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The large N expansion of matrix-valued field theories was invented more than
twenty years ago by ‘t Hooft as a way to treat four-dimensional QCD with gauge

group SU(N). At N = ∞ planar diagrams dominate and it was hoped that this fact
would lead either to analytic results or to a reformulation of QCD as a string theory.

While the original ideas remain attractive, the program has not yet been successful.
It was slowly understood that N = ∞ field theories retain much of the complexity of

the generic N case.

Some of this complexity remains even in zero and one-dimensional matrix “field
theories”. In a famous paper1 by Brézin, Itzykson, Parisi and Zuber it was demon-

strated that these so-called matrix models are non-trivial – but still solvable – systems.
E.g. the zero dimensional model

Z =
∫

DM e−N Tr [ 1
2
M2 − Σ∞

q=1 tqMq], (1)

where M is a N×N Hermitian matrix and the tq’s are coupling constants parametriz-

ing a general potential, is solved1 by changing variables to the eigenvalues of the ma-
trix M and thereby reducing the number of degrees of freedom from N2 to N . The

latter proves possible due to the invariance of the above action and measure under
the group U(N). The model’s free energy describes at N = ∞ a sum over all planar

diagrams G of spherical topology, where vertices vq of order q (there are #vq of them
in G) are weighted with a factor tq:

log Z ∼ Z =
∑

G

∏

vq∈G

t#vq

q (2)

The rather non-trivial combinatorial sum (2) is elegantly calculated by solving (1).

At the time1 the model was considered as a kind of “toy”, zero-dimensional QCD
(retaining the diagrammatic structure but nothing else) to test a new technique. A

few years later, however, it became clear that the results could be used to obtain the
solution of a rather interesting physical problem: two-dimensional quantum gravity
2,3,4. Indeed, it was argued that by tuning the couplings tq in an appropriate way
a continuum limit could be reached at which the planar graphs condense to give a

continuum path integral over two-dimensional metrics gab of spherical topology:

Zcont =
∫

Dgab e−
∫

d2z
√

det g (µ+ 1
α

Rg). (3)

The distance from the critical point in the space of the tq’s turns into a continuum cos-

mological constant µ controlling the area of the surfaces. We also wrote the Einstein
term, which is however known to be a constant in two dimensions. This approach

was subsequently worked out and justified by a large number of researchers.
Thus already the simplest matrix model (1) contains non-trivial physics. Various

generalisations were solved and shown to give new physical information; e.g. certain
simple multi matrix models describe the coupling of c ≤ 1 conformal matter to 2D
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gravity (3). Such generalisations usually required the development of new techniques
in order to succeed. Turning this around, each technical advance in large N theory

usually allows to address a previously inaccessible physical problem. Keeping in mind
the final goals – like large N QCD or string theories in physical dimensions – a valuable

strategy is, then, to continue to enlarge our tools and methods.
An encouraging example for this strategy was given recently in a series of papers5,6,7.

We studied a generalisation of (1) consisting in the inclusion of an external matrix

field A in the potential:

Z =
∫

DM e−N Tr [ 1
2
M2 − Σ∞

q=1 tq(MA)q ]. (4)

On a technical level, this model seemed for a long time unsolvable: The external field

destroys the U(N) invariance of the action. Thus none of the usual methods, whose

essence consists in reducing the number of degrees of freedom from N2 to N , appears
applicable to (4). We succeeded in nevertheless finding a reduction of the number of

degrees of freedom by developing the new method of large N character expansions .
This allows us to address new physical questions. Indeed, it is easy to prove that the

perturbative expansion in planar graphs of (4) is given by

log Z ∼ Z =
∑

G

∏

v∗q ,vq∈G

t∗q
#v∗q tq

#vq , (5)

where

t∗q =
1

q

1

N
Tr Aq. (6)

The sum is, as in eq.(2), taken over all planar graphs G of spherical topology. But
now we have an extra set of coupling constants t∗q at our disposal: They assign weights

to the vertices v∗
q of the dual lattice (there are #v∗

q of them in G). Thus the tq and t∗q
control the coordination numbers of the vertices and the faces of G, respectively. In

particular, if we set tq = t∗q = δq,4 the only surviving graphs in the ensemble {G} are

regular square latticesa. Thus, the model (4),(5) is capable of interpolating between
fluctuating random lattices and flat, regular lattices! In the continuum formulation,

this property would be achieved by adding higher curvature counterterms to the
action of (3):

Zcont =
∫

Dgab e
−

∫

d2z
√

det g (µ+ 1
α

Rg+ 1
β0

R2
g+...)

. (7)

Tuning the bare coupling β0 to zero clearly suppresses any non-flat metric. Our model

therefore furnishes a precise invariantly regularized definition of 2D higher curvature
gravity. Before discussing the physics of the latter, let us first explain the steps that

lead to a solution of the apparently intractable matrix model (4). We will only sketch

aOf course there is no square lattice of spherical topology; one needs to also add some positive
curvature defects to be able to close the graph into a sphere; see below.
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the derivation (and even the results!); a much more detailed discussion can be found
in the original papers5,6,7.

The idea is to expand the potential in (4) in terms of the characters of the product
matrix MA. It is clear that this is possible since the potential is a class function on

the group (i.e. it only depends on the eigenvalues of the matrix MA). What is less
obvious (proven in our first work5) is that the expansion coefficients can themselves be

written as the characters of an auxiliary external matrix B generating the couplings

tq, just as A generates the couplings t∗q (see eq.(6)):

tq =
1

q

1

N
Tr Bq. (8)

One then has the expansion

eNTr Σ∞
q=1tq(MA)q

= c
∑

R

χR(B) χR(MA), (9)

with c a numerical constant. The characters are defined by the Weyl formula

χ{h}(B) =
det

(k,l)
(bhl

k )

∆(b)
, (10)

where the bi are the eigenvalues of the matrix B, ∆(b) is the Vandermonde determi-
nant of the eigenvalues, the set of {h} are a set of ordered, increasing, non-negative

integers, and the sum over R is the sum over all such sets. The R’s label represen-
tations of the group U(N) and the sets of integers {h} are the usual Young tableau

weights defined by hi = i − 1 + #boxes in row i (the index i labels the rows in the
Young tableau, i = 1 corresponding to the lowest row). Note that the restriction on

the allowed Young tableaux that any row must have at least as many boxes as the row
below implies that the {hi} are a set of increasing integers: hi+1 > hi. Substituting

equation (9) into the integral in equation (4), we can now do the angular integration
using the key identity

∫

(DΩ)H χR(ΩMΩ†A) = d−1
R χR(M) χR(A), (11)

where dR is the dimension of the representation given, up to a constant, by dR ∼
∆(h)), and arrive, after performing a Gaussian integral over the eigenvalue degrees
of freedom, at the expression

Z = c
∑

{he,ho}

∏

i(h
e
i − 1)!!ho

i !!
∏

i,j(h
e
i − ho

j)
χ{h}(A) χ{h}(B), (12)

where c is an immaterial constant. The sum is taken over a subclass of so-called even
representations. These are defined as possessing an equal number of even weights he

i
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and odd weights ho
i (since the mentioned Gaussian integration vanishes if the latter

condition is not satisfied). The formula (12) was originally discovered by Itzykson

and Di Francesco8 by summing up “fatgraphs”, using purely combinatoric and group
theoretic arguments. We observe that the matrix model (4) is thus reformulated as

a sort of “statistical mechanics model” in Young weight space. The important fact is
that there are only N weights hi; therefore the reduction to N degrees of freedom is

achieved.

The expansion (12) can be further generalised. Consider the matrix model

Z =
∫

Dφ e−N Tr [ 1
2
φφ+ −

∑∞
k=1

gk(φAφ+B)k ], (13)

where φ is a complex N ×N matrix. Introducing a third external matrix field C and

defining, in analogy with (6),(8),

gk =
1

k

1

N
Tr Ck, (14)

one finds by the method outlined above the character expansion

Z = c
∑

{h}

∏

i hi!

∆(h)
χ{h}(A) χ{h}(B) χ{h}(C), (15)

where this time the sum extends over all representations. In the special case gk = δk,2

the earlier expansion (12) is recoveredb.

The reduction of the number of degrees of freedom is only a conditio sine qua non.
One next has to take the large N limit of the expansion. The basic idea is the same

as for the original model (1) (see1), with Young weights replacing eigenvalues: The
weights 1

N
hi are assumed to freeze into a smooth, stationary distribution dh ρ(h),

where ρ(h) is a probability density normalized to one. The details, however, turn out
to be much more involved. Some simple first examples were worked out in our first

paper5. An unpleasant feature is that, while the saddlepoint always exists, the support
of the density ρ(h) does not necessarily remain on the real axis for completely arbitrary

couplings tq,t
∗
q, complicating the general analysis in a significant way. However, if we

restrict our attention to models in which the matrices A and B are such that traces

of all odd powers of A and B are zero the problem does not arise: t2q+1 = t∗2q+1 = 0.
This means that our random surfaces are made from vertices and faces with even

coordination numbers. Thus it is easiest to consider surfaces made up from squares
(as opposed to, say, triangles): t∗q = δq,4. A weight t2q = 1

2q
1
N

TrB2q is assigned

whenever 2q squares meet at a vertex (see Fig. 1).

bFor this special case the correspondence between the hermitian model (4) and the complex model
(13) was already noted previously8. For a graphical explanation of this correspondence see our
second work6.
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t 2 t 8
t 6t 4

Fig. 1 Flat space and curvature defects.

This model is clearly capable of describing the transition from flat to random

graphs. The sum (5) over spherical lattices G4 built from square plaquettes becomes

Z =
∑

G4

∏

v2q∈G

t2q
#v2q , (16)

where v2q are the vertices where 2q plaquettes meet and #v2q are the numbers of such

vertices in the given graph G4. In order to investigate (12) in the large N limit, one
attempts to locate the stationary point. This leads to the saddlepoint equation

2F (h) + −
∫ a

0
dh′ ρ(h′)

h − h′ = − ln h. (17)

Here F (h) denotes the large N limit F (hk) → F (h) of the variation of the character

χ{h}(B) in eq.(12):

F (hk) = 2
∂

∂he
k

ln
χ{he

2
}(b̄)

∆(he)
. (18)

where we have also used that the matrix B will satisfy TrB2q+1 = 0 if we introduce
a N

2
× N

2
matrix b̄

1
2 in terms of which B and the character χ{h}(B) are given by

B =

[

b̄
1
2 0
0 −b̄

1
2

]

and χ{h}(B) = χ{he

2
}(b̄)χ{ho−1

2
}(b̄) sgn[

∏

i,j

(he
i − ho

j)]. (19)

The variation of the character of the matrix A is easily computed directly because of
the simple choice t∗q = δq,4. As has been discussed in detail before5, the saddlepoint

equation (17) actually does not hold on the entire interval [0, a], but only on an
interval [b, a] with 0 ≤ b ≤ 1 ≤ a: Assuming the equation to hold on [0, a] would

violate the implicit constraint ρ(h) ≤ 1 following from the restriction hi+1 > hi. The

density is in fact exactly saturated at its maximum value ρ(h) = 1 on the interval
[0, a]. It is useful to introduce in addition the weight resolvent H(h) as follows:

H(h) =
∫ a

0
dh′ ρ(h′)

h − h′ . (20)
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We found the weight resolvent H(h) to be very closely related to the standard matrix
model eigenvalue resolvent (see1). It provides a direct link between the statistical

distribution of Young weights and the correlators of the model:

1

N
TrM2q =

1

q

∮

dh

2πi
hq eqH(h). (21)

Here the contour encircles the cut of eH(h).

The solution of (17) evidently requires knowing the function F (h). A rather
general method for its determination has been one of the main technical achievements

of our work. The method of functionally determining an N = ∞ character might

prove very useful for other applications. We found the following simple result: Further
introduce the function G(h) as

G(h) = eH(h)+F (h), (22)

where, again, the contour encircles the cut of eH(h). Its importance stems from the

fact that it relates5 in a simple way the introduced functions F (h),H(h) and the

coupling constants t2q :

t2q =
1

q

∮

dh

2πi
G(h)q. (23)

It is then easy to deduce, by changing variables from h to G, the expansion

h − 1 =
Q

∑

q=1

t2q

Gq
+

∞
∑

q=1

aq Gq. (24)

By considering6 the alternative representation of the Weyl character as a determinant
of Schur polynomials one derivescthat the coefficients aq of the positive powers of G in

(24) are directly related to correlators of the matrix model dual to (4), i.e. the model
with tq ↔ t∗q :

aq = 〈 1

N
Tr (M̃B)2q〉. (25)

We have also assumed for the moment that only a finite number Q of couplings are

non-zero (i.e. t2q = 0 for q > Q). Furthermore, we were able to show in our second
work6 that (24) implies the functional equation

eH(h) =
(−1)(Q−1)h

tQ

Q
∏

q=1

Gq(h), (26)

where the Gq(h) are the first Q branches of the multivalued function G(h) defined
through (24) which map the point h = ∞ to G = 0. The resulting picture of the

cOne also finds the relation aq = 2q
N

∂
∂t2q

ln
(

χ{he

2
}(b̄)

)

. As mentioned before7, rewriting eq.(24)

with this expression for aq suggests a possible relationship to integrable hierarchies of differential
equations. This conjecture was developed in several conversations with I. Kostov.
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analytic structure of G(h) is as follows: the couplings t2q determine the number of
sheets attached to the physical sheet by the cut of eF (h); this number is Q for a

finite number of non-zero couplings. In turn, the parameters aq determine the sheets
attached to the physical sheet by the cut of eH(h). This picture is easily verified (and

was in fact discovered in this way) for the rather trivial cases where the potential in
eq.(4) is at most quadratic. The case Q = 2 is shown in Fig. 2.

G 1

G 2

cut of e F(h)

H(h)cut of e

physical sheet
ab

c

Fig. 2 Sheet and cut structure of G(h)

The saddlepoint equation (17), together with (26), defines a well-posed Riemann-
Hilbert problem. It was solved exactly and in explicit detail6 for the case Q = 2,

where the Riemann-Hilbert problem is succinctly written in the form

2F (h) + /H(h) = − ln h

2 /F (h) + H(h) = ln(− t4
h
), (27)

The first equation is the saddlepoint equation (17) with /H(h) denoting the real part of
H(h) on the cut [b, a] (the righthand cut in Fig. 2). The second equation is (26) with

/F (h) denoting the real part of F (h) on a cut [−∞, c] with c < b (the lefthand cut in
Fig. 2). This case corresponds to an ensemble of squares being able to meet in groups

of four (i.e. flat points with weight t4) or two (i.e. positive curvature points with
weight t2) (see Fig. 1). We termed the resulting surfaces “almost flat”. It turned

out that all the introduced functions could be found explicitly in terms of elliptic
functions. E.g. the density satisfying (17) is given by

ρ(h) =
1

K
sn−1(

√

a − h

a − b
, k) with k =

√

a − b

a − c
, (28)

where sn−1 is an inverse Jacobi elliptic function and K is the complete elliptic integral
of the first kind (depending on the modulus k). The expressions for the cutpoints

a, b, c as well as the expressions for H(h), F (h), G(h) and the physical correlators aq

(see (25)) were found as well.]
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The resulting surfaces are very different from pure gravity. The spherical partition
function (16) consists of flat cylinders pinched shut at the two ends, resulting in

precisely four defects. Very short, highly twisted cylinders dominate the continuum
limit. By exactly calculating the correlators aq (see eq.(25)) we also analytically solved

the combinatorial problem of surfaces with a single negative curvature insertion of
arbitrary degree balanced by a gas of positive defects.

To analyse the problem of the transition from flat to random lattices, we merely

need to perturb our almost flat lattices by any operator containing negative curvature.
This physical observation allows us to extend the Q = 2 solution in a simple way.

Choosing the weights to be

t2 =
√

λ t, t4 = λ, t6 = λ
3
2

β2

t
, ... t2q = λ

q

2 (
β2

t
)(q−2), (29)

the expansion (24) becomes

h − 1 =
t2
G

+
t4

G (G − ǫ)
+ positive powers of G, (30)

where ǫ = t4
t2

β2. The derivation of the functional equation (26) is easily modified
(note that we now have an infinite number Q = ∞ of weights) to give

eH(h) =
h

ǫt2 − t4
G1(h) G2(h). (31)

The essential point is that one keeps the property that only one other sheet G2(h)
is attached to the physical sheet G1(h) by the cut of eF (h) (see again Fig. 2). The

only difference is that the semi-infinite cut [−∞, c] becomes a finite cut [d, c]. This
results in modifying the Riemann-Hilbert problem (27) to

2F (h) + /H(h) = − ln h

2 /F (h) + H(h) = ln( ǫt2−t4
h

), (32)

It may still be explicitly solved in terms of elliptic functions; e.g. the density (28) is

generalised to

ρ(h) =
u

K
− i

π
ln

[

θ4(
π

2K
(u − iv), q)

θ4(
π

2K
(u + iv), q)

]

(33)

with

q = e−π K′

K , and k =

√

√

√

√

(a − b)(c − d)

(a − c)(b − d)
, (34)

where K and K ′ are the complete elliptic integrals of the first kind with respective
moduli k and k′ =

√
1 − k2 and u and v are given by

u = sn−1(

√

√

√

√

(a − h)(b − d)

(a − b)(h − d)
, k) and v = sn−1(

√

a − c

a − d
, k′). (35)
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Again, the cutpoints a, b, c, d can be explicitly obtained as functions of the couplings
λ, β, t.

Let us also mention that the weights (29) can be further generalised while keeping
the quadratic (two-sheeted) structure of the function G(h). The idea is to shift away

the simple pole at G = 0 in the expansion (30), i.e.

h − 1 =
c1

G − ǫ1

+
c2

G − ǫ2

+ positive powers of G. (36)

Here c1 and c2 are two constants given by c1 = t2ǫ2−t4
ǫ2−ǫ1

and c2 = t4−t2ǫ1
ǫ2−ǫ1

. It leads to
the Riemann-Hilbert problem

2F (h) + /H(h) = − ln h

2 /F (h) + H(h) = ln( (ǫ1+ǫ2)t2−t4
h

+ ǫ1ǫ2
h−1

h
), (37)

The weights generalizing (29) by one extra parameter can be found explicitly by
expanding (36) in inverse powers of G. We have not worked out this further explicitly

solvable case in detail. Analysing it would furnish an interesting universality check
of our result.

Having at hand the explicit solution of the model for the weights (29), we are in
a position to analyse the problem of discrete 2D R2 gravity. With these weights it is

easy to prove, using Euler’s theorem, that the partition sum (16) becomes

Z(t, λ, β) = t4
∑

G4

λA β2(#v2−4), (38)

where A is the number of plaquettes of the graph G and #v2 the number of positive

curvature defects. Note that the latter are balanced by a gas of negative curvature
defects, whose individual probabilities are given in (29).

We expect this model to describe pure gravity in a sufficiently large interval of β,
after tuning the bare cosmological constant λ (controlling the number of plaquettes)

to some critical value λc(β). On the other hand, for λ fixed and β = 0 we entirely
suppress curvature defects except for the four positive defects needed to close the

regular lattice into a sphere. It is thus clear that β is the precise lattice analog of
the bare curvature coupling β0 in the continuum path integral (7). The phase β = 0

of “almost flat” lattices – very different from pure gravity – studied in detail in the
second paper6 was discussed above.

Let us now summarize the main physical results following from the exact solution

(for general λ and β) of this model:
1. A long debated question was whether models of the present type undergo a

“flattening” phase transition at a finite, non-zero critical value of β = βc. The weak
coupling region β > βc would then correspond to the standard phase of pure gravity

while a putative novel “smooth” phase of gravity might exist either at β = βc or in
the entire interval 0 ≤ β ≤ βc. This would constitute an existence proof of continuum

9



2D R2 gravity. We found analysing the exact solution, to the contrary, that there is

no “flattening” phase transition at non-zero β. For any given β we find the powerlike

scaling of standard pure gravity on large scales. This means that no matter how flat
the system is on small scales (of the order of β− 1

2 ), it destabilizes in the infrared into

the familiar ensemble of highly fractal “baby-universes”.
2. The dependence of the partition sum (38) on β and the lattice cosmological

constant λ in the vicinity of the flat phase β ∼ 0 and close to λ ∼ λc is given by

a simple, (presumably) universal scaling function f(x) (defined through Z(t, λ, β) =
4t4

15β2 f(x)) reflecting the transition from flat space to pure gravity:

f(x) = x6 − 5

2
x4 +

15

8
x2 − 5

16
− x (x2 − 1)

5
2 , (39)

where the scaling variable x is given, to leading order, by

x =

√
2

π

1 − λ

β
. (40)

We can distinguish the following features:
(a) There is a degree 5

2
singularity at x = 1, correctly reproducing the universal

string susceptibility exponent γs = −1
2

of pure gravity2,3. In view of eq.(40), the
critical value of the lattice cosmological constant λ is therefore given to leading order

by λc = 1 − π√
2
β + O(β2). Therefore (see (38)), the characteristic growth of the

random surfaces as a function of the lattice area A (= number of plaquettes) is given

by

Z(t, A, β) ∼ t4

β
9
2

e
π√
2

β A
A− 7

2 . (41)

For any non-zero β we do have exponential growth of the number of surfaces, but one
has to go to larger and larger scales (i.e. use more and more plaquettes) to be able

to take the continuum limit. If β is exactly zero there is no longer any exponential
growth and no pure gravity continuum limit is possible. The prefactor β− 9

2 is found

in the exact calculation in section 5; we are not sure whether it is universal.
(b) We further see that taking β → 0 before the limit λ → λc corresponds to the

limit x → ∞. In this limit one finds f(x) ∼ 5
128

1
x2 +O( 1

x3 ), that is, the characteristic
critical behavior of 2D gravity “silently” disappears and we recover a power series in
1
x

corresponding, in view of (40), to a perturbative expansion in lattice defects β. In
this limit the characteristic growth of surfaces as a function of area A is

Z(t, A, β) ∼ t4 ( A + O(β2A3) ). (42)

The leading order corresponds precisely to the almost flat lattices (with exactly four
positive defects) studied in our second work6. The corrections are interpreted as

insertions of negative defects, balanced by further positive defects. The typical shape

10



of the surfaces in this limit is a generalisation of the one we found for “almost flat”
graphs: Long, filamentary cylinders growing out from every negative curvature defect.

(c) It is easy to prove that the scaling function (39) is the simplest possible function
with the limiting properties discussed in (a) and (b).

The above results might be interpreted in terms of a continuum model of quantized
curvature defects, in which the localised defects move around like particles in a gas

on a flat background space. The deficit angle, ∆θ, of a defect can take on the values

∆θ = π, 0 and −π. A positive curvature defect is surrounded by a conical geometry,
whereas a negative curvature defect corresponds to a saddle-type insertion (see Fig. 1).

The higher order negative curvature defects (−2π and higher) would not be expected
to play a role in this limit (the entropy from moving two low order defects around

would completely dominate that from a single higher order defect). The coupling β
can be interpreted as a fugacity controlling the number of defects. The flat space limit

β → 0 consists of four defects of degree π moving around with respect to one another.
Varying the fugacity, β, allows one to smoothly interpolate between flat space, (42)

(with four defects), and pure gravity (41) (with an infinite number of defects).
One might also attempt to develop this picture directly in the continuum. One

could start with the conformal metric of a flat surface with localised curvature defects.
It can be represented locally as gab = δab eϕ(z) with

ϕ(z) =
M
∑

j=1

Rj ln(z − zj)
2, (43)

where Rj = −1, 1. Symbolically, the partition function might be written as

Z(µ, )
¯

=
∑

M

βM
∫

d[z1, ..., zM ] e−µ
∫

d2z
√

detg(z). (44)

Here we introduced the fugacity of curvature defects β instead of the explicit R2-term
in the action. It serves the same purpose: for β → 0 we arrive at the completely flat

metric, whereas for β ∼ 1 the system should show the behaviour of pure quantum
gravity, at least in the infrared domain. We retained the notation β to denote the

parameter playing a role similar to the R2 coupling in the above discrete model.
This formulation resembles a little bit the two-dimensional Coulomb gas problem.

However, the measure of integration d[z1, ..., zM ] of the positions of the curvature
defects is a complicated object: it should take into account the topology of the surface

and the existence of zero modes (the action does not depend on some directions in

the space of the zi). It would be very interesting to make this direct continuum
formulation more precise.

Another interesting issue is the role of exponential corrections appearing due to
the structure of elliptic functions. In fact all physical quantities, such as Z(t, λ, β)

(see eq.(38)), contain exponentially small terms in the limit λ → λc and β → 0, thus
leading to an essential singularity at β = 0, λ = 1. One can obtain the first correction
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of this type in e.g. the free energy f̄(β) per unit area in the thermodynamical limit
λ = λc:

Z(t, A, β) ∼ t4

β
9
2

ef̄(β)A A− 7
2 with f̄(β) =

π√
2
β

[

(1 + . . .) + e−
π
√

2
β (4 + . . .)

]

(45)

where f̄(β) = limA→∞
1
A

lnZ(t, A, β) = λc and the dots denote terms of order β3 and

higher.
These exponential terms are likely to be lattice artifacts. They emerge even in the

simplest calculation for the flat closed quadrangulation with four positive curvature
defects, where they appear as discrete corrections to the approximation of elliptic

sums by integrals close to the continuum limit.
On the other hand, formula (45) corresponds to the critical free energy as a func-

tion of the curvature fugacity β (i.e. we have already taken the continuum limit). It
is possible that the exponential terms might be corrections relevant for the statistical

mechanics of random lattices at long distances (of order 1
β
) rather than for continuous

2D-gravity.

In conclusion, we have tried to emphasize two points in this presentation:

1. Technical advances in large N group theory are possible. Apparently hopelessly
difficult problems like the model (4) become tractable when one changes the technique.

Our approach raises a number of interesting questions. First of all, the method
we have employed seems rather indirect and is definitely very involved. Is there a

hidden simplicity we have missed so far? Are there alternative ways to obtain our
results? Secondly, one should ask whether the method could be adapted to other

theories describing new interesting physics; in particular gauge theories and strings
in physical dimensions.

2. Each such advance leads to the capability to address new physics questions. The

present advance enables us to treat the problem of two-dimensional higher curvature

gravity.

We have presented for the first time an exactly solvable model interpolating be-

tween flat space and 2D quantum gravity. This addresses a long-standing open prob-
lem. We would like to stress, however, that we have by no means demonstrated yet

the universality of our result. Could it be that finetuning the weights tq leads to new

phases of gravity? Here we certainly do not mean to rederive the usual multicritical
phases of the one-matrix model (1). We rather envision tuning the weights in a subtle

way so as to reach a phase of smooth 2D gravity. Certainly the analytic complexity of
the result could be a hint that much more waits to be discovered. (Compare e.g. the

densities (28),(33) of the model (4) under study with the rather trivial algebraic den-
sities obtained in the absence of the external field.) Before addressing this issue, we

repeat, one first has to simplify the method enough to allow for a deeper insight into
the analytic structure of the solution for general couplings tq.
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