Some Tests for Checking the Smoothness of

Measurements of Bubble Chamber Track Images

1. Introduction

In the analysis of bubble chamber events, a number of measurements are made along each track in each of the photographs (views). The tracks are measured in at least two views, (normally three) and a combination of the measurements in all of the views is used to make a three-dimensional reconstruction of the track. within the bubble chamber. Before attempting any spatial reconstruction, one first makes a check on the smoothness of the measurements in each individual view, and if one finds a measurement which is inconsistent in comparison with the other measurements then one rejects this bad measurement. One implies here that any deviation from the smooth curve is caused by a bad measurement, but ono must also admit the possibility of a track having a kink in it. To try and recognize a genuine kink in a track' froin a single two-dimensional picture is both difficult and dangerous, and this problem is best left to a three-dimensional analysis using all the available views. For the purpose of this report, one makes the implicit assumption that any deviation, which arises from a genuinc kink in a track, will not have a large enough magnitude to cause a measurement to be rejected. Bad measurements can in principle arise in two ways: (1) the oporator is oither careless or inoxperienced and really makes a bad measurenent, ur (2) the measuring machino produces a spurious digitizing, which when interpreted as a measurement, bears no relation to the other measurcments along the track (except by pure coincidence).

The usual test that is aode to check the smoothness of the measurements is to fit a circle through them and to reject any moasurement which lics further away from the circlo than a given tolerance. To safeguard against the possibility of rejecting good moasurements by mistake, this tolerance generally has to be much larger than the known measurement crror, because not all tracks appear circular on the film. The main reason for the non-circularity of some tracks is that particles with a comparatively low momentum tend to be slowed down within the chamber and deviate from their original path. There are other reasons why track images on the film are non-circular, but the energy loss offect is the most important one.

The simple circle fit test does however find most of the bad measurements, but there are others which it cannnot possibly discover. In order to weod out all the obvious bad points, more claborate checks are needed and a method with this aim in mind is described in the following sections.

2. Classification and Detection of Bad Measurements

It is convenient to classify bad measurements into three categories :

1. The measurement is so bad that it could not possibly correspond to a point in the chamber.
2. The bad measurement could refer to a point within the chamber, but it is still quite remote from the track.
3. The bad measurement lies somewhere in the region of the track.

Bad measurements of type (1) can easily be detected by knowing the range of values of the x and y coordinates of points on the film. If the coordinates of any measurement violate these known limits then the measurement can immediately be flagged as a bad measurement.

One may consider bad measurements of types 2 and 3 together and it will be supposed, for the argument, that there is just one bad measurement amongst a set of good ones. If one fits a circle by least squares through these measurements one should obtain one of two possibilities, which are shown in Figs $1(a)$ and $1(b)$. In Fig. I(a) the bad measurement is in the region of the track and belongs to type (3). This kind of bad measurement may be detected in the usual way of comparing the deviations of individual measurements from the circle with a certain tolerance. This test can however be made more powerful by making the tolerance a function of the radius of curvature of the fitted circle. As was pointed out in the Introduction, only low energy tracks are liable to deviate appreciably from a circle, whereas high energy tracks (large radius of curvature) should fit a circle very closely.

In Fig. I (b) one has a bad measurement of type (2). In this case the bad measurement fits the circle very well and would not be detected by looking at the individual deviations. Instead, though, one may consider the angular separations of neighbouring measurements along the circle. By the angular separation of two measurements one means the angle between the two radius vectors joining the centre of the circle to the measurements (see Fig. l(c)). A bad measurement of the kind shown in Fig. I(b) will clearly have a much larger angular separation from its neighbouring measurement, than the average angular separation between the other measurements, and hence this gives one a good means of detecting bad measurements of this type. Of course for this kind of test it is implicitly assumed that the measurements are correctly ordered along the circle, whereas when they are input to the geometry program, they could be in some other order, particularly the bad measurement, which in this case has almost surely been produced by a spurious digitising from the measuring device. Now one of the initial tasks of a geometry program is to order the measurements relative to the beginning of the track and it can be seon that a useful by-product of making a circle fit to the measurements is that it also provides an excellent method for ordering the points; i.e. the angular separation of cach measurement from the first measurement can be computed and the measurements ordered accordingly.

3. Details of a method for rejecting bad measurements

The ideas presented in the last section described a set of tests which will detect bad measurements of various types. In this section these ideas are combined into a single method which nay be used for detecting and rejecting bad measurements along a track. The method is presented as a series of stages which correspond to stages within a computer program. It is assumed that only one bad measurement is cllowed per view of each track and if the method detects two bad measurements on one view, then that view is rejected for the track. (In practice, measurements rejected at stage 1 of the method could well be onitted from this count of bad measurenents.)

Stage I : The x and y coordinates of each measurement are checked against preset naximun and minimun values. If either coordinate lies outside its permitted range, the measurement is rejected.

Stage 2 : A circle is fitted to the measurements and the radius and coordinates of the centire of the circle determined. An explanation of how one fits the 'best' circle to a set of points is given in Λ ppendix I.

Stage 3: Using the circle fitted in stage 2, one then determines the angular separation (θ) of each measurement from the first measurenent, in a clockwise direction, say, the range of θ being fron $0-2 \pi$ radians. At this stage one does not know whether the track is going in a clockwise or anti-clockwise direction, but one can decide this by counting the number of neasumements which have a θ value less than π, and the number for which θ lies in the range $\pi-2 \pi$. If the majority of neasurements have an angular separation in the range $\pi-2 \pi$, then one assumes that the track is really travelling in an anti-clockwise direction and the angular separation Θ is replaced by $2 \pi-\theta$. For example, the track in Fig. 2 has 3 points which lie in the range $0-\pi$ and 8 points in the range $\pi-2 \pi$ and is hence deduced to be going in an anti-clockwise direction.

One also has to be careful that one does not make the implicit assumption that the first measurement in the list of measurenents is necossarily the first measurement along the track, though it is roasonable to assume that it does lie sonewhere near the beginning. This situation can be allowed for by computing the angular separations of the neasurements from a point somewhere before the first measurcment instead of the first measurement itsele. If one takes this point to be at a small angular separation, θ, from the first measurement then one simply changes the values of θ one has already computed to $(\theta+\theta)|2 \pi|$ (i.e. modulo 2π). For example in Pig. 3, there are 5 measurements along a track and one assumes that their real order is 2, 1, 3, 4, 5, though they have been measured in the order $1,2,3,4,5$. Measurement 2 would initially have a Θ value of nearly 2π, whereas the other measurements would all have small θ values. However, after referring

$$
-4-
$$

the measurenents to the point P instead of to the first measurement, the θ value of neasurement 2 has a value of the sane order as the others.

These Iinal θ values for the neasurements are now used to order the measurenents along the track in terms of increasing values of θ 。

Stage 4: After ordering the measurements, one can now compute the angular separation $\left(\phi_{i}\right)$ between conscoutive measurementis

$$
\text { i.e. } \quad \phi_{i}=\theta_{i+1}-\theta_{i}
$$

The largest value of \varnothing_{i} is extracted and the mean value of the renainder found. If one supposes there are n measurements, then the nean \varnothing is given by

$$
\bar{\phi}=\frac{1}{(n-2)}\left[\sum_{i=1}^{n-1} \phi_{i}-\phi_{\text {nax. }}\right]
$$

Onc wishes to use these values of \varnothing_{i} to try and extract bad measurements of the kind shown in Fig. I(b). One assumes one has a bad measurement of this type if a \quad op between two measuremonts is too large, i.e. if $\emptyset_{i}>M \not \equiv$, where K is sone pre-assigned constant. As one is only interested in removing one bad measurement and not more than one, it is safe to assume that a single bad measurenent of this type will appear either as the first or last neasurement in the reordered set. One now considers the various possibilities.
a) All values of $\phi_{i}<K \bar{K}:-n o$ noasurenent is rejected onc one proceods to stage 5 .
b) More than one value of $\phi_{i}>\bar{K} \phi$: - reject the view for this track.
c) One value of $\phi_{i}>K \overline{\phi^{\prime}}$, but it is not ϕ_{1} or $\phi_{n-1}:-$ in this case one has a large gap somowhere ${ }^{n}-\frac{1}{n}$ the middle of the track, as shown in Figg. 4 and it is hard to say whether one should reject the view for this track or not. Our decision has been to kecp the view, on the principlo that the gap was probably made deliberatly (e.s. a confused region on the film).
a) $\emptyset_{n-1}>\bar{K} \phi:-r e j e c t$ the last measurenent. Before procecding to stage 5 one should first return to stage 2 to refit the circle.
e) $\emptyset_{1}>K \bar{\varnothing}:-$ reject the first measurement ond then as above in (d). However, in this case one first needs to make on additional check. Iet us consider the situation in Fie. 5. The first measurenent is a wild point and the other measurements, 2-6, are good. Because the neasurements are ordered relative to the first measurenent, the points 2-6 will have been put into reverse order, so that measurement 6 is now the second point, etc. In this case one connot just
reject the first measurement and carry on, as the romaining measurenents would then be left in the wrong order. It is impossible to introduce checks for every conceivablo arrangement of points, but some test is certainly necessary here, as it is a not improbable situation. A simple and probably sufficient test is to check whether the original second measuroment is the same as the reordered second measurement. If they are not the same, then one supposes that the neasurenents have been reversed and they are put back into their original order.

Stage 5 : At this stage one can presume that no widely inaccurate neasurenents are present anongst the data and also that one knows the parancters of a circle fitted to the measurements. One now proceeds to test for bad measurenents of the type shown in Fig. I(a). One nakes the standard test of comporine the perpendicular deviations of the neasurenents fron the circle with a certain tolerance. This toleronce could be taken as a constant for all tracks, but it is more profitable to make it a function of the radius of the fitted circle. A discussion on the form of this function is given in Appendix II. If the tolerance is exceeded, then the measurenent, which gives the maximun deviation is removed and a second circle fitted to the remaining measurements. The deviations of the measurenents from this new circle are now computed and in turn compared with the tolerance. If the tolerance is again excecdod, this implies that there are at least two bad ncasurenents and honce the view should be rejected. Before rejecting the view completely though, there is one further test one should make. The assumption, which has has been inplied so far is that a bad neasurement will automatically have the largest deviation, whereas, although this is true in the vast majority of cases, it is known that therc can be excoptions when the bad measurement appears at one end of the track. A typical example is shown in Fig. 6, where the bad measurement is the first point, but the second point jis flagged as the one with the largest deviation. In order to take account of this possibility, onc should therofore, in the cases where two measurenents have been rejected, make a third fit, in which the two rejected measurements are replaced and instead, the end point nearest the first rejected measurenent is renoved. If this third fit is still not acceptable, then the view is rejected. This sequence of tests has been found to be perfectly satisfactory in practice.

Another, noro complete approach would be to say that if the first fit is not acceptable, then one tries nany second fits, in which cach ineasurement in turn is romoved from the set of measurments. The fit, which produces the smallest sum of squares of the deviations, could then be considered to be the best fit and the measurement, which was onitted fron this fit, becones the rejected measurement. This approach, though, must become rather tine-consuning when there are many points along the track, and for this roason, is not rocomended.

The methods described in this report were incorporated into the CERN bubble chamber geometry program, THRESH 1), at the beginning of 1966. The previous smoothness test in THRESH was simply to compare the deviations of the neasurements from the fitted circle with a constant tolerance. Before the new routines were introduced into the progran, tests were carricd out on a few hundred events. The results of these tests were very satisfactory. All known isolated neasurement errors, which had remained undetected before, were now detected and accordingly deleted.

Acknowledgements
I would like to thank Mr. A. Meyer and Mrs V. Alles-Borelli for their help in the work described in Appendices I and II respectively.

Appendix I

On fitting a circle to a set of track measurements

One assumes fron the outset that the 'best' circle fit to a set of points is defined as that fit which minimises the sum of the squares of the perpendicular deviations of the points to the circles; i.e. if the coordinates of the centre of the circle are $\left(\lambda_{;} \mu\right)$, the radius of the circle is R and the distance of a point $P\left(X_{i}, X_{i}\right)$ to the centre of the circle is r_{i}, then the deviation of the point P from the circle is

$$
\delta_{i}=r_{i}-R
$$

and the 'best' circle fit minimises $\left\langle\delta_{i}^{2}\right.$. If one writes down the equation of the circle as

$$
x^{2}+y^{2}-2 \lambda x-2 \mu y-c=0
$$

then

$$
\delta_{i}=\sqrt{\left(x_{i}-\lambda\right)^{2}+\left(y_{i}-\mu\right)^{2}}-\sqrt{c+\lambda^{2}+\mu^{2}}
$$

The problem of minimising $\sum \delta_{i}^{2}$ with respect to the three paraneters λ, μ and c is a non-linear one and the solution would have to be found by an iterative method.

In practice it is not necessary to go to the longths of an iterative procedure, which would, of course, be time-consuming for a computer program. Instead Jot us consider the quantity

$$
\begin{aligned}
\epsilon_{i} & =x_{i}^{2}+y_{i}^{2}-2 x_{i}-2 \mu y_{i}-c \\
& =\left(x_{i}-\lambda\right)^{2}+\left(y_{i}-\mu\right)^{2}-\left(c+\lambda^{2}+\mu^{2}\right) \\
& =r_{i}^{2}-R^{2} \\
& =\left(r_{i}-R\right)\left(r_{i}+R\right) \\
& =\delta_{i}\left(2 R+\delta_{i}\right) \approx 2 R \delta_{i}
\end{aligned}
$$

One sees therefore that the quantity $\epsilon_{i} / 2$ is practically the sane as δ_{i} and hence one can try to minimise the $\frac{1}{q u a n t i t y ~} \Sigma\left(\epsilon_{i} / 2 R\right)^{2}$ instead.

One first performs a rotation and translation of the coordinate system which will make the track approximatcly parallel to the x-axis. Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{n}, y_{n}\right)$ be the first and last measured points respectively. The point $\left(x_{1} y_{1}\right)$ becones the zero of the new coordinafe system and the axes are rotated through an angle θ given by $\theta=\tan ^{-1}\left[\left(y_{n}-y_{1}\right) /\left(x_{n}-x_{1}\right)\right]$ (see Fig. 7a) . In this new coordinato syston one sees that for ani tracks which do not have too large a sagitta, the absolute value of the y coordinate of the centre of the circle is approximately the same as the radius (see Fig. 7b) 。

$$
\text { i.c. } R \approx|\mu|
$$

using this relation one may write

$$
\epsilon_{i}^{\prime}=\frac{\epsilon_{i}}{2 \mu} \approx \frac{\epsilon_{i}}{2 R} \approx \delta_{i}
$$

$$
-8-
$$

The quantity ϵ_{i}^{\prime} may be conveniently expressed as

$$
\epsilon_{i}^{1}=a_{0}\left(x_{i}^{2}+y_{i}^{2}\right)-2 a_{1} x_{i}-y_{i}-a_{2}
$$

The problom of minimising $\Sigma\left(\epsilon_{i}^{\prime}\right)^{2}$ with respect to the parameters $a_{0} a_{1}$ and a_{2} is a linear one and heñce is dircetly solvable.

One has shown that the quantity ϵ_{i}^{\prime} is practically equivalent to the real deviation δ for all tracks with small sagittac, which in fact comprises. the majority of bubble chamber tracks. For tracks which have larger safittae, one may still be reasonably confident that minimising $\Sigma\left(\epsilon_{i}\right)^{2}$ will produce the best circle fit. This is because tracks with large sagittae must as a consequence have small radii, and one can see that minimising $\Sigma\left(\epsilon_{i}\right)^{2}$ or even $\Sigma \epsilon_{\dot{1}}^{2}$ for that matter, becomes less sensitive to the value of R, when R is small. The one region where the method will fail though, is in the region of the singularity, $\mu=0$; i.e. those tracks measured through an angle of about 180 . For these tracks, one must minimise some other quantity and sinco the value of R must be very small in this case, the quantity \sum_{i}^{2} should be quite sufficient.

It would be wrong though, to assume that minimising $\Sigma \epsilon_{i}^{2}$ will always produce the sane answer as minimising $\Sigma \boldsymbol{\delta}_{\dot{1}}^{2}$. When the radius of the track is large and the measurements not particularly accurate, it is possible to arrive at quite different solutions. An example of this phenomenon is given in Fig. 8. In order to show the difference between the two fits more clearly, the y-scale has been groatly maçnificd, which results in the circle fits appearing as ellipses. The measured points are denoted by the large crosses; curve A is the circle fit obtainéd by minimising $\Sigma \epsilon_{i}^{2}$ and curve B is tho circle produced by minimising $\Sigma\left(\epsilon_{i}^{1}\right)^{2}$.

$$
\begin{array}{ll}
\text { For curve } A
\end{array}: \quad R=213 ; \quad \Sigma \delta_{i}^{2}=0.0139 ; \quad R^{2} \Sigma \delta_{i}^{2}=629, \quad \begin{array}{ll}
\text { For curve } B
\end{array} \quad R=796 ; \quad \Sigma \delta_{i}^{2}=0.0037 ; \quad R^{2} \Sigma \delta_{i}^{2}=2353
$$

Both these circle fits, in fact, obviously have the wrong sign of curvature compared to the real curve, but the point of the cxample is simply to demonstrate that two different solutions are possible.

As an additional check to nake sure that minimising $\Sigma\left(\epsilon_{i}^{\prime}\right)^{2}$ really did produce the same answer as minimising $\Sigma \delta_{i}^{2}$, a comparison of the results, of the two methods was made for about 1000 tracks. To mininise $\Sigma \delta_{\dot{1}}^{2}$ one has to start with a first approxination to the parameters λ, μ and c (say λ_{0}, μ_{0} and $\left.c_{0}\right)$, to expross the paraneters in terms of spoll deviations Irom the initial values, i.e. $\lambda=\lambda(1+\delta \lambda)$ etc, and then to linearise the least squares equations in terms of the new parameters $\delta \lambda, \delta \mu$ and δc. After solving for $\delta \lambda, \delta \mu$ and δc, one replaces $\boldsymbol{\lambda}_{0}, \mu$ and c_{0} by the new values of λ, μ and c respectively and then repeats the process. One judges the iteration to kave converged when the increments $\delta \lambda, \delta \mu$ and δc becone less than some pre-assigned value.

As expected, comparison of the rosults of the two fits for the 1000 tracks showod no significant diffogonco whatsoevor. The progran fon finding the solution which minimises $\Sigma \delta^{\circ}$ and the work involved in makine tho comparisons was carricd out by Mr. A. Moyer* whilst working as a visitor in the DD Division of CIRN.

For a further aiscussion on the subjoct of circlo fits, the reader is roPerred to the geonetry progran roport by Solnita et al. ${ }^{2}$.

[^0]
An expression for the tolerance as a function

of the radius, in a circle fit test

As was explained in the Introduction, high energy particles travelling through the bubble chamber in a nagnetic field leave tracks which generally appear very circular on the film, and the higher the energy of the particle, the snallox is tho curvature. On tho other hand, low energy particles are found to noticeably lose energy as they pass through the chamber, and their tracks correspondingly deviate from a circular path. When one applies a circle fit test to detect any bad measuronentis, one can use this knowledge to make a more accurate test, by expressing the tolerance, which one is using to throw out a measurement, as a function of the fitted radius of the circle. In order to deternine a suitable form for this function, the following data was accumulated.

The measurements of about 600 track inages were plotted on the Calcomp Plotter at CERN. These measurenents were examined very carefully by eye to see if any bad neasurement could be detected. The accuracy of the Plotter is such that good measurements lie perfectly on a smooth curve, and the resolution whick one obtains by looking along the line of measurements (i.e. putting one's eye close to the plane of the plotted points) is such that errors of $10-20 \mu$ in the film plane are clearly observed. If one detected a bad measurenent (i.e. deviation from the smooth curve), this track image was discarded, but if all the measurements appeared to be good, then one recorded the radius of the circle fitted to these measurements and the maximum deviation of a neasurement from this circle.

A plot was made of radius (R) against maximun deviation (d) and this is shown in Fig. 9, each track being represented by one dot. The radius is the radius of the track image projected onto the botton surface of the front glass (given in cm), and the deviation is the deviation in the filn plane (given in microns). In order to make a reasonable scale for the radius, the maximun radius shown is 1000 cms , but the behaviour of tracks with radii above this value is no different from other tracks with a large radius.

All deviations shown on this plot are genuine deviations of well neasured points, therefore any tolerance, which one is going to use to reject bad measurements, must lic above this level. One sees that quite a low tolerance could be used for tracks with a large radius, but this would have to increase sharply as the radius gets smaller. Because of this behaviour, one has chosen to express the tolerance as a scond order function of the radius for values of R between O and some value R os and to keep the tolerance fixed for $R>R 0^{\circ}$
i.e. Let d_{2} be the tolerance for $R=0$
and let d_{1} be the tolerance for $R=R_{0}$
then the tolerance nay be expr ssed as

$$
\left.\begin{array}{ll}
d=d_{1}+\left(d_{2}-d_{1}\right)\left(1-\frac{R}{R_{0}}\right)^{2} & \text { for } 0<R<R_{0} \tag{I}\\
d=d_{1} & \text { for } R \geqslant R_{0}
\end{array}\right\}
$$

For the data given in Fig. 9 one has used the values

$$
a_{1}=17.5 \quad a_{2}=77.5 \quad R_{0}=400
$$

and in Tig. 9, this tolerance is drawn as the continuous curve above the plotted points.

It should be noted that the data contained in Fig. 9 was obtained from tracks belonging to a particular experiment (i.e. $5.7 \mathrm{GeV} / \mathrm{c}$ antiproton bean in the Saclay 80 cm hydrogen bubble chamber), and will not necessorily be valid for other experinents. The general behaviour should be the sane though, and one could use the function given above in equation (I) with appropriate values for the paraneters d_{1}, d_{2} and R_{0}.

The work involved in accumulating the data shown in Fig. 9 was carried out by Mrs V.Alles-Borelli*。

* now at the Instituto Nazionale di Fisica Nucleare, Bologna

66/1380/3/ng

References

1) Track chanber Progran Library, section THRESH; CERN.
2) F.T. Solmitz, A.D. Johnson and T.B. Day :" Three View Geometry Progran. UCRI Alvarez Group "Progranmers' Note" P 117 (page 38) 。 May, 1965.

FIG. 1 (a)

FIG. 1 (b)

FIG.1(c)

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7 (a)

FIG. 7 (b)

FIG. 8

FIG. 9

[^0]: * on leave fron the Forschungsstelle für Physik Föhor Encrgien, East Borlin

