
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN - MT DIVISION

CERN-MT/95-13 (SM)

Niobium films produced by magnetron sputtering using an Ar-He mixture
as discharge gas

G.-M. Schucan
ETH Zürich, 8093 Zürich, Switzerland

C. Benvenuti, S. Calatroni
CERN, 1211 Geneva 23, Switzerland

Abstract

Superconducting RF accelerating cavities have been produced at CERN by
sputter-coating, with a thin niobium layer, cavities made of copper. In the
present work, the discharge behaviour and niobium film properties have been
investigated when part of the argon sputtering gas is replaced with helium.
Helium is chosen because of its low mass, which reduces the energy lost by
the niobium atoms colliding with the sputter gas atoms. The higher niobium
atom energy should lead to higher adatom mobility on the substrate and,
hence, to a larger grain size, a feature which is highly desirable to reduce the
cavity surface resistance. It has been found that helium addition effectively
helps to maintain the discharge at considerably lower argon pressures, via
metastable-neutral ionisation and high secondary electron yield. However, a
large amount of helium is trapped in the film, amount which is proportional
to the helium partial pressure during the discharge, resulting in a reduction of
both Residual Resistivity Ratio and grain size.

Geneva, November 1995

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25189682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


_________________________________________________________________________________________
C. Benvenuti, S. Calatroni, G-M. Schucan, “ Niobium films produced by magnetron sputtering using an Ar -
He mixture as discharge gas “, ETH Zurich & CERN, November 1995.

1. Introduction

Superconducting RF accelerating cavities play a crucial role in present day accelerator

technology. Whereas these cavities are traditionally made of niobium sheet, for the upgrade of the

Large Electron Positron Collider (LEP) at CERN, copper cavities internally coated with a 1.5 µm

thick niobium layer will be used [ ]. These cavities, currently being produced by industry [1], are

coated by means of a cylindrical magnetron sputtering system, with pure Ar as the process gas [2].

As a result of the work carried out so far [3], the following guidelines for the optimisation of

the polycrystalline Nb film with respect to RF performance were tentatively established:

• crystal grain size should be as large as possible

• grain boundaries should be as clean as possible

• the intragrain Residual Resistivity Ratio (RRR), i.e. the ratio of 

resistivities at 300 K and 10 K, should be around 15, where the RF surface

resistance presents a minimum

Experiments at CERN have shown that the RRR, as well as the grain size, increases with

increasing coating temperature [4]. Tests on Nb-coated copper samples yielded RRR values as high as

40 and an average grain size of up to 0.2 µm on the surface for a substrate temperature of 550°C,

compared to RRR values of about 20 and a grain size of up to 0.1 µm at the standard temperature of

200°C. However, to avoid the risk of cavity collapse due to copper annealing, the cavity cannot be

heated above 200°C.

It was also found that high discharge power and low Ar pressure during the discharge lead to

optimum film quality. Actually, a higher discharge power increases the flux of sputtered atoms

impinging on the film, while a reduction of the discharge pressure increases their energy. Both effects

result in a higher surface temperature and, in turn, to higher mobility of the Nb atoms, i.e. to more

favourable conditions for growing larger crystal grains.

For the present standard cavity coating procedure the discharge parameters are optimised

within the limits of the given configuration. The maximum discharge power is limited by the heating

of the cathode, whereas the discharge pressure cannot be reduced at will, because discharge

instabilities start to occur below a certain threshold, eventually leading to discharge extinction if the

pressure is reduced further.
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An attempt has therefore been made to substitute part of the Ar process gas by He. Since He

is much lighter than Ar, this reduces the energy loss of the Nb atoms by gas scattering and therefore

increases their impinging energy.

He has a very low Nb sputtering yield (in the energy range considered about 0.02, compared

to 0.5 for Ar [5]). However, He may participate in supporting the discharge by the following

processes:

• asymmetric charge transfer

He+ + Ar → Ar + + He (1a)

• metastable-neutral ionisation

He∗ + Ar → He + Ar+ + e−
(1b)

• higher secondary electron yield (1c)

where He
∗

 stands for a metastable He atom. The reverse process of charge transfer (1a) is negligible

because it is strongly endoergic and therefore has a low cross section compared with the other

processes [6]. The reverse process of the metastable-neutral ionisation (1b) is unlikely to happen

because it would require three particles to collide at once.

At a certain He partial pressure the processes (1a-1c) may help in keeping the same

sputtering rate in spite of a lower Ar partial pressure. The mean free paths associated with charge

transfer (λ c ) and with metastable-neutral ionisation (λ mn ) are given by

λc =1 σcnAr

λ mn =1 σmnnAr (2)

where σc  (=2.7·10-16 cm2), σmn  (=7.6·10-16 cm2) [6] are the respective cross sections and nAr  is

the Ar atom density.

The Ar pressure in the standard coating procedure is 8·10-4 mbar. If this pressure is reduced

to 60%, λ c  becomes about 1.3 m, so that charge transfer will be negligible for a cavity where the

distance between the cathode and the substrate is about 30 cm. On the other hand, the

metastable-neutral ionisation mean free path λ mn  becomes about 40 cm. Considering also

that the lifetime of the He 23S metastable is 10-4 sec [7], i.e. has a considerable chance to relax

by metastable-neutral ionisation.

In addition, the higher secondary electron yield of the He causes more electrons to be

emitted from the cathode. These electrons in turn create Ar ions and about six times longer than the
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time a 10 eV He∗
 needs to travel one λ mn , the He∗

 therefore help to increase the total sputtering

rate.

On the basis of these considerations, tests with different Ar-He gas mixtures were

undertaken.

2. Experimental

Coating was performed in a cylindrical magnetron sputtering system as shown in Fig. 1 [3].

A 500 MHz stainless steel cavity, used instead of the usual copper cavity, allows the mounting of

four sample holders and direct connection to a gas analyser. Each sample holder can expose six

samples in turn. The cathode consists of a cylindrical stainless steel tube inserted along the cavity

axis and linked tightly to the cavity through a ceramic insulator. This tube is surrounded by a high

purity niobium liner (RRR=100), i.e. the actual sputtering source, and contains a solenoid

electromagnet which provides the magnetic field required for the magnetron effect (~140 G at the

cathode surface). The tube and the magnet are cooled by a constant flow of refrigerating fluid. During

the discharge the magnet current is automatically controlled in order to keep the discharge current

constant.

Pumping is achieved by a 170 l/s turbomolecular pumping station. After a 24 hours bake-out

at 200°C an ultimate pressure in the low 10-9 mbar range is reached. Two bakeable injection lines,

equipped with precision injection valves, allow the injection of a constant flow of Ar and He into the

system during the discharge. Gas purity is better than 99.9999% for both gases. The He injection line

is equipped with a liquid nitrogen cooled trap to further purify the injected gas. The gas composition

is continuously monitored by a residual gas analyser differentially pumped by a second

turbomolecular pumping station.

Standard coating parameters used in this system are the following:

• cathode voltage: U= - 400 V (with respect to ground)

• discharge current: I=7.5 A

• argon pressure: pAr=8·10-4 mbar

• coating temperature: T=200°C

This leads to a discharge power of 3 kW and to a film growth rate of about 4 Å/s.

For the coating with an Ar-He mixture as discharge gas two different approaches were

followed. The first approach (in the following denoted by method 1) consisted in reducing the Ar

pressure to a certain fraction of the standard value (8·10-4 mbar) and then adding He until the

standard discharge conditions (U=-400 V, Idis=7.5 A, Icoil=2.5 A) were reached. The amount of He
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needed to compensate for the reduction of the Ar pressure can be determined in this way. For the

second approach (method 2) an Ar pressure of 60% of the standard pressure (i.e. 4.8·10-4 mbar) was

fixed and various quantities of He were added. The standard discharge power was then attained by

adjusting the coil current and thus the magnetic field of the electromagnet. With this method the

effect of the He on the film quality can be more easily deduced.

All the samples mentioned in this report are labelled according to their respective Ar and He

pressures normalised to the standard Ar pressure of  8·10-4 mbar (e.g. 0.6/0.2 denotes a sample made

with an Ar pressure equal to 60% and a He pressure equal to 20% of the standard value, i.e.

pAr=4.8·10-4 mbar and pHe=1.6·10-4mbar). This same notation is also used for the x-axis scale of

all the graphs herein reported.

Using method 1, coatings at 0.9, 0.7, 0.5 and 0.3 times the standard Ar pressure were

produced. Fig. 2 shows the resulting gas compositions required to obtain standard conditions and the

corresponding sample labels. In addition, a standard 1.0 reference sample was grown. It is seen that

more He is needed than just the missing Ar pressure.

Fig. 3 shows the He pressure scan performed according to method 2. For a fixed 0.6 Ar

pressure, He pressures of 0.1, 0.2, 0.4, 0.8, 1.6 times the standard Ar pressure were chosen. In order

to compensate for the decrease in discharge current, the coil current had to be increased. The

adjustment is made automatically by simple electronic control.

In the first phase, films with a standard coating time (50 min) were produced on quartz

substrates using all gas mixtures shown in Fig. 2 and 3, to determine the sputtering rate. In the

second phase, films of various thickness were made according to method 2, both on copper and

quartz substrates to determine the grain growth behaviour and the dependence of the RRR on film

thickness and grain size. Films of standard thickness were also deposited according to method 2 on

stainless steel ribbons for thermal outgassing measurements (see paragraph 3).

The measurement of film thickness was performed with a Stylus-Method Profilometer. RRR

values were measured in a liquid He cryostat using a four-point method. Average crystal grain sizes

were determined by X-ray diffraction. The thermal outgassing measurements were made in a UHV

system, equipped with a gas analyser and thermocouples, where the sample may be heated resistively

up to 1100°C. The evolution of the degassing species was continuously monitored while the Nb-

coated stainless steel ribbons were heated with a temperature ramping of 5°C/min.
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3. Results

The film thickness obtained within the standard coating time of 50 min are reported in Fig. 4

and 5. When applying method 1 (Fig. 4), the thickness decreases with decreasing Ar pressure in spite

of the He addition. Fig. 5 shows that for films grown according to method 2 the thickness decreases

only slightly when increasing the He pressure.

Table 1 and 2 show the RRR values and the crystal grain sizes of these samples. For both

values an important degradation with increasing He pressure is observed.

Thermal outgassing measurements revealed He contamination of the film. Due to the start of

sublimation of the stainless steel components, the temperature for these measurements was limited to

1100°C. At this temperature He outgassing is still present so that these measurements can only give a

lower limit for the actual He content of the film.  A rough estimate of the He pumping speed of the

film, based on the He pressure reduction taking place when the discharge is ignited, allows to give an

upper limit for this contamination. Both values are found to be proportional to the He pressure

present during the coating as is shown in Fig. 6.

4. Discussion

The addition of He allows the Ar pressure to be considerably reduced without loosing the

discharge stability. This shows the effectiveness of the metastable-neutral ionisation and of the higher

secondary electron yield of He. The total sputtering rate was found to be only slightly reduced, even

for large Ar pressure reductions.

On the other hand, adding He to Ar in the coating discharge leads to a clear deterioration of

the RRR and to a reduction of Nb crystal grain size. A legitimate question to be asked is whether the

lower film quality is a consequence of reducing the Ar pressure or of increasing the He pressure in

the discharge.

In Fig. 7 and 8 the dependence of RRR and average grain size on the normalised He

pressure is represented. It is evident that data from both methods are interchangeable. Since in

method 1 the Ar pressure is progressively decreased and in method 2 it is kept constant, it may be

concluded that the deterioration of film quality is not due to the Ar pressure reduction but rather to

the increasing He pressure.

The correlation between the measured RRR values and the grain size in polycrystalline

metal films is not yet fully understood. Various models have been proposed, [8, 9, 10, 11] which assume

that an electron travelling through a polycrystalline metal undergoes scattering by defects and
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phonons, and, in addition, has only a certain transmission probability T to cross a grain boundary. It

is clear that in this case the overall resistance increases as the number of grain boundaries increases.

If the RRR degradation found in this study is only due to the reduced average grain size D,

then the ratio RRR/D should, to a first approximation, be constant. Fig. 9 shows that this is not the

case. We can conclude that the RRR degradation must be produced, to a large extent, by impurity

trapping in the film.

As discussed in ref. 5, it is a vital question for the RF behaviour of the film whether these

impurities are uniformly distributed within the grain or whether they are accumulated at the grain

boundaries. If He trapping occurs only inside the grains and the transmission coefficient is

unchanged, its effect would be a reduction of the intragrain RRR of the film so that it could be used

as a dopant to control the RRR. By this means the RF resistance could be reduced to its minimum.

On the other hand, an increased impedance at grain boundaries would result in a much larger RF

resistance.

For common gases dissolved in bulk metal, the variation of the resistivity as a function of

the gas concentration is reported in the literature. For Nb this dependence is given in the form [12]:

  ρ(xA ) = 14.4+ cA ⋅ xA [µΩ ⋅cm] (3)

where 14.4   µΩ ⋅ cm  is the phononic contribution at 300 K, xA is the atomic fraction (<0.03) of

some gas A incorporated in the Nb, and cA is a gas specific constant, independent of temperature,

ranging from 65 for hydrogen to 450 for oxygen. The corresponding RRR is:

  
RRR=

ρ(300K)
ρ(10K)

= 14.4+ cA ⋅ xA

cA ⋅ xA 
,

(4)

assuming that the phononic contribution to the resistivity disappears at low temperature.

The effects of He on the resistivity of Nb are generally studied in the literature on samples produced

by irradiation with He ions [13]. By re-examining these data we obtain a cA of 70 for an atomic

fraction up to about 0.01. The reported cA value results from the scattering effects of both the

defects created by the ion bombardment and the He inclusions, and therefore it may be considered

pessimistic in the present case, where only the inclusion of He atoms takes place.

Assuming a “worst case” scenario, i.e. taking the upper impurity limit of Fig. 6 and this

pessimistic value for cA, we find that the RRR calculated with (4) is still higher than the measured

value (see Fig. 10). This gives a clear indication that a substantial part of the RRR decrease is due to

He accumulated at the grain boundaries. This conclusion is also supported by the observed reduction
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of crystal grain size. Residual gas adsorption has been reported to cause an adatom mobility

reduction, which in turn hinders grain growth [14].

5. Conclusions

Experiments showed that in the pressure range considered the metastable-neutral ionisation

and the higher secondary electron yield of He efficiently maintain the discharge at an only slightly

reduced sputtering rate in spite of the very low sputtering yield of He. On the other hand, charge-

transfer was found to be of negligible importance by theoretical considerations.

The analysis of the resulting films revealed that the benefit of the higher impinging energy

of the Nb atoms on the substrate is largely offset by an important He trapping in the film, which is

shown to be proportional to the He partial pressure during the discharge. This leads to a reduction of

both RRR and grain size. This RRR reduction is attributed to a large decrease in transmission

probability between crystal grains caused by He impurities accumulated at the grain boundaries,

which is also believed to hinder grain growth.

These conclusions hold for Nb films produced by magnetron sputtering. Other materials

could display more favourable behaviour with respect to He trapping. The proposed approach could

then be particularly useful if diode sputtering is used. Diode sputtering makes use of higher

pressures, and therefore metastable-neutral ionisation would be more efficient and charge transfer

would provide non-negligible effects.
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Tables

Table 1: Measured thickness, RRR and average grain size D

for films produced according to method 1.
sample thickness [µm] RRR D [µm]

1/0 1.50 18 0.096
0.9/0.1 1.45 14 0.089
0.7/0.5 1.40 10 0.078
0.5/2.6 1.30 4.5 0.045
0.3/6.5 1.20 3.2 0.035

Table 2: Measured thickness, RRR and average grain size D

for films produced according to method 2.
sample thickness [µm] RRR D [µm]

0.6/0.1 1.50 16
0.6/0.2 1.50 11 0.107
0.6/0.4 1.45 9.2 0.079
0.6/0.8 1.40 8.1
0.6/1.6 1.40 6.9 0.056
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Figure Captions

Fig. 1: Schematic view of the cylindrical magnetron sputtering configuration for single-cell

500 MHz cavities.

Fig. 2: Gas compositions employed in experiments carried out according to method 1. The labels

reported on the x-axis indicate the fractions of the standard Ar pressure adopted for the Ar

and He partial pressures.

Fig. 3: Gas compositions employed in experiments carried out according to method 2.

Fig. 4: Thickness values measured on films produced according to method 1.

Fig. 5: Thickness values measured on films produced according to method 2.

Fig. 6: Lower and upper limit for He concentration. The upper limit is obtained from He film

pumping evaluation, the lower limit from outgassing measurements.

Fig. 7: Variation of RRR as a function of He pressure for films produced according to method 1

and method 2.

Fig. 8: Variation of crystal grain size as a function of He pressure for films produced according

to method 1 and method 2.

Fig. 9: Variation of the ratio RRR/grain size (D) as a function of He pressure.

Fig. 10: Comparison between the RRR reduction calculated according to eq. (4) (“worst-case”

scenario) and measured on samples produced according to method 2.
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Fig. 1
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