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ABSTRACT

We construct the twistor space associated with an HKT manifold, that is, a

hyper-Kähler manifold with torsion, a type of geometry that arises as the target

space geometry in two-dimensional sigma models with (4,0) supersymmetry. We

show that this twistor space has a natural complex structure and is a holomor-

phic fibre bundle over the complex projective line with fibre the associated HKT

manifold. We also show how the metric and torsion of the HKT manifold can be

determined from data on the twistor space by a reconstruction theorem. We give

a geometric description of the sigma model (4,0) superfields as holomorphic maps

(suitably understood) from a twistorial extension of (4,0) superspace (harmonic

superspace) into the twistor space of the sigma model target manifold and write

an action for the sigma model in terms of these (4,0) superfields.
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Two-dimensional (p,0)-supersymmetric sigma models with Wess-Zumino term

(torsion) are used to describe the propagation of superstrings in curved back-

grounds and arise naturally in the context of heterotic string compactifications

(for a recent review see [1]). These models have as couplings the metric, g, of the

target space, M , and a locally defined two form, b, on M . Extended supersymme-

try (p ≥ 2) imposes restrictions on the couplings g and b of the sigma model which

have an interpretation as conditions on the geometry of the sigma model manifold.

In the absence of torsion, the geometry of the sigma model manifolds is Kähler or

hyper-Kähler depending on the number of supersymmetries that leave the sigma

model action invariant. In the presence of torsion, the geometry of the sigma model

manifolds is not Kähler or hyper-Kähler and new geometry arises [2,3]. These new

geometries, which we shall call Kähler with torsion (KT) and hyper-Kähler with

torsion (HKT), are, however, closely related to Kähler and hyper-Káhler geome-

tries respectively. In this letter, we show that both KT and HKT geometries can

be characterised in terms of the properties of two-forms just as Kähler and hyper-

Kähler geometries are characterised in terms of properties of the Kähler forms. We

construct twistor spaces associated with HKT spaces and state a reconstruction

theorem, thus generalising the twistor construction and the reconstruction theorem

of ref. [4,5] for hyper-Kähler manifolds. Finally we use the above results to give a

geometric interpretation of the (4,0) superfields introduced in [3] as holomorphic

bundle maps from (4,0) harmonic superspace [6] into the twistor space of the sigma

model target manifold and we exploit the complex structure of the twistor space

to construct a (4,0) action in terms of these superfields.

A complex manifold M , with metric g, complex structure I and a three form

H, has a KT structure provided that these tensors obey the following conditions:

Ii
kIj

lgkl = gij

∇(+)
i Ij

k = 0 ,
(1)
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where the connections, Γ(±), of the covariant derivatives, ∇(±), are given by

Γ
(±)
jk

i = Γjk
i ±

1

2
Hjk

i ; (2)

Γ is the Levi-Civita connection of the metric g and

H ≡
1

3
dxk ∧ dxj ∧ dxiHijk (3)

is a three-form on the manifold M . If no further conditions are imposed on H, we

say that the manifold M with tensors g, I and H that satisfy (1) has a weak KT

structure. However, if in addition we take H to be a closed three form (dH = 0),

we say that M has a strong KT structure, in which case we can write

H =
1

3
db (4)

for some locally defined two-form b on M .
?

Finally, if H is the zero three-form,

the manifold M becomes Kähler. The target space, M , of a (2,0)-supersymmetric

sigma model with torsion is a manifold with a strong KT structure. The couplings

of the classical action of the theory are the metric, g, of M together with the

two-form b. However, in the quantum theory and in particular in the context

of the anomaly cancellation mechanism [7,8, 9], the (classical) torsion H, (4), of

(2,0)-supersymmetric sigma models receives corrections proposional to the Chern-

Simons three-form of the Γ(−) connection. Therefore the new torsion is not a closed

three form but rather dH = c trR(−) ∧R(−) for some constant, c; we have used the

same notation for the torsion before and after the redefinition. Therefore, although

classically the the target space of (2,0)-supersymmetric sigma models has a strong

KT structure, quantum mechanically this changes to a weak KT structure, albeit

of a particular type.

? We use superspace form notation where the exterior derivative, d, acts from the right.
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A Riemannian manifold, M , with metric g and torsion a three-form, H, has an

HKT structure if it admits three (integrable) complex structures {Ir; r = 1, 2, 3.},

that obey the following conditions

IrIs = −δrs + εrstIt

Iri
kIrj

lgkl = gij ; r = 1, 2, 3

∇(+)
i Irj

k = 0 ,

(5)

where the connections, Γ(±), are given in (2). It is evident that if H = 0, then

the conditions (5) are those of hyper-Kähler geometry. As in the case of KT

structures, we can define a strong HKT structure and a weak HKT structure

depending on whether or not the three-form H is closed. Both strong and weak

HKT geometries arise in the context of (4,0)-supersymmetric sigma models with

torsion. The strong HKT geometry is the geometry of the sigma model manifold

in the classical theory, while the weak geometry is the geometry of the sigma

model manifold in the quantum theory as explained for the case of the (2,0)-

supersymmetric sigma model above. There are many examples of manifolds with

strong HKT structures. These include group manifolds [10, 11] with SU(2)×U(1)

as the simplest example. One can construct other four-dimensional examples by

starting from hyper-Kähler manifolds with metric gh and then setting g = eF gh and

H = ∗dF . The metric g and torsion H describe a strong HKT structure provided

that eF is a harmonic function with respect to the metric gh [12]. Furthermore, the

conditions (5) can be solved exactly if one assumes that the four-manifoldM admits

a triholomorphic Killing vector field which in addition leaves the torsionH invariant

[13]. The associated strong HKT geometry is naturally associated with monopoles

on the round three-sphere and an example of such geometry is the Taub-NUT

geometry with non-zero torsion found in refs. [14, 15]. In the limit that the torsion

vanishes, the strong HKT geometry of [13] becomes that the Gibbons-Hawking

hyper-Kähler geometry [16, 17]. The Gibbons-Hawking metrics are associated with

monopoles on the Euclidean three-space. The conditions (1) and (5) on the various

tensors associated with manifolds with a KT and HKT structure, respectively, can
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be rewritten in terms of exterior differential relations. This is the analogue of

a similar situation that arises in the case of Kähler and hyper-Kähler manifolds

where the covariant constancy condition of a complex structure is equivalent to

the symplectic condition for the associated Kähler form. However due the the

presence of torsion, the exterior differential relations for KT and HKT manifolds

are somewhat different from those of Kähler and hyper-Kähler manifolds.

We first consider the exterior differential relations for weak KT manifolds. For

this, we use notation similar to that of ref. [18] and introduce the inner derivation,

ιI , and the exterior derivation, dI , associated with the complex structure I as

follows:

ιIπ = pdxip...i1Ii1
jπji2...ip

dI ≡ d′ = ιId− dιI ,
(6)

where

π = dxip...i1πi1i2...ip (7)

is a p-form. Using the first equation in (1), we introduce a two-form ω as follows:

ω(X, Y ) = g(X, Y I) . (8)

Then the covariant constancy condition in (1) and the fact that H is a (2,1) and

(1,2) form with respect to I implies that

H = d′ω . (9)

The above statement has a converse: if M is a complex manifold with complex

structure I and a non-degenerate two-form ω which is hermitian with respect to I ,

then M admits a weak KT structure with metric, g, given in (8) and torsion, H,

given in (9). To show this, one makes use of the vanishing of the Nijenhuis tensor

of the complex structure I . To describe the geometry of manifolds with a strong
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KT structure in terms of the exterior differential relations one has to impose, in

addition, the constraint that H be closed which implies that ω should satisfy:

dd′ω = 0 . (10)

We remark for use later in the letter that for manifolds with a strong KT structure

the metric g and the locally defined two-form b can be expressed in terms of a (real)

one-form potential k, [7]. If we introduce complex co-ordinates {zα;α = 1, . . . , n}

(dimM = 2n) on M with respect to the complex structure I we can write

gαβ̄ = ∂αkβ̄ + ∂β̄kα

bαβ̄ = ∂αkβ̄ − ∂β̄kα .
(11)

Next we consider the case of manifolds with a weak HKT structure. We first

introduce three inner derivations, ιr, and three exterior derivations, dr, associated

with the three complex structures, Ir. These derivations together with the exterior

derivative d satisfy the differential algebra

ιrιs − ιsιr = 2εrstιt

ιrd− dιr = dr

ιrds − dsιr = −δrsd+ εrstdt ,

d2 = 0,

drds + dsdr = 0

ddr + drd = 0 .

(12)

To derive the differential algebra (12), we have used the algebraic relations (5)

and the integrability properies of the complex structures {Ir; r = 1, 2, 3}. We then

introduce the three two-forms, {ωr ; r = 1, 2, 3}, as in (8), one for each of the three

complex structures {Ir; r = 1, 2, 3}. Using the covariantly constancy condition in

(5) and the integrability conditions of the complex structures, we can show that

H is the sum of a three-form of type (2,1) with respect to all complex structures
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and its complex conjugate which is of type (1,2). structures. This fact can be

summarised as follows:

ιrιsH = −δrsH + εrstιtH . (13)

Using this equation, the differental algebra (12) and the covariant constancy con-

dition in (5), we can show that

drωs = δrsH − εrstdωt . (14)

Observe that the diagonal conditions (r = s) in the above equation imply the

off-diagonal ones (r 6= s) and vice versa. This will be used later in the twistor

construction for HKT manifolds. For manifolds with a weak HKT structure the

above has a converse that can be stated as follows: let M be a manifold with

{Ir; r = 1, 2, 3} complex structures that obey the algebra of imaginary unit quater-

nions and suppose that there exists a non-degenerate two-form ω3 which is (1,1)

with respect to I3 and which satisfies

ι1ι2ω3 = 0 , (15)

then three two-forms, ωr, can be defined which satisfy the relations

ιrωs = 2εrstωt , (16)

and from any one of which one can construct the trihermitian metric g by

ωr(X, Y ) = g(X, Y Ir). (17)

M admits a weak HKT structure provided that, in addition, the 3-form H defined

by H = d3ω3 is (2,1) plus (1,2) with respect to all complex structures. To describe
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the differential relations for manifolds with a strong HKT structure, we should also

impose the condition:

ddrωr = 0 , r = 1, 2, 3 , (18)

for the torsion H to be a closed three-form on M . To construct the twistor space

of HKT manifolds, we first observe that on any manifold, M , with three complex

structures, {Ir; r = 1, 2, 3}, that satisfy the algebra of imaginary unit quaternions,

the tensor

I= arIr; arar = 1 (19)

is also a complex structure. Thus there is an S2’s worth of complex structures on

M , and the twistor space is simply Z = M ×S2. If (x, y) ∈ Z where y denotes the

usual (affine) complex co-ordinate on S2 = |CP 1. Then we have

T(x,y)Z = TxM ⊕ TyS
2 (20)

and so we can define an almost complex structure on Z by

Î= (I, I0) (21)

where I0 is the complex structure on |CP 1 and

I=
1

1 + yȳ

[
(1− yȳ)I3 + (y + ȳ)I1 + i(y − ȳ)I2

]
. (22)

In fact Îis a complex structure. To see this let φ be a (1,0) form on M with respect

to I3, I3φ = iφ, then

φ̂ = (1− iyι1)φ (23)

is (1,0) with respect to I(y) as is not difficult to show. Now Î is integrable if the

exterior derivative (on Z) of any form φ̂ which is (1,0) with respect to Îis the sum
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of terms each of which is the wedge product of an arbitrary one-form with a (1,0)

form, i.e. if

dφ̂ =
∑
p

λp ∧ ρp (24)

on Z, where each ρp is (1,0). Clearly dy is (1,0) with respect to Îand satisfies (24)

so we only need to check (24) for (1,0) forms of the type (23) now interpreted as

forms on Z. It is not hard to show that

dφ̂ = idy ∧ ι1φ+
1

2
dxj ∧ dxiHij

kφ̂k + dxj ∧ dxi∇(+)
i φ̂j (25)

The first term on the RHS of (25) is obviously of the desired form as is the second,

due to the fact that H is (2,1) plus (1,2) and φ̂ (1,0) with respect to Î. Finally, it

is easy to check that the third term has no (0,2) part either due to the fact that I

is covariantly constant with respect to ∇(+). Hence Z is complex.

Having constucted the twistor space Z of a manifoldM with an HKT structure,

we shall now reverse the procedure and determine the metric and torsion of M from

data on the twistor space. As we have shown, Z is a complex manifold and so we

can write TZ ⊗ |C = τ ⊕ τ̄ , where τ is the holomorphic tangent bundle. Since the

projection p : Z → |CP 1 is holomorphic, we define τf = Ker dp|τ . The holomorphic

sections of the bundle Z → |CP 1 are the twistor lines and the manifold M can be

thought as the space of their deformations (the space of twistor parameters). The

normal bundle of every twistor line is isomorphic to |C2n⊗O(1) where O(1) denotes

the twist of the normal bundle over |CP 1. (The O(1) twist of the normal bundle of

the twistor line is related to the fact that the form (23) is linear in y.) One then

can define an (2,0)-form ω as follows:

ω = −(ω1 − iω2) + 2yω3 + y2(ω1 + iω2) . (26)

This form is a section, holomorphic with respect to |CP 1, of the bundle Λ2τ∗f (2),

where the number 2 denotes the twist of the bundle over |CP 1 and it is related to
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the fact that ω is quadratic in the y co-ordinate. Note also that there is the real

structure, r : M × |CP 1 →M × |CP 1, on Z defined as follows:

r : (x, y)→ (x,−
1

ȳ
) . (27)

The twistor lines and the form (26) are compactible with the real structure r.

Moreover the real structure r transforms the complex structure I to −I. Now we

are ready to state the reconstruction theorem for manifolds with a weak HKT

structure. This is as follows: let Z be a complex manifold with complex dimension

2n+ 1 and the following properties: 1. Z is holomorphic fibre bundle p : Z → |CP 1,

2. the bundle admits a family of holomorphic sections each with normal bundle

isomorphic to |C2n⊗O(1), 3. there is a section ω, holomorphic with respect to |CP 1,

of Λ2τ∗f defining a non-degenerate two-form at each fibre that satisfies

(id+ dI)ω = 0 , (28)

4. Z has a real structure r compactible with the above data and inducing the an-

tipodal map on |CP 1. Then the parameter space of real sections is a 4n-manifold,

M , with a natural weak HKT structure. Many steps in the proof of the above the-

orem are similar to those of the reconstruction theorem for hyper-Kähler manifolds

[5]. The main difference is the condition, (28), that the two-form, ω, satisfies
?
. To

derive the HKT structure on the space of parameters of the twistor lines from (28),

one evaluates (28) at the points {1,−1, i,−i, 0,∞} of |CP 1 and then observes that

the resulting conditions imply the off-diagonal, (r 6= s), conditions of (14). The

metric, g, on M is defined as in the hyper-Kähler case and the torsion is defined

as follows:

H = d1ω1 . (29)

Finally, using the equivalence of the diagonal and the off-diagonal conditions of

(14) and the relation of the exterior differential relations (14) to the weak HKT

? In the hyper-Kähler case the condition on ω is dω = 0.
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structures, one sees that the space of parameters, M , of the real twistor lines has

a weak HKT structure. We can also incorporate strong HKT structures. The

only difference between the reconstruction theorems for manifolds with weak and

strong HKT structures is the condition on the form ω. In the strong case one

should require, in addition to (28) , that

(id+ d
I
)∂ω = 0 , (30)

where ∂ is the exterior derivative along the y direction. This condition is what is

needed to show that the torsion (29) is a closed three-form on the space of twistor

parameters, M .

Now consider a (4,0) supersymmetric sigma model in (4,0) superspace Σ. This

space has coordinates (u, v, θo, θr), where (u, v) are light-cone cordinates for two-

dimensional Minkowski space, and where the supercovariant derivatives satisfy

[Do, Do] = i∂u

[Do, Dr] = 0

[Dr, Ds] = iδrs∂u .

(31)

The sigma model superfield is a map from Σ to M which satisfies

DrX
i = −DoX

jIrj
i (32)

as a consequence of which the action

A = −2i

∫
dudvDo {(g + b)ijDoX

i∂vX
j} (33)

is (4,0)-supersymmetric [3]. The above superspace is not a complex space but

it does admit several CR-structures [19,20], which can be thought of as partial

complex structures. More precisely, a real (super)manifold of dimension 2n +

m, where m,n ∈ Z (or Z2 in the super case), is a CR (super)manifold if the
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complexified tangent bundle has a complex rank n sub-bundle which is involutive.

In other words, there must be n (local) linearly independent complex vector fields

which form a closed system under Lie brackets. There are many odd CR structures

on Σ, i.e. CR structures generated by odd vector fields, and they can be understood

in terms of complex structures of the odd tangent bundle. In fact, (4,0) superspace

has a natural set of three fibre complex structures Jr, r = 1, 2, 3, obeying the

algebra of the unit imaginary quaternions. With the above covariant derivatives

as a basis of odd tangent vectors, the components of the J ’s can be taken to be

(Jr)0s = −δrs

(Jr)st = −εrst
(34)

with the remaining components being determined by antisymmetry, since the stan-

dard Euclidean metric is trihermitian. The CR derivative associated with any of

these complex structures has components given by 1
2(1 + iJr)D, where D denotes

the set of covariant derivatives. The algebra of the J ’s and the algebra of the D’s

then ensures that these derivatives do indeed anticommute amongst themselves.

Clearly, JJ := arJr, where arar = 1, is also an odd complex structure, so that there

is an S2 of such CR structures on Σ, and hence we can form the twistor space,

Σ̂ = Σ×S2, in an analogous fashion to the twistor space associated with M . This

is in fact the (4,0) harmonic superspace discussed in from a different perspective

in [6]. It is not difficult to show that Σ̂ is a CR supermanifold with CR structure

of rank (1|2); the corresponding CR derivatives are those given above (for the

structure JJ), together with ∂
∂ȳ , where y is the standard holomorphic coordinate

on S2. The twistor space can be considered as a fibre bundle over |CP 1 where the

fibre at y is Σ together with the CR-structure determined by JJ(y). This space is

not trivial as a CR bundle as the (two-dimensional) complex odd part of the fibre

has twist 1 with respect to |CP 1. There are two independent complex components

of any CR derivative; using the above prescription for computing them one finds

that, for JJ, one of them is

D̄(y) := Do − iarDr . (35)
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This derivative does not commute with ∂
∂ȳ , but instead the commutator gives a

new odd vector field, D̄′(y), and these three vector fields form a basis of the CR

structure. It therefore follows that any function f on Σ̂ which is analytic with

respect to |CP 1 and which satisifies

D̄(y)f = 0 (36)

is in fact CR-analytic. These are precisely the type of fields we are interested in

because the sigma model constraint can be rewritten as

arDrX
i = −DoX

j
Ij
i. (37)

In complex coordinates Zα with respect to Ithis is just

D̄(y)Zα = 0 (38)

Since the coordinates Zα do not depend on ȳ, it follows that the sigma model map

is a CR-analytic map from Σ̂ to Z, which is in addition fibre-preserving and which

induces the identity on the base space, |CP 1. Note that the superfields contructed

here are short multiplets, in contrast to those of ref. [6] which are not analytic

with respect to |CP 1.

This construction allows us to write a new form of the (4,0) action. In the

(2,0) case, one has the same action but with the fields now being (2,0) superfields

satisfying the constraint

D1X
i = −DoX

jIj
i (39)

Switching to complex coordinates, using the above constraint and the expression

for the Kahler form in terms of the potential k given in (11) one arrives at the

manifestly (2,0) invariant form of the action

A = −i

∫
dudvDD̄{kα∂vZ

α − k̄ᾱ∂vZ
ᾱ} , (40)

where D = Do + iD1. We can carry out exactly the same construction in the (4,0)

case using the two-form Ω := arωr. That is to say, for each point y ∈ |CP 1, we
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have a (2,0) sigma model with (2,0) derivative D(y) and potential k(y), and the

action can therefore be converted into the form

A = −i

∫
dudvD(y)D̄(y){kα(y)∂vZ

α − k̄ᾱ(y)∂vZ
ᾱ} , (41)

which appears at first sight to depend on y, although it clearly cannot by construc-

tion.
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