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Abstract

We perform an analysis of the behaviour of the electroweak phase transition

in the Minimal Supersymmetric Standard Model, in the presence of light

stops. We show that, in previously unexplored regions of parameter space,

the order parameter v(Tc)=Tc can become signi�cantly larger than one, for

values of the Higgs and supersymmetric particle masses consistent with the

present experimental bounds. This implies that baryon number can be ef-

�ciently generated at the electroweak phase transition. As a by-product of

this study, we present an analysis of the problem of colour breaking minima

at zero and �nite temperature and we use it to investigate the region of pa-

rameter space preferred by the best �t to the present precision electroweak

measurement data, in which the left-handed stops are much heavier than

the right-handed ones.
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1 Introduction

The origin of the baryon asymmetry of the Universe remains one of the most intriguing

open questions in high energy physics [1]. It was long assumed that this question could

only be answered by the knowledge of the physics at very short distances, of the order

of the Grand Uni�cation or the Planck scale. This general assumption was challenged

through the discovery that anomalous processes [2] can partially or totally erase the

baryon asymmetry generated at extremely high energies [3]. Much attention was hence

devoted to the possibility of generating the baryon asymmetry at the electroweak phase

transition [4], assuming that no new physics beyond the Standard Model is present at

the weak scale.

The Standard Model has all the required properties for the generation of the baryon

asymmetry: CP violation, baryon number violating processes and, in addition, non-

equilibrium processes that are generated at the �rst-order electroweak phase transition.

To generate the required baryon asymmetry, the electroweak phase transition must be

strongly �rst order. Quantitatively, the requirement is that the ratio of the vacuum ex-

pectation value of the Higgs �eld at the critical temperature to the critical temperature

must be larger than 1 [5],
v(Tc)

Tc
>
� 1: (1.1)

The Higgs potential of the Standard Model at �nite temperature can be given by

V SM

eff = �m2(T )�2 � ESM T �3 +
�(T )

2
�4 + � � � ; (1.2)

where the coe�cient of the cubic term is

ESM �
2

3

 
2M3

W +M3

Zp
2�v3

!
; (1.3)

h�(T )i = v(T )=
p
2, and the normalization of �(T ) is chosen such that its zero tem-

perature vacuum expectation value is h�(T = 0)i = v=
p
2, with v = 246:22 GeV. The

critical temperature is de�ned as that one for which the symmetry-breaking minimum

has the same depth as the symmetry-preserving one. From Eq. (1.2), it is easy to show

that
v(Tc)

Tc
'
p
2 ESM

�
: (1.4)

The e�ective quartic coupling � at Tc is closely related to its zero temperature value,

implying that the requirement of Eq. (1.1) puts an upper bound on the Higgs mass.

This upper bound was estimated by the analysis of the improved one-loop e�ective

potential to be of order 40 GeV [6]. It was subsequently shown that higher-loop e�ects

can enhance the strength of the �rst-order phase transition [7]. The most recent non-

perturbative studies [8] indicate that the real upper bound is still below the present

experimental bound on the Higgs mass, mH � 65 GeV.

Furthermore, in the Standard Model the source of CP-violation is associated with

the CP-violating phase in the Cabbibo-Kobayashi-Maskawa matrix. Any CP-violating

1



process is suppressed by powers of mf=MV , where mf are the light quark masses and

MV is the mass of the vector bosons. It was shown that these suppression factors are

su�ciently strong to severely restrict the possible baryon number generation [9].

Thus, to generate the observed baryon asymmetry of the Universe at the electroweak

phase transition, the presence of new physics at the weak scale is required. An inter-

esting possibility is that the new physics be given by the minimal supersymmetric

extension of the Standard Model (MSSM). In the MSSM, new sources of CP-violation

are present [10, 11], which can serve to avoid the strong Standard Model suppression

discussed above [10]. Preliminary results on the behaviour of the electroweak phase

transition within this model [12, 13, 14] showed that the situation can only be improved

slightly in comparison with the Standard Model case. This improvement was associated

with the presence of light supersymmetric partners of the top quark (stops) and small

values of tan �.

In this article, we shall show that, in previously unexplored regions of parameter

space, the phase transition can be more strongly �rst order than previously derived,

without being in con
ict with any phenomenological constraint. We shall follow the

formalism and conventions of Refs. [13, 14], where some technical details relevant for

this presentation can be found.

2 Light Top Squark E�ects

In the following, we shall explain the reason why, as it was already observed in Ref. [13],

the presence of light stops can help in enhancing the strength of the �rst-order phase

transition. We shall work in the limit mA � MZ, which implies that only one Higgs

doublet � survives at scales of order Tc
1. We shall also concentrate on the case that

the light stop is predominantly right-handed, implying that m2

Q � m2

U ; m
2

t , where m
2

Q

and m2

U are the soft supersymmetry-breaking squared mass parameters of the left- and

right-handed stops, respectively, and mt is the running top quark mass. This hierarchy

of masses is naturally expected in the small tan � regime, if supersymmetry is broken

in the hidden sector [16, 17]. Moreover, this range of parameters is selected by the

best �t to the precision electroweak data within the MSSM [15]. Indeed, large values

of m2

Q assure a small supersymmetric contribution to the oblique corrections, while

low or negative values of m2

U can help in enhancing the value of Rb, particularly in

the presence of light charginos, with a dominant Higgsino component and close to the

present experimental bounds.

Within the above framework, the stop masses are approximately given by

m2et ' m2

U +D2

R +m2

t (�)

 
1 �

eA2

t

m2
Q

!

m2eT ' m2

Q +D2

L +m2

t (�)

 
1 +

eA2

t

m2
Q

!
; (2.1)

1This case is favoured by the strength of the phase transition [13] and by precision electroweak
measurements in the low tan � regime [15].
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where mt(�) ht sin �� is the top quark mass, m
t
and m

T
are the lightest and heaviest

stop masses, D2

R;L are the D-term contributions to the right- and left-handed stop

squared masses, respectively, ht is the top quark Yukawa coupling and eAt = At��= tan �
is the e�ective stop mixing mass parameter. The heaviest stop leads to a relevant

contribution to the zero-temperature e�ective potential, which can be absorbed in a

rede�nition of the parameters m2 and � in Eq. (1.2). The contribution of the heavy

stop to the quartic coupling is quite signi�cant, growing with the fourth power of the

top quark mass and logarithmically with mQ [18, 19]. Large values of mQ have hence

the e�ect of increasing the Higgs mass. Although larger values of the Higgs mass are

welcome to avoid the experimental bound, they necessarily lead to a weakening of the

�rst-order phase transition. Indeed, the running Higgs mass is given by

m2

H = �v2; (2.2)

and hence, any increase in the Higgs mass is associated with an increase of the quartic

coupling �, yielding lower values of v(T )=T . Therefore, very large values of mQ, above

a few TeV, are disfavoured from this point of view.

In the above discussion we have ignored the e�ect of operators of dimension higher

than 4 in the e�ective potential. In the numerical computations, we include the full one-

loop e�ective potential [19], which goes beyond the approximation of Eq. (1.2) [20]. For

consistency, in the numerical evaluations, we neglect the two-loop e�ects on the Higgs

mass. In this case, the Higgs mass expressions obtained in Ref. [20] reduce to the ones

presented in Ref. [19], with the only di�erence that one-loop D-terms have been included

in our computation. Observe, however, that the most important zero temperature two-

loop contributions can be absorbed in a rede�nition of the quartic coupling � and hence,

due to Eqs. (1.4) and (2.2), they will not modify the upper bound on the Higgs mass.

The genuine two-loop �nite-temperature contributions, instead, have a more relevant

e�ect, making the phase transition more strongly �rst order (see Ref. [21]). This e�ect

goes beyond the standard model contributions [7] discussed above.

The �nite-temperature e�ects of the heaviest stop are exponentially suppressed and

hence we shall ignore them in the discussion below. (They are, however, kept in the

numerical evaluations.) The lightest stop, instead, plays an important role and we shall

single out its most relevant e�ects. We have used a �nite-temperature expansion for

it and checked that the latter does not break down in our region of parameters. The

improved one-loop �nite temperature e�ective potential is given by

V MSSM

e� = �m2(T )�2 � T

2
64ESM �3 + (2Nc)

�
m2et +�R(T )

�3=2
12�

3
75+ �(T )

2
�4 + � � � (2.3)

where

�R(T ) =
4

9
g23T

2 +
1

6
h2t

h
1 + sin2 �

�
1 � eA2

t=m
2

Q

�i
T 2 +

�
1

3
� 1

18
j cos 2�j

�
g02T 2 (2.4)

is the �nite temperature self-energy contribution to the right-handed squarks (see sec-

tion 4), g3 is the strong gauge coupling and Nc = 3 is the number of colours. We have
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included in Eq. (2.4) the contribution of the Standard Model �elds and the light su

persymmetric partners, in particular charginos, neutralinos and light stops 2. Observe

that, in general, as happens with the longitudinal components of the gauge bosons, the

lightest stop contribution to the e�ective potential does not induce a cubic term. This

is mainly related to the fact that the \e�ective �nite-temperature stop mass" is not

vanishing in the symmetric phase. At � = 0, this e�ective mass is given by

�
me�et

�2
(� = 0) = m2

U +�R(T ): (2.5)

The second term in Eq. (2.5) is positive, and hence a small e�ective mass can only be

obtained through a negative value of the soft supersymmetry-breaking parameter m2

U .

Negative values of m2

U can hence enhance the strength of the phase transition, par-

ticularly if they are close to those for which me�et = 0. Indeed, if me�et (� = 0; T = Tc) ' 0,

the strength of the cubic term in the e�ective potential receives a contribution propor-

tional to the cube of the top quark Yukawa coupling,

E ' ESM +
h3t sin

3 �
�
1 � eA2

t=m
2

Q

�3=2
2�

; (2.6)

where the �rst term is the Standard Model contribution [ESM � 0:018]. Observe that,

if me�et ' 0, the e�ective cubic term at Tc can be nine times as large as the Standard

Model one. Since v(Tc)=Tc / E=�, an enhancement by a factor 9 of E implies that

the allowed Higgs mass values can be enhanced by as much as a factor three. Hence,

in the case of zero mixing in the stop sector, eAt ' 0, and in the absence of additional

phenomenological constraints, the bound on the Higgs mass within the MSSM can be

of the order of 100 GeV. Large values of eAt, instead, reduce the induced cubic term

coe�cient and, for eAt ' �mQ, the strength of the �rst-order phase transition is of the

order of the Standard Model one.

For values of the Higgs mass mH
<
� MZ we should be concerned by the validity of

the perturbative expansion for the thermal �eld theory. The usual argument in the

Standard Model [7], which yields the condition m2

H � M2

W , goes as follows. In the

Standard Model the strength of the �rst-order phase transition is mainly dominated

by gauge bosons [see Eq. (1.3)]. Therefore, in the region near the symmetry-breaking

minimum of the potential (1.2), the value of the �eld is � � g3T=�. Each additional

loop of gauge bosons costs a factor of g2T and the loop expansion parameter is obtained

dividing g2T by the leading mass of the problem, i.e. MW . This gives the loop expansion

parameter for the thermal perturbation theory of the Standard Model, as

�SM �
g2T

MW

� �

g2
� m2

H

M2
W

: (2.7)

The condition �SM � 1 provides the aforementioned condition on the Higgs mass.

In the MSSM, the strength of the phase transition at one-loop is dominated by the

light stops [as can be seen from Eq. (2.6)]. Hence, as far as the phase transition is

2We shall work in the case of su�ciently heavy gluinos, right-handed sbottoms and �rst and second
generation squarks, so that their contributions to �R are Boltzmann-suppressed.
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concerned, we can safely neglect the electroweak gauge couplings and concentrate on

the top Yukawa and strong gauge couplings. Using now Eqs. (2.3), (2.5) and (2.6) we

can see that in the region near the symmetry breaking minimum, � � (ht sin �)
3T=�.

Additional bosonic loops (on the one-loop light stop diagram) are dominated by the

exchange of light stops and Higgs bosons, with an energetic cost � (ht sin �)
2T and by

the exchange of gluons with a cost 3 � g2
3
T 2. Since for the experimental range of the

top quark mass ht sin � ' g3 and considering the relevant mass of the problem to be

me�et � mt, we can write the loop expansion parameter for the thermal theory in the

MSSM as

�MSSM �
(ht sin �)

2 T

me�et � �

(ht sin �)2
� m2

H

m2
t

: (2.8)

In this way, the condition for the validity of the perturbative expansion �MSSM � 1 leads

to the bound on the Higgs mass m2

H � m2

t . In the above we have used Eq. (2.6), which

is only valid if me�et (� = 0) is close to zero. For larger values of me�et (� = 0), as those

associated with m2

U � 0, there is a signi�cant decrease of the order parameter v(Tc)=Tc,

with respect to the one used in Eq. (2.8), and hence the relative �nite temperature QCD

corrections may be larger than what is expected from �MSSM in Eq. (2.8). The results

of Ref. [21] con�rm these expectations.

From the previous (qualitative) arguments one expects that for me�et (� = 0) ' 0,

from the validity of the thermal perturbation theory, the upper bound on the Higgs

mass in the MSSM will be softened with respect to that in the Standard Model by

a factor � mt=MW
4. In the Standard Model, lattice calculations have shown that

the electroweak phase transition is well described by perturbation theory for Higgs

masses mH
<
� 70 GeV [8]. Similarly we can expect that in the MSSM, for the choice of

supersymmetric parameters rendering the phase transition much stronger than in the

Standard Model, the phase transition could be comfortably well described up to Higgs

masses mH
<
� MZ . Nevertheless, it is clear that a rigorous proof of this statement would

require non-perturbative calculations, as previously stated.

In order to get me�et (� = 0) ' 0, the soft supersymmetry-breaking parameter m2

U

must take negative values. Since Tc = O(100 GeV) and �R is of order T 2, Eq. (2.4),

relatively large negative values of m2

U must be phenomenologically acceptable. Such

negative values of m2

U are associated with the presence of charge- and colour-breaking

minima [23, 17]. As a conservative requirement, it should demanded that the physical

vacuum state have lower energy than the color breaking minima. We shall present an

analysis of the bounds obtained through such a requirement in the next section.

3 Colour-Breaking Minima at T = 0

Let us �rst analyse the case of zero stop mixing. In this case, since m2

Q � jmU j2 the
only �elds that acquire vacuum expectation values are � and U . At zero temperature,

3We are considering here the case which strengthens as much as possible the phase transition and,
therefore, leads to the largest possible values of the Higgs mass: negligible mixing in the stop sector,
i.e. eAt=mQ ' 0, and heavy gluinos [13, 14].

4A similar observation was done in Ref. [22].
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the e�ective potential is given by

Veff (�;U) = �m2

��
2 +

�

2
�4 +m2

UU
2 +

eg2
3

6
U4 + eh2t sin2 ��2U2 (3.1)

where � is the radiatively corrected quartic coupling of the Higgs �eld, with its corre-

sponding dependence on the top/stop spectrum through the one-loop radiative correc-

tions, eg2
3
=3 is the radiatively corrected quartic self-coupling of the �eld U and eh2t is the

bi-bilinear �� U coupling. The latter couplings are well approximated by eg3 ' g3 andeht ' ht. For convenience, we shall de�ne

fm2

U = �m2

U : (3.2)

The minimization of this potential leads to three extremes, at: (i) � = 0, U 6= 0;

(ii) U = 0, � 6= 0 and (iii) � 6= 0, U 6= 0. The corresponding expressions for the

vacuum �elds are:

(i) U = 0; �2 =
m2

�

�
;

(ii) � = 0; U2 =
3fm2

Ueg23 ;

(iii) �2 =
m2

� � 3fm2

U
eh2t sin2 �=eg23

�� 3eh4t sin4 �=eg23 ; U2 =
fm2

U �m2

�
eh2t sin2 �=�eg23=3� eh4t sin4 �=� :

(3.3)

It is easy to show that the branch (iii) is continously connected with branches (i) and

(ii). It can also shown that the branch (iii) de�nes a family of saddle-point solutions,

the true (local) minima being de�ned by (i) and (ii). Hence, the requirement of absence

of a colour-breaking minimum deeper than the physical one is given by

fmU �
 
m2

H v2 eg23
12

!1=4
: (3.4)

For a typical Higgs mass mH ' 70 GeV, the bound on fmU is of order 80 GeV.

In the case of stop mixing, eAt 6= 0, the analysis is more involved, since the three

�elds Q, U and � may acquire vacuum expectation values. Due to the large hierarchy

between m2

Q and m2

U , the vacuum expectation value of Q is always small with respect

to that of U , unless the mixing parameter eAt is of order mQ. We shall hence de�ne

� = � U; Q = 
 U: (3.5)

The e�ective potential is given by

Veff =
�
�fm2

U �m2

��
2 +m2

Q

2
�
U2 + 2ht sin � eAt�
U

3

+ U4

"
�

2
�4 + h2t sin

2 ��2
�
1 + 
2

�
+ h2t


2 +
g23
6

�
1� 
2

�2
(3.6)

+
1

8
g2
2(
2 + 2�2 cos 2�) +

1

72
g02(
2 � 4)(
2 � 4� 6�2 cos 2�)

�
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As in Eq. (3.1), we have not included in Eq. (3.6) the radiative corrections to the squark

Higgs and squark-squark couplings. Contrary to what happens with the Higgs self-

coupling, their tree-level values are proportional to either the strong gauge coupling or

the top Yukawa coupling, and hence we expect the radiative corrections to be suppressed

by typical one-loop factors. Hence, for the purpose of this paper, it is su�cient to keep

their tree-level values. These corrections must be included, however, if a more precise

quantitative study of the colour-breaking bounds is desired.

The e�ective potential can then be written as

Veff (U; 
; �) = F1(�; 
) U
2 + F2(�; 
) U

3 + F3(�; 
) U
4 (3.7)

where the expressions of the functions Fi can be easily obtained from Eq. (3.6). In

order to evaluate the depth of the color breaking minima, we shall use the following

procedure: We �rst minimize the potential with respect to U . We �nd

Umin =
�3F2 �

q
9F 2

2 � 32F1F3

8F3
; (3.8)

where we have assumed that ~At � 0. Inserting this solution into the e�ective potential,

Eq. (3.6), we �nd

Vmin(
; �) = U2

min

�
F1

3
� U2

min

F3

3

�
(3.9)

The resulting function of � and 
, Eq. (3.9), may be evaluated numerically. For each

value of �, we have performed a scanning over 
, looking for the minimum value of

the e�ective potential, Vmin(�). Fig. 1 shows the plot of Vmin(�) for mQ = 500 GeV,

mt = 175 GeV, tan � = 1:7 and di�erent values of eAt. The value of the potential at

the minimum has been normalized to the absolute value of the potential at the physical

expectation value jVEW j, so that Vmin=jVEW j = �1 for � ! 1. Due to the e�ective

potential structure, Eq. (3.6), the eAt e�ects are only relevant when the three �elds U ,

Q and � acquire a vacuum expectation value. It is easy to show that larger values

of fmU have the e�ect of inducing lower colour breaking minima for both eAt = 0 andeAt 6= 0. Hence, in order to obtain a conservative upper bound on eAt, we have chosen the

(�xed) value of fmU , given by Eq. (3.4), such that the physical minimum (at �!1) is

degenerate with the colour breaking one at � = 0. We have explicitly checked that, as

expected, for smaller values of fmU , the upper bound on eAt=mQ moves to larger values.

For small and moderate values of eAt [ eAt
<
� 430 GeV in Fig. 1], the saddle-point

structure of the solutions (3.3) with U 6= 0 and � 6= 0 is clearly seen in the �gure as

a maximum, while the only (degenerate) minima are those at � = 0; 1. Hence, so

far the condition (3.4) is ful�lled, the physical vacuum, with U = Q = 0 is the true

vacuum of the theory. This behaviour is preserved for all values of eAt such that the

present experimental limit on the lightest stop is ful�lled. Indeed, the upper bound oneAt is very close to the one obtained from the condition of avoiding a tachyon in the

spectrum. In particular, for large values of eAt [ eAt
>
� 430 GeV in Fig. 1], a new global

minimum with � 6= Q 6= U 6= 0 does appear, co-existing with the electroweak (local)

minimum and the saddle point (maximum). When a tachyonic state appears in the stop

spectrum [ eAt � 450 GeV] the electroweak minimum and the saddle point collapse and

7



turn into a single maximum. As we shall show below, and as is clear from our discussion

in the previous section, Eq. (2.6), large values of eAt, close to the upper bound on this

quantity, induce a large suppression of the potential enhancement in the strength of

the �rst-order phase transition through the light top squark; they are hence disfavoured

from the point of view of electroweak baryogenesis.

4 Phase Transition Results

As it follows from the discussion in sections 2 and 3, larger values of fmU can be helpful

in inducing a strongly �rst-order phase transition, but one must be careful about the

presence of charge- and colour-breaking minima. Since the question of vacuum stability

is a delicate one, in this section we shall adopt the following strategy: we shall in general

present results taking into account the vacuum stability constraint, Eq. (3.4). However,

the possibility that the physical vacuum is a metastable state with a lifetime larger

than the present age of the Universe [24] can also be considered. In this case, the bound

Eq. (3.4) would be inappropriate as a phenomenological bound. In this article, we shall

not address the question of the vacuum state lifetime in quantitative terms. We shall

limit ourselves to also present the results obtained when the bound Eq. (3.4) is ignored

in the phenomenological analysis. However, we shall always keep the constraint

�fm2

U +�R(Tc) > 0: (4.1)

Indeed, if Eq. (4.1) were not ful�lled, the Universe would be driven to a charge- and

colour-breaking minimum at T � Tc. Moreover, since the transition to the color break-

ing minimum is �rst order, one should also require the critical temperature for the

transition to this minimum, TU
c , to be below Tc. Because of the strength of the stop

coupling to the gluon and squark �elds, one should expect this transition to be more

strongly �rst order than the electroweak one.

We shall assume that, as happens at zero temperature, it is su�cient to analyse

the behaviour of the potential in the direction U 6= 0, � = Q = 0, to determine

the conditions that assure the stability of the physical vacuum at �nite temperature.

In order to get a quantitative bound on the mass parameter fmU , the e�ective �nite

temperature potential for the U �eld must be analysed. For this purpose, it is useful

to compute the particle spectrum in a non-vanishing U -�eld background. The most

relevant masses are:

a) The hypercharge (B) gauge boson with squared mass 8g02U2=9.

b) Four gluons with squared masses g2
3
U2=2 and one gluon with squared mass 2g2

3
U2=3.

c) Five squarks (would-be Goldstones) with squared masses �fm2

U + (g23 + 4g02=3)U2=3

and one with squared mass �fm2
U + (g23 + 4g02=3)U2.

d) Four scalar (Higgs-left-handed squark) states with squared masses

�m2

H=2 +
h
h2t sin

2 �
�
1 � eA2

t=m
2

Q

�
� j cos 2�jg02=3

i
U2.

e) Two Dirac fermion states (left quark-Higgsino) with squared masses �2 + h2tU
2 and

two Majorana fermion states (right top-bino) with masses
q
8g02=9U2 + (M1=2)2�M1=2.
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Hence, the �nite temperature e�ective potential for the U �eld is given by

VU =
�
�fm2

U + 
UT
2
�
U2 � TEUU

3 +
�U

2
U4; (4.2)

where


U � �R(T )

T 2
' 4g2

3

9
+
h2t
6

h
1 + sin2 �(1� eA2

t=m
2

Q)
i
; �U '

g2
3

3

EU '
"p

2g2
3

6�

 
1 +

2

3
p
3

!#
(4.3)

+

8<
: g33
12�

 
5

3
p
3
+ 1

!
+
h3t sin

3 �(1� eA2

t=m
2

Q)
3=2

3�

9=
; :

The contribution to EU inside the squared brackets comes from the transverse gluons,

E
g
U , while the one inside the curly bracket comes from the squark and Higgs contribu-

tions [for simplicity of presentation, we have not written explicitly the small hypercharge

contributions to EU and 
U .]. In the above, we have ignored the gluino and left-handed

squark contributions since they are assumed to be heavy and, as we explained above,

their contributions to the �nite temperature e�ective potential is Boltzmann-suppressed.

The di�erence between TU
0 , the temperature at which me�et (� = 0) = 0, and TU

c , is

given by

TU
c =

TU
0q

1� E2
U=(2�U
U )

: (4.4)

In order to assure a transition from the SU(2)L � U(1)Y symmetric minimum to the

physical one at T = Tc, we should replace the condition (4.1) by the condition

�fm2

U +�R(T ) > fm2

U

�

1 � �
' fm2

U�; (4.5)

with � = E2

U=2�U
U , a small number. In Eq. (4.3) we have written the value of EU that

would be obtained if the �eld-independent e�ective thermal mass terms of the squark

and Higgs �elds were exactly vanishing at the temperature T . Although for values offm2

U , which induce a large cubic term in the Higgs potential, Tc is actually close to the

temperature at which these masses vanish, an e�ective screening is always present. In

the following, we shall require the stability condition, Eq. (4.5), while using the value

of EU given in Eq. (4.3). We shall also show the result that would be obtained if only

the gluon contributions to EU , E
g
U , would be considered. The di�erence between the

two results quanti�es the uncertainty in EU due to the fact that the e�ective thermal

masses of the squark and the Higgs �elds are actually partially screened at Tc.

Let us �rst present the results for zero mixing. Fig. 2 shows the order parameter

v(Tc)=Tc for the phase transition as a function of the running light stop mass, for

tan� = 2, mQ = 500 GeV and mt = 175 GeV. For these parameters, the Higgs mass

mH ' 70 GeV, a result that depends weakly on fmU . We see that for smaller (larger)

values of met (fmU), v(Tc)=Tc increases in accordance with the discussion of section 2.

We have marked with a diamond the lower bound on the stop mass coming from the
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bound on colour breaking vacua at T 0, Eq. (3.4). The cross and the star denote the

bounds that would be obtained by requiring condition (4.5), while using the total and

gluon-induced trilinear coe�cients, EU and E
g
U , respectively. We see that the light stop

e�ect is maximum for values of fm2

U such that condition (4.5) is saturated, which leads

to values of met ' 140 GeV (fmU ' 90 GeV) and v(Tc)=Tc ' 1:75. To preserve Eq. (3.4)

demands slightly larger stop mass values. Still, there is a large region of parameter space

for which v(Tc)=Tc � 1 and is not in con
ict with any phenomenological constraint.

Figure 3 shows the results for zero mixing and mQ = 500 GeV as a function of tan �

and for the values of fmU such that the maximum e�ect on v(Tc)=Tc is achieved. We also

plot in this �gure the corresponding values of the stop and Higgs masses. As in Fig. 2,

the solid [dashed] line represents the result when the bound (3.4) [the stability bound of

Eq. (4.5)] is preserved. We see that v(Tc)=Tc increases for lower values of tan �, a change

mainly associated with the decreasing value of the Higgs mass or, equivalently, of the

Higgs self-coupling. For values of tan � ' 2:7, v(Tc)=Tc ' 1, and hence the value of

the Higgs mass yields the upper bound consistent with electroweak baryogenesis. This

bound is approximately given bymH ' 80 GeV. If the bound on color breaking minima,

Eq. (3.4), is ignored, the upper bound on mH is close to 100 GeV, in accordance with

our qualitative discussion of section 1.

Due to the logarithmic dependence of mH on mQ, larger values of mQ have the e�ect

of enhancing the Higgs mass values. It turns out that, for zero mixing, the results for

v(Tc)=Tc depend on the Higgs mass and on the value of mU , but not on the speci�c

value of mQ. Hence, di�erent values of mQ have the only e�ect of shifting (up or down)

the preferred values of tan �. In particular, the �xed-point solution, which corresponds

to values of tan � ' 1:6 for mt ' 175 GeV, leads to values of mH � 65 GeV and

v(Tc)=Tc >� 1 so far mQ is above 750 GeV and below a few TeV.

Finally, let us discuss the e�ect of mixing in the stop sector. For �xed values of

mQ and tan�, increasing the values of eAt has a negative e�ect on the strength of the

�rst-order phase transition for three reasons. First, large values of eAt lead to larger

values of the Higgs mass mH . Secondly, as shown in Eq. (2.6) they suppress the stop

enhancement of the cubic term. Finally, there is an indirect e�ect associated with the

constraints on the allowed values for fmU . This has to do with the fact that for larger

values of eAt, the phase transition temperature increases, rendering more di�cult an

e�ective suppression of the e�ective mass me�et , Eq. (2.5). Of course, this third reason

is absent if the bound (3.4) is ignored. As we have shown above, for zero mixing the

bounds (1.1), (3.4) and (4.5) are only ful�lled for values of the stop mass larger than

approximately 140 GeV. Light stops, with masses met <� 100 GeV, can only be consistent

with these constraints for larger values of the mixing mass parameter eAt. This can be

relevant for physical processes, which demand the presence of such light sparticles in

the spectrum. For instance, it is important in getting corrections to Rb [15, 17, 25].

Figure 4 shows the result for v(Tc)=Tc as a function of eAt for tan � = 1:7, mQ =

500 GeV, and values of mU such that the maximal light stop e�ect is achieved. The

same conventions as in Fig. 3 have been used. Due to the constraints on fmU , light stops

with met <� MW may only be obtained for values of eAt
>
� 0:6 mQ. For these values of

eAt,

however, the phase-transition temperature is large and induces large values of me�et , for
all values of fmU allowed by Eq. (3.4). In Fig. 4, we have chosen the parameters such
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that they lead to the maximum value of the mixing parameter At=mQ consistent with

v(Tc)=Tc � 1 and the Higgs mass bound. As we mentioned above, lower values of tan �

can be achieved for larger values of mQ. Since the stop spectrum depends only slightly

on tan �, we obtain that, as far as the bounds on color breaking minima are preserved,

the mixing e�ects are not very helpful to obtain lower stop masses compatible with a

su�ciently strong �rst order phase transition. If the weaker bound, Eq. (4.5), were

required (thin and thick dashed lines in Fig. 4), light stops, with masses of order MZ

would not be in con
ict with electroweak baryogenesis.

5 Conclusions

In this article we show that, contrary to what was suggested by previous analyses, there

are large regions of phenomenologically acceptable parameter space, that are consistent

with the present experimental bound on the Higgs mass and with a su�ciently strong

electroweak �rst-order phase transition, Eq. (1.1). This region of parameter space is

associated with low values of tan �, low values of the lightest stop mass, met <� mt, and

low values of the Higgs mass, mH
<
� MZ. It can hence be tested by experimental Higgs

and stop searches at the Tevatron and LEP2 colliders. Interestingly enough, this region

is also consistent with the uni�cation of the bottom and � Yukawa couplings at the

grand uni�cation scale, and consequently with the quasi-infrared �xed point solution

for the top quark mass. The hierarchy of soft supersymmetry breaking parameters

m2

Q � m2

U is naturally obtained at the �xed-point if supersymmetry is broken in a

hidden sector. Furthermore, as has been discussed in Ref. [17], negative values of m2

U are

associated with non-universal boundary conditions for the scalar soft supersymmetry-

breaking terms at the scale MGUT . For these values of m2

U , the bounds on the colour

breaking minima are decisive in de�ning the allowed parameter space and, for a top

quark mass mt ' 175 GeV, light stop masses below 130 GeV turn to be disfavoured.

If these constraints are ignored, while assuming that we live in a metastable vacuum,

light stops, with masses of the order of the Z0 mass become consistent with a strongly

�rst-order electroweak phase transition.

Three additional remarks are in order: i) First, we have always considered the

case of very large mQ. A stronger �rst-order phase transition may be obtained by

considering values of mQ such that the left handed stop �nite temperature contribution

is not negligible. Since the Higgs mass value may be controlled through tan �, the

strongest bounds on mQ come from preserving a good �t to the electroweak precision

measurements. As we discussed above, for the experimentally preferred values of the

top quark mass, large values of mQ are preferred. ii) We have only analysed the case of

large values of the CP-odd Higgs mass. For the CP-violating e�ects associated with the

supersymmetric particles to lead to an e�cient baryon generation at the electroweak

phase transition, the ratio of vacuum expectation values must change along the bubble

walls [10]. This in turn means that the CP-odd mass cannot be much larger than the

critical temperature. It is di�cult to derive a quantitative upper bound on the CP-odd

Higgs mass from these considerations. However, since there is no signi�cant change

of the order parameter v(Tc)=Tc up to CP-odd Higgs masses as low as ' 2Tc, we do
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not expect a relevant change of the allowed parameter space with respect to the one

found in the present analysis. iii) Throughout this paper we have ignored higher-loop

corrections. These corrections tend to make the phase transition more strongly �rst

order [21] and enlarge the allowed parameter space. A non-perturbative study will

be useful to check the validity of the perturbative bounds on the MSSM parameters

consistent with electroweak baryogenesis.
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Figure 1: Plot of Vmin=jVEW j for mt = 175 GeV, mQ = 500 GeV, tan � = 1:7 andeAt=430 GeV [upper curve]{444 GeV [lower curve], step=2 GeV.
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Figure 2: Plot of v(Tc)=Tc as a function of met for mQ and mt as in Fig. 1, eAt = 0 and

tan� = 2. The diamond [cross, star] denotes the value of fmU for which the bound,

Eq. (3.4) [Eq. (4.5) with EU given by Eq. (4.3), Eq. (4.5) with EU = Eg
U ] is saturated.
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Figure 3: Plot of v(Tc)=Tc as functions of tan � for mQ and eAt as in Fig. 2, and mU

saturating Eq. (3.4) [solid] and Eq. (4.5) [thick dashed line for EU given by Eq. (4.3)

and thin dashed line for EU = E
g
U ]. The additional thin lines are plots of mH in units

of 65 GeV [solid] and met in units of mt [short-dashed], corresponding to the values offmU associated with the solid line.
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Figure 4: The same as in Fig. 3, but as functions of eAt, for tan � = 1:7.
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