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Abstract

The account of the Poisson-Lie T-duality is presented for the case

when the action of the duality group on a target is not free. At the

same time a generalization of the picture is given when the duality

group does not even act on �-model targets but only on their phase

spaces. The outcome is a huge class of dualizable targets generically

having no local isometries or Poisson-Lie symmetries whatsoever.
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1. The Poisson-Lie (PL) T -duality [1] is the generalization of the traditional

non-Abelian T -duality [2]{[6]. It has been demonstrated in [1] and in the

series of subsequent papers [7] { [11] that the PL T -duality enjoys most of

the structural features of the traditional Abelian T -duality [12] { [17].

The underlying structure of the PL T -duality is the Drinfeld double [18].

The latter is the Lie group which is a sort of twisted product of two its

equally dimensional subgroups. These subgroups play the role of the duality

and coduality groups in the following sense: The duality group acts on the

target of a PL dualizable �-model and this action is Poisson-Lie symmetric

with respect to the coduality group (see [1] for the de�nition of the PL

symmetry). In the dual �-model the roles of the duality and coduality groups

are interchanged.

In the traditional non-Abelian duality the duality group is some Lie group

G and coduality group is its Lie coalgebra viewed as the commutative additive

group. The Drinfeld double is the cotangent bundle of the group manifold

G in this case.

It has been remarked already many times [2, 5, 6] that even in the frame-

work of the traditional non-Abelian duality there is the possibility of a qual-

itatively new structure which is absent in the Abelian case. It is connected

with the fact that a non-Abelian duality group may act with isotropy which

means, in other words, that the action is not free. A concrete example of

the non-Abelian dual model in the case of the non-free action of the duality

group was worked out e.g. in [2, 5, 16, 19] by the standard method of gauging

of isometry.

The purpose of this note is to generalize the results of the traditional non-

Abelian duality for the not freely acting groups to the general Poisson-Lie

case and to �nd the relevant algebraic structure in terms of the corresponding

Drinfeld double. We �nd that in this case the PL duality relates �-models on

the targets which are respectively cosets of an appropriate (dressing) action

of certain residual group on the duality and coduality groups. In general,

there is no action of the duality or the coduality group on these cosets, and,

consequently, no trace of isometry or Poisson-Lie symmetry of the targets1.

Still the duality and the coduality group underlie the dynamics of the �-

models in a non-local way.

In what follows, we give the duality invariant description of a Hamiltonian

1These `dressing' cosets �-models should presumably �t well into the schemes of [20, 21].
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dynamical system on the subspace of the loop group of the Drinfeld double

and show that this system simultaneously describes the dynamics of the both

coset �-models related by the PL duality. Then we discuss concrete examples

of the traditional non-Abelian T -duality and of the `true' PL duality with

both the duality and the coduality groups being non-Abelian.

2. For the description of the Poisson-Lie duality we need the crucial concept

of the Drinfeld double which is simply a Lie group D such that its Lie algebra

D can be decomposed into a pair of maximally isotropic subalgebras with

respect to a non-degenerate invariant bilinear form on D [18].

Consider now an n-dimensional linear subspace E of the 2n-dimensional

Lie algebra D and its orthogonal complement E? such that the intersection

E \E? � F is an isotropic Lie subalgebra of D. Moreover we require that the

both subspaces E and E? are invariant with respect to the adjoint action of

F . We shall show that these data determine a dual pair of �-models with the

targets being the dressing cosets of the groups G and ~G respectively. These

cosets are de�ned with respect to the dressing action of the group F whose

Lie algebra is F . The dressing action of an element f 2 F on an element

g 2 G gives an element g1 2 G de�ned as follows

fg = g1
~h; ~h 2 ~G: (1)

The multiplication in (1) is understood in the sense of the Drinfeld double2.

By the dressing coset we mean the set of orbits of the dressing action of F

on G or ~G.

The most economic description of the common dynamics of the models

from the dual pairs is given in terms of the loop group LD of the Drinfeld

double. The phase space P is formed by the loops l(�) with the property

@�ll
�1 2 F?

; (2)

where F? denoted the orthogonal complement of F with respect to the

invariant inner product on the double. Note that F is isotropic, hence F �
F?. We also postulate that the loops l1(�) and l2(�) such that

l1(�) = l2(�)lc; lc 2 D (3)

2The element g1 is well de�ned if f and g are close to unit and for some Drinfeld

doubles the de�nition is entirely correct even globally. For a generic double a special

global analysis is required which, however, does not elucidate the main idea of the note

and is in fact beyond the scope of it.
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by de�nition describe the same element of the phase space. Note that the

right action of D leaves invariant the current component @�ll
�1.

We de�ne a symplectic two-form 
 on this phase space as the exterior

derivative of a polarization one-form �. The latter is most naturally de-

�ned in terms of its integral along an arbitrary curve  in the phase space,

parametrized by a parameter � . From the point of view of the Drinfeld dou-

ble, this curve is a surface with the topology of cylinder embedded in the

double in such a way that constraint (2) is ful�lled. We de�ne
Z


� =
1

2

Z
h@�l l

�1
; @� l l

�1i +
1

12

Z
d
�1hdl l�1; [dl l�1; dl l�1]i: (4)

Here h:; :i denotes the non-degenerate invariant bilinear form on the Lie al-

gebra D of the double and in the second term on the r.h.s. we recognize

the two-form potential of the WZW three-form on the double. Note that

this de�nition of � is ambiguous due to the ambiguity in the choice of the

inverse exterior derivative d�1. However, this ambiguity disappears when the

exterior derivative of the one-form � is taken. In other words, the symplectic

form 
 is well de�ned.

We should note that we use the notion of symplectic form somewhat

loosely. By this we mean that the symplectic form 
 is closed but it is

not non-degenerate. From the point of view of the Hamiltonian mechanics

this corresponds to the situation occuring in the description of systems with

gauge symmetry. The vector �elds annihilating 
 (i.e. 
(:; v) � 0) form

an algebra under the standard Lie bracket hence they give rise to integrable

surfaces (=orbits of the gauge group) in P on which 
 identically vanishes.

By factoring the original phase space by these gauge group orbits, we obtain a

reduced phase space on which 
 is not only closed but is also non-degenerate.

If we de�ne a Hamiltonian on the original phase space which is (gauge)

invariant with respect to the action of those vector �elds we have a well

de�ned Hamiltonian system on the reduced phase space.

In our concrete situation, we de�ne a Hamiltonian in terms of a certain

quadratic form K on F? such that

K(x+ x0) = K(x); x 2 F?

; x0 2 F : (5)

The value of K on some vector x 2 F? is computed as follows: x can be (not

uniquely) decomposed as

x = x1 + x2; x1 2 E; x2 2 E
? (6)
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and

K(x) � hx1; x1i � hx2; x2i: (7)

Note that the value K(x) does not depend on the decomposition (6).

In this note, we shall study a dynamical system on the phase space P

given by the action

S[l(�; �)] =

Z
� �

Z
H d�

=
Z
d�d�f

1

2
h@�l l

�1
; @� l l

�1i+
1

12
d
�1hdl l�1; [dl l�1; dl l�1]i �

1

2
K(@�ll

�1)g:

(8)

It is easy to check that the group action corresponding to the vector �elds

annihilating the symplectic form 
 is given by the left multiplication of a

loop l(�) by an element f(�) from the loop group LF . The Hamiltonian H

is invariant with respect to this action.

We conclude that the data P , 
 and H yield a well-de�ned Hamiltonian

system on the reduced phase space LFnP . The description of this system in

terms of the original phase space P is given by the �rst order action S which,

as it should, indeed possesses the gauge symmetry with respect to the left

multiplication of l(�; � ) by arbitrary f(�; � ) 2 F :

l(�; � )! f(�; � )l(�; � ): (9)

Note that the action S has also a little gauge invariance corresponding to

the write multiplication of l(�; � ) by arbitrary function l(� ) 2 D. This small

gauge symmetry corresponds to the factorization (3).

3. We show that the Hamiltonian system, de�ned by P , 
 and H, simul-

taneously describes dynamics of two �-models. Their Lagrangians may be

obtained directly from the action (8) as follows: Write the �eld l(�; � ) in the

form

l(�; � ) = g(�; � )~h(�; � ): (10)

Here g(�; � ) is an unconstrained element of G and ~h(�; � ) is from ~G in such a

way that l(�; � ) ful�ls the constraint (2). Now ~h can be eliminated from the

action (8), yielding the �-model on the group manifold G with the Lagrangian

L = (E +�(g))�1(@+gg
�1
; @�gg

�1): (11)
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Here the indices � mean the light cone variables on the world sheet and E

is a bilinear form on the dual space G� of the Lie algebra G of the group G.

The graph of E in D is precisely the subspace E, i.e.

E = Spanft+ E(t; :); t 2 ~Gg; E? = Spanft� E(:; t); t 2 ~Gg: (12)

�(g) is the bivector �eld on the group manifold which gives the Poisson-

Lie bracket on G (i.e. the multiplication G � G ! G is the Poisson map)

[18, 1, 10].

By choosing the dual ansatz

l(�; � ) = ~g(�; � )h(�; � ) (13)

we arrive at the dual �-model on the dual group ~G manifold:

~L = (E�1 + ~�(~g))�1(@+~g~g
�1
; @�~g~g

�1): (14)

The mutually dual �-models (11) and (14) appear to live on the targets

G and ~G respectively but, in fact, they do not. The standardly computed

symplectic forms on their phase spaces are degenerate. The reason is the

gauge symmetry (9) of the original model (8). Therefore the resulting �-

models (11) and (14) possess the same gauge symmetry but now the group

F acts from the left not by the standard multiplication as in (9) but by the

dressing action (1). Thus the �-models (11) and (14) live on the targets

which are respectively cosets of the dressing action of the group F on G and

on ~G.

In every concrete example we may choose convenient gauge slices cutting

the orbits of the dressing action and to work out the targets of the �-models

(11) and (14) in terms of some coordinates on the slices. We shall do it

explicitly in some cases in order to illustrate the method.

It is interesting to note that there is no natural action of the duality group

G on the gauge �xed model (11) . The only exception occurs when F is a

subgroup of the group G . In this case the target FnG is the standard coset

on which G naturally acts. The isotropy subgroup of this action is precisely

F and we recover the standard picture of the traditional non-Abelian duality.

But also in this special case, F is not subgroup of ~G and therefore there is

no natural action of ~G on the dual �-model target.

The suggested derivation of the gauge-invariant �-models (11) and (14)

from the duality invariant action (8) is technically quite lengthy. It is easier
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to demonstrate the equivalence of (8), (11) and (14) by a short-cut argument.

For concreteness, let us consider the equivalence of the models (8) and (11).

The density of the canonical momentum of (11) is a one-form with values

in the coalgebra G�. On the other hand, G� is canonically identi�ed with
~G by means of the invariant inner product in D. It turns out (see [1, 10]

for a detailed argument) that the density of the canonical momentum on

an extremal con�guration g(�; � ) can be written as the zero-curvature form

d~h~h�1 for some ~h(�; � ) 2 ~G. Hence for every extremal con�guration of the

model (11) or, in other words, at every point of the phase space of (11), we

may �nd a con�guration l(�; � ) in the double given by

l = g~h: (15)

This con�guration is determined up to the right multiplication by a constant

element from ~G.

It is now very easy to check that under the mapping (15) the standard

polarization form (pdq) for the �-model (11) coincides with the polarization

form � given in (4) (for a speci�c choice of d�1). Moreover, the Hamiltonian

of (11) also coincides with the Hamiltonian of (8). Thus we conclude that

the models (8) and (11) (and in the same way (8) and (14)) are dynamically

equivalent. In fact, it is much easier to study the (dressing) gauge invariance

of the models (11) and (14) in terms of the standard gauge invariance (9) of

the duality invariant action (8), where the invariance of the symplectic form

and of the Hamiltonian is manifest.

4. Now there is time for some examples. The simplest one is the sphere

with the round metric and invariant 2-form, dualized with respect to SU(2).

The double is the cotangent bundle of SU(2), algebra F is generated by the

Pauli matrix �3, E = Span(�3; �+ + iat+; �� � ibt�), where ti is the basis

of the coalgebra of SU(2) dual to �i and a; b are arbitrary real parameters.

The result is the standard round metric on FnSU(2) (=2-sphere) and the

standard monopole 2-form as the torsion:

a� b

2
(d�2 + sin2 �d�2);

a+ b

2
sin �d� ^ d�: (16)

Now the dressing action of the group F on the coalgebra is simply rotation

with respect to the z-axis, the torsion 2-form vanishes and the dual metric
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on the dressing coset (having the topology of the half-plane) reads

1

(b� a)�
(d� + (z � a)dz)(d� + (z � b)dz): (17)

Here � is one half of the squared distance from the z-axis.

So far we have rederived the result of the traditional non-Abelian T-

duality [2, 5, 16, 19]. Now we present its generalization, when the cotangent

bundle is replaced by SL(2; C) and the coalgebra is replaced by the Borel

group B2 of upper-triangular matrices in SL(2; C) with real entries on the

diagonal. The invariant bilinear form on the double is < a; b >= 1

�
Im(tr(ab))

with an arbitrary real �. F and E remain the same, written in terms of the

elements of the original basis �i and its dual basis ti (now de�ned with respect

to the inner product on sl(2; C)). The metric and the torsion 2-form on the

sphere are

1

�

a� b

2
(d�2 + sin2 �d�2);

1

�
(
a+ b

2
+ 2�ab sin2

�

2
) sin �d� ^ d�; (18)

� = (1 + 2�a sin2
�

2
)(1 + 2�b sin2

�

2
):

The dual torsion 2-form vanishes and the dual metric in appropriate coordi-

nates reads

1

1 + �z

1

(b� a)�
(d� + (

z + �z
2
=2

(1 + �z)2
� a)dz)(d�+ (

z + �z
2
=2

(1 + �z)2
� b)dz): (19)

Note that in the limit �! 0 our SL(2; C) results (18) and (19) reproduce

the traditional non-Abelian duality results (16) and (17). Thus we have

obtained a one-parametric deformation of the dual pair of [2, 5, 16, 19].

The data (16) and (18) are de�ned on the standard coset FnSU(2) where
the duality group SU(2) naturally acts. Only the data (17) and (19) are

de�ned on the truly dressing cosets where there is no natural action of the

SU(2) coalgebra and the Borel group B2 on the coset targets (17) and (19)

respectively. It is not too di�cult to �nd examples, where the both targets

from the dual pair are truly dressing cosets. The corresponding formulas in

explicit coordinates are not very illuminating, however.

5. We conclude that there is the natural generalization of the traditional

non-Abelian T -duality with a non-freely acting duality group. In the most
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general case the duality group does not even act on the �-model target but

in the non-local way on its phase space. Only in the special case when the

residual group F is a subgroup of the duality group G the action of G on the

�-model target is local and F is the isotropy group of this action. We should

mention that the global aspects of the PL T -duality [11] can be also settled

in the case of the dressing cosets. We have shown in [11] that the basic data

de�ning the PL T -duality between D-branes are the 2n-dimensional Drinfeld

double and n-dimensional isotropic subalgebra A of the Lie algebra of the

double. If our algebra F is also the subalgebra of A then all results of [11]

directly generalize to the dressing cosets.

There remains an important nontrivial open problem: Is a given �-model

a dualizable dressing coset? The nontriviality stems from the fact that even

if the answer is in some cases a�rmative the duality group does not act

on the target and the dressing orbits are in general too `wild' to be easily

recognizable. On the other hand, we �nd particularly this aspect of our

construction promising. The simple data on the double give rise to very

non-symmetrically looking �-models whose targets, metrics and torsions are

straightforwardly de�ned but not easily evaluated explicitly. Needless to say,

eventually we hope to establish a connection of the PL T -duality with the

mirror symmetry.

Another interesting project consists in considering the subspace E to be

an isotropic subalgebra. The resulting cosets should be topological theories

and the PL duality would rotate just the zero modes in a nontrivial way [22].

At the quantum level, a path integral derivation of the dressing cosets should

be obtained perhaps by a modi�cation of the derivation due to Tyurin and

von Unge [9] or in the way suggested in [10].

We thank A. Alekseev and E. Kiritsis for discussions.
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