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Abstract

Using general arguments we determine the allowed region for the end point frequency and

the peak energy density of the stochastic background of gravity waves expected in string

cosmology. We provide an accurate estimate of the minimal experimental sensitivity required

to detect a signal in the Hz to GHz range.
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In a recent paper [1] we computed, in collaboration with M. Giovannini, the spectrum of

relic gravity waves produced in the context of the so-called “pre-big-bang” scenario of string

cosmology [2, 3]. We showed that the spectral energy density of the produced gravitons grows

with frequency following a Rayleigh-Jeans-type behaviour at low frequencies and then, after

a possible flatter intermediate region, reaches a peak value ΩG(ω1) ∼ 10−5 (in critical units)

at ω1 ∼ 102 GHz. The stochastic background of relic gravity waves is thus expected to be

much stronger, at high frequency, than in the context of the standard inflationary scenario,

which predicts, in the most favourable case, a flat spectrum at a level [4] of ΩG ∼ 10−14 in its

higher frequency range. Such an enhanced production of high-frequency gravitons represents

a typical signature of the pre-big-bang scenario, as previously stressed in a number of papers

[3, 5, 6].

The explicit computation of the spectrum performed in [1] made use of a two-parameter

model of the metric–dilaton background and of the equation for tensor perturbations ob-

tained from the low-energy string effective action. Such an equation may be questioned when

applied to the truly “stringy” high-curvature regime in which all higher orders in the string

tension have to be taken into account. In view of this, the present paper aims at confirming

the main findings of [1] by determining, within some inherent uncertainty, the position and

height of the peak signal from the expected graviton background, without using either the

perturbation equation or an explicit parametrization of the shape of the spectrum. We also

discuss to what extent the position and height of the peak are affected by late entropy pro-

duction, associated with some additional reheating process occurring well below the string

scale.

We shall work in the context of a scenario [1, 2, 3], in which the Universe evolves from

the string perturbative vacuum, through a dilaton-driven phase and a high-curvature stringy

phase, towards the final radiation-dominated epoch. For a detailed discussion of the initial,

pre-big-bang epoch we refer the reader to more specific papers on the general picture [3, 7], on

the underlying symmetries [2, 8], on the perturbation spectra [5, 9] and on the difficulties of

a classical matching to the standard radiation era [10]. The main aspect of the scenario that

we shall use here is the fact that the time evolution of the classical background amplifies, with

similar efficiency, both metric perturbations (gravity waves) and the vacuum fluctuations of

the electromagnetic [11] and of other gauge fields, as a consequence of their coupling to a
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dynamical dilaton.

Thus, unlike ordinary inflation, string cosmology naturally leads to a democratic pro-

duction of all sorts of ultra-relativistic particles [12], most of which subsequently thermalize

and start dominating the energy density. Only gravitationally coupled particles, such as

gravitons and dilatons, drop out of thermal equilibrium soon after the string phase. Of

course, such a thermal background may possibly represent only a small fraction of the Cos-

mic Microwave Background (CMB) that we now observe, if later, efficient sources of thermal

entropy existed. Nevertheless, because of their common origin at the same (string) scale,

the energy density of the produced gravitons remains linked to the energy density of this

primordial thermal radiation [13], and this link allows us to relate the peak of the graviton

spectrum to the present CMB temperature, T0 = 2.7 K.

We start by recalling that, in our scenario, metric fluctuations are amplified with a

spectrum that grows with frequency. However, without knowing explicitly the time evolution

of the model during the string phase, we cannot compute exactly the maximal amplified

proper frequency ω1. We thus define ω1 as the frequency corresponding to the production of

one graviton per polarization and per unit phase-space volume. It is known that, for larger

frequencies, the production has to be exponentially suppressed [14]. With this definition,

the “end point” of the spectrum in the plane (ω, ρG(ω)), where ρG(ω) = dρG/d lnω is the

spectral energy density, has coordinates ω1 and ρG(ω1) = ω4
1/π

2.

We shall now relate these coordinates to the present temperature T0, and to the tem-

perature scale Tr marking the beginning of the phase dominated by thermal radiation, soon

after the string era. Such a scale is defined by the Einstein equations as

H2
r =

8π

3M2
p

π2Nr

30
T 4
r (1)

where Mp is the Planck mass, Hr the Hubble factor at t = tr, and Nr is the total effective

number of massless degrees of freedom in thermal equilibrium [15] at t = tr (as Nr � 1, the

graviton contribution to this equation is negligible). Let us also define the fraction δs of the

present thermal entropy density, generated at some intermediate scale between tr and the

present time t0, as δs = (s0 − sr)/s0, where [15]

s0 ≡
2π2

45
n0(a0T0)

3 =
2π2

45
nr(arTr)

3 + s0δs ≡ sr + s0δs . (2)

Here n0, nr are the number of species contributing (each with its own weight) to the thermal

2



entropy at t0 and tr, respectively, and a0, ar are the corresponding scale factors. By expressing

ω1(t0) as ω1(tr)ar/a0, and using eqs. (1) and (2), the present coordinates of the end point

of the spectrum can be written in the form

ω1(t0) = T0

[
Ms(tr)

Mp

]1/2 (
8π3Nr

90

)1/4 [
n0

nr
(1− δs)

]1/3 ω1(tr)√
HrMs(tr)

(3)

ρG(ω1, t0) =
ω4

1(t0)

π2
= ργ(t0)

[
Ms(tr)

Mp

]2
8πNr

3N0

[
n0

nr
(1− δs)

]4/3
 ω1(tr)√

HrMs(tr)

4

. (4)

We have multiplied and divided by the value of the string mass Ms at the time t = tr, and

we have introduced the present photon CMB energy density, ργ(t0) = (π2N0/30)T 4
0 , where

N0 = 2 is the number of photon degrees of freedom. Note that eqs. (3), (4) are exact, and

that the time-dependence of Ms/Mp accounts for possible residual variations of the dilaton

field for t > tr (this time-dependence is attributed to Ms or to Mp, depending on the frame

in which one is working [7]). Note also that n0, N0 are known numbers of order unity, while

nr, Nr are numbers of order 102–103, whose precise value depends on the superstring model

unifying gravity and gauge interactions.

We shall now discuss the uncertainty with which we can fix the position of the peak of the

spectrum in the plane (ω, ρG(ω)), by using the two previous equations at fixed δs. We shall

treat δs as a parameter that accounts for all subsequent non-adiabatic processes, which are

not expected to be significant in our context, but which can in principle dilute, to a certain

extent, the primordial graviton production (we assumed δs� 1 in [1]). We distinguish two

possibilities, which we shall discuss separately.

The first possibility, which seems to be favoured in our context, is the one in which Hr '

Ms(tr) ' ω1(tr). In this case, the total energy density ρqf produced by the amplification of

the vacuum fluctuations, which becomes critical at t = tr, must satisfy

ρqf (tr)

M4
s (tr)

=
π2Nr

30

T 4
r

M4
s (tr)

=
3

8π

M2
p

M2
s (tr)

. (5)

According to the above equation ρqf cannot be much larger than NrM
4
s ' Nrω

4
1, otherwise

Tr would exceed Ms, which does not make sense in a string theory context. This implies

that the integrated spectra are dominated by the end point values at ω1(tr) ' Ms(tr). On

the other hand, if ρqf ' NrM
4
s , the value of Mp/Ms at t = tr is predicted from eq. (5) to

be of order N1/2
r , i.e. quite close to its present value. Therefore, for Hr ' Ms(tr) ' ω1(tr),
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the end point must coincide with the peak of the spectrum, and the present position of the

peak follows directly from eqs. (3) and (4) with Ms(tr) fixed by a dilaton expectation value

already in its present range (this is the case for which we computed an explicit spectrum

[1]).

By inserting known numbers, and noting that Nr ' nr, we obtain in this case that for

fixed δs the peak position is controlled by the fundamental ratio (Ms/Mp), whose present

value is expected [16] to lie in the range 10−2 <∼ (Ms/Mp) <∼ 10−1. By using this range to

define our uncertainty on the peak position, we get

0.7× 1011Hz (1− δs)1/3

(
103

nr

)1/12

< ω1(t0) < 2× 1011Hz (1− δs)1/3

(
103

nr

)1/12

. (6)

This translates into an uncertainty for the height of the peak, which can be written in units

of critical energy density as

0.7×10−8h−2
100 (1− δs)4/3

(
103

nr

)1/3

< ΩG(ω1, t0) < 0.7×10−6h−2
100 (1− δs)4/3

(
103

nr

)1/3

(7)

(for the present CMB energy density, in critical units, we have used the value [15] Ωγ(t0) =

2.6× 10−5h−2
100, where h100 = H0(100 km sec−1 Mpc−1)−1).

The corresponding allowed region for the peak of the spectrum is represented in Fig. 1

by two boxes, which are obtained from eqs. (6) and (7) with nr = 103, for the two cases

δs = 0 and δs = 0.99. Note that even if 99% of the present entropy was produced during

the latest stages of evolution, the graviton signal stays well above the standard inflationary

prediction, which, in Fig. 1, is represented by the flat spectrum ΩG = 10−10Ωγ . We also

note that the theoretical estimate for the maximal allowed energy density, obtained from eq.

(7), is consistent with the bound obtained from nucleosynthesis, which implies, roughly, that

the total energy density in gravitons cannot exceed that of one massless degree of freedom in

thermal equilibrium. According to standard nucleosynthesis analysis [15, 17] we get in fact

the bound [18]
∫
ρG(ω, tN)d lnω <∼ 0.1ρR(tN), where ρR is the total radiation energy density

at the freeze out of the neutron-to-proton ratio, t = tN (see however [19] for recent critical

discussions of the standard nucleosynthesis analysis). When referred to the present CMB

energy density, the above bound implies

h2
100

∫
ΩG(ω, t0)d lnω < 0.2 Ωγ(t0)h

2
100 = 0.5× 10−5. (8)
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Unless ω1 exactly coincides with the maximal allowed value of eq. (6), the spectrum may

even be flat, from the end point down to a minimal frequency much smaller than one Hertz,

without violating such a bound. This situation is described by the dashed lines [20] of Fig.

1, which define the allowed region for the maximal value of the spectral energy density, for

the two cases δs = 0 and δs = 99%.

Fig. 1. The area within the dashed lines defines the allowed region for the maximal value
of the spectral energy density, for the two cases δs = 0 and δs = 0.99 (the plot is done using
nr = 103). The two boxes on the right border define the position of the end point of the
spectrum if the end of the string era occurs in the strong coupling regime. For comparison,
the flat graviton spectrum of the de Sitter inflationary scenario is plotted for an inflation
scale high enough to account for the observed large scale anisotropy. Also plotted are three

lines of constant spectral amplitude S
1/2
h = 10−23, 10−25 and 10−27Hz−1/2, as well as the

(dash-dotted) “one-graviton” line, along which the end point is shifted as a function of late
entropy production.

Let us now consider, for completeness, a scenario in which the curvature starts decreasing

from the maximal scale H1 'Ms(t1) ' ω1(t1), while the string coupling eφ (φ is the dilaton)

is still very small. In this scenario the transition to the regime of decelerated expansion is

induced by higher derivative corrections rather than by the back-reaction of the produced

quanta. The radiation-dominated epoch is now reached at a scale Hr << H1, and is preceded

by a decelerated, dilaton-driven epoch [7]. Inserting the explicit background solutions we find

ω1(tr)/
√
HrMs(tr) << 1 implying, from eq. (3), that the end point of the spectrum is shifted

to much lower values (unless Ms(tr)/Mp is very large; this seems to be excluded, however,
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since it would correspond to the dilaton having gone very far into the non-perturbative region

at t = tr). A shifted value of the end point ω1 implies a smaller total energy density ΩG, unless

the spectrum has a peak at some arbitrary frequency ωP lower than ω1, with such a height

that the integrated graviton energy is still of the same order as that of a thermal degree of

freedom, at t = tr. In that case the peak would again be localized, for any given δs, within the

dashed lines of Fig. 1. The allowed region of Fig. 1 thus refers not only to a flat spectrum

but also, in principle, to a spectrum with a peak energy density higher than the end point

value. We note, however, that for ωP << ω1, and ΩG(ωP ) >> ΩG(ω1), present calculations

based on the low-energy effective theory appear to preclude the possibility of having enough

quantum fluctuations to make them dominant at t = tr (at least for a monotonic time

evolution of the dilaton and of the metric scale factor).

In order to compare our prediction with the sensitivities of gravity waves detectors, it is

convenient to express the spectral energy density in terms of the spectral amplitude S1/2
h (ν),

ν = ω/2π, defined by

〈h(ν)h∗(−ν′)〉 =
1

2
δ(ν + ν′)Sh(ν), h(ν) =

∫
dt h(t)e−2πiνt (9)

where h(x, t) is either one of the two polarized, dimensionless gravity wave amplitudes,

and 〈...〉 denotes time or ensemble average. The average energy density ρG, summing over

polarizations, satisfies [15] 8πρG = M2
p 〈ḣ

2〉. The corresponding spectral density, in critical

units, is thus related to Sh by

ΩG(ν) =
8πρG(ν)

3M2
pH

2
0

=
4π2ν3Sh(ν)

3H2
0

= 1.25× 1036h−2
100 ν

3Sh(ν) Hz−2. (10)

In Fig. 1 we have plotted three lines of constant sensitivity, corresponding to S1/2
h = 10−23,

10−25 and 10−27 Hz−1/2. Entering the region where we expect a signal, ΩGh
2
100

<∼ 10−6, would

require a minimal sensitivity (from eq. (10))

S
1/2
h (ν) <∼ 3× 10−26

(
kHz

ν

)3/2

Hz−1/2. (11)

Very recent, direct measurements with cryogenic resonant detectors provide an upper

limit [21] on the existence of a relic graviton background, S
1/2
h < 6 × 10−22 Hz−1/2, at

ν = 907 Hz and ν = 923 Hz. This limit is still too high to be significant for our background.

However, much better sensitivities can be reached through the cross-correlation of existing
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resonant detectors [21] such as EXPLORER, NAUTILUS and AURIGA [22], as well as from

interferometric detectors that will start operating in the near future, such as GEO [23], LIGO

[24] and VIRGO [25]. Finally, spherical detectors [26] also appear promising, because of their

high cross section at several frequencies for both tensor and scalar metric fluctuations.
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