
ar
X

iv
:h

ep
-p

h/
96

01
37

6v
2 

 1
 F

eb
 1

99
6

SISSA Ref. 18/96/A
CERN-TH/95-351
IC/96/17
hep-ph/9601376

NONRESTORATION OF SPONTANEOUSLY BROKEN P, CP

AND PQ AT HIGH TEMPERATURE

Gia Dvali∗

CERN, CH-1211, Geneva 23, Switzerland

Alejandra Melfo
SISSA, 34014 Trieste, Italy, and Centro de Astrof́ısica Teórica, Universidad de Los Andes
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Abstract

The possibility of P and CP violation at high temperature in models

where these symmetries are spontaneously broken is investigated. It is found

that in minimal models that include singlet fields, high T nonrestoration is

possible for a wide range of parameters of the theory, in particular in models

of CP violation with a CP-odd Higgs field. The same holds true for the

invisible axion version of the Peccei-Quinn mechanism. This can provide

both a way out for the domain wall problem in these theories and the CP

violation required for baryogenesis. In the case of spontaneous P violation

it turns out that high T nonrestoration requires going beyond the minimal

model. The results are shown to hold true when next-to-leading order effects

are considered.
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I. INTRODUCTION

The phenomenon of spontaneous symmetry breaking has become a cornerstone of modern
particle physics. To be able to establish a connection between particle physics and cosmology,
it is essential to investigate the behavior of symmetry breaking in the early universe, i.e.

at high temperature. In spite of common sense prejudice, it is by now known that more
heat does not necessarily imply more symmetry [1,2]. Rather, the question of symmetry
restoration is quite a complex phenomenon and depends on the dynamics of the theory
considered.

Examples have been found with symmetries remaining broken at arbitrarily high tem-
perature, or even exact symmetries becoming broken as the system gets heated up [2–5].
However, some of these examples were artificially created just in order to demonstrate the
phenomenon. In our opinion, symmetry nonrestoration becomes relevant only when result-
ing from minimal and realistic models. This is precisely what we wish to address in this
paper. For the sake of focus, we concentrate on the issues of P and CP violation (both
weak and strong). The choice of parity and time reversal is in our opinion natural, these
being fundamental symmetries of nature. Furthermore, the spontaneous breaking of these
symmetries may offer a simple way out of the strong CP problem [6].

There are at least two important reasons to have CP broken at high temperature. Baryo-
genesis requires CP violation, and if one is to adhere to the appealing idea of CP symmetry
being broken spontaneously, its nonrestoration becomes a must. On the other hand, the
spontaneous breakdown of a discrete symmetry leads to a domain wall problem, following
the phase transition that takes place if the symmetry is restored at high T [7,8]. Avoiding
this phase transition may be sufficient to solve the problem, since the thermal production of
large domain walls is naturally suppressed for a wide range of the parameters of the theory
[9]. In section II, we study CP behavior at high temperature in some SU(2)×U(1) theories
with Higgs doublets and singlets only. It turns out that in minimal such models with dou-
blets only CP is always restored, whereas it can naturally remain broken if there is at least
one singlet on top of the usual Higgs doublet.

Section III is devoted to P violation and there we find that nonrestoration of P at
high T seems to be in conflict with perturbation theory. Again, the existence of P odd
singlets, welcome for the implementation of the minimal see-saw mechanism, works in favor
of nonrestoration of P just as in the case of CP.

There is yet another class of theories plagued by the domain wall problem, that is, those
based on the Peccei-Quinn solution [10] to the strong CP problem. Once again, symmetry
nonrestoration can solve the problem [9]. In section IV we demonstrate in detail how this is
achieved.

It has been pointed out that next-to-leading order corrections to the high temperature
effective potential may play an important role on the question of nonrestoration, even to the
extent of invalidating it in the case of local gauge symmetries [11,12]. However, a recent study
[13] involving a Wilson renormalization group approach which simulates nonperturbative
effects, seems to encourage the validity of the conventional one loop results. Since the issue
is not completely settled, to be on the safe side we show in section V how inclusion of
next-to-leading order terms does not affect any of our conclusions.

Focusing on CP forced us to ignore some rather important applications of the idea of
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symmetry nonrestoration, in particular a possible solution to the monopole problem in grand
unified theories [14,15]. We leave this and related issues for the future.

II. SPONTANEOUS CP VIOLATION AND HIGH T

As with any discrete symmetry, we would like to be able to keep CP broken at high
temperature in order to avoid the formation of the dangerous domain walls. In the case
of CP, there is yet an additional reason not to restore it in the early universe, at least not
until the time of baryogenesis. Simply, CP must be broken in order for matter to be created
[16]. This was actually the original motivation of the first application in particle physics
of the phenomenon of nonrestoration of symmetries at high temperature [2]. The model
presented in [2] however does not satisfy the minimality condition introduced above, since
there the Higgs sector is extended to three doublets only in order to have high T symmetry
nonrestoration.

A. 6CP with two doublets

The simplest and original example of a theory with spontaneous CP violation was pre-
sented by T.D. Lee [17]. His model is an extension of the Standard Model with two complex
Higgs doublets, with

LH =
2
∑

i=1

1

2
(DµΦi)

†(DµΦi) − V (Φ1, Φ2) (1)

where

V (Φi, Φ2) =
2
∑

i=1

(

−m2
i

2
Φ†

iΦi +
λi

4
(Φ†

iΦi)
2

)

− α

4
Φ†

1Φ1 Φ†
2Φ2

− β

4
Φ†

1Φ2 Φ†
2Φ1 +

1

8

[

Φ†
1Φ2

(

aΦ†
1Φ2 + bΦ†

1Φ1 + cΦ†
2Φ2

)

+ h.c.
]

(2)

Choosing the parameter β > 0, one can prove that the minimum of the potential is
achieved when the fields acquire vevs

Φ1 =

(

0
v1

)

; Φ2 =

(

0
v2

)

eiθ (3)

The terms in brackets in the potential will force the CP-violating phase θ to be non-zero.
This can be readily seen by writing (2) at the minimum (3), and wisely rearranging terms:

V (〈Φ1〉, 〈Φ2〉) =
2
∑

i=1

(

−m2
i

2
v2

i +
pi

4
v4

i

)

+
ρ

4
v2

i v
2

2 +
a

2
v2

i v
2

2 [cos θ − δ]2 (4)

where
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p1 = λ1 −
b2

8a
; p2 = λ2 −

c2

8a

ρ = α + β + a +
cb

4a
; δ =

−(bv2
1 + cv2

2)

4av1v2

(5)

Obviously, for a > 0 the minimum will be at cos θ = δ, and CP is broken spontaneously.
We are interested in the possibility that CP remains broken at arbitrarily high temper-

ature. For this to happen in T.D. Lee’s model, we need not only to have the vev’s of both

Φ1 and Φ2 nonzero at high T, but also to keep the CP-violating phase from vanishing.
To get an idea of how both vev’s may be kept different from zero, consider a simple

model with two real scalar fields (φ1, φ2), and a potential with a Z2 symmetry φ1 → −φ1,
φ2 → −φ2

V (φ1, φ2) =
2
∑

i=1

(

−m2
i

2
φ2

i +
λi

4
φ4

i

)

− α

2
φ2

1φ
2

2 + β1 φ3

1φ2 + β2 φ3

2φ1 (6)

One can always choose α > 0, β1, β2 > 0, and require

λ1λ2 > α2 (7)

so that the potential is bounded from below. The potential has extrema at 〈φ1〉 = v1,
〈φ2〉 = v2 satisfying

[−m2

1
+ λ1v

2

1
− αv2

2
+ 3β1v1v2]v1 + β2v

3

2
= 0 (8a)

[−m2

2
+ λ2v

2

2
− αv2

1
+ 3β2v2v1]v2 + β1v

3

1
= 0 (8b)

With negative mass terms, both vevs are nonzero. Admittedly, this model does not
belong to the class of minimal models as defined in this paper, since one can break the Z2

symmetry with just one vev; however, we include it in order to illustrate the role of the
linear terms in symmetry nonrestoration.

At high temperature, the effective potential acquires the additional terms [1,18,19]

∆V =
T 2

24

[

(3λ1 − α)φ2

1
+ (3λ2 − α)φ2

2
+ 6(β1 + β2)φ1φ2)

]

(9)

By asking, e.g. α > 3λ1, one can keep one of the mass terms negative at any temperature,
while (7) forces the other to be positive. However, the cubic terms in (8) guarantee that
only one negative mass term suffices to have both vevs non zero at high T. In other words,
the field with the negative mass term acquires a vev and “forces” the other to get one also,
via the linear terms in the potential. The reader must have noticed that we can redefine
the fields at high T so that just one of them has a nonvanishing vev. However, she should
keep in mind that the same holds true at T = 0; the point is that the symmetry breaking
patterns at high and low T are equal.

One can hope that the potential in T.D. Lee’s model, being of a similar form as (6),
will exhibit a similar behavior, allowing both vev’s to remain non zero at high temperature.
Unfortunately, it is readily found out that it does so at the expense of having the phase θ
going to zero, thus restoring CP, as we now show.
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The high temperature corrections to the effective potential for a model with N Higgs
doublets can be found by generalizing Weinberg’s formula [1] for complex doublets. Write
the most general potential for N complex doublets as 1

V = −
N
∑

i=1

m2

i Φ
†
iΦi +

N
∑

i,j,k,l=1

λijklΦ
†
iΦjΦ

†
kΦl (10)

Then the high T correction is

∆V (T ) =
N
∑

i,j,k=1

T 2

6
(2λijkk + λkijk)Φ†

iΦj (11)

For the two doublet model (2), this gives

∆V (T ) =
T 2

6

[

(6λ1 − 2α − β)Φ†
1Φ1 + (6λ2 − 2α − β)Φ†

2Φ2 +
3

2
(b + c)(Φ†

1Φ2 + h.c)
]

(12)

The potential at high T can then be cast in the same form (4), where now the masses
m2

i are replaced by m2
i (T )

m2

1
(T ) = −m2

1
+ 2T 2

(

λ1 −
α

3
− β

6
− b(b + c)

16a

)

≃ 2T 2ν2

1

m2

2
(T ) = −m2

2
+ 2T 2

(

λ2 −
α

3
− β

6
− c(b + c)

16a

)

≃ 2T 2ν2

2
(13)

for T >> m; and δ becomes δ(T ):

δ(T ) = −
[

bv2
1

+ cv2
2

+ T 2(b + c)

4av1v2

]

(14)

Again, as in the simpler model, one can have one and only one mass negative at high T,
due to the condition analogous to (7), i.e.

p1p2 >
ρ2

4
(15)

since now

ν2

1
= p1 − σ ; ν2

2
= p2 − σ ; with σ =

ρ

2
− α

6
− β

3
− a

2
<

ρ

2
(16)

Requiring ν2
1
, ν2

2
< 0 will give p1p2 < σ2 < ρ2/4 , which contradicts (15).

1Obviously we do not worry about the potential being hermitian. Needless to say, the reader

should take care of this in choosing her potential, and then safely proceed to use our formula for

∆V (T )
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Considering only the θ-dependent part, we see as before that there is a minimum for
θ = δ(T ). However, it is not difficult to see that with only one mass term negative, both
vevs cannot be nonzero at high T, due to the fact that the mass terms now depend on the
coupling constants. Taking ν2

2
< 0, the requirement that v1 be real gives

|ν2

2
|ρ
2

> ν2

1
p2 (17)

together with (15), this is also enough to ensure that v2 is real. Substituting for ν2
1 and

ν2
2

one gets

ρ

2

(

ρ

2
− p2

)

>
ρ

2
(σ − p2) > (p1 − σ) p2 >

(

p1 −
ρ

2

)

p2 (18)

Which again implies p1p2 < ρ2/4 , contradicting (15).
We conclude then that the only way to have both fields with a nonvanishing vev at high

temperature is to set the phase θ to zero. In other words, the field with a negative mass
term can “force” the other to acquire a vev, but it drags it in the same direction in U(1)
space.

Notice that in [2] the fact that both vevs can be nonzero was overlooked, but it was still
concluded correctly that with two doublets only, CP would become a good symmetry at
high T.

B. 6CP and natural flavor conservation

A common feature of models with two Higgs doublets as the one in the previous section
is that they allow for flavor-violating interactions in neutral current phenomena. As shown
in [20–22], the minimal model for spontaneous CP violation involving doublets only that
conserves flavor, requires three of them.

To see why, consider a Lagrangian with two complex Higgs as in(1), (2), and an extra
symmetry D1

Φ1 −→ −Φ1 uiR −→ −uiR (19)

(where ua R are up quarks and hereafter a, b, .. are flavor indices). The Yukawa interac-
tions are written now

LY = (ūd̄)a
Lh1

abΦ1d
b
R + (ūd̄)a

Lh2

ab(iτ2)Φ
∗
2u

b
R (20)

so that flavor violation through neutral Higgs exchange is avoided. However, now the
symmetry prohibits the terms of the type Φ†

1Φ1Φ
†
1Φ2 in the Higgs potential, and therefore

at the minimum we have the phase θ = 0 or π/2, both leading to CP conservation.
The way out is to have three doublets, and an additional symmetry D2 that prevents it

from coupling to the quarks: Φ3 → −Φ3, with other fields unchanged. The most general
potential invariant under SU(2) × U(1) × D1 × D2 is

V =
3
∑

i=1

[

−m2

i Φ
†
iΦi + λi(Φ

†
iΦi)

2
]

+
∑

i<j

[

−αij(Φ
†
iΦi)(Φ

†
jΦj) − βij(Φ

†
iΦj)(Φ

†
jΦi) + γij(Φ

†
iΦjΦ

†
iΦj + h.c.)

]

(21)
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It can be shown [20–22] that choosing βij , γij > 0, the above potential has a minimum
at

Φi =
1√
2

(

0
vie

iθi

)

(22)

where only two of the θi (say, θ1 and θ3) are relevant. Extremization with respect to θ
yields [21]

γ12v
2

2 sin 2θ1 + γ13v
2

3 sin 2(θ1 − θ3) = 0 (23a)

γ13v
2

1
sin 2(θ1 − θ3) + γ23v

2

2
sin 2θ3 = 0 (23b)

Notice that to have CP violation, we need all three vi and both θ1, θ3 to be nonzero.
It can be shown [22] that the CP violating solution of (23) is indeed a minimum. When

the phases take this value, the remaining potential is

V (vi) =
3
∑

i=1

(

−mi

2
v2

i +
pi

4
v4

i

)

−
∑

i<j

(αij + βij)

4
v2

i v
2

j (24)

where

p1 = λ1 −
γ12γ13

γ23

(25)

and analogous expressions for p2, p3.
Once again, we are interested in whether the CP symmetry can remain broken at high

temperatures. It is straightforward using (11) to calculate the masses at high temperature

m2

i (T ) = −m2

i +
T 2

6



6pi −
∑

j 6=i

(2αij + βij)



 ≃ T 2

3
ν2

i (26)

Due to the high degree of symmetry of the potential, temperature contributions are
independent of the phases, so equations (23) are the same.

For the potential to be bounded from below, a set of constraints analogous to (7) has to
be imposed on the couplings, namely

pi > 0 pipj > aij for each i < j (27a)

p1p2p3 − p1a
2

23
− p2a

2

13
− p3a

2

12
− 2a12a13a23 > 0 (27b)

with aij ≡ αij + βij, and we choose αij > 0, so aij > 0.
It is easy to prove that (27a) prevents us from taking all three of the mass terms negative

at high T, as we could have expected. Necessary conditions would be

∑

j 6=i

aij > 3pi (28)
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Multiplying these equations by pairs and adding them results in a contradiction with eq.
(27a). But it turns out that with only two negative mass terms, all three vevs cannot be
nonzero at arbitrarily high temperature. Take for example ν2

1 > 0, ν2
2 , ν

2
3 < 0. We need v1

to be real, that is, minimizing (24)

v2

1
=

(

T 2

3

)

−ν2
1(p2p3 − a2

23) + ν2
2(p3a12 + a23a13) + ν2

3(p2a13 + a23a12)

p1p2p3 − p1a2
23 − p2a2

13 − p3a2
12 − 2a12a13a23

> 0 (29)

We have already required the denominator to be positive. For the numerator to be
positive also, necessary (though not sufficient) conditions are

ν̄2
2(p3a12 + a23a13) + ν̄3

2(p2a13 + a23a12) > −ν̄1
2(p2p3 − a2

23) (30)

where

ν̄1
2 = 3p1 − a12 − a13 < ν2

1

ν̄2
2 = a12 + a23 − 3p2 > ν2

2

ν̄3
2 = a13 + a23 − 3p3 > ν2

3 (31)

Inserting (30) in (31), one gets

−2p2p3(a12 + a13) − a23(p2a13 + p3a12) >

p1p2p3 − p1a
2

23
− p2a

2

13
− p3a

2

12
− 2a12a13a23 + 2p1(p2p3 − a2

23
) (32)

which in view of (27) cannot be satisfied.
Thus, once again, the CP violating phase disappears at high temperature. As in the

two-doublet case, here too the problem is that CP violation is achieved through the relative
phase of the vevs of the doublets.

C. 6CP with a singlet field

It should be clear from the previous examples that when the CP phase is related to the
relative phases of doublet fields, high temperature effects will make it vanish. We therefore
look for models in which CP violation is broken spontaneously by the vev of just one field,
which may be easier to keep at high temperature.

The simplest such model is a minimal extension of the Standard Model with

a) a real singlet field S which transforms under CP as S → −S.

b) an additional down quark, with both left and right components Da
L and Da

R singlets
under SU(2).

The interaction Lagrangian for the down quarks, symmetric under CP, contains the terms

LY = (ūd̄)a
LhaΦDR + (ūd̄)a

LhabΦdb
R

+MDD̄LDR + Ma(D̄Lda
R + h.c.)

+ifDS(D̄LDR − D̄RDL) + ifaS(D̄Lda
R − d̄a

RDL) (33)
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Clearly, when S gets a vev (at a scale σ much bigger than the weak scale MW ) CP is
spontaneously broken by the terms in the last line. A model of this kind was developed by
Bento and Branco [23], in the version where the singlet is a complex field and gets a complex
vev, and with an additional symmetry under which S and DR are odd, all other fields even.

We will for simplicity keep S real (and impose no further symmetries), noting that the
analysis goes over the same lines as in [23], and referring the reader there for details. Suffice
it to say that CP violation is achieved by complex phases appearing in the CKM matrix
through the mixings of d and D quarks, which are of the order σ/MD. These phases remain
in the limit MD, σ → ∞ when the heavy quarks decouple. This should not come as a
surprise, since in the decoupling limit the theory reduces to the minimal standard model,
which in general has complex Yukawa couplings and a complex CKM matrix. Also, flavor-
violating currents are suppressed by powers of MW /σ, disappearing in the decoupling limit.
Thus the measure of the departure from the standard model is the dimensionless parameter
MW /MD, and for the theory to be experimentally testable MD should not be much bigger
than 1 TeV.

To leading order, the high-temperature behavior of the Φ−σ system is very simple. The
most general potential can be written as

V (Φ, S) = −m2

Φ
Φ†Φ + λΦ(Φ†Φ)2

−m2
S

2
S2 +

λS

4
S4 − α

2
Φ†ΦS2 (34)

and it has a minimum at

〈Φ〉 =
1√
2

(

0
v

)

; 〈S〉 = +σ (35)

At high T, the masses are replaced by

m2

Φ
(T ) = −m2

Φ
+

T 2

24
(12λΦ − α)

m2
S(T )

2
= −m2

S

2
+

T 2

24
(3λS − 2α) (36)

We can have m2
S < 0 always by requiring 2α > 3λS, and thus σ 6= 0 at any temperature.

The only further restriction is the usual λΦ > α2/λS.
It seems then that in this model, one can have CP broken at any temperature. Remember

however that up to now we have only considered the leading order contributions to the
effective potential in calculating the masses (36). A complete analysis should include the
next-to leading order corrections, as we already mentioned in the Introduction. We can
anticipate that for a singlet field these effects will not change the picture much, but we leave
a detailed analysis for a separate section.

III. SPONTANEOUS P VIOLATION AND HIGH T

Spontaneous P violation has been already discussed in the second paper of ref. [2],
mostly in connection with strong CP violation. It was concluded there that in the minimal
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models of spontaneous P violation, left-right asymmetry may persist to high temperatures.
The analysis however was carried out without considering carefully the role of the gauge
couplings, which is now known to be fundamental [15], and which as we will show may
invalidate that conclusion.

Let us recall the salient features of the minimal left-right symmetric theories [24] based on
a SU(2)L×SU(2)R×U(1)B−L gauge symmetry. The fermions are in doublet representations

(

u
d

)

L

;

(

u
d

)

R
(

ν
e

)

L

;

(

ν
e

)

R

(37)

The minimal Higgs sector of the theory consists of

• the bi-doublets (one or more) Φ needed to provide Yukawa couplings and fermion
masses

• two multiplets ∆L and ∆R which may be either doublets or triplets under SU(2)L and
SU(2)R, and which are in charge of breaking P spontaneously.

For the sake of completeness, we remind the reader of the essence of spontaneous P
violation and we do it in a simplified toy example which has all the relevant features of
the theory. More precisely, we take ∆L and ∆R as real scalar fields and assume a left-right
symmetric potential

V = −m2

2
(∆2

L + ∆2

R) +
λ

4
(∆4

L + ∆4

R) +
λ′

2
∆2

L∆2

R

= −m2

2
(∆2

L + ∆2

R) +
λ

4
(∆2

L + ∆2

R)2 +
λ′ − λ

2
∆2

L∆2

R (38)

A simple inspection of V is enough to convince oneself that for m2 > 0 and λ′ − λ > 0,
the global minimum of the theory is obtained for

〈∆L〉2 = 0 ; 〈∆R〉2 =
m2

λ
(39)

or viceversa. Thus the left-right symmetry is broken spontaneously. Of course in realistic
models, besides ∆’s being non-trivial representations under the gauge group, we do need a
field Φ. One can then try to take one or more of the coupling constants between Φ and the
∆’s negative, thus achieving a negative mass term for the ∆’s at all temperatures.

Let us concentrate in the version of the theory which incorporates the see-saw mechanism
with ∆L and ∆R being triplets [25]. Since we wish to keep 〈∆R〉 nonzero at high temperature,
it is enough to look at the ∆R−Φ system and, as in [2], consider a simplified model in which
the potential is written

V = −m2

∆∆†
R∆R + λ∆(∆†

R∆R)2 + −m2

ΦTrΦ†Φ + λΦ(TrΦ†Φ)2 − 2αTrΦ†Φ∆†
R∆R (40)

10



where ∆R is a triplet under SU(2)R, has B−L number 2, and other couplings are taken
to be small. The high temperature masses are 2

m2

Φ
(T ) = −m2

Φ
+ T 2

{

5

6
λΦ − 1

3
α +

3

16
g2

}

(41a)

m2

∆
(T ) = −m2

∆
+ T 2

{

1

2
λ∆ − 2

3
α +

3

8
(g′2 + 2g2)

}

(41b)

where g′2 is the U(1) gauge coupling, g2 the SU(2)R one. We have to keep m2
∆(T )

negative at high T while preserving the boundedness condition λΦλ∆ > α2, thus we arrive
at

λΦ >
α2

λ∆

>
9

4

[

1

2
λ∆ +

3

8
(g′2 + 2g2)

]

(42)

λΦ as a function of λ∆ has a minimum at λ∆ = (3/4)(g′2 + 2g2), so we must have

λΦ >
27

16
(g′2 + 2g2) (43)

If we now use g′2 = g2/2 and take g2 = 1/4, we see that nonrestoration of P requires
λΦ > 1 in conflict with perturbation theory. Including other couplings does not help, since
new conditions on the couplings coming from the mass matrices have to be imposed (since
it is not illustrative, we omit here the numerical analysis required to prove this).

Although physically less attractive, one can in principle use doublets to break P spon-
taneously. This is actually the case studied in [2]. It is easily found that with doublets the
condition equivalent to (43) is down by a factor of half. Thus this case may be considered
borderline.

Now, for the implementation of the see-saw mechanism in its minimal form, it turns out
that a parity odd singlet field is needed [26]. The singlet field S will couple to the ∆ fields
with a left-right symmetric term

MS(∆†
L∆L − ∆†

R∆R) (44)

Without the lower bound imposed by the gauge couplings, the situation in this case goes
along the same lines as that of section IIC: the vev of the singlet can be kept nonzero at
high temperatures with the aid of the bi-doublet field Φ, or even of the ∆’s. Exactly as it
worked with CP, now P may remain broken at high temperature, and the presence of more
fields coupled to S than in the CP case only makes it easier.

2We use the normalization TrΦ†Φ = ΦaΦa/2; ∆†
R∆R = ∆a

R∆a
R, where a sums over six real fields.

11



IV. STRONG CP PROBLEM AND HIGH T

The strong CP problem arises in QCD when nonperturbative effects, resulting from the
existence of instanton solutions, induce effective terms in the Lagrangian that violate CP.
The resulting CP violating phase is

Θ̄ = Θ + arg det(M) (45)

where Θ is the coefficient of the ǫαβµνF
αβ
a F µν

a term, and M is the quark’s mass matrix.
Θ̄ is constrained experimentally to be zero to a very high precision (Θ̄ < 10−9), giving rise
to a “naturalness” problem [27].

A. The invisible axion solution

The most popular solution to the strong CP problem is the Peccei-Quinn mechanism
[10], in which the phase Θ̄ is identified with the pseudo-Goldstone boson resulting from the
spontaneous breakdown of a global symmetry U(1)PQ. Observational constraints require
this breakdown to occur at a scale MPQ much bigger than the electroweak scale, making
the axion “invisible” [28,29]. Besides the axion field a, the breaking of U(1)PQ produces a
network of global strings [30]. As we go around each minimal string, the phase Θ̄ = a/MPQ

winds by 2π. Instanton effects appear later, when the temperature has reached the QCD
scale ΛQCD. Their effects in the Higgs sector can be mimicked by an effective term

∆V = Λ4

QCD(1 − cosNΘ̄) (46)

where N is the number of quark flavors. It becomes energetically favorable for Θ̄ to choose
one out of the discrete set of values 2πk/N (k = 1, 2, ..N). But since we must have ∆Θ̄ = 2π
around a string, this results in the formation of N domain walls attached to each string [31].
For N > 1, these domain walls are stable and therefore in conflict with standard cosmology.

Clearly, without the global strings no walls will be formed: above T ≃ ΛQCD, Θ̄ would
be aligned having some typical value Θ̄0 which after the QCD phase transition would relax
to the nearest minimum. We wish then to study in detail the high temperature behavior of
the invisible axion mechanism, well above the scale MPQ.

For concreteness we concentrate on the minimal extension of the original Peccei-Quinn
model [29]. The potential for the PQ model with the doublets φi (i=1,2) both having Y = 1
and a SU(2) × U(1) singlet S may be written as

VPQ =
∑

i

[

−m2
i

2
φ†

iφi +
λi

4
(φ†

iφi)
2

]

− α

2
(φ†

1φ1)(φ
†
2φ2) −

β

2
(φ†

1φ2)(φ
†
2φ1)

− m2
s

2
S∗S +

λs

4
(S∗S)2 −

∑

i

(
γi

2
φ†

iφi)S
∗S − M(φ†

1φ2S + φ†
2φ1S

∗) (47)

Besides the SU(2)L × U(1)Y local gauge symmetry, VPQ has a chiral U(1)PQ symmetry
(φ1 couples to say down quarks, and φ2 to up quarks)

φ1 → eiαφ1 ; φ2 → e−iαφ2 ; S → e2iαS (48)
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For β > 0, the minimum is found at

〈Φi〉 =

(

0
vi

)

; 〈S〉 = vS (49)

To have U(1)PQ broken at any temperature, it is enough to keep the vev of the singlet
nonzero for all T. From our analysis of the previous section for a potential with three
doublets, one can already expect that keeping the vev of only one field nonzero will not
be difficult. In this model then the conditions on the potential parameters cannot be an
obstacle for nonrestoration, but we present them here for the sake of completeness. Taking
vS ≫ vi, the conditions over the couplings are, to leading order

λi > 0 , λS > 0 ; λiλS > γ2

i ; λ1λ2 > (α + β)2 (50a)

Mv3

s

[

v3
1

v2

(λ1λS − γ2

1) +
v3
2

v1

(λ2λS − γ2

2) − 2v1v2(λS(α + β) + γ1γ2

]

+ v2

Sv2

1
v2

2

[

λ1λ2λS − λ1γ
2

2
− λ2γ

2

1
− λS(α + β)2 − 2γ1γ2(α + β)

]

> 0 (50b)

It is easily proven that (50a) imply that the first line of eq. (50b) is positive. A sufficient
condition for boundedness will then require (50a) and the second line of (50b) to be positive,
the same conditions that were required in the three-doublet model of section IIB (eq.(27)).

The mass term of the singlet at high temperature will be

m2

S(T ) = −m2

S +
T 2

3
(λS − γ1 − γ2) (51)

so that imposing γ1 + γ2 > λS, we get the U(1)PQ symmetry broken at all temperatures.
We already know that at high T one cannot have all three vevs nonzero, and notice that
because of the linear terms in (47), having vS 6= 0 forces v1, v2 to vanish.

Up to this order then, it seems quite natural to keep the vev of S nonzero at high T;
again we leave the next-to-leading order considerations for the next session. The learned
reader will notice that the same holds true for Kim’s version [28] of the invisible axion idea.

B. Spontaneous P or CP violation

Another well-known solution to the strong CP problem is based on the idea of sponta-
neous CP or P violation [6]. Here, the symmetries can be used to set Θ̄tree = 0 and the
effective Θ̄ is then finite and calculable in perturbation theory, and in many models small
enough. The high T behavior of these theories is completely analogous to the one discussed
in section II and III, and thus we can conclude that the solution of the domain wall problem
favors models with singlets. However, before the model is found we find it fruitless to study
this question in detail.
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V. NEXT-TO-LEADING ORDER CONTRIBUTIONS

In a series of recent papers, Bimonte and Lozano [11,12] have addressed the issue of
next-to-leading order contributions to the effective potential. As was already pointed out in
[19], in a theory with a λφ4 potential, the next-to-leading order contributions to the mass2

are of order

m2(T ) ∝ λ3/2T 2 (52)

while higher loop corrections do not contribute significantly. The point is that in a theory
with two fields where one of the self-coupling constants is required to be larger than the other
(as we did to avoid symmetry restoration), the larger constant will enter in corrections to
the other field’s mass. Thus one has to make sure that the results to leading order are
maintained when including such terms.

In fact, in the case of gauge symmetries, it was concluded [12] that the inclusion of these
effects can alter significantly the phase diagram of the theory. This is mainly due to the
fact that in the gauge case the coupling constants cannot be as small as one wishes, but
are bounded from below by the value of the gauge coupling. In the case of singlets [11],
although the effects are not so dramatic, they do alter the parameter space for symmetry
nonrestoration. Since in this investigation the models that allow for nonrestoration at high T
were based on singlet fields, we will only consider here the next-to-leading order corrections
in the case of global symmetry.

We begin by reviewing briefly the contributions of next-to-leading corrections in the
effective potential of a O(N1) × O(N2)-symmetric model, although we refer the reader to
[11] for details. Take two real fields φ1, φ2, transforming as vectors under O(N1), O(N2)
respectively, and write the potential

V (φ1, φ2) =
∑

i

(

−m2
i

2
|φi|2 +

λi

4
|φi|4

)

− α

2
|φ1|2|φ2|2 (53)

The temperature contributions to the effective masses are calculated to leading order to
be

∆m2

1(T ) = T 2ν2

1 = T 2

[

λi

(

2 + N1

12

)

− N2

12
α
]

(54)

(and a similar expression for ∆m2) while to next-to-leading, ∆mi ≡ Txi is found by
solving the coupled pair of equations

x2

1 = ν2

1 −
(

2 + N1

4π

)

λ1x1 +
N2

4π
αx2

x2

2
= ν2

2
−
(

2 + N2

4π

)

λ2x2 +
N1

4π
αx1 (55)

Symmetry is restored when such solutions are real and positive. The conditions under
which those solutions do not exist, and therefore the O(N2) symmetry is not restored can
be found to be

α
(

N1

2 + N2

)

[1 − f(λ1, α)] > λ2 (56a)
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λ1λ2 > α2 (56b)

where

f(λ1, α) =
3(2 + N1)

8π2





√

√

√

√λ2
1 +

(

16π2

3(2 + N1)

)

(

λ1 −
N2

2 + N1

α
)

− λ1



 (57)

is a function that can take values from 0 to 1. The leading order conditions are (56) with
f = 0. One can see then why the parameter space is reduced: it gets more difficult to fulfill
(56a). The behavior with the number of fields also becomes nontrivial, since (1 − f) is a
decreasing function of N1, and the two factors of α in (56a) compete (up to leading order,
it is always preferable to keep nonzero the vev of the field in the smallest representation).

The O(N1) × O(N2) toy model can mimick models with more complicated symmetries
involving two fields with N1 and N2 real components, in the approximation where their
interaction is just of the type α|φ1|2|φ2|2. In particular, no approximation needs to be done
in the doublet+singlet case.

In Figure 1 we show how symmetry nonrestoration depends in the number of fields when
the next-to-leading order effects are included, i.e., we find the values of N1 and N2 for which
the conditions (56) are satisfied when the parameters of the potential are fixed. The plot
shows the situation for two sets of ratios of the couplings: λ1 : α : λ2 = 1 : 1/3 : 1/9 and
1 : 1/10 : 1/100. Notice that N2 < N1 is still preferred. As the ratio N2/N1 increases, it
becomes necessary for nonrestoration to take smaller ratio λ2/λ1.
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FIG. 1. Symmetry nonrestoration in a model with O(N1) × O(N2) symmetry. Points indicate

the values of N1, N2 for which the vev of the O(N2) vector can be kept nonzero at high temperature,

for fixed values of the potential’s parameters: circles correspond to λ1 = 0.1, α = 0.03, λ2 = 0.01,

crosses to λ1 = 0.1, α = 0.01, λ2 = 0.001

The cases of N1 = 4, N2 = 1 (a complex doublet plus a real singlet, as required for CP
violation in section IIC), that of N1 = 8, N2 = 2 (two doublets and one complex singlet, as
in the invisible axion model of section IV) and that of N1 = 8, N2 = 1 (two doublets and a
singlet, as in the parity-violating model of section III) lie in the non-restoration region.

The relevant question is how big is the region in parameter space where nonrestoration
occurs. In Figure 2 we show that region for the case of the CP violation with a real singlet,
in λΦ, α space, when λS is kept at a fixed value. Varying λS basically ‘rescales’ the whole
picture in the α axis. The corresponding region with only leading-order effects is also shown.
Although the parameter space is reduced by higher order corrections, the difference with
the leading order case is not dramatic.
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FIG. 2. The region of symmetry nonrestoration for the model of 6CP with a real, CP odd

singlet, for two values of the singlet’s self coupling constant λs as indicated. When only leading

order effects are taken into account, the region extends up to the dotted line

For the Peccei-Quinn model, the next-to-leading order calculations are only approxi-
mated by an O(8)×O(2) model, in the limit where in (47), λ1 = λ2 = 2α ≡ λΦ, β = 0, and
γ1 = γ2 ≡ γ.

Under such approximation, the region where nonrestoration is allowed is presented in
Figure 3, for the same range of parameters as in Figure 2. It is evident comparing both
figures that nonrestoration does not depend only on the ratio N2/N1.
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FIG. 3. The region of symmetry nonrestoration for a O(8) × O(2) model, an approximation

of the Peccei-Quinn model

As for the model of P violation with a singlet of section III, it can be imitated by a O(8)×
O(1) model if the quartic coupling with the two doublet fields is taken negative. One can
also choose the couplings with the bi-doublet negative, and then consider an approximated
model with some of the self and mixed couplings small. The nonrestoration region is clearly
bigger than in the weak or strong CP cases.

VI. OUTLOOK AND CONCLUSIONS

In this paper we have studied the phenomenon of symmetry nonrestoration at high
temperature, focusing on some minimal models of spontaneous T and P violation. We were
motivated by the fundamental role that these symmetries play in nature and by the possibil-
ity of using them in solving the strong CP problem. We find that symmetry nonrestoration
seems to require singlet fields and that it seems to work in accord with perturbation theory.
This provides the hope for solving the domain wall problem and having baryogenesis operate
at very high temperature as we now discuss briefly.

Domain Wall Problem: Avoiding the phase transition is not enough to solve the
domain wall problem, since thermal fluctuations are in principle able to produce topological
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defects at any time. As was shown in [9], thermal production of domain walls and strings can
be naturally suppressed. We briefly sketch how this suppression occurs for the two models
admitting nonrestoration presented here, and refer to [9] for details.

Consider the nucleation of a large spherically symmetric domain wall or a closed loop of
string. The production rate per unit time per unit volume at a temperature T will be given
by [32]

Γ = T 4

(

S3

2πT

)3/2

e−S3/T (58)

where S3 is the energy of the closed defect. The suppression factor e−S3/T is readily
calculated in the limit where the defect’s radius is much bigger than its width. For the
domain walls produced in the model of CP violation with a singlet, we get

S3

T
≫ 16π

3
√

6

√
2α − 3λS

λS
(59)

Analogously, for the Peccei-Quinn model the thermal production of large loops of strings
is suppressed by 3

S3

T
≫ 4π2

√
γ1 + γ2 − λS

λS
(60)

We see that in both cases, it suffices to take the singlet’s self-coupling λS small to avoid
significant thermal production of defects.

The considered models with singlets involve a high scale MH much bigger than the weak
scale MW , and it is noteworthy that the smallness of λS is intimately related to this hierarchy.
Strictly speaking one could just fine tune the combination of m2

S and λSv2
S to be small, but

this is not stable under radiative corrections. It is maybe more natural to take all the mass
parameters of the model mΦ and mS to be small, i.e. of order MW , and the singlet’s self
and mixed couplings of order (MW /vS)2. In such case it is obvious that both (59) and (60)
become enormous, suppressing completely the production of defects. Of course, the nature
of the fine-tuning is finally a matter of taste. However, the second possibility has the clear
prediction of keeping both Higgs doublets light in the invisible axion model, as is commonly
assumed and experimentally verifiable.

Of course, all the above still does not guarantee the absence of domain walls. One needs
to assume initial conditions in which the singlet field has a uniform value over a region of
roughly the comoving size of the present horizon. This is equivalent to assume that the
so-called horizon problem has been solved, for example by means of a period of primordial
inflation.

Baryogenesis
The issue of baryogenesis in the context of broken symmetries at high T has been discused

in [33] with emphasis on the theories where the SU(2)×U(1) gauge symmetry of the standard

3We note that the normalization of the kinetic term we use here differs from that of [9].
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model never gets restored. This implies massive fermions at high T, but it can still be shown
that baryogenesis may take place along the usual lines of the out-of-equilibrium decays of
superheavy lepto-quark gauge and Higgs bosons.

Now, in the examples we have discussed both with P and CP violation at high T, and
including the Peccei-Quinn mechanism, the SU(2)×U(1) symmetry gets restored as in the
more conventional scenarios. Thus fermions become massless and the creation of baryon
asymmetry proceeds as usual. Of course, this implies embedding of the models discussed
into GUTs, a task beyond the scope of our paper.
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