quaternionic
and hyperKéahler manifolds in local and rigid supersymmetry.

5. Section 6 faces the gauging of special and quaternionic manifolds.

6. Section 7 deals with the so called momentum map on Special Kahler and quater-
nionic manifolds giving rise to the introduction of prepotential functions which enter
in the construction of the scalar potential.

7. Section 8 reports the full N = 2 Lagrangian in a symplectic covariant form

8. Section 9 contains the rigid limit and reports the general form of a matter coupled
N = 2 super Yang-Mills theory on a generic rigid special manifold and a generic
rigid hyperKahler manifold.

9. Appendices A, B give a detailed derivation of the Lagrangian and transformation
rules using the geometrical approach.

10. Appendix C deals with the relevant formulas for N = 2 supergravity based on the

manifolds
_ , SU(1,1) SO(2,n)
1 fold = ST[2,n] =
special manifold ST[2,n] o) S0(2) x S0()
quaternionic manifold = HQ[m| = 50, m) (1.1)

= SO(4) x SO(m)

This is done as an exemplification of the general formulae for the potential, mass
matrices and kinetic period matrices and for its intrinsic interest in applications to
tree level string theory

11. Appendix D contains a list of conventions and normalizations that we have em-
ployed.

An expanded version of this paper, with particular attention to the geometrical prop-
erties of the scalar manifolds, the rigidly supersymmetric version and further related issues
is given in [BJ.

2 Duality Rotations and Symplectic Covariance

In this section, both for completeness and in order to fix our conventions and notations,
we review the general structure of an abelian theory of vectors and scalars displaying
covariance under a group of duality rotations. The basic reference is the 1981 paper by
Gaillard and Zumino [[lf]. A general presentation in D = 2p dimensions was recently
given in [i7]. Here we fix D = 4.

We consider a theory of m gauge fields Aﬁ, in a D = 4 space-time with Lorentz
signature. They correspond to a set of @ differential 1-forms

AN = Abda® (A=1,...,m) (2.1)



The corresponding field strengths and their Hodge duals are defined by

FY = dAY = fﬁydx” A dx”

1
A A A
Fow = 5 (0uA) — 0,47)
A .7?/1\,/ dxt N dx”
~ 1
f/?u = i‘g,uupo fA‘po (22)

Defining the space-time integration volume as

1

d*z = — 1 Srna dz" A oo ANdatt (2.3)

we obtain
FMANFR =gveo g P dle p FMANFY = =27 FEmdty (2.4)

In addition to the gauge fields let us also introduce a set of real scalar fields ¢! ( I =
1,...,m) spanning an M-dimensional manifold M.gqr | endowed with a metric gr;(¢).
Utilizing the above field content we can write the following action functional:

S = % / {[7an(@) F* A XF™ + Oxs(0) F* A F¥] + g15(9) 0,0" 067 d'z |, (2.5)

where the scalar fields dependent 77 x 7T matrix van(¢) generalizes the inverse of the
squared coupling constant g% appearing in ordinary gauge theories. The field dependent
matrix fyx (o) is instead a generalization of the theta—angle of quantum chromodynamics.
Both v and € are symmetric matrices. Introducing a formal operator j that maps a field

strength into its Hodge dual

. 1 -
(7)., = 5 owm 7Y (2.0
and a formal scalar product
(G, K)=G"K = Y G K" (2.7)
A=1

the total Lagrangian of eq. B.J can be rewritten as

, 1
L0 = FT (—y@1+0®75)F + 5 917(0) 00" 0"’ (2.8)
The operator j satisfies j2 = — 1 so that its eigenvalues are #+i. Introducing self-dual

and antiself-dual combinations
1
Fr o= 5 (F £157F)
JFY = FiFT (2.9)

"'Whether the ¢! can be arranged into complex fields is not relevant at this level of the discussion.
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and the field—dependent symmetric matrices

N = 0 -1y
N = 0+iy, (2.10)

the vector part of the Lagrangian P.§ can be rewritten as
Loe =i [FTNF = FINF* (2.11)

Introducing the new tensors

1 oL i oc

oA = 2 S e 2.12
Gu = 5078 7 9w = FogEa (2.12)
which, in matrix notation, corresponds to
., _ 1oL .

the Bianchi identities and field equations associated with the Lagrangian [P.J can be
written as

MFL =0 (2.14)
oMGh = 0 (2.15)
or equivalently
HImFt = 0 (2.16)
HImGt = 0. (2.17)

This suggests that we introduce the 27 column vector

_(JF )
V=" 2.18
(J g (2.18)
and that we consider general linear transformations on such a vector
o) = (e ) 07) 219
(g ¢ p)\jg (2:19)
For any matrix (C g) € GL(2m, R) the new vector V' of magnetic and electric field—

strengths satisfies the same equations P.IJ as the old one. In a condensed notation we
can write

V=0 < 0V =0 (2.20)
Separating the self-dual and anti—self-dual parts
F=(Fr+7) 5 G=(¢"+G") (2.21)

and taking into account that we have

Gt =NF* G =NF- (2.22)



the duality rotation of eq. .19 can be rewritten as

() =& D)) (G)=(C D)) ew
Gt) \C D)\NF* ’ G-) \C D)\NF- '
The problem is that the transformation rule of G* must be consistent with the

definition of the latter as variation of the Lagrangian with respect to F* (see eq. E-12).
A B

C D
must belong to the symplectic subgroup of the general linear group

This request restricts the form of the matrix A = ( ) As we are going to show, A

A= ( a g) € Sp(2mR) C GL(2mR) (2.24)
the subgroup Sp(2m,IR) being defined as the set of 2 x 27 matrices that satisfy the
condition

A€ Sp(2m,R) — AT (_01 3) A= <_0]1 g) (2.25)

that is, using n ® n block components
ATC - c"A=B"D-D'"B=0 A'D-C"B=1 (2.26)

To prove the statement we just made, we calculate the transformed Lagrangian £’ and
then we compare its variation % with G*' as it follows from the postulated transforma-
tion rule R.29. To perform such a calculation we rely on the following basic idea. While
the duality rotation is performed on the field strengths and on their duals, also the
scalar fields are transformed by the action of some diffeomorphism ¢ € Diff (Meqiar) of
the scalar manifold and, as a consequence of that, also the matrix A/ changes. In other
words given the scalar manifold M.y, we assume that there exists a homomorphism of
the form

ts o Diff (Mscalar) — GL(QW, ]R) (2.27)
so that

Vo€ € Diff (Mowa) : ¢ — o

3 58 = (“éi gi) e GL(2m, R) (2.28)

(In the sequel the subfix £ will be omitted when no confusion can arise and be reinstalled
when necessary for clarity. )

Using such a homomorphism we can define the simultaneous action of ¢ on all the
fields of our theory by setting

V — 56V (2.29)
N(¢) — N'(£(9))

where the notation has been utilized. In the gauge sector the transformed Lagrangian
is

{<Z> — &(9)
€

Ll =i|[F T (A+BN)'N'(A+ BN)F~ — F* (A+ BN)"N'(A+ BN)F*| (2.30)
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Consistency with the definition of G* requires that

N' = N'(£(¢)) = (C+ DN(9)) (A+ BN(9))™" (2.31)
while consistency with the definition of G~ imposes the transformation rule
N' = N'(€(9) = (C+ DN (9)) (A+BN()) " (2.32)

It is from the transformation rules .31 and .33 that we derive a restriction on the form
of the duality rotation matrix A = 15(§). Indeed by requiring that the transformed matrix
N’ be again symmetric one easily finds that A must obey eq. B.25, namely A € Sp(2m, R).
Consequently the homomorphism of eq. .27 specializes as

ts o Diff (Mscalar) — Sp(Qﬁ, ]R) (233)

Clearly, since Sp(2m, R) is a finite dimensional Lie group, while Diff (M su4r-) is infinite—
dimensional, the homomorphism ¢5 can never be an isomorphism. Defining the Torelli
group of the scalar manifold as

Diff (Meatar) D Tor (Mgeatar) = ker is (2.34)

we always have
dim Tor (Meatar) = 00 (2.35)

The reason why we have given the name of Torelli to the group defined by eq. is
because of its similarity with the Torelli group that occurs in algebraic geometry.

What should be clear from the above discussion is that a family of Lagrangians as in
eq. 2.3 will admit a group of duality-rotations/field-redefinitions that will map elements
of the family into each other, as long as a kinetic matriz Nay, can be constructed that
transforms as in eq. .31 A way to obtain such an object is to identify it with the period
matriz occurring in problems of algebraic geometry. At the level of the present discussion,
however, this identification is by no means essential: any construction of My with the
appropriate transformation properties is acceptable. Note also that so far we have used the
words duality—rotations/field—redefinitions and not the word duality symmetry. Indeed the
diffeomorphisms of the scalar manifold we have considered were quite general and, as such
had no pretension to be symmetries of the action, or of the theory. Indeed the question
we have answered is the following: what are the appropriate transformation properties of
the tensor gauge fields and of the generalized coupling constants under diffeomorphisms
of the scalar manifold? The next question is obviously that of duality symmetries.

As it is the case with the difference between general covariance and isometries in
the context of general relativity, duality symmetries correspond to the subset of duality
transformations for which we obtain an invariance in form of the theory. In this respect,
however, we have to stress that what is invariant in form cannot be the Lagrangian but
only the set of field equations plus Bianchi identities. Indeed, while any A € Sp(2m, R)
can, in principle, be an invariance in form of egs. .17, the same is not true for the
Lagrangian. One can easily find that the vector kinetic part of this latter transforms as
follows:

ImF ANy F P — ImF ég
- Im(f-Agg +2F 2 (C"B), " G5
+F M (CTA)wF 2+ G5 (DTB) ) (2.36)
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whence we conclude that proper symmetries of the Lagrangian are to be looked for only
among matrices with C' = B = 0. If C' # 0 and B = 0, the Lagrangian varies through the
addition of a topological density (see below eq. [f.7]). Elements of Sp(2m, R) with B # 0,
cannot be symmetries of the classical action under any circumstance.

The scalar part of the Lagrangian, on the other hand, is invariant under all those dif-
feomorphisms of the scalar manifolds that are isometries of the scalar metric g;;. Naming
& TMgeatar — T Meqrar the push—forward of €, this means that

VX,Y € TMscalar
g(X,)Y) = g(£X,8Y) (2.37)

and ¢ is an exact global symmetry of the scalar part of the Lagrangian in eq. B.§. In
view of our previous discussion these symmetries of the scalar sector are not guaranteed
to admit an extension to symmetries of the complete action. Yet we can insist that they
extend to symmetries of the field equations plus Bianchi identities, namely to duality
symmetries in the sense defined above. This requires that the group of isometries of the
scalar metric Z(Meqqr) be suitably embedded into the duality group Sp(2m, R) and that
the kinetic matrix Ny satisfies the covariance law:

N (£(6)) = (Ce + DN (9)) (Ag + BN (9) " (2.38)

3 Symplectic embeddings of homogenous spaces

A general construction of the kinetic coupling matrix A can be derived in the case where
the scalar manifold is taken to be a homogeneous space G/H. This is what happens in
all extended supergravities for N > 3 and also in specific instances of N=2 theories. For
this reason we shortly review the construction of the kinetic period matriz N in the case
of homogeneous spaces. Although the basic construction was introduced in the literature
by Gaillard and Zumino in 1981 [G] and was reviewed by some of us in [BI], a derivation
of the basic formulae that matches completely with the modern notations of N=2 and
N=4 theories, such as they emerge in string compactifications and in the discussion of
S—duality, is not available, to our knowledge, in the existing literature. To make the
present paper self contained we consider therefore essential to review such a construction
in modern gear.
The relevant homomorphism ¢5 (see eq. P.33) becomes:

5 : Diff (%) . Sp(2m, R) (3.1)

In particular, focusing on the isometry group of the canonical metric defined on %ﬂ

7 (%) = G we must consider the embedding:

s G — Sp(2m, R) (3.2)

That in eq. B.1] is a homomorphism of finite dimensional Lie groups and as such it con-
stitutes a problem that can be solved in explicit form. What we just need to know is

2Actually, in order to be true, the equation Z( %) = @ requires that that the normaliser of H in G be
the identity group, a condition that is verified in all the relevant examples



the dimension of the symplectic group, namely the number 72 of gauge fields appearing in
the theory. Without supersymmetry the dimension m of the scalar manifold (namely the
possible choices of %) and the number of vectors 7 are unrelated so that the possibilities
covered by eq. are infinitely many. In supersymmetric theories, instead, the two num-
bers m and 7 are related, so that there are finitely many cases to be studied corresponding
to the possible embeddings of given groups G into a symplectic group Sp(27m, IR) of fixed
dimension 7. Actually taking into account further conditions on the holonomy of the
scalar manifold that are also imposed by supersymmetry, the solution for the symplec-
tic embedding problem is unique for all extended supergravities with N > 3 as we have
already remarked (see for instance [BI]).

Apart from the details of the specific case considered once a symplectic embedding
is given there is a general formula one can write down for the period matriz N that
guarantees symmetry (N7 = A) and the required transformation property 2.3§. This
is the result we want to review. It will be useful in the sequel for comparison with the
formulae of special geometry in the case the considered special manifold is homogeneous
(see appendix C, in particular).

The real symplectic group Sp(2m, IR) is defined as the set of all real 21 x 27 matrices

A= (é g) satisfying equation P.27, namely

ATCA =C (3.3)

o 0 1
Where([]:(_]1 0

still impose eq. B-J we obtain the definition of the complex symplectic group Sp(2m,C).
It is a well known fact that the following isomorphism is true:

) If we relax the condition that the matrix should be real but we

Sp(2m,IR) ~ Usp(n,m) = Sp(2n,C) N U (7, 7) (3.4)

By definition an element S € Usp(m,7) is a complex matrix that satisfies simultaneously
eq. B.3 and a pseudo—unitarity condition, that is:

sfecs =c¢ ; STHS = H (3.5)
where H = <g _O]l ) The general block form of the matrix § is:
S = (‘7; ‘;) (3.6)
and eq.s B.§ are equivalent to:
T -Vviv=1 ; TWWV-VIT =0 (3.7)

The isomorphism of eq. B.4 is explicitly realized by the so called Cayley matrix:

C = % (% —i]illl> (3.8)

via the relation:

S=CAC (3.9)



which yields:

1 1 1 1
T=-(A+D)——-(B- : V = (A—D)— —

When we set V' = 0 we obtain the subgroup U(m) C Usp(m, ), that in the real basis is

A B .

B A)' The basic idea, to
obtain the general formula for the period matrix, is that the symplectic embedding of the
isometry group G will be such that the isotropy subgroup H C G gets embedded into the

maximal compact subgroup U(7), namely:

G Usp(m,m) GO H-2Um) C Usp(m,m) (3.11)

(B+C) (3.10)

given by the subset of symplectic matrices of the form (

If this condition is realized let L(¢) be a parametrization of the coset G/H by means of
coset representatives. Relying on the symplectic embedding of eq. B-I]] we obtain a map:

. _ (Uo(e) Ui(9) _
L(¢) O(¢) = (U1(¢> US(¢)) € Usp(m,7) (3.12)
that associates to L(¢) a coset representative of Usp(7,7)/U (7). By construction if ¢’ # ¢

no unitary m x m matrix W can ezist such that:
N W 0 )

On the other hand let & € G be an element of the isometry group of G/H. Via the
symplectic embedding of eq. B-I] we obtain a Usp(7, ) matrix

(3.13)

Se = (‘Té ‘{i) (3.14)
such that ) W o) 0
5:0(0) = 0&@) (5" o) (315)

where £(¢) denotes the image of the point ¢ € G/H through £ and W (£, ¢) is a suitable
U(m) compensator depending both on ¢ and ¢. Combining eq.s B.13, B-139, with eq.s B.10
we immediately obtain:

Ul @) + U @) = W[Uf(9) (AT +iBT) + U] () (47 ~iB")]
U§ (6(6)) = UL (£(9)) = W [U§ () (D" —iC") = Ul (¢) (D" +iCT)] (3.16)
Setting:

N =i[of+ul] [l -] (3.17)

and using the result of eq. one checks that the transformation rule is verified. It
is also an immediate consequence of the analogue of eq.s B.7 satisfied by U, and U; that
the matrix in eq. is symmetric

NT =N (3.18)

Eq. BI7 is the master formula derived in 1981 by Gaillard and Zumino [Af]. It explains
the structure of the gauge field kinetic terms in all N > 3 extended supergravity theories

and also in those N = 2 theories where the Special Kahler manifold SM is a homogeneous
manifold G/H.
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3.1 Symplectic embedding of the S7 [m,n| homogeneous mani-
folds

Because of their relevance in superstring compactifications let us illustrate the general
procedure with the following class of homogeneous manifolds:

_ SU(1,1) SO(m,n)
ST [m,n] = U SO(m) ® SO(n)

The isometry group of the 87 [m,n] manifolds defined in eq. contains a factor
(SU(1,1)) whose transformations act as non—perturbative S—dualities and another factor
(SO(m,n)) whose transformations act as T—dualities, holding true at each order in string
perturbation theory. The field S is obtained by combining together the dilaton D and the
azxion A:

(3.19)

S = A—iexp[D]
MA = "0, B, (3.20)

while #* is the name usually given to the moduli-fields of the compactified target space.
Now in string and supergravity applications S will be identified with the complex coordi-
nate on the manifold 2 g(é)l) , while ¢ will be the coordinates of the coset space %.
The case ST [6,n] is the scalar manifold in N = 4 supergravity, while the case ST[2,n] is
a very interesting instance of special Kahler manifold appearing in superstring compact-
ifications. Although as differentiable and metric manifolds the spaces ST [m,n] are just
direct products of two factors (corresponding to the above mentioned different physical
interpretation of the coordinates S and '), from the point of view of the symplectic em-
bedding and duality rotations they have to be regarded as a single entity. This is even
more evident in the case m = 2,n = arbitrary, where the following theorem has been
proven by Ferrara and Van Proeyen [[§]: ST [2,n| are the only special Kéhler manifolds
with a direct product structure. The definition of special Kéhler manifolds is given in
the next section, yet the anticipation of this result should make clear that the special
Kaéhler structure (encoding the duality rotations in the N = 2 case) is not a property of
the individual factors but of the product as a whole. Neither factor is by itself a special
manifold although the product is.

At this point comes the question of the correct symplectic embedding. Such a question
has two aspects:

1. Intrinsically inequivalent embeddings

2. Symplectically equivalent embeddings that become inequivalent after gauging

The first issue in the above list is group—theoretical in nature. When we say that the group
G is embedded into Sp(2m, IR) we must specify how this is done from the point of view of
irreducible representations. Group—-theoretically the matter is settled by specifying how
the fundamental representation of Sp(2m) splits into irreducible representations of G:

2n -7 ¢!, D, (3.21)

Once eq. B.2]) is given (in supersymmetric theories such information is provided by su-
persymmetry ) the only arbitrariness which is left is that of conjugation by arbitrary
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Sp(2m, IR) matrices. Suppose we have determined an embedding ¢s that obeys the law in

eq. B-21), then:
VS € Sp2m,R) : 15 = So5087! (3.22)

will obey the same law. That in eq. is a symplectic transformation that corresponds
to an allowed duality—rotation/field—redefinition in the abelian theory of type in eq.
discussed in the previous subsection. Therefore all abelian Lagrangians related by such
transformations are physically equivalent.

The matter changes in presence of gauging. When we switch on the gauge coupling
constant and the electric charges, symplectic transformations cease to yield physically
equivalent theories. This is the second issue in the above list. The choice of a symplectic
gauge becomes physically significant. The construction of supergravity theories proceeds
in two steps. In the first step, one constructs the abelian theory: at that level the
only relevant constraint is that encoded in eq. B.2]] and the choice of a symplectic gauge
is immaterial. Actually one can write the entire theory in such a way that symplectic
covariance is manifest. In the second step one gauges the theory. This breaks symplectic
covariance and the choice of the correct symplectic gauge becomes a physical issue. This
issue has been recently emphasized by the results in [R9] where it has been shown that
whether N=2 supersymmetry can be spontaneously broken to N=1 or not depends on the
symplectic gauge.

These facts being cleared we proceed to discuss the symplectic embedding of the
ST [m,n| manifolds.

Let n be the symmetric flat metric with signature (m,n) that defines the SO(m,n)
group, via the relation

L € SO(m,n) <= L"nL = n (3.23)

Both in the N = 4 and in the N = 2 theory, the number of gauge fields in the theory is
given by:
#vector fields = m @ n (3.24)

m being the number of graviphotons and n the number of vector multiplets. Hence we
have to embed SO(m,n) into Sp(2m + 2n,R) and the explicit form of the decomposition
in eq. B.21 required by supersymmetry is:

om + 202" m +n@m+n (3.25)
where m + n denotes the fundamental representation of SO(m,n). Eq. B.23 is easily un-
derstood in physical terms. SO(m,n) must be a T—duality group, namely a symmetry
holding true order by order in perturbation theory. As such it must rotate electric field
strengths into electric field strengths and magnetic field strengths into magnetic field field
strengths. The two irreducible representations into which the the fundamental representa-
tion of the symplectic group decomposes when reduced to SO(m,n) correspond precisely
to electric and magnetic sectors, respectively. In the simplest gauge the symplectic em-
bedding satisfying eq. .29 is block-diagonal and takes the form:

L 0
0 (LT)—I

Consider instead the group SU(1,1) ~ SL(2,R). This is the factor in the isometry
group of ST [m,n| that is going to act by means of S—duality non perturbative rotations.

VL € SO(m,n) < < ) € Sp(2m +2n,R) (3.26)
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Typically it will rotate each electric field strength into its homologous magnetic one.
Correspondingly supersymmetry implies that its embedding into the symplectic group
must satisfy the following condition:

SL(2,R)
—

2m + 2n et 2 (3.27)

where 2 denotes the fundamental representation of SL(2, R). In addition it must commute
with the embedding of SO(m,n) in eq. B.2g . Both conditions are fulfilled by setting:

a b t all bn
v (C d) € SL2,R) < (Cn d]l) € Sp(2m +2n, R) (3.28)
Utilizing eq.s B.9 the corresponding embeddings into the group Usp(m + n,m + n) are
immediately derived:

1 1
i (3 (L+nLn) §(L—77L77)>
VL € SO(m,n) < <%(L—77L77) L nLn) € Usp(m+n,m+n)

t v Ls Retl + ilmtn Revl — iImvn)
v <v t*> € SU(L1) = <Rev]l +ilmvny  Retll — ilmtn € Usp(m +n,m+n)

(3.29)

where the relation between the entries of the SU(1, 1) matrix and those of the correspond-
ing SL(2,IR) matrix are provided by the relation in eq. B.10.

Equipped with these relations we can proceed to derive the explicit form of the period
matriz N

The homogeneous manifold SU(1,1)/U(1) can be conveniently parametrized in terms
of a single complex coordinate S, whose physical interpretation will be that of azion—
dilaton, according to eq. B.20. The coset parametrization appropriate for comparison
with other constructions (special geometry or N = 4 supergravity) is given by the family
of matrices:

1 (1 . B ATmS

To parametrize the coset SO(m,n)/SO(m) x SO(n) we can instead take the usual coset
representatives (see for instance [B1]):

12
L(X) = (OHXX ) X 1/2) (3.31)
X7 (11+XTX)

where the m x n real matrix X provides a set of independent coordinates. Inserting these
matrices into the embedding formulae of eq.s B.29 we obtain a matrix:

15 (M(S)) 0 15 (L(X)) = (gfgg g;gg) € Uspln+myn+m)  (3.32)

that inserted into the master formula of eq. yields the following result:
N = iImSnL(X)L"(X)n + ReSn (3.33)

Alternatively, remarking that if L(X) is an SO(m, n) matrix also L(X)" = nL(X)n is such
a matrix and represents the same equivalence class, we can rewrite in the simpler
form:

N = iImS L(X)L"(X) + ReSn (3.34)
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4 Special Kahler Geometry

The first discovery that the self-interaction of Wess—Zumino multiplets is governed by
Kéhler geometry is due to Zumino 9 (1979). Independently, the parametrization of
the coupling of Wess—Zumino multiplets to supergravity in terms of a real function, later
identified with the Kahler potential, was obtained in [B0, B1] (1978), shortly after that su-
pergravity had been discovered by Freedman, Ferrara and van Nieuwenhuizen [p3] (1976)
and recast in first order formalism by Deser and Zumino [E3] (1976).

The complete form of standard N=1 supergravity, determined by means of the super-
conformal calculus, was obtained in [54] (1983), while the geometric interpretation of the
coupling structure is due to Bagger and Witten [53, ] (1983).

Special Kahler geometry in special coordinates was introduced in 1984-85 by B. de
Wit et al. in [B7, B4] and E. Cremmer et al. in [B§], where the coupling of N=2 vector
multiplets to N=2 supergravity was fully determined. The more intrinsic definition of
special Kéhler geometry in terms of symplectic bundles is due to Strominger [B9] (1990),
who obtained it in connection with the moduli spaces of Calabi—Yau compactifications.
The coordinate-independent description and derivation of special Kahler geometry in the
context of N=2 supergravity is due to Castellani, D’Auria, Ferrara 7 and to D’Auria,
Ferrara, Fre’ [B4] (1991). Recently Ceresole, D’Auria, Ferrara and Van Proeyen [[]] have
shown how one can and in important instances must dispense of the notion of holomorphic
prepotential F'(X). Let us begin by reviewing the notions of Kéhler and Hodge-Kéahler
manifolds that are the prerequisites to introduce the notion of Special Kéahler manifolds.
Once again we do this in order to fix our notations.

4.1 Hodge—Kahler manifolds

Consider a line bundle £L-"+M over a Kahler manifold. By definition this is a holomorphic
vector bundle of rank » = 1. For such bundles the only available Chern class is the first:

(L) = %5 (nton) = ;—Wgﬁlogh (4.1)

where the 1-component real function h(z,%) is some hermitian fibre metric on £. Let
f(2) be a holomorphic section of the line bundle £: noting that under the action of the
operator 00 the term log (E(?) £ (z)) yields a vanishing contribution, we conclude that
the formula in eq. [T for the first Chern class can be re-expressed as follows:

o) = 5-00log || £() I (4.2)

where || £(2) |2 = h(z,%)&(Z) £(2) denotes the norm of the holomorphic section £(2).
Eq. .3 is the starting point for the definition of Hodge Kahler manifolds, an essential
notion in supergravity theory.
A Kahler manifold M is a Hodge manifold if and only if there exists a line bundle
L — M such that its first Chern class equals the cohomology class of the Kahler 2-form
K:
(L) = (K] (4.3)
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In local terms this means that there is a holomorphic section W (z) such that we can
write

K= —gpd Ade = —30log | W(2) |? (4.4)
2w 2w

Recalling the local expression of the Kéahler metric in terms of the Kéahler potential
Gij+ = 0;0;K(z,%), it follows from eq. [E4 that if the manifold M is a Hodge man-
ifold, then the exponential of the Ké&hler potential can be interpreted as the metric
h(z,Z) = exp(K(z,%Z)) on an appropriate line bundle L.

This structure is precisely that advocated by the Lagrangian of N = 1 matter coupled
supergravity: the holomorphic section W (z) of the line bundle £ is what, in N=1 super-
gravity theory, is named the superpotential and the logarithm of its norm log || W(z) ||?
= K(z,2) + log|W(z) |* = G(z,%) is precisely the invariant function in terms of which
one writes the potential and Yukawa coupling terms of the supergravity action (see [54]
and for a review [BI]).

4.2 Special Kahler Manifolds: general discussion

There are in fact two kinds of special Kéahler geometry: the local and the rigid one.
The former describes the scalar field sector of vector multiplets in N = 2 supergravity
while the latter describes the same sector in rigid N = 2 Yang—Mills theories. Since
N = 2 includes N = 1 supersymmetry, local and rigid special Kahler manifolds must be
compatible with the geometric structures that are respectively enforced by local and rigid
N = 1 supersymmetry in the scalar sector. The distinction between the two cases deals
with the first Chern—class of the line-bundle £-—"+M, whose sections are the possible
superpotentials. In the local theory ¢;(£) = [K] and this restricts M to be a Hodge-
Kéhler manifold. In the rigid theory, instead, we have ¢;(£) = 0. At the level of the
Lagrangian this reflects into a different behaviour of the fermion fields. These latter are
sections of £/2 and couple to the canonical hermitian connection defined on L:

0 = h'Oh=10hdz ; § = h'Oh=40phdz" (4.5)

In the local case where

[00] = ai(£) = [K] (4.6)

the fibre metric h can be identified with the exponential of the Kahler potential and we
obtain:

In the rigid case, £ is instead a flat bundle and its metric is unrelated to the Kéahler
potential. Actually one can choose a vanishing connection:

f=8=0 (4.8)

The distinction between rigid and local special manifolds is the N = 2 generalization
of this difference occurring at the N = 1 level. In the N = 2 case, in addition to the
line-bundle £ we need a flat holomorphic vector bundle Y — M whose sections can
be identified with the superspace fermi—fermi components of electric and magnetic field—
strengths (see appendix B). In this way, according to the discussion of previous sections the
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diffeomorphisms of the scalar manifolds will be lifted to produce an action on the gauge—
field strengths as well. In a supersymmetric theory where scalars and gauge fields belong
to the same multiplet this is a mandatory condition. However this symplectic bundle
structure must be made compatible with the line-bundle structure already requested by
N = 1 supersymmetry. This leads to the existence of two kinds of special geometry.
Another essential distinction between the two kind of geometries arises from the different
number of vector fields in the theory. In the rigid case this number equals that of the
vector multiplets so that

#vector fields =m = n
# vector multiplets =n = dimc M
rankSY = 2n = 2n (4.9)

On the other hand, in the local case, in addition to the vector fields arising from the vector
multiplets we have also the graviphoton coming from the graviton multiplet. Hence we
conclude:

#vector fields =7 = n+1
# vector multiplets =n = dimc M
rankSY = 2n = 2n+2 (4.10)

In the sequel we make extensive use of covariant derivatives with respect to the canonical
connection of the line-bundle £. Let us review its normalization. As it is well known
there exists a correspondence between line-bundles and U(1)-bundles. If exp|fas(z)] is
the transition function between two local trivializations of the line-bundle £L — M,
the transition function in the corresponding principal U(1)-bundle Y — M is just
exp(ilmf,s3(2)] and the Kahler potentials in two different charts are related by:

’Cﬁzlca_l'focﬁ +?o¢ﬁ (4.11)
. At the level of connections this correspondence is formulated by setting:
i

U(1)-connection = Q = Imf = ~3 (9 — 5) (4.12)

If we apply the above formula to the case of the U(1)-bundle Y — M associated with
the line-bundle £ whose first Chern class equals the Kahler class, we get:

Q= (aKds — 0. Kd=") (4.13)
2
Let now ®(z,%) be a section of UP. By definition its covariant derivative is
Vo = (d+ipQ)® (4.14)

or, in components,
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A covariantly holomorphic section of U is defined by the equation: V;® = 0. We can
easily map each section ®(z,Z) of U? into a section of the line-bundle £ by setting:

P = PR2p (4.16)
With this position we obtain:
Vid = (0 +pdiK)® ; Vid = 0.P (4.17)

Under the map of eq. [f.1§ covariantly holomorphic sections of ¢/ flow into holomorphic
sections of £ and viceversa.

4.3 Special Kahler manifolds: the local case

We are now ready to give the definition of local special Kahler manifolds and illustrate
their properties. A first definition that does not make direct reference to the symplectic
bundle is the following:

Definition 4.1 A Hodge Kdhler manifold is Special Kahler (of the local type) if
there exists a completely symmetric holomorphic 3-index section Wi of (T*M)* @ L3
(and its antiholomorphic conjugate Wisj=i+ ) such that the following identity is satisfied by
the Riemann tensor of the Levi—Civita connection:

am*Wijk =0 amWi*j*k* =0
VWi = 0 VWi =0
Ricjeke = Go-jGhie + GoerGjir — € Wiwpr e Winjg® " (4.18)

In the above equations V denotes the covariant derivative with respect to both the Levi—
Civita and the U(1) holomorphic connection of eq. [.I3. In the case of W;j;, the U(1)
weight is p = 2.

The holomorphic sections W;;;, have two different physical interpretations in the case
that the special manifold is utilized as scalar manifold in an N=1 or N=2 theory. In the
first case they correspond to the Yukawa couplings of Fermi families [p(]. In the second
case they provide the coefficients for the anomalous magnetic moments of the gauginos,
since they appear in the Pauli-terms of the N = 2 effective action. Out of the W;;;, we
can construct covariantly holomorphic sections of weight 2 and - 2 by setting:

Cij = ka eK 3 Ci*j*k* == Wi*j*k* e’c (419)

Next we can give the second more intrinsic definition that relies on the notion of the
flat symplectic bundle. Let £L — M denote the complex line bundle whose first Chern
class equals the Kéhler form K of an n-dimensional Hodge-Kahler manifold M. Let
SV — M denote a holomorphic flat vector bundle of rank 2n + 2 with structural group
Sp(2n+2,R). Consider tensor bundles of the type H = SV ® L. A typical holomorphic
section of such a bundle will be denoted by §2 and will have the following structure:

A
:(X'>Aquynm (4.20)



By definition the transition functions between two local trivializations U; C M and
U; C M of the bundle ‘H have the following form:

< )F( ) = ef”’Mi-( ;f )j (4.21)

where f;; are holomorphic maps U; N U; — C while M;; is a constant Sp(2n + 2, R)
matrix. For a consistent definition of the bundle the transition functions are obviously
subject to the cocycle condition on a triple overlap:

elitlintfei  — 1

Let i( | ) be the compatible hermitian metric on H

0O Q) = —mT( o )ﬁ (4.23)

Definition 4.2 We say that a Hodge—Kdhler manifold M is special Kahler of the
local type if there exists a bundle H of the type described above such that for some
section Q € T'(H, M) the Kdhler two form is given by:

K= %8510g (i) ). (4.24)

From the point of view of local properties, eq. implies that we have an expression for
the Kéahler potential in terms of the holomorphic section :

K = —log () = —log[i (X" Fy — FX¥)] (4.25)

The relation between the two definitions of special manifolds is obtained by introducing
a non—holomorphic section of the bundle H according to:

LMY ke ke XA
V—<M2>:e Q=ce s (4.26)

so that eq. [f.2] becomes:
1 =iV |V) = i(L"My - MsL¥) (4.27)
Since V is related to a holomorphic section by eq. it immediately follows that:
ViV = (a,.* - %a,.*/c> V=0 (4.28)
On the other hand, from eq. .27, defining:

A
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it follows that:
vin = 1C’wk gkf* Ug* (430)

where V,; denotes the covariant derivative containing both the Levi-Civita connection
on the bundle 7M and the canonical connection 6 on the line bundle £. In eq. 30
the symbol Cj;), denotes a covariantly holomorphic ( V< Cjj, = 0) section of the bundle
T M3 ® L£? that is totally symmetric in its indices. This tensor can be identified with the
tensor of eq. .19 appearing in eq. .1§. Alternatively, the set of differential equations:

V.V =U; (4.31)
ViU; = iCyjng™ Up- (4.32)
ViU = gV (4.33)
ViV =0 (4.34)

with V satisfying eq.s [£.20, [[.27] give yet another definition of special geometry. This is
actually what one obtains from the N = 2 solution of Bianchi identities (see appendix
A). In particular it is easy to find eq. [EI§ as integrability conditions of .39 The period
matriz is now introduced via the relations:

My=NisL hsyi = Nasf; (4.35)

which can be solved introducing the two (n + 1) x (n + 1) vectors

A .
= ( %A ) P = ( %A ) (4.36)
and setting: .
Nag =hypo (f_l) . (4.37)

As a consequence of its definition the matrix N transforms, under diffeomorphisms of the
base Kéhler manifold exactly as it is requested by the rule in eq. P:38. Indeed this is the
very reason why the structure of special geometry has been introduced. The existence of
the symplectic bundle H — M is required in order to be able to pull-back the action
of the diffeomorphisms on the field strengths and to construct the kinetic matrix N

From the previous formulae it is easy to derive a set of useful relations among which
we quote the following [B0]:

NI T = —% (4.38)
(V.U;) = (V,Ui)=0 (4.39)
Cijk = (ViU;|Up) = fPONasfr = (N — N)asfRo; i (4.42)

In particular eq.s express the Kahler metric and the anomalous magnetic moments
in terms of symplectic invariants. It is clear from our discussion that nowhere we have
assumed the base Kéhler manifold to be a homogeneous space. So, in general, special
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manifolds are not homogeneous spaces. Yet there is a subclass of homogenous special man-
ifolds. The homogeneous symmetric ones were classified by Cremmer and Van Proeyen
in [B]] and are displayed in table [l It goes without saying that for homogeneous special
manifolds the two constructions of the period matrix, that provided by the master formula
in eq. and that given by eq. must agree.In Appendix C we shall shortly verify
it in the case of the manifolds S7[2,n| that correspond to the second infinite family of
homogeneous special manifolds displayed in table [.

Anyhow, since special geometry guarantees the existence of a kinetic period matrix
with the correct covariance property it is evident that to each special manifold we can
associate a duality covariant bosonic Lagrangian of the type considered in eq. P.5. However
special geometry contains more structures than just the period matrix N and the scalar
metric g;j~. All the other items of the construction do have a place and play an essential
role in the supergravity Lagrangian and the supersymmetry transformation rules.

4.4 Special Kahler manifolds: the rigid case

Let M be a Kahler manifold with dimc M = n and let L — M be a flat line bundle
ci(L) = 0f Let SY — M denote a holomorphic flat vector bundle of rank 2n with
structural group ISp(2n, R). Consider tensor bundles of the type H = SV®L. A typical
holomorphic section of such a bundle will be denoted by {2 and will have the following
structure:

I
Q:(Y ) [LJ=1. ..n (4.43)

By definition the transition functions between two local trivializations U; C M and
U; C M of the bundle ‘H have the following form:

Y >~ (Y
< P ) :ef’JMZ--< P )j (4.44)

where ﬁj € C are purely imaginary complex numbers while Mij denotes the action of an
element (M, c) € ISp(2n,IR) on €. M is a symplectic matrix M € Sp(2n,R) and ¢ is a

n-vector: (M C)<}F/>:M<¥>+(2) ' (4.45)

For a consistent definition of the bundle the transition functions are obviously subject to
the cocycle condition on a triple overlap:

eﬁﬂ-};k-i-fm = 1

Let i( | } be the compatible hermitian metric on H

Q| Q) = —iQT< _Oﬂ ]é )ﬁ (4.47)

3the holomorphic sections of £ would be the possible superpotentials if M were used as scalar manifold
in an N =1 globally supersymmetric theory.
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Definition 4.3 We say that a Hodge—Kdahler manifold M is special Kahler of the
rigid type if there exists a bundle H of the type described above such that for some
section ) € T'(H, M) the Kdhler two form is given by:
7 — ~
K=—— i(2]€2) ). 4.4
0 (i@ D) (1.45)

Just as in the local case eq. A.4§ yields an expression for the Kahler potential in terms of
the holomorphic section €Q:

K = (1(@ |§)> = [((Y'FR-F) (4.49)
Similarly defining
N N 1
U,:zmz< /i ) (4.50)
hJji
one finds: ~ R
DU; = iCijp g™ Upe (4.51)

where D; is the covariant derivative with respect to the Levi—Civita connection on 7 M
and where Cjj; is a totally symmetric holomorphic section of the bundle TM? ® L%
O0p<Ciji, = 0. Just as in the local case we may alternatively define the rigid special geometry
by the following set of differential equations:

9+ =0 (4.52)
U; = 0,0 (4.53)
DiU; = iCiyjy g™ Uy (4.54)

. The integrability condition of eq. [f.54 is similar but different from eq. .I§ due to the
replacement of the covariant derivative on 7M x L by that on 7.M, due to the flatness
of L. We get

Om*C'ijk == 0 8 Cz *grfr = 0
Ri*jf*k = CZ*Z S*Ctkjg (455>

which are the rigid counterpart of [.1§. The definition of the period matriz is obtained in

full analogy to eq. f.33:
h]|z' = NIJfZ‘J (456)

that yields: .
Niy=hpio (f_l) ; (4.57)

Finally we observe that, exactly as in the local case, the metric and the magnetic moments
can be expressed in terms of the symplectic sections:

gij* = —1<UZ|U]*> ; Cz'jk = <02U]|Uk> (458)
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4.5 Special Kahler manifolds: the issue of special coordinates

So far no privileged coordinate system has been chosen on the base Kahler manifold M
and no mention has been made of the holomorphic prepotential F'(X) that is ubiquitous
in the N = 2 literature. The simultaneous avoidance of privileged coordinates and of the
prepotential is not accidental. Indeed, when the definition of special Kahler manifolds is
given in intrinsic terms, as we did in the previous subsection, the holomorphic prepotential
F(X) can be dispensed of. Whether a prepotential F'(X) exists or not depends on the
choice of a symplectic gauge which is immaterial in the abelian theory but not in the
gauged one. Actually, in the local case, it appears that some physically interesting cases
are precisely instances where F'(X') does not exist. On the contrary the prepotential F'(X)
seems to be a necessary ingredient in the tensor calculus constructions of N = 2 theories
that for this reason are not completely general. This happens because tensor calculus uses
special coordinates from the very start. Let us then see how the notion of F/(X) emerges
if we resort to special coordinate systems.

Note that under a Kihler transformation X — K + f(z) + f(Z) the holomorphic
section transforms, in the local case, as @ — Qe 7, so that we have X* — X"e 7.
This means that, at least locally, the upper half of Q (associated with the electric field
strengths) can be regarded as a set X* of homogeneous coordinates on M, provided that
the jacobian matrix

I X!

ei(z):&-(ﬁ> ;oa=1,...,n (4.59)
is invertible. In this case, for the lower part of the symplectic section {2 we obtain
F) = F)(X). Recalling eq.s [£.39, in particular:

0=(V|U;) = XNOFy — 0, X" Fy (4.60)
we obtain:
X=0xF\(x) = Fr(X) (4.61)
so that we can conclude: 9
Fa(X) = F(X 4.62
MX) = 5o F(X) (162)

where F'(X) is a homogeneous function of degree 2 of the homogeneous coordinates X*.
Therefore,when the determinant of the Jacobian is non vanishing, we can use the
special coordinates:

XI
= X0
and the whole geometric structure can be derived by a single holomorphic prepotential:

t! (4.63)
Ft) = (X)?F(X) (4.64)

In particular, eq. .2 for the Kéhler potential becomes
K(t,7) = ~logi[2 (F = F) = (0 F + 0p.F) (¢ =" )] (4.65)

while eq. .49 for the magnetic moments simplifies into

Wik = 010,0kF(t) (4.66)
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Finally we note that in the rigid case the Jacobian from a generic parametrisation to

special coordinates
I X!
e;(z) = 0; <ﬁ> = A+ BN (4.67)
cannot have zero eingenvalues, and therefore the function F' always exist. In this case the
matrix N coincides with Maf%.

5 Hypergeometry

Next we turn to the hypermultiplet sector of an N = 2 theory. Here there are 4 real
scalar fields for each hypermultiplet and, at least locally, they can be regarded as the
four components of a quaternion. The locality caveat is, in this case, very substantial
because global quaternionic coordinates can be constructed only occasionally even on
those manifolds that are denominated quaternionic in the mathematical literature [p3],
B3]. Anyhow, what is important is that, in the hypermultiplet sector, the scalar manifold
‘HM has dimension multiple of four:

dimg HM = 4m = 4 # of hypermultiplets (5.1)

and, in some appropriate sense, it has a quaternionic structure.

As Special Kdhleris the collective name given to the vector multiplet geometry both in
the rigid and in the local case, in the same way we name Hypergeometry that pertaining
to the hypermultiplet sector, irrespectively whether we deal with global or local N=2
theories. Yet in the very same way as there are two kinds of special geometries, there are
also two kinds of hypergeometries and for a very similar reason. Supersymmetry requires
the existence of a principal SU(2)-bundle

SU — HM (5.2)

that plays for hypermultiplets the same role played by the the line-bundle £L — SM
in the case of vector multiplets. As it happens there the bundle Si/ is flat in the rigid
case while its curvature is proportional to the Kahler forms in the local case.

The difference with the case of vector multiplets is that rigid and local hypergeometries
were already known in mathematics prior to their use 6], [63], B4, [64], 7 in the
context of N = 2 supersymmetry and had the following names:

rigid hypergeometry = HyperKahler geom.

local hypergeometry = Quaternionic geom. (5.3)

5.1 Quaternionic, versus HyperKahler manifolds

Both a quaternionic or a HyperKéhler manifold HM is a 4m-dimensional real manifold
endowed with a metric h:

ds® = hy(q)dg" @ dq” ; w,v=1,...,4m (5.4)
and three complex structures

(J%) : T(HM) — T(HM) (r=1,2,3) (5.5)

23



that satisfy the quaternionic algebra
JEJY = =" 1 + €7 (5.6)

and respect to which the metric is hermitian:

VX, Y€ THM : h(J*X,JY)=h(X,Y) (x=1,2,3) (5.7)
From eq. p.7 it follows that one can introduce a triplet of 2-forms
K* = Krdq"ANdg" ; K, = hy(J")Y (5.8)

that provides the generalization of the concept of Kahler form occurring in the complex
case. The triplet K* is named the HyperKdhler form. It is an SU(2) Lie-algebra valued
2—form in the same way as the Kéhler form is a U(1) Lie-algebra valued 2—-form. In the
complex case the definition of Kahler manifold involves the statement that the Kahler 2—
form is closed. At the same time in Hodge-K&hler manifolds (those appropriate to local
supersymmetry) the Kéhler 2—form can be identified with the curvature of a line-bundle
which in the case of rigid supersymmetry is flat. Similar steps can be taken also here and
lead to two possibilities: either HyperKahler or Quaternionic manifolds.

Let us introduce a principal SU(2)-bundle SU as defined in eq. p-3. Let w” denote a
connection on such a bundle. To obtain either a HyperKahler or a quaternionic manifold
we must impose the condition that the HyperKahler 2—form is covariantly closed with
respect to the connection w”:

VK" = dK® + 2w/ A K7 = 0 (5.9)

The only difference between the two kinds of geometries resides in the structure of the
SU-bundle.

Definition 5.1 A HyperKdahler manifold is a 4m—dimensional manifold with the structure
described above and such that the SU-bundle is flat

Defining the SU—curvature by:
1
0 = dw® + §€xyzwy A w* (5.10)

in the HyperKéhler case we have:
Q" =0 (5.11)

Viceversa

Definition 5.2 A quaternionic manifold is a 4m—dimensional manifold with the struc-
ture described above and such that the curvature of the SU—-bundle is proportional to the
HyperKdhler 2—-form

Hence, in the quaternionic case we can write:
QF = ANK” (5.12)

where A\ is a non vanishing real number.
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As a consequence of the above structure the manifold HM has a holonomy group of
the following type:

Hol(HM) = SU(2)® H (quaternionic)
Hol(HM) = 1®H (HyperKéhler)
H C Sp(2m,R) (5.13)

In both cases, introducing flat indices {4, B,C = 1,2}{a, 3,7 = 1,..,2m} that run,
respectively, in the fundamental representations of SU(2) and Sp(2m,IR), we can find a
vielbein 1-form

U = U (q)dg" (5.14)

such that
huw = U UPPC o pe 4 (5 15)
where C,3 = —Cp, and €45 = —€py are, respectively, the flat Sp(2m) and Sp(2) ~ SU(2)

invariant metrics. The vielbein U4® is covariantly closed with respect to the SU(2)-
connection w? and to some Sp(2m, R)-Lie Algebra valued connection A% = AP

VUt = qyhe 4! 2w “(eome DA, AUP
+ A AUMCH, =0 (5.16)

where (0%) 42 are the standard Pauli matrices. Furthermore U4% satisfies the reality
condition:
Z/{Aa = (Z/{Aa)* = eAB(DaﬁL{Bﬁ (517)

Eqp.T7 defines the rule to lower the symplectic indices by means of the flat symplectic
metrics €45 and C,p. More specifically we can write a stronger version of eq. b.15[bq]:

ULUP UL UP ) Cop = ™
UL UP +UUP Veap = huo %@aﬁ (5.18)

We have also the inverse vielbein U}, defined by the equation
UL U™ = §v (5.19)

Flattening a pair of indices of the Riemann tensor R*’,, we obtain

R UUP = = 05" (0,) P07 + R (5.20)

where RY? is the field strength of the Sp(2m) connection:
dAYP + A7 N APC, 5 = R = R dg! A dg? (5.21)

Eq. is the explicit statement that the Levi Civita connection associated with the
metric h has a holonomy group contained in SU(2) ® Sp(2m). Consider now eq.s p.6, p-§
and p.13. We easily deduce the following relation:

WK K, = =0y + €V K2, (5.22)
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that holds true both in the HyperKéahler and in the Quaternionic case. In the latter case,
using eq. p.19, eq. can be rewritten as follows:

BT QY = — A2 h + AV (5.23)

Eq. implies that the intrinsic components of the curvature 2-form % yield a rep-
resentation of the quaternion algebra. In the HyperKéahler case such a representation is
provided only by the HyperKéhler form. In the quaternionic case we can write:

za,Bﬁ = inuzaugﬁ = _i)\caﬁ(gl‘)ACECB (524)
Alternatively eqp.24 can be rewritten in an intrinsic form as
O = —iMCop(0,) s o™ NUP (5.25)

whence we also get:

%Qm(am)AB = MApa A UB (5.26)

Homogeneous symmetric quaternionic spaces are displayed in Table .

6 The Gauging

With the above discussion of HyperKahler and Quaternionic manifolds we have completed
the review of the geometric structures involved in the construction of an abelian, ungauged
N = 2 supergravity or of an abelian N = 2 rigid gauge theory. As we are going to see
in the next section, the bosonic Lagrangian of N = 2 supergravity coupled to n abelian
vector multiplets and m hypermultiplets is the following:

Lo~ = V=9 Rlg] + gij+(2,2) 92 9,7 = Nhuu(q) 9q" Dg”
1 (NasF M5 — Ny FRAF ) | (6.1)

where the n complex fields z* span some special Kdhler manifold of the local type SM and
the 4m real fields ¢* span a quaternionic manifold HM. By g;;« and h,, we have denoted
the metrics on these two manifolds. The proportionality constant between the SU(2)
curvature and the HyperKahler form appearing in the Lagrangian is fixed to the value
A = —1 if we want canonical kinetic terms for the hypermultiplet scalars. The period
matrix Ay, depends only on the special manifold coordinates 2%, and it is expressed
in terms of the symplectic sections of the flat symplectic bundle by eq. .37. On the other
hand the bosonic Lagrangian of a rigid N = 2 abelian gauge theory containing n vector
multiplets and coupled to m hypermultiplets is the following one:

Longuged = 9i+(2:2) 02 97" + hu(g) 94" Og”
1 (N Fpl F — Ny Fi )
(6.2)

where the n complex fields 2 span some special Kdahler manifold of the rigid type SM
and the 4m real fields ¢ span a HyperKahler manifold HM. By g;;~ and h,, we have

26



denoted the metrics on these two manifolds. The period matrix N7; depends only on
the special manifold coordinates 2%, 27" and it is expressed in terms of the symplectic
sections of the flat symplectic bundle by eq. [.57. In both theories there are no electric
or magnetic currents and we have on shell symplectic covariance. By means of the first
homomorphism in eq. any diffeomorphism of the scalar manifold can be lifted to
a symplectic transformation on the electric-magnetic field strengths, the period matrix
transforming, by construction, covariantly as required by eq. .3§. Under this lifting any
isometry of the scalar manifold becomes a symmetry of the differential system made by
the equations of motions plus Bianchi identities. There are in fact three type of these
isometries:

1. The classical symmetries, namely those isometries £ € Z (M eaiar) Whose image in
the symplectic group is block—diagonal:

L&(g) = < f(l)g (Ag(“))—l ) (6-3)

These transformations are exact ordinary symmetries of the Lagrangian. They
clearly form a subgroup

Clas (Mscalar) C I(Mscalar) (64)

2. The perturbative symmetries, namely those isometries £ € Z (Meqaiqr) Whose image
in the symplectic group is lower triangular:

w© = (& b ) (©.5)

These transformations map the electric field strengths into linear combinations of
the electric field strengths and can be reduced to linear transformations of the
gauge potentials. They are almost invariances of the action. Indeed the only non—
invariance comes from the transformation of the period matrix

N — (ADT"N(A)™ + Ce (A (6.6)

Denoting collectively all the fields of the theory by ® and utilizing eq.s .5, B.§, .17,
P.17), P.38, under a perturbative transformation the action changes as follows:

/ L(®)d's — / L(D) d*z + Abys, / FAAF”
M = 5 [Celah) ], (67

The added term is a total derivative and does not affect the field equations. Quan-
tum mechanically, however, it is relevant. It corresponds to a redefinition of the
theta—angle. It yields a symmetry of the path—integral as long as the added term
is an integer multiple of 27h. This consideration will restrict the possible perturba-
tive transformations to a discrete subgroup. In any case the group of perturbative
isometries defined by eq. p.5 contains the group of classical isometries as a subgroup:

A (Mscalar> > Pert (Mscalar> ) CZCLS (Mscalar)-
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3. The non—perturbative symmetries namely those isometries £ € 7 (Mgeqar) Whose
image in the symplectic group is of the form:

w© = (& %) 68)

with B¢ # 0. These transformations are neither a symmetry of the classical action
nor of the perturbative path integral. Yet they are a symmetry of the quantum
theory. They exchange electric field strengths with magnetic ones, electric currents
with magnetic ones and hence elementary excitations with soliton states.

The above discussion of duality symmetries may be intriguing for the following reason.
How can we talk about non—perturbative symmetries that exchange electric charges with
magnetic charges if, so far, in the abelian theories described by eq.s .1 and [.9 there
are neither electric nor magnetic couplings? The answer is that the same general form of
abelian theories encoded in these equations can be taken to represent two quite different
things:

1. The fundamental theory prior to the gauging. It is neutral and abelian since the
non—abelian interactions and the electric charges are introduced only by the gauging,
but it contains all the fundamental fields.

2. The effective theory of the massless modes of the non—abelian theory. It is abelian
and neutral because the only fields which remain massless are, apart from the gravi-
ton, the multiplets in the Cartan subalgebra H C G of the gauge group and the
neutral hypermultiplets corresponding to flat directions of the scalar potential.

What distinguishes the two cases is the type of scalar manifolds and their isometries.
In case 1) we have:

dimgcSM = n=dimg
1
1 dimpr HM = m = #of all hypermul. (6.9)

while in case 2) we have instead:

dimcSM = r=rank§g
1
2 dimpr HM = m = # of moduli hypermul. (6.10)

As far as the gauging of the N = 2 theory is concerned, the problem consists in identifying
the gauge group G as a subgroup, at most of dimension n + 1 of the isometries of the
product space

SM x HM . (6.11)

Here we shall mainly consider two cases even if more general situations are possible.
The first is when the gauge group G is non abelian, the second is when it is the abelian
group G' = U(1)"vTL In the first case supersymmetry requires that G be a subgroup of
the isometries of M, since the scalars (more precisely, the sections L*) must belong to
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the adjoint representation of G. In such case the hypermultiplet space will generically
split into[B]
1
i !

where R; and R! are a set of irreducible representations of G and R denote pseudoreal
representations.

In the abelian case, the special manifold is not required to have any isometry and if
the hypermultiplets are charged with respect to the ny + 1 U(1)’s, then the Q manifold
should at least have ny + 1 abelian isometries.

As a consequence of gauging the Lagrangians in eq.s p.]] and get modified by the
replacement of ordinary derivatives with covariant derivatives and by the introduction of
new terms that are of two types:

1. fermion—fermion bilinears with scalar field dependent coefficients
2. A scalar potential V

It is particularly nice and rewarding that all the modifications of the Lagrangian and
of the supersymmetry transformation rules can be described in terms of a very general
geometric construction associated with the action of Lie-Groups on manifolds that admit
a symplectic structure: the momentum map. In supersymmetry indeed, the geometric
notion of momentum map has an exact correspondence with the notion of gauge multiplet
auziliary fields or D—fields. Next section is devoted to a review of the momentum map
and to its applications in N=2 theories.

7 The Momentum Map

The momentum map is a construction that applies to all manifolds with a symplectic
structure, in particular to Kahler, HyperKahler and Quaternionic manifolds.

Let us begin with the Kéahler case, namely with the momentum map of holomorphic
isometries. The HyperKahler and quaternionic case correspond, instead, to the momen-
tum map of triholomorphic isometries.

7.1 Holomorphic momentum map on Kahler manifolds

Let g;;« be the Kahler metric of a Kahler manifold M: it appears in the kinetic term of
the scalar fields: the Wess—Zumino multiplet scalars in N=1 theories, the vector multiplet
scalars in N=2 theories. If the metric g;;« has a non trivial group of continuous isometries
G generated by Killing vectors k% (A =1,...,dimG), then the kinetic Lagrangian admits
G as a group of global space-time symmetries. Indeed under an infinitesimal variation

2 2 M (2) (7.1)

Ly remains invariant. Furthermore if all the couplings of the scalar fields are performed
in a diffeomorphic invariant way, then any isometry of g;;» extends from a symmetry of
Lyin to a symmetry of the whole Lagrangian. Diffeomorphic invariance means that the
scalar fields can appear only through the metric, the Christoffel symbol in the covariant
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derivative and through the curvature. Alternatively they can appear through sections of
vector bundles constructed over M. Typical case is the dependence on the scalar fields
introduced by the period matriz N.

Let k% (2) be a basis of holomorphic Killing vectors for the metric g;;«. Holomorphicity
means the following differential constraint:

0;-ki(2) =0 < 9;k% (2) = 0 (7.2)
while the generic Killing equation (suppressing the gauge index A):
Vu.k, +V,k, =0 (7.3)
in holomorphic indices reads as follows:
Vikj +Vki = 0 ; Vukj+Vki- = 0 (7.4)

where the covariant components are defined as k; = g;i+k" (and similarly for k;-).
The vectors k% are generators of infinitesimal holomorphic coordinate transformations:

62" = Mk (2) (7.5)

which leave the metric invariant. In the same way as the metric is the derivative of a more
fundamental object, the Killing vectors in a Kahler manifold are the derivatives of suitable
prepotentials. Indeed the first of eq.s [[.4]is automatically satisfied by holomorphic vectors
and the second equation reduces to the following one:

ki =1ig7 0;-Pn, Pir=Pa (7.6)

In other words if we can find a real function P* such that the expression ig " 9;-Py) is
holomorphic, then eq. [/.§ defines a Killing vector.

The construction of the Killing prepotential can be stated in a more precise geometrical
formulation which involves the notion of momentum map. Let us review this construction
which reveals another deep connection between supersymmetry and geometry.

Consider a Kéahlerian manifold M of real dimension 2n. Consider a compact Lie group
G acting on M by means of Killing vector fields X which are holomorphic with respect
to the complex structure J of M; then these vector fields preserve also the Kéhler 2-form

Exg =0 < V(MX,,) =0

LyJ =0 } = 0= LxK = ixdK + d(ixK) = d(ixK) (7.7

Here L« and ix denote respectively the Lie derivative along the vector field X and the
contraction (of forms) with it.

If M is simply connected, d(ixK) = 0 implies the existence of a function Px such
that

1 .
— 3=dPx = ixK (7.8)

The function Px is defined up to a constant, which can be arranged so as to make it
equivariant:

XPy = Px.y] (7.9)
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Px constitutes then a momentum map. This can be regarded as a map
PM— RG (7.10)

where G* denotes the dual of the Lie algebra G of the group G. Indeed let = € G be the
Lie algebra element corresponding to the Killing vector X; then, for a given m € M

uw(im) : . — Px(m) € R (7.11)

is a linear functional on G. If we expand X = a*k, in a basis of Killing vectors kx such
that

[ka, kr] = farka (7.12)

we have also

Px = a"Py (7.13)

In the following we use the shorthand notation L,,i, for the Lie derivative and the
contraction along the chosen basis of Killing vectors ky.

From a geometrical point of view the prepotential, or momentum map, P, is the
Hamiltonian function providing the Poissonian realization of the Lie algebra on the Kahler
manifold. This is just another way of stating the already mentioned equivariance. Indeed
the very existence of the closed 2-form K guarantees that every Kahler space is a sym-
plectic manifold and that we can define a Poisson bracket.

Consider Egs. [[.0. To every generator of the abstract Lie algebra G we have associated
a function P, on M; the Poisson bracket of Py with Py is defined as follows:

{Pa, Pe} =4rK (A, X) (7.14)

where K(A,X) = K (ka, ks) is the value of K along the pair of Killing vectors.
In reference [24] we proved the following lemma.

Lemma 7.1 The following identity is true:
{Pa,Ps} = fay Pr+ Cas (7.15)
where Crx, is a constant fulfilling the cocycle condition
fart Crs + frs Cra + frp Crn = 0 (7.16)

If the Lie algebra G has a trivial second cohomology group H?(G) = 0, then the cocycle
Chs is a coboundary; namely we have

Cax = fas Cr (7.17)

where Cr are suitable constants. Hence, assuming H?(G) = 0 we can reabsorb Cr in the
definition of Py:
Pr — Pp + Ch (7.18)

and we obtain the stronger equation
{Pr,Ps} = fas Pr (7.19)
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Note that H?(G) = 0 is true for all semi-simple Lie algebras. Using eq. [-I9, eq. [[-I9 can
be rewritten in components as follows:

i i -k i ) ]_
592‘1*(7%75]2 —kyky ) = §fAzF73r (7.20)

Equation [7.2( is identical with the equivariance condition in eq. [/.9.

Comparing the definition of the Kéhler potential in eq. with the definition of the
momentum function in eq. [[.G, we obtain an expression for the momentum map function
in terms of derivatives of the Kahler potential:

1Py = %(kA oK — K ai*/c) = koK = —K\ 0xK (7.21)

Eq. [(:2] is true if the Kahler potential is exactly invariant under the transformations of
the isometry group G and not only up to a Kéhler transformation as defined in eq. [C.53.
In other words eq. [(.2]] is true if

0 =LK = K\ 9K + K 0K (7.22)

Not all the isometries of a general Kahler manifold have such a property, but those that
in a suitable coordinate frame display a linear action on the coordinates certainly do.
However, in Hodge Kahler manifolds, eq. can be replaced by the following one which
is certainly true:

0 = £AG = k‘jxaiG—i-k‘j\*ai*G
G(z,2) = log ||W(2) ||?= K(2,2) + ReW(2) (7.23)

where the superpotential W (z) is any holomorphic section of the Hodge line-bundle. In-
deed the transformation under the isometry of the Kahler potential is compensated by the
transformation of the superpotential. Consequently, in Hodge-Ké&hler manifolds eq. [.2]]
can be rewritten as

iPy = %(k:A 0,G — ki a,.*G) = ki 0,G = —k% 0i-G (7.24)

and holds true for any isometry.

In N = 1 supersymmetry the Kahlerian momentum maps Pr appear as auxiliary fields
of the vector multiplets. For N = 1 supergravity the scalar manifold is of the Hodge type
and eq. [(.24 can always be employed.

On the other hand, in N = 2 supersymmetry the auxiliary fields of the vector mul-
tiplets, that form an SU(2) triplet, are given by the momentum map of triholomorphic
isometries on the hypermultiplet manifold (HyperKé&hlerian or quaternionic depending
on the local or rigid nature of supersymmetry). The triholomorphic momentum map is
discussed in the subsection after the next. Yet, although not identified with the auxiliary
fields, the holomorphic momentum map plays a role also in N = 2 theories in the gauging
of the U(1) connection [.I3, as we show shortly from now.
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7.2 Holomorphic momentum map on Special Kahler manifolds

Here the Kéhler manifold is not only Hodge but it is special. Correspondingly we can
write a formula for P, in terms of symplectic invariants. In this context, to distinguish
the holomorphic momentum map from the triholomorphic one P§ that carries an SU(2)
index z = 1,2, 3, we adopt the notation P}. The request that the isometry group should
be embedded into the symplectic group is formulated by writing:

LAV = KOV + kL 0V = TaV +V fu(2) (7.25)

where V' is the covariantly holomorphic section of the vector bundle H — M defined
in eq. .27,

Ty = (aA ZA> € Sp(2n +2,R) (7.26)
CA A

is some element of the real symplectic Lie algebra and fa(z) corresponds to an infinitesimal
Kahler transformation.

The classical or perturbative isometries ( by = 0) that are relevant to the gauging
procedure are normally characterized by

fa(z) =0 (7.27)

Under condition [[.27, recalling eq.s .29 and [£.26, from eq. [(.2§ we obtain:

LA = K OK+ kY 0xC = 0 (7.28)
that is identical with eq. [7.29. Hence we can use eq. [[.2]], that we rewrite as:
iPY = KL oK = —ki 0K (7.29)
Utilizing the definition in eq. .29 we easily obtain:
E\U" = Ty Vexp[fa(2)] +iPV (7.30)

Taking the symplectic scalar product of eq. [[-30 with V' and recalling eq. .27 we finally
[l get:
PR = (VIT\V) = (V|TAV) = exp[K] (2 Ta Q) (7.31)

In the gauging procedure we are interested in groups the symplectic image of whose
generators is block—diagonal and coincides with the adjoint representation in each block.

Namely
Ty = <fEAA 0 > (7.32)
0 —f%a
Then eq. [.31] becomes
PR = " (FAfAAzYE + FAfAAzXE) (7.33)

4The following and the next two formulae have been obtained in private discussions of one of us (P.Fré)
with A. Van Proeyen and B. de Wit
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7.3 The triholomorphic momentum map on HyperKahler and
Quaternionic manifolds

Next we turn to a discussion of isometries of the manifold HM associated with hypermul-
tiplets. As we know, it can be either HyperKahlerian or quaternionic. For applications
to N = 2 theories we must assume that on HM we have an action by triholomorphic
isometries of the same Lie group G that acts on the Special Kahler manifold SM. This
means that on HM we have Killing vectors

. J

satisfying the same Lie algebra as the corresponding Killing vectors on SM. In other
words

ka = K\D; + kY O + k40, (7.35)
is a Killing vector of the block diagonal metric:
- G 0 >
G— ( - (7.36)

defined on the product manifold SM & HM. Triholomorphicity means that the Killing
vector fields leave the HyperKahler structure invariant up to SU(2) rotations in the
SU(2)-bundle defined by eq. p.4. Namely:

LAKT = eVKYWi © Lyw® = VIS (7.37)

where W} is an SU(2) compensator associated with the Killing vector k%. The compen-
sator W necessarily fulfils the cocycle condition:

LAWE — LyW3E + €V WIWE = fraWE (7.38)

In the HyperKahler case the SU(2)-bundle is flat and the compensator can be reabsorbed
into the definition of the HyperKahler forms. In other words we can always find a map

HM — L*,(q) € SO(3) (7.39)
that trivializes the SU—bundle globally. Redefining;:
K" = L*,(q) KY (7.40)
the new HyperKahler form obeys the stronger equation:
LAKY =0 (7.41)

On the other hand, in the quaternionic case, the non—triviality of the SU/—bundle forbids to
eliminate the W—compensator completely. Due to the identification between HyperKahler
forms and SU(2) curvatures eq. [(.37 is rewritten as:

LAQ7 = eVWWE . Law® = VIWE (7.42)
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In both cases, anyhow, and in full analogy with the case of Kahler manifolds, to each
Killing vector we can associate a triplet P%(q) of O-form prepotentials. Indeed we can set:

WK® = —VP? = —(dP? + €Vw'P;) (7.43)

where V denotes the SU(2) covariant exterior derivative.
As in the Kéhler case eq. [[.43 defines a momentum map:

P:M— R*@G* (7.44)

where G* denotes the dual of the Lie algebra G of the group G. Indeed let = € G be the
Lie algebra element corresponding to the Killing vector X; then, for a given m € M

pim) : x — Px(m) € R? (7.45)

is a linear functional on G. If we expand X = a™k, on a basis of Killing vectors kx such
that

[kn, kr] = farka (7.46)
and we also choose a basis i, (z = 1,2, 3) for R? we get:
Px = d“Pii, (7.47)
Furthermore we need a generalization of the equivariance defined by eq. [
XoPy = Pxy) (7.48)

In the HyperKahler case, the left—-hand side of eq. [[.4g is defined as the usual action of a
vector field on a O—form:

0
The equivariance condition implies that we can introduce a triholomorphic Poisson bracket
defined as follows:

{Pp, Ps}* = 2K* (A, %) (7.50)
leading to the triholomorphic Poissonian realization of the Lie algebra:
{Pa,Pe}” = A PR (7.51)
which in components reads:
1
Ko 180 = 5 P Pa (752)

In the quaternionic case, instead, the left—hand side of eq. is interpreted as follows:
XOPY = iX VPY = X" Vu PY (753)

where V is the SU(2)—covariant differential. Correspondingly, the triholomorphic Poisson
bracket is defined as follows:

{Pr, Ps}* = 2K%(A,X) — Xe™* P PE (7.54)
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and leads to the Poissonian realization of the Lie algebra
{Pa, P} = fAe PR (7.55)

which in components reads:
T .U LU A TYZ Y P2 1 A T
Ky kx ks — 55 PPy = if As Pa (7.56)

Eq. [(56, which is the most convenient way of expressing equivariance in a coordinate
basis, plays a fundamental role in the construction of the supersymmetric action, super-
symmetry transformation rules and of the superpotential for N = 2 supergravity on a
general quaternionic manifold. It is also very convenient to retrieve the rigid supersym-

metry limit. Indeed, using physical units, we may set A = % where g is the Planck mass

(see section 9); letting 1 — oo eq. reduces to eq. [.69. Eq. [[.5¢ was introduced in
the physical literature in [R4] where the general form of N = 2 supergravity beyond the
limitations of tensor calculus was given.

7.4 Gauging of the composite connections

Using the concepts and the geometric structures introduced in the previous sections the
form of the Lagrangian and of the transformation rules for N = 2 supergravity can now
be given. The essential thing is that the fermions of the theory, behave as sections of the
bundles we have introduced so far. In particular he gravitino field w;‘ apart from being
a spinor—valued 1-form on space-time, behaves as a section of the bundle £ ® SU. The
gaugino field A14 apart from being a section of the spinor bundle, behaves as a section
of LR TSM ® SU. Finally the hyperino field (% is a section of the rank 2m vector
bundle with structural group Sp(2m, R) that one obtains by deleting the SU(2) part of
the holonomy group on HM. In other words it is a section of the bundle 7HM @ SU ™.
Correspondingly the covariant derivatives of the fermions appearing in the action and in
the transformation rules involves the composite connections Q , Fij, w® and A*? defined
on these bundles. Gauging just modifies these composite connections by means of Killing
vectors and momentum map functions. Explicitly we have:

TSM : tangent bundle IY, — f‘ij =T% + g AN 9k},
L : line bundle Q — Q=0Q+gArP}
SU : SU(2) bundle w* — O = Wt + g ANPY
SUT'@THM : Sp(2m) bundle A®® — AP = A 4 g AN, kS U AU,
(7.57)
Correspondingly the gauged curvatures are:
R, = R, VZ" AV + gF Ok}
j(\ = Kij* VZiAsz* + gFAPX
0" = QI Vg“AVg + gFMPy
R = R VG AV + g AN 0K U U, (7.58)
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8 The Complete N=2 Supergravity Theory

In this section we write the supersymmetric invariant action and supersymmetry trans-
formation rules for a completely general N = 2 supergravity.
Such a theory includes

1. the gravitational multiplet, described by the vielbein 1-form V¢ (a = 0,1,2,3),
the spin-connection 1-form w?, the SU(2) doublet of gravitino 1-forms w4, 14
(A = 1,2 and the upper or lower position of the index denotes left, respectively
right chirality), the graviphoton 1-form A°

2. n vector multiplets. Each vector multiplet contains a gauge boson 1-form A! (I =
1,...,n), a doublet of gauginos (0—form spinors) A4, A\, and a complex scalar field
(0-form) 2" (i =,1,...,n). The scalar fields z* can be regarded as coordinates on a
special manifold SM which can be chosen arbitrarily.

dimc SM = n (8.1)

3. m hypermultiplets. Each hypermultiplet contains a doublet of 0—form spinors, that
is the hyperinos (* (o = 1,...,2m and here the lower or upper position of the
index denotes left, respectively right chirality) and four real scalar fields ¢* (u =
1,...,4m), that can be regarded as coordinates of a quaternionic manifold H.M
which can be chosen arbitrarily.

dimgy HM,, = m dimg HM,,, = 4m (8.2)

As explained in the previous sections any quaternionic manifold has a holonomy

group:
Hol (HM,,) C SU(2) ® Sp(2m,R) (8.3)

and the index « of the hyperinos transforms in the fundamental representation of
Sp(2m,R)

Using the information collected in the previous sections we can immediately write down
the definition of the curvatures and covariant derivatives for all the fields. The definition
of curvatures in the gravitational sector is given by:

T = DV —ighy Ayap? (8.4)
1 i~ R

pa = dipy — o WP Ahy+ §Q AYsg+&8 Npp = Vipy (8.5)
1 P

o= dyt — Jab w® A — 59N VA + o4, AP = vyt (8.6)

R® = dw™ —w® Aw® (8.7)

where w = fw*(0,)% and w = €*“eppw P, and where the gauged connections for the

SU and L bundles were introduced in eq.s .57 In all the above formulae the pull-back
on space-time through the maps

AC

Z 0 My — SM ; ¢* :© My — HM (8.8)
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is obviously understood. In this way the composite connections become 1-forms on space—
time.
In the vector multiplet sector the curvatures and covariant derivatives are:

V2 = dt + gAME (2 8.9
A
VZ = dZ7 + gAMEL (2) (8.10)
) ) 1 ) 1 ~ . ~ )
v)\zA = d)\ZA _ Zf)/ab wab)\zA _ %Q)\ZA + FZ])\jA + &)AB A )\ZB
Sx Sx 1 S % 1 N\ K Na* yx S x
VAL = AN - rmwX %QA’A FTUN 4+ 08 AN

1 . _
FY = dAN 4 Sg e AT A AT 4 V04 Abpe®® + LA ApBeqs  (8.11)

where the gauged Levi-Civita connection fij on SM is also given by eq. [[.57 and where

LA = e XA is the upper half (electric) of the symplectic section of H introduced in
equation [.26. The lower part M, of such a symplectic section would appear in the
magnetic field strengths if we did introduce them.

Finally in the hypermultiplet sector the covariant derivatives are:

U = UMV = Ul (dg + g AMR () (8.12)
1 i~ N

VCCV = dga - Zwab’}/ab Ca - %QC& _'_Aaﬁgﬁ (813>
1 i A ~

VCU = dg” = (4 5907 + A% (8.14)

where Aaﬁ is the gauged Levi-Civita connection on HM defined in eq. [(.57, satisfying
the condition to be Sp(2m,IR) Lie-algebra valued and

A = AP, A, = €y A (8.15)

Let us note that the definition of the generalized curvatures as given in eq.s B4
B and B.I7] has been chosen in such a way that when all the p-forms are extended to
superforms in superspace they give the correct supercurvatures of the N = 2 superalgebra;
that means that if we set all supercurvatures to zero the corresponding equations represent
the N = 2 superalgebra in dual form. Given these definitions our next task is to write
down the space-time Lagrangian and the supersymmetry transformation laws of the fields.
The method employed for this construction is based on the geometrical approach: for a
review see [BI]. The rheonomic derivation of the N=2 theory is explained in Appendix A.
Actually one solves the Bianchi identities in NV = 2 superspace and then constructs the
rheonomic superspace Lagrangian in such a way that the superspace ”curvatures” given
by the solution of the Bianchi identities are reproduced by the variational equations of
motion derived from the Lagrangian. After this procedure is completed the space-time
Lagrangian is immediately retrieved by restricting the superspace p-forms to space-time.

Using the results of Appendix B one finds the space-time N = 2 supergravity action
that can be split in the following way:

5 - /J—_gd4x[£k+£4f+£'g],
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where

1nv
kin

nv
Ly = + Lpaui ,

kin
£4f — 27}}) + Z‘?nlnv ,
L, = Lpass—V(2,%,q) , (8.16)

consists of the true kinetic terms as well as Pauli-like terms containing the

derivatives of the scalar fields. The modifications due to the gauging are contained not
only in £ but also in the gauged covariant derivatives in the rest of the lagrangian. We
collect the various terms of (B-If) in the table below.

inv

kin

'CPauli

nv

4f

non inv

4f

N=2 Supergravity lagrangian

1 i —=7* u v e,ul/)\cr —A A A
_iR + gij*VHZ VHZ] + hwvuq V‘uq + \/_—g (w“’}/a—pAy)\ - ¢Au%rpl,)\)

i ~iA j* ~J* i . [=a - o

590 (NN + XYV, =i (C9V o + " V)
F(Nas Tt F 5 = Naw A ) 4 { = g3V, 20 0N
ULV g TG+ Gige Vo E N gy + UV ug T by + .

(8.17)
{Foud (m Ny ALZF P g — diF i Xy Uhe +
%Vi FEX AP ey — L7, (07 + e} (8.18)
i AL VI AFa - g€
5 (95X X = 2050 70Ca) D a1t e
é (CopX "y BB X NP e + hec.)

—A Bl L, ~iA ~i* v
20, WP WG + 200 X bl Ny

1 3 —iA —q* *

1 <Rij*lk* + Gikr Gijr — 5 Yis* glk*) X ONEN N

1 - —iA 1, s = . =B

7 9 CYula ANy + 5 Ris uﬁx«, Upse™P COC, G¢C ¢

{%Vm CjkszAAmekCAlDeAceBD + h. c.]

g TNy TN+ 20T + (ean Can Tpg 0™
{(m Ny 22827 (G,0F) (0,00 eanccn

8i LT3 (0,08) (Nan* )

2 Fre (Narvt) (Newtn) € P

LA g —A B\ ~IC g
gL Te g™ Co (@,0)) X9 NP eapecn

¢f + h.c.> (8.19)
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T ~m* — iAo\
+ e T 8 Cigie (N3 o) XNy n”

= LALE (U 0f) T s ean

+ AT (Nar"08) CamCa P

- 3—12 Cijr. Crng™ g™ 77{\* 782* x4 Vo NP e Y NP e specp
— % LAV fC G N AN €45 €

1

: L LG G G G €7 €] + hie. (8.20)

—A . iAB~I* . —a
'Cmass = g[QSAB'QDH 7u ,lvbyB + 1gij*W AB)\Q ’7;/‘#% + 21N(;4C Vu,lvbz
+ MOC, G+ MOl NP + MiasX NF] + b, (8.21)
[ (9 Kok + A ik TVL® + g £ £EPYPE — 3T L7PiPg| (8.22)

<

~—~

n

IS

)

S~—
I

where F2h = 2(F), £ e F) ) and (...)” denotes the self dual part of the fermion

bilinears. The mass-matrices are given by:

i

SAB = Q(UI)ACEBC'PKLA
WiB = AB l{:fXZA + i(0,) PeCAPL g *7;\*
NA = oy ke T
M = YU ey VI LA
MaiB = _4ugu klu\ sz
1 . i
Miaus = 3 (c":‘AB gigkn i +1(owe) 45 PR szzA) (8.23)

The coupling constant g in £ is just a symbolic notation to remind that these terms
are entirely due to the gauging and vanish in the ungauged theory, where also all gauged
covariant derivatives reduce to ordinary ones. Note that in general there is not a single
coupling constant, but rather there are as many independent coupling constants as the
number of factors in the gauge group. The normalization of the kinetic term for the
quaternions depends on the scale A of the quaternionic manifold, appearing in eq. (b.10),
for which we have chosen the value A = —1.

Furthermore, using the geometric approach, the form of the supersymmetry transfor-
mation laws is also easily deduced from the solution of the Bianchi identities in superspace
(see Appendix A). One gets

Supergravity transformation rules of the Fermi fields

1 —1 —*
bbae = Duea = (0 KN ep — 0 KNpe”)
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—wAf Ue., (ECD s Zﬁ en + ¢ ec) VB,
+ (AA”BnW + A ”B%,,) €n
+ 19 Sapnu + ean(Ty, + Uy 77e”
SANA = i(aj KN ey — 050 KXy e?) X
—wh g U, (P Chep + T ) NP
- FiijkBeB NA 4+ (Vu 2t — XiAibA“) 7“6‘4
+G;£7MV€B€AB + D4Beg
6C = —A,) A (EAB(DWSZ& es + EA) (s
+i (82- KXiBeB — O KX;EB) Ca

(8.24)

(8.25)

+i (L{fﬁ V,.q" —EBCCBVZ,YwC — ZﬁwB) YeteapCop + g NZHes(8.26)

Supergravity transformation rules of the Bose fields

a e a TA g
OV = =iy, eA—ub“v €A (8.27)
5142 = QIAﬂAMEBEAB + 2LA@3636A3
+ (i fA XiA%eB €aB + 17?* XZ’)/MEB eAB) (8.28)
528 = XMEA (8.29)
527 = Npel (8.30)
0q" = Uga (ZQGA + (DaﬁEABZﬁeB) (8.31)
where we have:
Supergravity values of the auxiliary fields
AP = _i giee (Ny VAP — 65X A#AC) (8.32)
1 1 1 _* 1 _
AP = Lgee (R NP = SOEREAIAY) - SR (83)
_ . ~ro 1 <iA : 1 5=
T, = 2i(Im N)as L* <F;ixu + gvi fJA A Y NP eap — ZC ’ Ca Y 63 LA> (8.34)

4
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1 _
U, = —C"C s (8.36)

iz 4
i —a
Ulj_,, = _Z Caﬁg Yuv Cﬁ (837)
i vl ~\_ 1 ~kA
G“V — _g-] f_]* (Im N)FA (F,Li\lj _'_ngng)\ /7“1/ AZBEAB
1 —_
—1 € G L) (8.38)
i* % =~ 1 —A <~k* *
G,uzj_ = -9 ]fjr (Im N)FA (Flixlj_ + gvk*ff*)\/‘ Y )\ZB EAB
1 =« —A
_1 Caﬁ C Yuv Cﬁ L ) (839>
DiAB _ % gij*Cj*k*z*X]é* NG eACBD y yyiAB (8.40)

In eqs. (B33), €33), B39), (B39) we have denoted by F,, the supercovariant field
strength defined by:

ﬁ/fu = f;i\u + LA%SIM/B €AB + zAgAuwBV‘SAB - lsz XZAV[Vwﬁ €AB — 17?‘ X,ZAfy[lﬂbBu} EAB .
(8.41)

Let us make some observation about the structure of the Lagrangian and of the trans-
formation laws.

i) We note that all the terms of the Lagrangian are given in terms of purely geo-
metric objects pertaining to the Special and quaternionic geometries. Furthermore the
Lagrangian does not rely on the existence of a prepotential function F' = F'(X) and it is
valid for any choice of the quaternionic manifold.

ii) The Lagrangian is not invariant under symplectic duality transformations. However,
in absence of gauging (¢ = 0), if we restrict the Lagrangian to configurations where the
vectors are on shell, it becomes symplectic invariant (ref). This allows us to fix the terms
appearing in EZ?!;};Z;’ in a way independent from supersymmetry arguments.

Here we report only the results of the application of the method of [f],[F7]in our case.

For a complete treatment see [i],[67]. The non-invariant part of the Lagrangian is:
L= LR+ LR+ L (8.4

where: Ly&ctors — i(N AnFAFE — h.c.). The part L£}¢""™ of the 4-fermi Lagrangian
is fixed by the requirement of on-shell vector invariance.Indeed, imposing the equation of
m motion for the gauge fields,with straightforward calculations one finds that£m"" " can
be written as follows:

. 1 )
ok = 5 (FTAME + hoe) + LR (8.43)
where:
- -
Hap = W =N) 7 (8.44)
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with:
T;VE — [_21 LE (EA“%#BV) €Ap — 27? (X27V¢f§)_ EAB
— VTN N e 4 S LG O] (8.45)

From duality arguments it then follows ([H],[67]) that the non invariant 4 fermion terms
can be written as the following perfect square:

Z;anu = +iHX|W AR 4op e = +i (/\f — N)AE T;VAT_EWV + h.c. (8.46)

This result was in fact employed as a useful consistency check in the calculations to
construct the Lagrangian.

iii) We note that the field strengths fﬁy_ originally introduced in the Lagrangian are

the free gauge field strengths.The interacting field strengths which are supersymmetry

eigenstates are defined as the objects appearing in the transformation laws of the grav-

itinos and gauginos fields,respectively,namely the bosonic part of 7, and G/ defined in

eq.s B34,

9 Comments on the scalar potential

A general Ward identity[BY] of N-extended supergravity establishes the following formulae
for the scalar potential V' (¢) of the theory (in appropriate normalizations for the generic
fermionic shifts dy®)

Zap0aX"65%" — BMacM P =54V (¢) A, B=1,....N (9.47)
where d4x® is the extra contribution, due to the gauging, to the spin % supersymmetry
variations of the scalar vev’s, Z,, is the (scalar dependent) kinetic term normalization
and M ¢ is the (scalar dependent) gravitino mass matrix. Since in the case at hand
(N = 2) all terms in question are expressed in terms of Killing vectors and prepotentials,
contracted with the symplectic sections, we will be able to derive a completely geometrical
formula for V(z,Z, q). The relevant terms in the fermionic transformation rules are

5wAu = Z.gSAB’}/ueB )
5)\@',4 — gWZ'ABEB 7
6Co = gNAey . (9.48)

In our normalization the previous Ward identity gives
V = (gije kKD + Ao kiR TN L® + (UM = 3T L¥)PyPE (9.49)

with UA* is defined in (40). Above, the first two terms are related to the gauging of
isometries of S ® Q. For an abelian group, the first term is absent. The negative term
is the gravitino mass contribution, while the one in U** is the gaugino shift contribution
due to the quaternionic prepotential.
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Eq. (P49) can be rewritten in a suggestive form as

V = (kn, ke) L L + (U — 3T LE)(PYPL — PyPy) | (9.50)
where .
(ka ks) = (K, kO, KO | ge; O 0 kL, (9.51)

0 0 2hy k3,
is the scalar product of the Killing vector and we have used eq. ([[.4) and the relation

KA =T =PI =PIt =0 (9.52)

P% are the quaternionic (triplet) prepotentials and U*®| LA are special geometry data.
In a theory with only abelian vectors, the potential may still be non-zero due to
Fayet-Iliopoulos terms:

Pi = &4 (constant); €& =0 . (9.53)
In this case N
V(z,%Z) = (UM — 3L L¥)E3E8 (9.54)

Examples with V'(z,%Z) = 0 but non-vanishing gravitino mass (with N = 2 supersymmetry
broken to N = 0) were given in [B@], then generalizing to N = 2 the no scale models of
N =1 supergravity [IJ]. These models were obtained by taking a £§ = (&,0,0) . In this
case the expression

vV =U"_3L°L° (9.55)

reduces to B
V = (0;Kg7 0 K — 3)eX (9.56)

which is the N = 1 supergravity potential, with solution ( V' = 0) the cubic holomorphic
prepotential

XAXBXC
X0
Another solution is obtained by taking the

F(X):dABC Azl,...,n. (957)

4 0 Gl ot i e S0
symmetric parametrization of the symplectic sections (X*, Fy = nazSX® ; X2 X Py =

0,max = (1,1,—1,...,—1)) where a prepotential F' does not exist. In this case

— 1
UAS _ 3T LT = _mmz (9.58)

where we have used the fact that

— — — _ XA
Nis = (S = 8)(®pPs; + Py Px) + Spsy , @ = EONGE (9.59)

The identity (.58) allows one to prove that the tree level potential of an arbitrary heterotic
string compactification (including orbifolds with twisted hypermultiplets) is semi-positive
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definite provided we don’t gauge the graviphoton and the gravidilaton vectors (i.e. P§ = 0
for A=0,1,PF #0 for A =2,...,ny). On the other hand, it also proves that tree level
supergravity breaking may only occurr if P{ # 0 for A = 0, 1. This instance is related to
models with Scherk-Schwarz mechanism studied in the literature [0, f1].

A vanishing potential can be obtained if €5 = (€, 0,0) with

Er&en™ =0 (9.60)

In this case we may also consider the gauge group to be U(1)P*2@G(ny —p) and introduce
Er = (&0, -, &01,0,...,0) such that Ex&sn™® = 0 where 7 is the SO(2, p) Lorentzian
metric. The potential is now:

V= kg kL TMLE o (UM = 3T LE)PrPE =0 (9.61)
where ki L* = 0 for A < p+ 1. The gravitino have equal mass
| mag |~ ™7 | X | (9.62)

with §46m™* =0, A=0,...,p+ 1.

It is amusing to note that the gravitino mass, as a function of the O(2,p)/O(2) ® O(p)
moduli and of the F-I terms, just coincides with the central charge formula for the level
N, =1 in heterotic string (H-monopoles), if the F-I terms are identified with the O(2, p)
lattice electric charges.

Note that, because of the special form of the gauged Q, w”*, we see that whenever
Pa # 0 the gravitino is charged with respect to the U(1) factor and whenever P% # 0 the
gravitino is charged with respect to the SU(2) factor of the U(1) ® SU(2) automorphism
group of the supersymmetry algebra. In the case of U(1)? gauge fields with non-vanishing
F-I terms £7 = (0,0,&,) the gauge field Aﬁ&\ = A, gauge a U(1) subgroup of SU(2),
susy algebra.

Models with breaking of N =2 to N =1 necessarily require k¥ not to be zero.
The minimal model where this happens with V' = 0 is the one based on

SU(1,1) _ SO(4,1)

Sk©Q="F747 % 50w

(9.63)

where a U(1) ® U(1) isometry of Q is gauged. In this case the vanishing of V' requires a
compensation of the d )\, 0 variations with the gravitino contribution

AR RS By + UM PEPE = 3T L¥PIPE (9.64)

The moduli space of vacua satisfying (0.64) is a four dimensional subspace of (P.63).
One may wonder where are the explicit mass terms for hypermultiplets. In N = 2
supergravity, since the hypermultiplet mass is a central charge, which is gauged, such
term corresponds to the gauging of a U(1) charge. This is best seen if we consider the
case where no vector multiplets (and then gauginos) are present. In this case L* = L? =1
and the potential becomes
V = 4hy k"kE" — 3PYP* (9.65)

where k" is the Killing vector of a U(1) symmetry of Q, gauged by the graviphoton and

P* is the associated prepotential. For SS%(%) this reproduces the Zachos model [B9]. The
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gauged U(1) in this model is contained in SUg(2) which commutes with the symmetry
SUL(2) in the decomposition of SO(4) = SUL(2) ® SUg(2). This model has a local
minimum at vanishing hypermultiplet vev at which U(1) is unbroken, and the extrema
(at w = 1) (maxima) which break U(1). The extremal model is when both ng = ny = 0.
Still we may have a pure F-I term

This corresponds to the gauging of a U(1) C SU(2), and gravitinos have charged coupling.
This model corresponds to anti-De Sitter N = 2 supergravity [[{4].

10 The rigid limit: N=2 matter coupled Yang—Mills
theory

In this section we consider the rigid limit of matter coupled N=2 supergravity. The aim is
that of obtaining the most general form of matter coupled N=2 super Yang-Mills theory.
By this we mean the rigid supersymmetric N=2 theory of n vector multiplets coupled
to m hypermultiplets interacting through a generic rigid special manifold and a generic
hyperKdhler manifold. Such a theory, in general, is not renormalizable: renormalizability
obtains only in the case of a flat special manifold and a flat hyperKahler manifold. Yet
it is very interesting as an effective low energy lagrangian. Seiberg Witten lagrangian
MM, is just an instance in this general class. One could derive this type of theory by
direct methods solving Bianchi identities in flat superspace and then constructing the
corresponding rheonomic action. It is however much simpler to derive it through a suitable
scaling limit from the N=2 supergravity theory. The contraction parameter is obviously
the Planck mass p and the limit must be performed in such a way that local special
geometry flows to rigid special geometry and quaternionic geometry flows to hyperKéahler
geometry. We already know how this can happen: the curvature of the line and SU(2)
bundles must flow to zero in the limit. In the next subsection we describe the appropriate
rescalings. Then in a further subsection we report the final result written in space—time
component formalism for the benefit of the reader who does not want to be involved with
the rheonomy formalism.

10.1 Planck mass rescalings

We begin with the special geometry sector. Here we consider the covariantly holomorphic
symplectic section f.2q and we write:

V= <]\L4AE) = exp[K/2] (;f;) — exp [K/(212%)] <Qo+%ﬁ+%93> (10.1)

where: . .
§ v o
Qy = ; Q= 0 %= 5 (10.2)
i )
0 Fy 0
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The hatted objects are those that survive in the infinite Planck mass limit © — oo.
Recalling eq. .25 we obtain:

K = - ;}an}o ©? log [i (Q\ﬁ)}
V2
3

= — lim p? log [1+i (?IF[_FJYJ) +
L

Jim - (ReY? — ImFy)
+ # (?OFO -~ FOYO)]
= —i (Y'F-F,v/)

— Q) = 07 (_0]1 g)

2P

(10.3)

which reproduces eq. .49 for the Kahler potential of rigid special geometry. An obser-
vation here is in order. The last line in eq. [[0.3 still differs from eq. .49 in one respect:
the symplectic metric and the symplectic sections in [[0.3 are (2n + 2)—dimensional while
those in eq. are 2n—dimensional. Yet the entries of the symplectic sections in the
two additional dimensions are always zero so that we can safely reduce the bundle and
its structural group from Sp(2n + 2,1R) to Sp(2n, R).

Let us next consider the symplectic vector U; defined in eq. [29. Using the above
rescalings we obtain:

+= | (10.4)

where

= 9,0 (10.5)

set:

1
Jijx = Egij* (10.6)
which is consistent with o
Gij» = —1(Ui|Uj) (10.7)
that reproduces the first of eq.s [E.58: the second of such equations is retrieved by setting:
1 4 1 N o

Finally we observe that the Levi-Civita connection F;'»k is not rescaled by any power of
the Planck mass since it contains a metric and an inverse metric (see eq. [C.5d). This
implies the following rescaling for the Riemann tensor of the special manifold:

* 1 -~
Rijirer = gipr B joppe = —5 Rijoer (10.9)

112
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and the fundamental identity of local special geometry becomes

_ 1 o L N
Rijerer = 2 (Gij«Gres + GrjGier) + Cligs Crujups ™

*

(10.10)

that in the limit 4 — oo reproduces the fundamental identity of rigid special geometry

(eq. E5T).

Summarizing we have:

Rescalings in the Special geometry sector

P o) v o)
g = 9 + O () Ci = s O + O (i)
Rijeges — “—lszy*M* + O (%) 2t — Z
£ = w8+ 0(5) fl— i+ o)
ri, — o, Q— L0
(10.11)
Next we consider the rescalings in the quaternionic manifold sector. Here we set
Rescalings in the quaternionic manifold sector
E* — LK® 0" =0 Pp— LP§
(10.12)

Using these rescalings the quaternionic algebra is satisfied by the rescaled hy-
perKahler structures K7 as much as by the unrescaled ones K7 : however the relation
between the SU(2) curvatures and the hyperKéhler structures K7, becomes:

A
12

0r = S K° (10.13)

and in the limit © — oo we obtain O = 0, as indeed we expect in the case of a
hyperKéhler manifold. Indeed we can rephrase this result by saying that, upon restoration
of physical units, the SU(2)—curvature scale is

A= (10.14)

>
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and in the infinite Planck mass limit goes to zero. Indeed when we fixed A\ = —1 to obtain
canonical kinetic terms this value had to be interpreted in squared Planck mass units
(namely A = —1). Eq.s [[0.I7 are consistent with the definition

iWK"P% = VPY = dP3 (10.15)

of the triholomorphic momentum map on hyperKahler manifolds. The last equality in
eq. is justified by the vanishing of the SU(2) curvature that is obtained in the limit
p — oo. Finally the rescaled form of the quaternionic equivariance eq. [[.59 is

A
{Pr, Ps}" =2K* (A, X) — o e™V* PY Ps, (10.16)

and in the infinite Planck mass limit it flows into the equivariance condition of momentum
maps for hyperKéhler manifolds, that is eq. [.50.

To complete our rigid limit programme we have to prescribe the appropriate Planck
mass rescalings for the space—time fields and the fermions. These are as follows:

Rescalings of space—time fields and fermions

Ve %Va G — ,u%gl“/ Tt — TH
wab N @ab AO N %AO AI _ %AI

(10.17)

Utilizing the rescalings of eq.s [[0.11], and in the curvature definitions 8.4, B3,
B8, B, B9, B.I0, B-17, B.11, B.I1, B:I3, B:I3, B:I4 and in the curvature rheonomic

parametrization given in Appendix B, by performing the limit 4 — oo we obtain the
rheonomic parametrization and curvature definition of the rigid theory. Indeed the first

four equations [A.23, A.24, [A.2] become:
T = dV* —w® A Ve =0
1
pa = dba — —w” Ay ta =0

4
1
pt o= At - Ewa” A Y™ =0
R® = dw™ — w™ A wng =0 (10.18)

that are the structural equations of N=2 rigid superspace if they are completed with

FO = dA® + —= [fa A pe?® + 97 AP esn] = 0 (10.19)

1
V2
Eq. [[0.19 is precisely what we obtain in the 4 — oo limit from the case A = 0 of eq.s A.27
and B.I1. Algebraically eq. tells us that the graviphoton one—form is the dual of the
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central charge generator. The case A = I of the same equations provides the definition
and rheonomic parametrization of the Yang—Mills curvatures in rigid superspace:

1 i _
Flo= dAl + S g flc AT A AR+ Y0, Abpe® + YO ApBens
= FLVOAV 4 (1IN 00 eap + 1T Xy yaop P) AV (10.20)

From the y — oo limit of eq. [A.2§ and [A.29 we obtain the gaugino curvature parametriza-
tions:

V)\iA — va)\iAva + izé,yawA + G;bz awaEAB + Di‘ABwB
VN, = VALV +i7. A%+ GH v pBeqp + D )® (10.21)

where Z! and Z'" are defined by eq. [A.30] and its complex conjugate that survive unmodi-
fied in the limit while fobi* and the auxiliary fields D4 D™ , , are given in eq.s [[0.39. As
usual the rheonomic parametrizations correspond to the supersymmetry transformation
rules that we have collected in the next subsection together with the space-time action
for the benefit of those readers who doe not want to get involved with the rheonomy for-
malism. Also the rheonomic parametrizations [A.33, [A.39, [A.:34 mantain the same form
in the rigid limit, but the hyperino shifts N§, N2 are now given by eq.s [[0.35. Using the
same scaling limit one obtains the rigid rheonomic action (which we do not report) from
which one retrieves the space—time action reported in the next subsection.

10.2 Summary of the rigid N=2 Yang—Mills theory

Let us then summarize our results by writing the final most general form of N=2 matter
coupled Yang—Mills theory. Such a theory arises from a generic choice of the rigid special
manifold SM, .4, a generic choice of the Hyperkahler manifold HM,.;, and a generic choice
of the gauging.

Let: ]

Fl = dAT + 5 AT NAR =FL dat A da (10.22)
be the field-strengths of the gauge group G. Let 2! be the coordinates of the rigid special
manifold SM,,,, whose complex dimension n equals the real dimension of the gauge
group and let ¢“ be the 4 m coordinates of the Hyperkahler manifold HM,,,. In addition

let A4, \i{ be the two chiral projections of the gaugino field and (%, ¢, the two chiral
projections of the hyperino field. Let us moreover define :

the covariant derivatives of the Bose fields
V2 = 9,2 + gAfL K}
V2 = 0 + g ALY
Vug" = 04" + g Ai kY
and
the covariant derivatives of the Fermi fields
VA = 904 4 (19, V,27 + g AL 0Ky ) N4

VA = 9N+ (The V277 + g AL k) M)
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Vil = 0" + (AP Vug" + g AL DR UM U e ) C ¢
Vily = 0y + Coa (A V,g" + g AL O U U 1) G

(10.23)

In terms of these field strengths and derivatives and of all the geometric structures pertain-
ing to rigid special manifolds and to hyperKahler manifolds discussed in previous sections
the most general N=2 supersymmetric invariant lagrangian has the following form:

where

where the mass—matrices and the scalar potential are given by:

Matter coupled N=2 Yang Mills action

L = £k2n + »CPauli + Emassmatrim + Epotential + £4fermz'

Luin = 1 (N1y Fy FI = Ny i F40)
+ gij» VF2' V77 + iy V"V ,uq°
- %gij* (XM VNN A+ X{; A VM)\iA)
—i(C" " Vil + Ca" Vi)

Lpoui = i% Cijk; (gkz*_z* ImN7 f'u_uf) X’A v \B € 4B

. 1 — * ~* v ) *
— 15 Ci*j*k* (gk ZfZJ IH]N[J f:;j[) >\A ”)/'u >\]B EAB

'Cmassmatri:c = Malﬁ Za Cﬁ + MaIﬁ Za Cﬁ
+ MY C AT + ML TN

ali*
~tA 1\ p*
'Cpotential = - V(Z> z, q)
1 —1 —5* *
Lafermi = 7 Rijeae X7 AP XY N,

1
1 . ———
5 R Ul U P €7, 6,870

1 v+ nst gl 5 viA B~C m
- @ImNIJCijkCemn gk g fr*fs*>\ ’YW)\JB)\ YN DEABéTCD

(10.24)

(10.25)

(10.26)

(10.27)
(10.28)

]_ — — *r n*s —* e v *
- @Im/\/’u Cixjrir Cpempn gk g frI.fsJ )\A%w)\fg Ac " )‘ZD g4PeP (10.29)

N=2 Yang Mills mass matrices and scalar potential
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M = gUSAUIP ey VI K YT

kv
Mup = —gUanuUsp e P VKDY
MO = AgUS Y flean
]_ * . €T
Miaes = 39 (c":‘AB gioky f{ +1(02) 4 €epc Py ngf)
A 1 =l v =l

V(z.2.0) = o (9iki k) + dha kiky) V' Y7
3
g LS PR (10.32)
rx=1

The coupling constant in front of the mass—matrices and of the potential is just a symbolic
notation to remind the reader that these terms are entirely due to the gauging and vanish
in the ungauged theory. In general there is not a single coupling constant rather there are
as many independent coupling constants as mutually commuting subgroups in the gauge
group. For instance if G is a product or r U(1)—factors, there are r independent coupling
constants that can be reabsorbed into the definition of the killing vectors k%, k¥.

The supersymmetry transformation rules with respect to which the lagrangian [0.24]
is invariant are the following ones:
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N=2 rigid transformation rules of Bose fields

514;5 = +1i (fiIXiAVMEBgAB + Tz'I*Xi* A’VMEBEAB)

5Zi = —I-XiAEA

67" = —i—Xi et
Ust(q) 0q" = PP ey +e¢e

N=2 rigid transformation rules of Fermi fields

5}\2‘14
SAIY
0Ca
5¢e

where:

= ivuzi et + G;j A ep et 4 DIAB ¢
iV,ﬁi* Yea + G:,f* ~H Besp + Di*lAB B
= iUP V" Ve eapCap + N ea

1Usp Vuq" V'ea eABes 4 N§ et

N=2 rigid values of the auziliary fields

il _ 1 —kA
- ng fj* ImNIJ (F;WJ + _kaé])‘ Yuv )\ZB €AB

8

. *a 1 —J ~k* *
—_ lg jijIH]_/\/}J (f:;] + —Vk*fz* )\A ’}/“l, >\ZB €AB>

8

— Yi\AB + WZHAB] + WZ\(AB)
= Y'up + Whig + Wap

1

_ 15 gij* Uj*k*f* Xlg )\ZD*gAC oBD
= —i% 9" Cje NCNPe 2D
= ABRY!

= eapktY!

= —ie"0,) " Pig7f
= i(04), €enc Pig I f]
= 2Uld, kY

= —2UG, kP YT

93

(10.33)

(10.34)

(10.35)



10.3 The renormalizable microscopic theory

As an exemplification of the general formalism and for the sake of its intrinsic interest, in
this subsection we consider the case of the renormalizable microscopic N=2 (matter cou-
pled) Yang—Mills theory. The theory is specified by the choice of the following geometrical
data:

1. A flat rigid special manifold SM . describing the vector multiplet couplings
2. A flat Hyperkahler manifold HM s, describing the hypermultiplet couplings

Let us briefly discuss these geometries and the corresponding form of the Lagrangian.

Flat rgid special geometry

In the vector multiplet sector the appropriate geometry is described as follows. Let 6
be the theta—angle, 1/g? the inverse of the squared gauge coupling constant, and g;; the
constant Killing metric on the gauge Lie algebra. Define the complex parameter:

1
T=0+1i (10.36)
9

and choose as holomorphic section of the flat symplectic bundle the following one:
A y! .
G = (TgUYJ> IJ=1,.. n=dmg (10.37)

In this case the upper half of the holomorphic section can be taken as coordinates
on the manifold (the special coordinates):

2 =Y. (10.38)
The action of the gauge group on these coordinates is obviously the adjoint action:
Y = L vE (10.39)
where f7;, are the structure constants of the gauge Lie algebra:
[tr, ts) = f5 itk (10.40)

t; being a basis of generators. Hence using eq.s and we obtain

Ny = TgIJ g+ = 2lmTgr;
ImN7; = —Imrg;  ff = &! (10.41)
Cigr = 0 ko= fleY"®

Flat HyperKdhler geometry

In the hypermultiplet sector we arrange the 4m coordinates ¢* of HMy = R*™
into a 4m column vector:

alt {CL = 0>1a2>3 (1042>

t=1,2,... m
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that is regarded as an element of the tensor product R* ® R™ ~ IR*™. Let

0O 1 0 O 0O 1 0 O
-1 0 0 O -1 0 0 0

So L — L

J 0O 0 0 1 J 0O 0 0 -1
0O 0 -1 0 0 0 1 0
0O 0 -1 0 00 -1 0
0 O 0 1 00 0 -1

+2 -2 _

J 1 0 0 0 J 1 0 O 0 (10.43)
0 -1 0 0 01 0 0
0 0 0 1 0O 0 0 1
0 0 1 0 0O 0 -1 0

+H3 = i A

J 0O -1 0 O 4 0O 1 0 0
-1 0 0 0 -1 0 0 0

be the two triplets of self-dual and antiself dual 't Hooft matrices satisfying the quater-

nionic algebra:

J:I:|:c J:|:|y — 5y Tyuy + £tYz J:I:\z
x ]‘ xT
Jj;' = :l:igabcd ']c:lc:l‘
0 = [J, W] Vay (10.44)
Let, furthermore
o — (1 0)
7 \0 1
o — ( 0 —i)
1 = .
—-i 0
T — 2 — 1 0
. ( -1 0 >
“=\1 i
be a complete basis of two matrices for the expansion of a generic quaternion:
Q= q"e (10.46)

ez, being the three imaginary units. The flat HyperKéhler metric and the corresponding
triplet of HyperKéahler 2—forms are given by:

ds®> =
K* =

huv dqu dqv = qu (]l4><4 X ﬂme) dq

dq" A (7@ L) da (10.47)

Alternatively in the above formula one can use the triplet of antiself dual t’Hooft matrices
to define the HyperKahler structure. Using the identities:

{ J;Z'm = % tr(eqepel)

e 10.48
Jab| = — L tr(e.eley) ( )
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alt

and rearranging the 4m coordinates ¢%" into an m-vector of quaternions:

Q' = qe,
QZ — qa\Z e,

Q = (10.49)
Q' = ¢"e,

eq.s [[0.47 can be rewritten as follows:

ds? = % tr (dQT nmmdQ)

1 1
K = 5dQT A TpemdQ = §K“"’ el (10.50)

The action of the gauge group G on the hypermultiplets is assumed to be linear and be
generated by a set of 4m x 4m matrices T7. Namely we set:

(S](] = T[q — k‘? = (T[)uv qv (1051)

In order for this action to be an isometry of the Euclidean diagonal metric [0.47 it is
necessary and sufficient that the matrices T} belong to the orthogonal Lie algebra SO(4m),
namely:

7 = -1y (10.52)

The action of G however is not only required to be isometrical but also to be triholomor-
phic. This means:

A straightforward calculation yields:
di; K* = —dq" A Ty, T nmxm] dq (10.54)

so that the triholomorphicity condition is that the generators 77 should commute with
the tensor product of the 't Hooft matrices with the unit matrix in m—dimensions. When
this last condition is verified we can write the momentum maps as:

Pr=q" J @ Lnwm Trq (10.55)

Alternatively using the quaternionic notation we have:

1 1 .
P, = 579; el = 5(:fnmmeI(;z (10.56)

The lagrangian

Using these ingredients the lagrangian of the microscopic renormalizable theory is im-
mediately retrieved from the general formulae of the previous subsection. It is convenient
to set: .
Y t;

g1

Y Yt Y

10.57
ij FA{V t] tr (t[t]) ( )
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t; denoting a basis of generators of the gauge group and in this condensed notation we
obtain:

microscopic __ maicroscopic maicroscopic
‘CN=2YM - ‘Cbosom'c + ‘Cfermiom'c (1058)

where the bosonic lagrangian is:

bosonic

, . 1
Lopeorec?t® = —Im7rtr (Fu Fu) + 3 Rer tr (F,, F,,) "

+2Tmrtr (V,YV,Y) + V,q" V,q — V(Y,q)  (10.59)

V(Y,q) = 2Imrtr ([Y, ?Dz —2q" {Y, ?}q
: 23: PiPjg'’ (10.60)

2ImT =

The formula for the scalar potential exhibits in a clear fashion the flat directions associated
with the moduli fields Y in the Cartan subalgebra H of the gauge algebra. Actually the
potential is just homogeneous of degree four in all the scalar fields as expected from
renormalizability.

The fermionic part of the lagrangian also simplifies very much since it just contains
the kinetic part and the mass terms induced by the gauging. The Pauli terms and the
4~fermi terms are all zero, since the tensor Cj; vanishes and the Riemann tensors of the
special and HyperKahler manifolds also vanish. The evaluation of the mass matrices is
straightforward by inserting the explicit form of the Killing vectors and of the momentum
maps into eq.s [[0.3]]. The only item that is still missing in such a calculation is the explicit
form of the quaternionic vielbein. This is very easily given. We set:

UM = Uy dg™ = dQ = dg™" (e.)" (10.61)

and we identify the symplectic index o running on 2m values with the pair of indices B, ¢
(B=1,2;t=1,...,m). In this way we obtain:

U'shye = 0L (en) 5 (10.62)

Appendix A: The solution of the Bianchi identities and
the supersymmetry transformation laws

In this Appendix we describe the geometric approach for the derivation of the N =
2 supersymmetry transformation laws of the physical fields. As it will appear in the
following this requires the preliminary solution of Bianchi identities in superspace.

The first step to perform is to extend the physical fields to superfields in N = 2
superspace: that means that the space-time 1-forms w®®, V4, 14, A* and the space-
time 0-forms A\, Xy, 2%, 2", (%, (,, ¢" defined in section 8 are promoted to 1-superforms
and O-superforms in N = 2 superspace, respectively.

The definition of the superspace curvatures actually coincides with that given in
eq.s B:4B.14 provided all the p—forms (p = 0,1,2) are thought as p-superforms (here
and in the following by ”curvatures” we mean not only 2—forms, but also the 1-forms
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defined as covariant differentials of the O—form superfields).
We note that the definition of superspace curvatures in the gravitational sector, namely:

TCL

PA

DY — IEA A ”Yaqu (Al)
1 1A .

s = Y™ Nba + 5Q A + B A b = Vi (4.2)

dy” — %%b w® APt — %Q Ao AP = VYt (A-3)

dwab . (Uac A wa (A4)

dAO + ZOEA /\wBEAB + LO@A /\'QDBGAB (A5)

where F° denotes the graviphoton, has been chosen in such a way that by setting R =
T* = pA = py = F° = 0, deleting the composite connections Q, ©% and normalising
LY (0,0) = 1 we obtain the Maurer—Cartan equations of the N = 2 Poincaré superalgebra
where the one forms w®, Ve ¢4 14, A° are dual to the corresponding generators of the

group.

The next step is to write down the Bianchi identities for all the curvatures and to
solve them in superspace. Applying the d operator to eq.s AT} A4 and B.9- B.14 one

finds:
DI
Vpa
VpA
DRab
v2zi
v2zi*
v2)\iA
V2L
VEA

vuAa
V3¢,

V2Ca

R®AVP — iﬂA AV pa + i Aypy =0 (A.6)
) S ]

Do B A s — %K Atpa — %RAB A =0 (A7)
1 . _

T B AU+ %K AA — RAL AgB =0 (A.8)
0 (A.9)
g (FN =T, A e =TV ApPeap) ky(2) =0 (A.10)
g (FN =T A gpe?® —ZAEA/\wBeAB) K =0 (A.11)
1 . 1~ . ~ . 1 ~ .

o RN 4 %K)\’A + RiNA - %RAB ANB = (A.12)
1 ab\ i* 1/\ i* Bi* j* 1 3B i*

Z’}/abR )\A_§K)\A+R j*)\A_§RA/\)\B:0 (A13)
VI* AT, Appe?B — VIA ADY A ypBesp

2ZA@A A ppetf + 2LAEA AYBeap =0 (A.14)
g (FA oy AN I ﬂA A ¢BEAB) k(UM =0 (A15)
1 i ~

ZRab Yab (a + §K<a + Raﬁgg =0 (A16)
1 | N

1R“b Yab C* — 5}((“ + R =0 (A.17)

(A.18)

The covariant derivatives V and D have been defined in eq.s Al [A.J and include
the gauged connections defined in eq. [[.57. Furthermore the hat on the scalar manifolds
curvatures K, Rij , R, RA5 denotes the gauged curvatures defined in [[.53.
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The solution can be obtained as follows: first of all one requires that the expansion of

the curvatures along the intrinsic p—forms basis in superspace namely: V¢ VAV 1), ) A
Vb 4p A4p, is given in terms only of the physical fields (rheonomy). This insures that no
new degree of freedom is introduced in the theory.
Secondly one writes down such expansion in a form which is compatible with all the
symmetries of the theory, that is: covariance under U(1) Kéhler and SU(2) ® Sp(2,m),
Lorentz transformations and reparametrization of the scalar manifolds. Besides it is very
useful to take into account the invariance under the following rigid rescalings of the fields
(and their corresponding curvatures):

(W, AN gt 2 zi*) — (W, AN gt 2 zi*) (A.19)
Ve - ve (A.20)

(4, 0a) = (2 (" ) (A-21)

(XN, 6%, Ga) = 72 (A0 C7 Ca) (A.22)

Indeed these rescalings and the corresponding ones for the curvatures leave invariant the
definitions of the curvatures and the Bianchi identities.
Finally we note that we are looking for a solution of the coupled system of Bianchi
identities of the gravitational sector with those of the matter sectors. The coupling is
obtained by setting the auxiliary fields of the N = 2 multiplets to definite expressions
in the physical fields compatible with all the previously mentioned requirements. This
fixes completely the ansatz for the curvatures at least if we exclude higher derivative
interactions.

Performing all the steps requires a lot of work. For a more detailed explanation the
interested reader is referred to the standard reference of the geometrical approach [BT].
The final parametrizations of the superspace curvatures, are given by:

™ =0 (A.23)
pa = paaV AV 4 (A + A Py0) g AV
+ [19 Sapa + ean(Ty + U] 0 A Ve (A.24)
Pt = VAV (AA' " e + A b%b) WP AV
+ 198" na + € (T3 + U, ‘)} Vops AV (A.25)
Rab _ lf{adevc/\ Vd - 1(¢ 9A|ab + w 9A\c) AVE

abef TTA B
+€bf¢ /\fyfwB(A A\C_Aiﬂc)

FIeBY A Yp(THE + U — ieaptp” AYB(T + UT)
—A —AB — a
—gSap " AP — g8 AP Y (A.26)
FN = FAVEAVY 4 (i fA N 0% eap +1Fo Navaths €1F) AV (A.27)
V)\iA — @w)\iAva iZZ’}/a'QbA‘I‘Gab’}/ab'QDBEAB“— (Yz'AB + gWZ'AB) wB (A28)
VA, = VANV 417, Aba + G e + (Y745 + gW"a5) 0P (A.29)
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Vi o= Zive+ Xy, (A.30)

Vi o= Z'Ve 4 Nt (A.31)
UL = UPve + ABCP Pyl + e (A.32)
Vi = Vol V* +iUPP e spCop + g NIy (A.33)
V(= VTV UMY+ g N (A.34)
where:
a 1 Y a 3k a
A B = — i (Va2 = 65X v"X) (A.35)

! |a 1 ~k* a 1 ~k* a 1 ~ a o
AP = g (VNP = SEREAIA) + LA (AS0)

0501 = 2410l e pb gab A = gylaphlelA | e potld (A-37)
_ ~A_ ~iA ; af ~
Ty = (N N N)AE L* (Fcf}, +5Vi ng A Y NP eap + 3 AC 7 CoYab o LA) (A.38)

~
S+
Il

-\ =/ —A i * —a —A
(V=N) T (FAT + Vi i Xava X €18 4+ S ACap T C°T7) (A.39)

1

Uy = 72CCovan s (A.40)

a

W

1

U—il_) = 7 )‘Caﬁ Zaq/ab Qﬁ (A41)

a

S

i sas 1o atka
w = 507 T V=N (4 g VafiX s AP eas

1 _
+Z AC Covan s LA) (A.42)
o 1 ~ 1 —A ~k* «
Gab+ = 59 ]f]F (N_N)FA (Fé}f“‘gvk*fﬁ)\f‘ ’yab)\ZBEAB
1 — _
7 ACas ¢ ("L (A.43)
(A.44)
VAD Ly T e w0
i 1 i*j ~kC\¢D
Yipg = 59 CieN N €acenp (A.46)
1
SAB = 5(0}0)14063073;6[/\
R %(am)cBeCAPXZA (A.47)
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NA = oyl kTt

alu

N§ = —2Uug, ki L (A.48)

WiAB _ Wi[AB}—FWi(AB)
Wis = W[ZZB} + W(Z:lB)

where : (A.49)
WilABl _  AB k:j\ ZA
Wihe = eapky L

WiAB)  _ ( O_x)CB ECAPX gij*fj_\*
Wig = 1(02).%€scPig™ f}) (A.50)

As promised the solution for the curvatures is given as an expansion along the 2—form
basis (V AV, V A1, ¢ A1) or the 1-form basis (V' ¥) with coefficients given in terms
of the physical fields. -
The ”on—shell” auxiliary fields are given in our case by the composite connections Q, wh
and by To; , WB and Syp.

a

It is important to stress that the field strengths é“bcd, P Alabs FA YA = Z/{fo‘VAa/qu,

ab » Ya
VNa)\ZA, VAG/Q ., and their hermitian conjugates are not space-time field strengths since they
are components along the bosonic vielbeins V¢ = Vitdaz# + Vidf* where (V7 V) is a
submatrix of the super—vielbein matrix EY = (V¢ 4). The physical field strengths are
given by the expansion of the forms along the dx*-differentials and by restricting the
superfields to space-time ( = 0 component). For example, from the parametrization
(27), expanding along the dx*—basis one finds:

Fh = EAVeVE +1 £} X“%@bﬁv,j eap +ifn Xi%wg[u\/j AP (A.51)

where: N N
FA=FM 4 LM AP eap + L, ANpp eP (A.52)

according to equations B.I1], [A:27. When all the superfields are restricted to space-time
we may treat the V' vielbein as the usual 4-dimensional invertible matrix converting
intrinsic indices in coordinate indices and we obtain:

FY = FA 4+ LM eap + D04 08,647 — i fAN Y08 eap
i i Xy p s P (A.53)
By the same token we also get:
VAT = VA (Ve =X, ) v — Gl et

i (YiAB + gWiAB) ¢B\u
Vio = Vila =1 (UPVq" = 90 Y, = 0, ) Y iteanCas — g N a
7\ = V,7 —XMTPAW
Ul = ULV, — AP CP g, — 1, (A.54)
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We note that in the component approach the "tilded” field strengths defined in the pre-
vious equations are usually referred to as the supercovariant field strengths.

The physical fields appearing in the parametrizations are actually further required to
satisfy extra—constraints which are essentially of two types:

1. The supercovariant field strengths satisfy a set of differential constraints which are
to be identified, when the fields are restricted to space—time only, with the equations
of motion of the theory. Indeed the analysis of the Bianchi identities for the fermion
fields give such equations (in the sector containing the 2-form basis 9 ,7%4). Fur-
ther the superspace derivative along the 14 (wA) directions, which amounts to a
supersymmetry transformation, yields the equations of motion of the bosonic fields.
This is not a surprise since the closure of the Bianchi identities is in fact equivalent
to the closure of the N = 2 supersymmetry algebra on the physical fields and we
know that in general such closure implies the equations of motion for the fermion
fields. Indeed in our case the usual auxiliary fields of N = 2 theory have been
determined as suitable expressions in the physical fields.

Finally we also note that since the expressions for the curvatures imply the equations
of motion it follows that in the ungauged case (¢ = 0) the formulae B.24- are
symplectic covariant since the ungauged theory is on-shell symplectic covariant.

2. The second type of constraints following from the closure of Bianchi identities is a
set of differential constraints on the upper part L*, ZA, A 7?* of the symplectic

sections V and U; and of the TM? @ £2 sections Cijr ( together with its complex
conjugate Cirjeps ).

One finds:
V. Ir=V,I" =0 (A.55)
A=wird Fa=v,. I (A.56)
VeCii = ViCjope =0 (A.57)
Vi = ViCipjep =0 (A.58)
Vit = g T Cin (A.59)

Using the identities of Special Geometry ({1, [-24, f-30, £37), Ci;x can be written
as:

Cige = (N = N) AV fE (A.60)

In particular equation [A.59 implies the constraint given in for the Riemann
tensor of the Kahler-Hodge manifold while equations [A.57HA.5§ are actually equiv-
alent to the other equations [.I§, using f.I9. Therefore the constraints [A.53-[A.59
imply that the Kahler-Hodge manifold we started from is actually a special Kéahler
manifold.

We may also verify that the same equations [A.53-A.59 hold provided we replace
LA — My and f* — hy, (together with their c.c.). Hence we have a set of symplectic
covariant constraints, namely:



VjUj = iCijkgM*Ug*

VZ‘U]'* - g”*V

ViV =0 (A.61)
which give an alternative definition of Special Geometry in terms of differential
constraints on a symplectic bundle of the Kéhler-Hodge manifold. This definition
of Special Geometry was in fact first deduced in 7] from N = 2 Bianchi identities
(i.e. for the closure of N = 2 susy algebra). Furthermore there is a close connection,

exploited in ref. [7], between the differential constraints [A.6]] and the Picard-Fuchs
equations for the periods of a 3—dimensional Calabi—Yau manifold |1, ] .

The determination of the superspace curvatures enables us to write down the N = 2
SUSY transformation laws. Indeed we recall that from the superspace point of view a
supersymmetry transformation is a Lie derivative along the tangent vector:

EIEAEA + EA[jA (A.62)
where the basis tangent vectors Dy , D* are dual to the gravitino 1-forms:
Da(v7) = D* (v5) =1 (A.63)

where 1 is the unit in spinor space.
Denoting by u! and R the set of oneforms (V“, Wa, YA, AA) and of two—forms

(R“, Pa, P, F ’\) respectively, one has:

! = (id + di.) ' = (D) + iR (A.64)

where D is the derivative covariant with respect to the N = 2 Poincaré superalgebra and
tc is the contraction operator along the tangent vector e.
In our case:

(Do) = i(Par"e" + ¥ 7 %) (A.65)
(De)* = Ve (A.66)
(De)* =0 (A.67)

(here « is a spinor index)
For the 0-forms which we denote shortly as v/ = (q“, 20 20 NN, CO‘) we have
the simpler result:

(. =i.dv’ =i, (VI/I — connection terms) (A.68)

Using the parametrizations given for R! and V! and identifying . with the restriction
of /. to space—time it is immediate to find the N = 2 susy laws for all the fields. The
explicit formulae are given in section .

Appendix B: Derivation of the space time Lagrangian
from the geometric approach

In Appendix A we have seen how to reconstruct the N = 2 susy transformation laws of
the physical fields from the solution of the Bianchi identities in superspace.
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In principle, since the Bianchi identities imply the equations of motion, the Lagrangian

could also be completely determined. However this would be a cumbersome procedure.
In this Appendix we give a short account of the construction of the Lagrangian on

space-time from a geometrical Lagrangian in superspace.

In the geometric (rheonomic) approach the superspace action is a 4—form in superspace

integrated on a 4-dimensional (bosonic) hypersurface M* locally embedded in M*®:

A= L (B.1)
MACMAI8

Provided we do not introduce the Hodge duality operator in the construction of £ the
equations of motions derived from the generalized variational principle 6.4 = 0 are 3—form
or 4-form equations independent from the particular hypersurface M* on which we inte-
grate.
These superspace equations of motion can be analyzed along the p—form basis. The com-
ponents of the equations obtained along bosonic vielbeins give the differential equations
for the fields which, identifying M* with space-time, are the ordinary equations of mo-
tion of the theory. The components of the same equations along p—forms containing at
least one gravitino (”outer components”) give instead algebraic relations which identify
the components of the various ”supercurvatures” in superspace.

The Lagrangian must be constructed according to the principles of rheonomy: the
“outer components” computed from the variational equations must be all expressed in
terms of the supercovariant components (components along the vielbeins basis). Actually
if we have already solved the Bianchi identities this requirement is equivalent to identify
the outer components of the curvatures obtained from the variational principle with those
obtained from the Bianchi identities.

There are simple rules which can be used in order to write down the most general

Lagrangian compatible with this requirement.
The implementation of these rules is described in detail in the literature to which we
refer the interested reader. Actually one writes down the most general 4—form as a sum
of terms with indeterminate coefficients in such a way that £ be a scalar with respect
to all the symmetry transformations of the theory (Lorentz invariance, SU (2) ® Sp (2m)
and U (1) Kéahler invariance, invariance under the rescaling [A.27). Varying the action and
comparing the outer equations of motion with the actual solution of the Bianchi identities
one then fixes all the undetermined coefficients.

Let us perform the steps previously indicated. The most general Lagrangian has the
following form:

L = Egrav + Ekm + EPauli + £torsion + £4ferm + Egauging (B2>

Lorar = €areaR ANVEAVE = 4 (9004 — D y7ap™) V°
L = bugy (20 (VE = 0N)) + Z) (V2 = 0aX )| AVEAVEA Ve,
+bieapCap Ui (U7 = G7CF — PCPo(,) AVEAVEAVIE,,
- i <51 G5 ZiZ0 + %bleAB @aﬁuﬁauﬁﬂ) ™ €abed VA VEAVE AV
+1 gz (NN + Xy VXA AVEAVEA Vg
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+iby (C"V"VCa + Car" V) AVEAVEA Vg
+10s (NAEF;{,A + NAEFCE,A) {FZ - i(fi2 X pPean
+ FEXgreopet®) AV AVEA VY
_ 2_14 Bs (NAEFJ,@AF_E'M _ NAEE—Ti—nAF—l—EUm) €aredVEAVEATE AV
Lpaii = BsF" (NAzLEEAiﬁBEAB + NAzZEEMﬂBEAB)
+ifeFh (NAZfiZ X yaPean + NAE?iXZVawBGAB) ANVE
+ 8PN (N = N) (Vif A ah Pear
— Vi FE Xy Xy P ) AVEA VY
+bFY (N = W) (LCa1mGoC™ = TC a(*Cag) AVEAV?
+ Osgigr (N 04 VI + Ny qwt V2 ) A VAV e
+ b (Car™alt® + TP Una) AVENV  eqnea

‘Ctorsion = (64972]’* XZA’YI))\?A* + b4 Za')/bca) Ta AVEA Vb
—A —A— —
Liferm = o (LAw VPeap + LA@DA@DBGAB) A (NAELZ@DC@DDGCD
+NasL Petope?)

+ap (.fiA XM%@bBEAB + fi/‘}XZ’YawBEAB) N (NAijZ XJC%@DDE(JD
+NA2fJ§Xg%¢D€CD) AVEAV?
+ s (N - N)AE (f,AVk*fj% XiA%wB X]g%b)\g eape’?
-7 Vil Xareton X AP GABECD) AVEAVEAVE
+ar (N = N), o (Fr LN Covands 7€
— ST P T eanCap) AVEAVEAVE
+ay (@AIDB CranPeanCap + Yatp CovanCs e 7C ) AVEAVP
+ (a49ij* XNy + ag 5??%@) DY AVEAVE
+ a5 (CiijiAvawB ch)\kD €ACEBD
— Cfi*j*k*xiva@bB Xg)\kD*eACeBD) AVEAVEAV? €aped
1
72

+ 79 (Vm CjkszA)\mBXkc)\lDeAceBD — h.c.)
T _ns ~iA i BY m
+73 (N - N)AE (Cijk Clmng™ 9" 2 f2 X %m>\]B>\kc’Yl MNP eapecp
—l—h.c.)

At
[71 (Rijoire + D Gike Gije + q Gije ques) N AN K

<o ~iA g\ 5*
+4 Gij* ¢ VaCa A Y Ny

65



75 R gy Ul Upse? OO, ¢, T ¢
6 (N - N)AZ (LAVz’ijZa%bCﬁ XZA”YabAjB eap C*F + h.c.)
+yr (N = N) (LM L5 ms ¢y G P o

AY

+h.c.) ] VEAVEAVEAV €gpea

Lomging = —ig8 (Sand’yat® + he) VAV
+i9 02 gige (WX Y + he) AVEAVEAV ey
+Higds (N2C " a + hoe) AVEAVEAV €
+g[0aVuNG U PCTC G, + 05 VNG N
+06 97 ViWAEX AP+ he]VEAVEAVEA Vi

—|—57 92 Vpotential VEN Vb AVEN Vd €abed (B3)
where:
i 70" u ) TA
Vpotential = (gij* kA k% + 4 huvk/\ ]{32) L LE
+g7 SR PLPE - 3T LY PL P (B.A)

We note that the kinetic terms of the Lagrangian have been written in first—order form
to avoid the Hodge—operator which would destroy the independence of the variational
equations from the particular hypersurface of integration. Specifically one introduces

auxiliary 0-forms namely FE* 7! 7::, UAY whose variational equations identify them
~ ~. o~
with FEA 70 7 U™ defined in Appendix A. Of course also the spin connection w?

has to be treated as an independent field: indeed the term Li.ion, appearing in the
Lagrangian has been chosen in such a way that the equation of motion of w® gives
T =0.

The analysis of the variational equations for the other p—forms containing at least a

fermionic vielbein ¥* (1)) then fixes completely all the coefficients, except the coefficients
of terms that are proportional to V2V*V V9,4, which, after variation, do not contain
any ¢* (1) and therefore appear in the space-time equations of motion.
These undetermined coefficients, however, can be retrieved by comparing the space—time
equations of motion for the 0—form fermion fields A, A¥'4 | ¢, ¢, as obtained from the
Bianchi identities with those obtained from the Lagrangian. In this way all the coefficients
have been fixed. The result is:

2 1 . 1
B = §;52 = —§;53=41;64= LB =430 =—4; 6= 5P = —1;
4 2
by = —g)\;bg = g)\;bg =2X; by = —2X; b5 = A;
2 2 i 21 L
1 ; Q2 ; 3 2,0&4 1] Q5 97
ay = —i)\;a2 = —i)\;ag = —4i)\;
3 i 31 3\ 6 1 2
71 y V2 ! 16’74 3 Vs p 3 q 37



3 3

Yo = —1”\;77 = —Zi)\z;
2 4 1 1 1 1
1 y U2 37 3 3 y U4 192 ; Us 3 ; U6 187 7 6( )

In order to obtain the space-time Lagrangian the last step to perform is the restriction

of the 4—form Lagrangian from superspace to space-time. Namely we restrict all the
terms to the § = 0, df = 0 hypersurface M*. In practice one first goes to the second
order formalism by identifying the auxiliary 0—form fields as explained before. Then one
expands all the forms along the dz* differentials and restricts the superfields to their
lowest (# = 0) component. Finally the coefficients of:

Hvpo

V9

da* N dx? N dxP N\ dx’ =

(Vad'z) (B.6)

give the Lagrangian density written in chapter 8. The overall normalisation of the space—
time action has been chosen such as to be the standard one for the Einstein term.

Appendix C: Supergravity theory on ST|2,n| @ HQ|m)|

In this appendix, as an illustration of the general method and also for its interest in
applications to tree level effective lagrangians of heterotic string theory, we consider the
specialization of our formulae to the case where the scalar manifold of N=2 supergravity
is chosen as in eq. [[.]. This choice is by no means new in the literature, but the interesting
point is to utilize the symplectic gauge where the holomorphic prepotential F'(X) does not
exist. This is the gauge chosen by string theory and also that where partial supersymmetry
breaking can be obtained.

The ST[2,n] special manifolds and the Calabi Visentini coordi-
nates

When we studied the symplectic embeddings of the S7[m,n| manifolds, defined by
eq. B-19, a study that lead us to the general formula in eq. B.34, we remarked that
the subclass ST [2,n] constitutes a family of special Kéhler manifolds: actually a quite
relevant one. Here we survey the special geometry of this class.

Besides their applications in the large radius limit of superstring compactifications,
the S7[2,n| manifolds are interesting under another respect. They provide an example
where the holomorphic prepotential can be non—existing. Furthermore it is precisely in
the symplectic gauge where F'(z) does not exist that the model n =1, m =1 of eq. [[.]
exhibits partial supersymmetry breaking N =2 — N =1 9]

Consider a standard parametrization of the SO(2,n)/SO(2) x SO(n) manifold, like
for instance that in eq. B-31. In the m = 2 case we can introduce a canonical complex
structure on the manifold by setting:

dNX) = \% (L% +iLY) 5 (A=0la a=2,...,n+1) (C.1)
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The relations satisfied by the upper two rows of the coset representative (consequence of
L(X) being pseudo—-orthogonal with respect to metric nay, = diag(+,+, —, ..., —)):

can be summarized into the complex equations:

—A
P DEpy =1 ;3 O¥pay =0 (C.3)

Eq.s [C.3 are solved by posing:
XA
V YA XZ s

where X denotes any set of complex parameters, determined up to an overall multiplica-
tive constant and satisfying the constraint:

Pt = (C.4)

XA X = 0 (C.5)

In this way we have proved the identification, as differentiable manifolds, of the coset
space SO(2,n)/S0O(2) x SO(n) with the vanishing locus of the quadric in eq. [C.5. Taking
any holomorphic solution of eq. [C.H, for instance:

1/2(1+9°)
XMy) = | i/200—9?) (C.6)
ya

where y* is a set of n independent complex coordinates, inserting it into eq. [C.4 and
comparing with eq. we obtain the relation between whatever coordinates we had
previously used to write the coset representative L(X) and the complex coordinates y°.
In other words we can regard the matrix L as a function of the y* that are named the
Calabi Visentini coordinates [fg.

Consider in addition the azion—dilaton field S that parametrizes the SU(1,1)/U(1)
coset according with eq. B.30. The special geometry of the manifold ST[2, n] is completely
specified by writing the holomorphic symplectic section 2 as follows ([fl]):

2w = (5,) = (smeiin) D

Notice that with the above choice, it is not possible to describe F), as derivatives of any
prepotential. Yet everything else can be calculated utilizing the formulae we presented in
the text. The Kahler potential is:

K = Ki(S)+ Kay(y) = —logi(S — S) —log XTnX (C.8)

The Kahler metric is block diagonal:

o _ (9 O
9 < 0 9a5>

_ _ -1
{ 955 = 0505kt = 5=gm (C.9)
g



as expected. The anomalous magnetic moments-Yukawa couplings Cjji, (i = S, a) have a
very simple expression in the chosen coordinates:

CSab = —eXp[lC] 5ab, (ClO)

all the other components being zero.
Using the definition of the period matriz given in eq. we obtain

_ XnXg+ X Xy -
Naw = (§ = §) A= " 2A2% L Gns. (C.11)
X nX

In order to see that eq. just coincides with eq. it suffices to note that as a con-
sequence of its definition [C.]] and of the pseudo-orthogonality of the coset representative
L(X), the vector ®* satisfies the following identity:

_ a1
PP+ VP = 5 L' L (672 + ™) (C.12)

Inserting eq. [C.19 into eq. [C.I]], formula [B.34 is retrieved.
This completes the proof that the choice of the special geometry holomorphic

section corresponds to the symplectic embedding and B.2§ of the coset manifold
ST [2,n]. In this symplectic gauge the symplectic transformations of the isometry group
are the simplest possible ones and the entire group SO(2,n) is represented by means
of classical transformations that do not mix electric fields with magnetic fields. The
disadvantage of this basis, if any, is that there is no holomorphic prepotential. To find an

F(X) it suffices to make a symplectic rotation to a different basis.

If we set:
1 2 1 iy
X =50+y) = =50 —nyt't)
2 2
1
X? = 2'5(1 —y%) = ¢
Xo=y* = t* g=1,...,n—1
1 o
X =y" = 5(1 + n;t't?) (C.13)
where
mi; = diag (4, —, ..., =) 4,5 =2,...,n+1 (C.14)
Then we can show that 3C € Sp(2n + 2, R) such that:
1
S
¢ (45 ) = elet] A (C.15)
Snas XA 2F —t 2 F - SSF
SSF
I
with
1 i L 1,0 ,K
f(S,t) = §Sﬁijtt] = idIJKt t't
th = 8
diir — 1.
dix = { gk = Thj C.16
TTK 0 otherwise ( )
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and .
PF(S,t%)

Wik = dijk = 1T K (C.17)

This means that in the new basis the symplectic holomorphic section CS2 can be derived
from the following cubic prepotential:

1 dpje XT X XK

F(X) = 1
R s (1)
For instance in the case n = 1 the matrix which does such a job is:

1 0 -1 0 0 O
o o0 o0 1 o0 1
o -1 0 0 0 O

C= o 0o o0 ! o -! (C.19)
-5 0 —3 0 0 0
o 0 0 0 -1 0

Comments on the S7[2,2] case: S duality and R symmetry

To conclude let us focus on the case S7[2,2]. This manifold has two coordinates that
we can either call S and ¢, in the parametrization of eq. or S and y in the Calabi
Visentini basis. The relation between t and y simplifies enormously in this case:

Z_erl
y—1

(C.20)

It is then a matter of choice to regard the holomorphic section in whatever basis as a
function of y or of ¢, in addition to S. Independently from this choice the manifold
ST(2,2] emerges as moduli space (at tree-level) in a locally N=2 supersymmetric gauge
theory of a rank one gauge group, namely SU(2). The two fields spanning the manifold
have very different interpretations. The field y is the scalar partner of the gauge field that
remains massless after Higgs mechanism. Its vacuum expectation value is the modulus
of the gauge theory. It is the same field that occurs also in a globally supersymmetric
theory. On the other hand the field S is the dilaton—axion. It plays the role of generalized
coupling constant and generalized theta—angle. There are two SL(2,R) groups embedded
in SP(6,R), they act as standard fractional linear transformations on the dilaton—azion
S and on the special coordinate ¢t for the gauge modulus. Using the Calabi-Visentini
section of eq. [C.1 and the embedding eq.s B2 and B.2§, we have that
S—duality S — —1/5 is generated by the symplectic matrix:

0 0O 0 1 0 O
0 0O 0 0 1 O
0 0O 0 0 0 -1
Sduality — —1 0 00 0 0 (CQ].)
0O -1 0 0 0 O
0 0O 1 .0 0 O
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while T—duality ¢ — —1/t is generated by the symplectic matrix:

-1 0 0 0 0 0
0o -1.0 0 0 O
o o0 1 0 0 O
Rsymmetry - 0 0 0 —1 0 0 (C22)
0 o 0 0 -1 0
0 0O 0 0 0 1

If we think of the t—field as the modulus of some compact internal manifold then T—
duality is just the transformation from small to large compactification radius. Looking
at the same transformation in terms of the y variable its meaning becomes more clear.
It is R—symmetry y — —y, an exact global symmetry of the microscopic lagrangian.
The fact that the matrix generating T—duality or R—symmetry is block—diagonal agrees
with the fact that this is a perturbative symmetry, holding at each order in perturbation
theory and never exchanging electric with magnetic states. Very different is the nature of
S—duality. Since it inverts the coupling constant it is by definition non—perturbative. It
exchanges strong and weak coupling regimes and because of that it is supposed to exchange
elementary states with soliton states. For this reason it must mix electric with magnetic
field strengths and it is off-diagonal. These symmetries exist in the microscopic theory
which is derived by gauging the abelian theories possessing continuous duality symmetries
(in this case the two SL(2,IR) groups). After gauging the continuous duality symmetries
will be broken. The question is will the integer valued symplectic generators of S—duality
and R—symmetry survive given that they respect the Dirac quantization condition? The
answer is yes, but in the effective quantum theory they will be represented by new integer
valued elements of Sp(6,Z) not derivable from the classical embedding. Since the special
geometry in the effective theory is corrected by the instanton contributions and has a
new complicated transcendental structure, the duality generators must change basis to
adapt themselves to the new situation and be integer valued in the new non—perturbative
geometry. Alternatively one can turn matters around. If we know the new quantum
symplectic embedding of the discrete duality group we have essentially determined the
non perturbative geometry. It is this point of view that has proven very fruitful in the
very recent literature.

C.1 Momentum maps of HQ[m| and mass matrices

As we are just going to see the quaternionic manifold HQ[m] is the closest quaternionic
analogue of a flat HyperKéahler manifold and the relevant formulae for the metric and the
momentum maps are almost identical, mutatis mutandis, with the equations surveyed in
subsection 9.3, when we discussed the renormalizable microscopic N=2 super Yang—Mills
lagrangian.

To describe the coset manifold SO(4,m)/SO(4) x SO(m) we use a family of coset
representatives L(q) € SO(4,m). A typical choice is the (4 +m) x (4 + m) matrix:

L(q) = ( ” ]H_quT ! ) (C.23)
q ViI+4d"q
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function of an independent 4 x m matrix ¢. By definition of the group SO(4, m) we have:
LTT]L =" 3 n = dla“g (+7+7+7+7_7"'7_) (C24>

We can regard the index range in the fundamental representation of SO(4,m) as split in
the following way:

o T . a, b = 0, ]., 2, 3
L=1Ly I’J_{t,s:1,2,...m (C.25)
and introducing the left invariant one—form:
L7'dL = © (C.26)
we can split it into the vielbein and the connections on the coset manifold:
g pat H“bt SQ(4) ‘connection
0 = < (ETYe A ) E® Vielbein on the coset (C.27)

At SO(m) connection.
From the very definition of © one immediately obtains the Maurer-Cartan equations:

SE® 4+ 0% A B — A A E% = (0 Torsion equation
509 + 09 A 0 = —F% A\ B SO(4) curvature (C.28)
A — A" ANA™ = B A E* =0 SO(m) curvature

Notice that the vielbein E* = E%dqg" carries a vector index a = 0, 1,2,3 of SO(4) and an
index t in the vector representation of SO(m) just as it does the coordinate q of the flat
HyperKahler manifold discussed in eq. [[0.49. Accordingly the quaternionic generalization
of eq. [[0.43 is obtained by setting:

1 = L
E = g (C.29)

The quaternionic metric and the corresponding triplet of HyperKahler 2—forms are given
by:

d82 = huv dq“ dq” = ET (]l4><4 ® mem) E
E* = E"A (J® Lypum) E, (C.30)

which is the quaternionic counterpart of eq. Alternatively in the above formula one
can use the triplet of antiself dual t’Hooft matrices to define the HyperKahler structure.

Using the identities 1§ and rearranging the 4m vielbein E®* into an m-vector of
quaternions:
QE' = Ele,
QE* = E*P¢,
QE = e (C.31)
QE" = Elte,
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which is the quaternionic counterpart of eq. [0.49, eq.s [C.30] can be rewritten in a form
completely analogous to eq.s [[0.50:

1
2 _ - T
ds* = St (QE' 1., QE)
1 1
K = 5QET A Ly QE = 5 K el (C.32)

Just as in the flat Hyperkahler case the action of the gauge group G on the hypermultiplets
is assumed to be linear and be generated by a set of 4m x 4m matrices T7:

5]1 = T]l — k‘? = (T[)uv qU (033)

In order for this action to be an isometry of the Euclidean diagonal metric [0.47 it is
necessary and sufficient that the matrices 77 belong to the linearly realized part of the
isometry algebra SO(4, m), namely SO(4) x SO(m). namely:

T; € SO(4) x SO(m) C SO(4,m) (C.34)

The action of G however is not only required to be isometrical but also to be triholomor-
phic. This means:

where W, is the infinitesimal parameter of some SU(2) transformation A straightforward
calculation shows that the triholomorphicity condition is that the generators 77 should
commute with the tensor product of the 't Hooft matrices with the unit matrix in m—
dimensions. When this last condition is verified we can write the momentum maps as:

P =1 T @ N Ty 1 (C.36)

Using these ingredients the mass matrices and the scalar potential can be written down
without any further difficulty. The quaternionic vielbein is given in full analogy to

eq.s [[0.61], [0.63, by
UM = U dg" == EY (e,)"p (C.37)

and, as before, we identify the symplectic index o running on 2m values with the pair of
indices Bt ( B=1,2;t=1,...,m).

Appendix D: Normalizations and conventions

Minkowski metric:

nw = (1,-1,—-1,-1) (C.38)
Definition of the Riemann tensor:
1
RF, = dI™, + 1% AT*, = — §R“Vpgdz” A dx? (C.39)

Decomposition of tensors in self-dual and antiself-dual parts (ep123 = 1):

1 1
T;f/ = 5 (T/u/ + §€uupUTpJ> (040)
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Clifford Algebra:

{7a77b} = 2Tlab
Vas ] = 27

Vs = — 1M

W o= Yo =% (i=1,2,3); W=
6abcdf)/Cd = 2i Yab V5 (C41)

Decomposition of fermions in chiral and antichiral parts:
the indices of the spinors also fix their chirality according to the following conventions:

)\iA )\iA
Vs Ca = Ca s (042)
Ya Ya
N N
v [ ¢ = - ¢ (0-43)
O A
Majorana conventions:
For any fermion ¢ : B
¢ = ¢l =9¢'C (C.44)

Fierz rearrangements
Let us denote by a lower or upper dot right and left chirality respectively. Then: for
O—form spinors x, &:

ya 1 I =
XeoSe = —§§.X- + g%b&.v Xeo
-0 1 -0 a
Xob = =5 %8 VXe (C.45)

for 1-form spinors 4, ¢":

— 1— 1 —
Vatp = 5Upta = gty "1ha
-5 1 —B,
vav = 5%y 7" Pa (C.46)
Charge conjugation matriz properties:

C’=-1 =0 (O =0y (0 = oy (C.47)

Hermiticity of currents
for O—form spinors:

(&) = Ex° = x¢ (C.48)
(X)) = £€°%° = — X" (C.49)
(Y.v“"&-)T = =&\ = x"yhee (C.50)
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for 1-form spinors:
_ i B A
(Patps) = =9 v = ¢ ¢P
—A 4 T —B -
(07 s) = =0 4 s = ="
—A 4 t A a A a
(w v %B) = pyha = "

Conventions on Kahler geometry: The hermitean metric is locally given by:

Gijx = 8i8j*IC

(C.51)
(C.52)
(C.53)

(C.54)

where the real function K = K* = K(z, z*) is named the Kdhler potential. 1t is defined

up to the real part of a holomorphic function f(z). Indeed one sees that

*

K'(z,2") = K(z,2") + Ref(2)

(C.55)

gives rise to the same metric g;;~ as K. The transformation in eq. [C.57 is named a Kdhler

transformation.

To fix our notations we write the formulae for the Levi-Civita connection 1-form and

Riemann curvature 2-form on a Kihler manifold:

r, = i dz* D Ty = 9" (Oigwe)
I = Tydz 0 Ty = 9" (05gx0)
Ri = Ripdz" Ndz' 5 R, = Ol
R = RigpdP AdZ" ; Rige = oI0,.

SU(2) and Sp(2n) metrics:

AP epo = — 04 (AB _ _  BA

CCy, = — 0% C* = P
For any SU(2) vector P4 we have:

eap PP = Py; ABpy = —pA
and equivalently for Sp(2n) vectors P,:

Cop PP = Py C* Py = — P°

Reality condition for SU(2) valued matrices HAP:

(HF) = € PPz,
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(C.59)
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Table 1: Homogeneous Symmetric Special Manifolds

n G/H Sp(2n + 2) symp rep of G

! SO Sp(4) 4

n ST Sp(2n+2)|| n+len+1

n+1 | 5Pl @ 5o | Sp2n+4) | 20 (n+26n+2)

6 TR Sp(14) 14

9 SOOI Sp(20) 20

15 O Sp(32) 32

27 Eto® Sp(56) 56
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Table 2: Homogeneous symmetric quaternionic manifolds

m G/H

m | s srom
m SU(mffé[Znig))xU(l)
m | 5ot

2 55(24)

7 T GRETE)

0 sesm
16| smsrm
28 #8[](2)
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