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ABSTRACT

We discuss whether the diffractive structure functions defined by current experiments at
HERA are indeed probing the partonic structure function of the pomeron. We observe that
the pseudorapidity cuts commonly employed require that the struck parton in the pomeron
be far off mass shell in sizeable regions of parameter space. As a result an interpretation in
terms of constituent partons within the pomeron is inadequate. One may nevertheless use
a partonic description for the amplitude for virtual photon-pomeron scattering to compute
a diffractive structure function for pseudorapidity gap events. The resulting form may have
significant scaling violation.
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1 Introduction

There has been intense interest in the interpretation of the large pseudorapidity gap events
observed at HERA in deep-inelastic scattering processes [1, 2, 3, 4]. Such events must involve
the exchange of a colourless state between the proton and the virtual photon, and, at high
energies, the diffractive component corresponding to pomeron exchange will be dominant.
Assuming that this component is responsible for the observed events, the data lead to the
determination of a diffractive structure function. It has been suggested by Ingelman and
Schlein [5] that such measurements should allow the distribution of quark and gluon partons
within the pomeron to be determined, which would clearly be a very interesting possibility
[6].

In this letter we consider the extent to which the current experiments at HERA ad-
dress the Ingelman-Schlein proposal. We argue that the kinematics of experiments that
use a strong cut in pseudorapidity (i.e. η = −ln(tan(θlab/2))) to define a diffractive struc-
ture function do not admit a simple interpretation in terms of the partonic structure of
the pomeron, because the struck quark or gluon cannot always be close to its mass shell.
However, we argue that, even with such a pseudorapidity cut, there is a valid description in
which an off-shell parton emanates from the virtual photon and scatters diffractively off the
proton1 This should be evaluated by computing the full photon-pomeron scattering ampli-
tude, thus retaining the coherence effects involved in having the struck parton far off mass
shell. We present such a calculation, and show that the resulting cross section can be written
in a factorised form, in which the diffractive structure function exhibits a modification of
the usual scaling behaviour which are characteristic for the process.

The various experimental cuts used have differing sensitivity to the virtuality of the struck
parton. For example the ZEUS Collaboration has recently published a new extraction of
a diffractive structure function which does not involve a pseudorapidity cut, but makes an
event selection based on the invariant mass of the hadronic system produced in association
with unseen remnants of the proton [3]. Thus these experiments will have a component
of varying importance which may be interpreted in terms of parton distributions within
the pomeron, but all will also involve a significant component involving far-off-mass-shell
partons.

2 Kinematics of Diffractive Deep-Inelastic Scattering

The experimental results [1, 2, 3, 4] are usually presented in a form analogous to that of the
total deep-inelastic scattering cross section, namely

d3σdiff

dβdQ2dxP
=

2πα2

βQ4
(1 + (1− y)2)F

D(3)
2 (β,Q2, xP) (1)

where the contribution of FL is neglected. The effect of neglecting FL corresponds to a
relative reduction of the cross section at small xP (highW 2) which is always < 17% [1, 2, 3, 4],

1A similar proposal has been made in different terms by Bjorken [7]. For a related discussion of the
interpretation of the rapidity gap events in terms of a simple gluon structure function, see [8].
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and therefore smaller than the typical present measurement uncertainties (' 20%).
The variables Q2 and y have the definitions usual for deep-inelastic scattering. The

variables xP and β are defined as

xP =
(P − P ′).q

P.q
'
M2 +Q2

W 2 +Q2

(2)

β =
Q2

2(P − P ′).q
'

Q2

M2 +Q2
(3)

where W 2 and M2 are the total hadronic invariant mass squared and the mass squared of the
hadrons excluding the proton remnants, respectively. In the framework of the underlying
quark parton diagram of Fig. 1, these would normally be interpreted as the momentum
fraction of the pomeron within the proton and the momentum fraction of the struck quark
within the pomeron, respectively.
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Figure 1: Quark-parton graph contributing to the large-rapidity-gap diffractive scattering
amplitude.

We argue that the kinematics of the initial HERA experiments are such that one cannot
in fact interpret the graph of Fig. 1 in terms of a conventional parton density within the
pomeron. The reason is that, if one wants a probabilistic interpretation of Fig 1, with the
cross section factorized as the product of an elementary subprocess cross section with the
probability to find a parton within the pomeron viewed in the direct channel, the parton
should be near its mass shell. On the other hand, in order to interpret the graph as a
diffractive process, the sub-energy (k + p)2 ≡ sdiff should be large enough for the leading
singularity in the cross channel, namely the pomeron, to be dominant, giving rise to an
amplitude behaving as sαP−1

diff , where αP is the intercept of the pomeron Regge trajectory.

This leads to the x−(2αP−1)
P dependence of the cross section which is indicated by experiment.

The trouble with the partonic interpretation of these diffractive events arises because it
requires that the parton has a longitudinal momentum equal to some fraction of that of
the pomeron, βPP , which in turn carries only a small fraction of the proton momentum,
PP = xPP . Thus, if the partonic interpretation applies, k ≈ βPP = βxPP , and so sdiff =
(k + P )2 is small, in potential conflict with the requirement that the process be diffractive.
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Indeed, as discussed below, one finds that, for the strongest pseudo-rapidity cuts for a range
of xP , β and Q2, the dominant part of the cross section comes from k2 ∼ Q2, rather than
k2 small and near mass shell. Thus the interpretation of Fig. 1 is not the standard one
for deep-inelastic scattering off a hadronic target, but one in which the struck parton is far
off shell. This means that the graph of Fig. 1 cannot be calculated as the product of two
separate cross sections σq/P .σγq→X, but must instead be considered as a complete amplitude
AγP→X . This also means that the interpretation of the analysis as a determination of the
parton distribution within the pomeron needs re-evaluation.

3 Parton Virtuality in Diffractive Scattering

In order to quantify our claim that, at least for some of the experimental cuts, the dominant
part of the diffractive cross section comes from a struck parton far off shell, let us consider
Fig. 1 again in more detail. The condition that the final state quark is on-shell implies

k2 = −2xPk.p = −xPsdiff (4)

If this process is to be dominated by pomeron exchange, sdiff should be large. However,
since xP can be very small, this constraint does not by itself require that the struck parton
be far off-mass-shell. Working in the photon-pomeron centre of mass frame, one readily
determines that

k2 =
M2

X +Q2

2
(1− cos θcm) (5)

where θcm is the centre-of-mass angle between the proton direction and the final-state quark.
Apart from the region cos θcm ' 1, the struck quark is clearly off mass shell.

The Ingelman-Schlein proposal applied to the quark constituents of the pomeron has been
developed by Donnachie and Landshoff [6]. They argue that this process is indeed dominated
by the region cos θcm ' 1, and that the quark-pomeron coupling has a form factor that falls
rapidly for large k2, so that k2 ≤ 1GeV 2 gives the only significant contribution. They reach
this conclusion by considering the inclusive diffractive cross section, i.e., including events
which have no large rapidity gap. These events are expected to be given by the imaginary
part of the graph of Fig. 2. Donnachie and Landshoff propose a pomeron-quark coupling of
the Wu-Yang form

β0f(k2
1)f(k2

2)q̄γµqP (6)

where k1 and k2 are the virtualities of the initial and final quark, and β0 is a coupling
with the dimension of an inverse mass. With the form factors f(k2) omitted, calculation
of the contribution of Fig. 2 leads to a structure function proportional to β2

0Q
2, which

clearly does not scale. Donnachie and Landshoff therefore argue that the form factors f(k2)
should be included, and choose them phenomenologically, such that the cut off of the loop
integral occurs at a hadronic scale Λ with Λ = 0(1GeV ). This leads to a structure function
proportional to β2

0Λ
2, which scales, and is consistent with observation. With this motivation,

they apply the same vertex to the calculation of Fig. 1. In this case, the form factor keeps
k2 close to the mass shell, so that the process can indeed be interpreted in the parton-model
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Figure 2: Quark-parton graph contributing to the inclusive diffractive cross section.

sense as a convolution of the photon-quark scattering cross section with the probability of
finding a quark within the pomeron.

In our opinion, this is not the correct conclusion, for two reasons. The first is purely
phenomenological, and relates to the experimental cuts imposed to define the diffractive
events. Consider again the graph of Fig. 1, and consider the implication of imposing a
pseudorapidity cut on the data, which in turn requires cos θ ≥ cos θmin

cm . Clearly, this implies

k2 ≥ k2
min =

M2
X +Q2

2
(1− cos θmin

cm ) (7)

and forces the struck quark far off shell if cos θmin
cm < 1. A variety of experimental cuts have

been employed in different experimental papers. In the first ZEUS paper, ηmin = 1.5 [1],
while in the second ZEUS paper ηmin = 2.5 [2], and the H1 collaboration uses ηmin = 3.2 [4].
In all cases, the events selected have an xP dependence consistent with their interpretation
as diffractive scattering events due to pomeron exchange with a trajectory αP ≥ 1.

In order to translate these cuts into a value for cos θmin
cm , and hence determine the con-

straint on the off-shell mass of the struck quark, we first note that ηmin refers to the minimum
pseudorapidity of all calorimeter clusters in an event, where a cluster is defined as an isolated
set of adjacent cells with summed energy above 400MeV . The interpretation of ηmin for the
graph of Fig. 1 clearly requires some information how the jet associated with a final-state

quark or antiquark develops. In jet studies at ZEUS, the cone radius R = (∆φ2 + ∆η2)
1/2

was set to one unit and gave results consistent with QCD expectations. A jet associated with
a primary parton will spread in rapidity and, if we use the ZEUS algorithm, we may expect
the spread to be of order 1/2 to 1 unit of rapidity. The numbers in Table 1 are derived using
the smaller value of 1/2 for the spread in rapidity. A more detailed calculation requires a
full Monte Carlo simulation using the detailed experimental cuts and will be sensitive to the
details of the model used for the jet development.

If the diffractive events observed at HERA are due to the graph of Fig. 1, the lower
bound on k2 following from the experimental ηmin cuts must be satisfied. These apply in the
laboratory frame, and the boost from the laboratory to the centre-of-mass frame depends on
the kinematic variables. In Table 1 we give the bounds k2

min for a range of these parameters
and of ηmin values used in the analysis of the experimental data2. The important point

2The cuts listed are appropriate to the ZEUS data only. The H1 cuts are weaker, and correspond to very
small k2

min.
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Q2 β xP -k2
min GeV

2 -k2
min GeV

2

(ηmin = 1.5) (ηmin = 2.2)

10 0.175 .0032 3.1 0.4
.0050 7.5 1.0

0.375 .0020 0.9 0.12
.0032 2.3 0.3

0.65 .0013 0.2 0.03
.0020 0.5 0.07

28 0.175 .005 7.5 1.0
.0079 18.7 2.5

0.375 .002 0.9 0.1
.0079 14.2 1.9

0.65 .0020 0.5 0.07
.005 3.2 0.4

63 0.375 .005 5.7 0.8
.0079 14.2 1.9

0.65 .0032 1.3 0.2
.0079 8.0 1.1

Table 1: Minimum virtuality of the struck quark following from a pseudorapidity cut.

to note is that, over significant ranges of these parameters, k2 is constrained to be large,
far from the hadronic mass scale needed to justify the interpretation of constituent partons
within a pomeron structure function. It is impressive that the data obtained using these cuts
requiring large k2 have the same diffractive characteristics (xP dependence, etc.) as those
with weaker cuts. Given this we do not see how one can consistently interpret the rapidity
gap events in terms of a mechanism which requires that k2 be small.

The second reason for including high virtuality partons in calculating Fig 1 follows be-
cause a study of the perturbative (BFKL) pomeron [9] suggests that the form factor f(k2)
does not cut off the integral at low k2. Its general behaviour is illustrated by the two-gluon
component, which yields diagrams of the type shown in Figs. 3 and 4 for the rapidity-gap
and inclusive processes respectively. In both diagrams the momentum distribution of the
two-gluon component of the pomeron should be cut off at the hadronic scale Λ. As a result,
one may see in Fig 3 that there is an additional fermion propagator which will introduce
a convergence factor at large quark virtuality, k2. The same is true of the graph in Fig 4.
Evaluating the amplitude squared of Fig 3 gives an additional term proportional to Λ2/k2

for large k2, when compared to the determination of the amplitude squared following from
Fig. 1 with a pointlike pomeron-quark coupling. Evaluating the amplitude squared of Fig 4
also gives a term proportional to Λ2/k2 for large k2, when compared to that following from
Fig. 2, again with a pointlike pomeron coupling. If one wishes to interpret this behaviour
in terms of an effective quark-pomeron coupling we must choose f(k2) in eq 6 to be of the
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Figure 3: A two-gluon component of Fig. 1
contributing to the large-rapidity-gap diffrac-
tive scattering amplitude.
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Figure 4: A two-gluon component of Fig. 2
contributing to the inclusive diffractive cross
section.

form

f(k2)2 =
∆2

(k2
1 + k2

2 + ∆2)
(8)

This is to be compared with the choice of Donnachie and Landshoff [6] who identify the
right hand side with f(k2). Our form is necessary if we are to avoid the problematic strong
sensitivity to the pseudorapidity cuts just discussed. At first sight it might seem that the
graph of Fig 3 should be re-interpreted as probing the gluon component of the pomeron with
the gluon constrained to be near its mass shell. However, this is not the case, because of the
constraint that there should be a rapidity gap between the proton and the final-state quark
or anti-quark. This requires that the exchanged particle (the pomeron) be a colour singlet,
so that the two-gluon component is the leading one, i.e., one cannot simply treat the second
gluon as a spectator particle in the final state, as would be required for the gluon parton
interpretation. The appearance of the Λ2/k2 factor is simply a reflection of the fact that
the parton components of the pomeron are made of field components with dimension > 1.
Of course, higher-dimension components will be more convergent, so the final form factor
need not have the simple power behaviour shown in (8). Note that our approach differs
from that of [10, 11] in that we do not replace the pomeron contribution with a two gluon
component because the former is clearly a non-perturbative object. Our discussion of the
two-gluon component was merely a guide to what it is reasonable to expect in the pomeron
quark coupling.

4 Calculation of the Quark Contribution to Large Pseu-

dorapidity Gap Diffractive Events

Although, as we have seen, the rapidity gap events measured at HERA do not directly probe
the distribution of partons within the pomeron, the graph of Fig. 1 and the crossed graph
may still be relevent provided one drops the assumption that the struck quark is close to
its mass shell. In evaluating this graph, we continue to use the modified Wu-Yang form of
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the quark-pomeron coupling of (8) discussed above. The calculation is straightforward, and
leads to the following form:

dF
D(3)
2 (β,Q2, xP)

dtPdΩqq̄

= β4
0 [F (tP)]

2Λ2(
1

xP
)2αP(tP)−1

((
−t

Λ2
)(αP(tP)−1)f(t) + (

−u

Λ2
)(αP(tP)−1)f(u))2β(1− β) (9)

where t and u are the usual invariants associated with the virtual-photon-pomeron sub-
process, F (tP) is a combination of the Dirac elastic form factor of the proton and the quark
[6], and tP is the four-momentum squared of the virtual pomeron. Finally, integrating over
the quark scattering angle and tP gives

F
D(3)
2 (β,Q2, xP) ∝ β(1− β)(

Q2

β
)λ (10)

where we have taken

f(t)2(
−t

Λ2
)2(αP−1) ≡ (

t

Λ2
)λ−1 (11)

and αP ≈ αP(0). The most obvious change in the predicted form for the structure function,
compared to the case where the partons are constrained to lie on mass-shell, is the appearance
of a term potentially violating the scale invariance of the cross section. The origin of this
term is immediate: since the energy of the quark-proton diffractive process is

sdiff = −
k2

xP
= −

Q2

βxP
(1− cos θcm) (12)

there is a contribution to the diffractive sub-process amplitude proportional to

(
Q2

Λ2β
(1− cos θcm))1−αPf2(

Q2

Λ2β
(1− cos θcm)) (13)

If, as is suggested by our analysis of the ladder graphs, k2f2(k2) is relatively slowly varying,
we expect

F2 ∝ (
Q2

Λ2β
)λ (14)

where

λ = 2(αP − 1) if f(k2)2 =
1

k2
(15)

Let us consider whether eq(9) can describe the measured events. The overall power-
law behaviour (xP)2αP−1 follows from our Regge parametrisation of the amplitude for the
diffractive sub-process, and is consistent with the experimental measurements, although
ZEUS and H1 find somewhat different values of the exponent [4, 2, 3]:

αP = 1.09± 0.03± 0.04 H1

αP = 1.15± .04± 0.04(0.07) ZEUS2

αP = 1.23± 0.02± 0.04 ZEUS3 (16)
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As may be seen from Table 1, different pseudo-rapidity cuts give rise to different con-
straints on k2

min. The new Zeus method for extracting the diffractive contribution does away
with the need for such cuts at all and so will have no constraint on k2

min. Thus the vari-
ous experimental methods probe different distributions of the virtuality of the struck quark.
Given the form of our expression for the contribution of the graph of Fig. 1 it is possible that
these differences may explain some of the discrepancies in the results found such as those in
(16). However, it remains to be seen whether part of the apparent differences in (16) could
be associated with the different types of event selection.

What about the β dependence at fixed Q2? If we ignore the possible scaling violations,
i.e., choose λ = 1, we predict a hard distribution ∝ β(1− β). The observed form of the β
distribution may be well described by the form [3]

(
1

xP
)ab(β(1− β) +

c

2
(1− β)2) (17)

with a, b and c constants: c ≈ 0.57. Thus, (9) provides a reasonable description at large β,
though it does fail to reproduce the rise seen at low β. The situation is somewhat ameliorated
if one allows for non-zero values of λ. Taking λ = 2(1−αP), as would be appropriate to the
choice f̃ (k2) = 1/k2, with αP in the range given by the experimental measurements (16),
generates an enhancement of low-β events, but this is still below the low-β growth observed.
Thus, whilst there may be a component of the form presented above, it seems likely that an
additional component may be needed. We shall consider shortly its possible origin.

The case of non-zero λ leads to a prediction of scaling violation, correlated with the β
dependence just discussed. At present, the experimental situation is somewhat unclear, since
H1 has found an indication of Q2 dependence, whilst ZEUS does not. The H1 results are
consistent with a growth with Q2 of the structure function that is proportional to log10Q

2,
with coefficients of proportionality (0.12±0.09), (0.15±0.09), (0.15±0.09) and (0.17±0.15)
for β = 0.65, 0.375, 0.175 and 0.065 respectively. Interpreting these values in terms of λ gives
a value of λ = (0.07 ± 0.05). Although not significant, this is of the correct sign to be

interpreted as due to the term ∝ (Q
2

β
)2(αP−1) with αP > 1 as is observed, and with a

related enhancement of the structure function at low β as just discussed. However, with the
measured value of αP , the predicted λ will be too large, unless there is a suppression from
the form factor f(k2) beyond that chosen in eq(15).

5 Summary and Conclusions

We have re-analysed the viability of the explanation of the diffractive events observed at
HERA based on the quark diffractive scattering graph of Fig. 1. We have observed that the
large pseudorapidity cuts favoured by early HERA analyses force the struck quark to be far
off its mass shell. This means that quark diffractive scattering could explain a significant
fraction of these data only if the struck quark could be far off shell without a significant
suppression of the cross section. An immediate implication is that diffractive events selected
in this way do not probe the structure function of the pomeron, at least in the normal sense
of measuring the distribution of “on-shell” partons within a pomeron “target”. Thus our
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intuition based on measurements of the structure functions of the nucleon in conventional
deep-inelastic processes does not directly apply to the interpretation of the structure of the
pomeron as revealed by large-pseudorapidity-gap events3. Our results are in conflict with the
commonly-accepted form of the diffractive quark contributions calculated in [6]. We have
calculated the full diagram of Fig. 1, allowing for a general form factor which does not cut
the integral for the struck quark off close to mass shell. The resulting form gives a “hard”
distribution which is modified by a term in which the β dependence is correlated with a
scaling violation. While such a term may be able to explain the measurements of events at
large β, it fails to reproduce the rise in the structure function seen at small β.
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Figure 5: Diffractive gluon component of the pomeron.

The question immediately arises: what may the missing contribution be? An obvious
candidate is the graph of Fig. 5, in which the pomeron couples to a gluonic component
of the virtual photon. The reason this may be significant at low β is that graphs of this
type have an infra-red singularity when the final-state gluon is soft, which leads to a 1/β
contribution to the amplitude squared. This should be compared to the case of Fig. 1, in
which the amplitude squared is constant for small β because there is no equivalent soft
singularity. As a result, the graph in of Fig. 5 makes a contribution to the structure function
which is constant at low β. Given that the pomeron may couple more strongly to gluons
than to quarks, it is plausible that this graph may generate a significant contribution in the
low β region. Together with the quark contribution this may provide a good description
of the form of (17). This particular form was motivated by a two-gluon model for the
pomeron investigated by Nikolaev and Zakharov [10]. However, we see that the essential
feature, namely the absence of a fall-off at low β, does not rely on a two-gluon Lipatov-like
interpretation for the pomeron, but simply reflects the characteristic infra-red behaviour
associated with gluon emission, such as in Fig. 5.

Thus we arrive at a perfectly consistent picture of the large-pseudorapidity-gap HERA
diffractive events, interpreted in terms of the diffractive scattering of (virtual) partons on

3Note also that the much-discussed problems associated with implementing the momentum sum rule do
not arise in our approach.
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the proton. It will be particularly interesting if the Q2 dependence of the large-β events can
be extracted reliably, for there should be some scaling violation associated with the (Q2)λ

factors discussed above.
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