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Abstract
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1 Introduction

A new feedback system counteracting the transverse mode coupling instability, based on the

use of feedback oscillators coupled to the TMC modes, has been proposed by V. Danilov and E.

Perevedentsev. Ref. [1] presents a rigorous and detailed description of this system: here only

the main features will be outlined using a rather intuitive approach, to provide a framework

for the following analysis.

The basic principle is to enforce a coupling between the coherent dipole mode m=0 and an

arti�cial oscillator, modelled by the feedback hardware. This coupling provides a force which

prevents the frequency of mode m=0 from shifting towards the synchrotron sideband m=-1,

thus avoiding the onset of TMC.
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Figure 1: Basic con�guration for the coupled-oscillator feedback system proposed by Danilov

and Perevedentsev.

The basic con�guration is illustrated in Fig. 1, where the arti�cial oscillator is represented

as a charge rotating around a ring with the same revolution frequency and phase of the beam,

and performing betatron oscillations with a one-turn phase advance �f : the motivation for

this \bunch-like" representation of the oscillator will be clear from what follows. At each

passage of the bunch through the feedback kicker, both the bunch and the feedback oscillator

are applied corrections which have been computed from position measurements taken at the

previous turn. At (ideally) the same time, the position of both the bunch and the feedback

oscillator is measured, in order to compute the corrections which will be applied at the following

turn. For this system, no timing problems arise as a whole revolution period is available to

prepare the next correction after the bunch has passed through the kicker; for what concerns

the feedback oscillator, the time needed to perform the calculations is negligible.

A simple example, reported in [1], shows how the con�guration described can provide, with

suitable choices of the (current dependent) oscillator phase advance per turn and of the feedback
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gain, a coupled system in which the eigenfrequencies of the normal modes do not depend on

current. For this purpose, it is su�cient to write the one-turn transfer matrix for the dynamical

variables (position and slope) of the two coupled oscillators, representing a mutual kick followed

by a free oscillation: assuming a linear phase shift with current, �coh = �� + �Ib, one obtains:

M =

2
6664

cos(�� + �Ib) sin(�� + �Ib) 0 0

� sin(�� + �Ib) cos(�� + �Ib) 0 0

0 0 cos(�f ) sin(�f )

0 0 � sin(�f ) cos(�f )

3
7775
2
6664

1 0 0 0

0 1 Kx 0

0 0 1 0

Kf 0 0 1

3
7775 (1)

If the feedback parameters1 �f and Kx are solutions of the equations:

cos(�f ) = 2 cos(��)� cos(�� + �Ib) (2)

KxKf = �
[cos(��)� cos(�� + �Ib)]

2

sin(�f ) sin(�� + �Ib)
(3)

then the eigevalues of the matrix M (and hence the mode frequencies of the coupled system

bunch+oscillator) do not depend on current [1] and stay equal to the zero-current tune ��,

which means that the coherent tune shift leading to transverse mode coupling is virtually

eliminated.

In this representation of the feedback system, the oscillator could be regarded as a mirror

image of the bunch: in fact, according to equation 2, for increasing currents �f shifts upwards as

�coh shifts downwards (since � < 0), and the two stay approximately symmetric with respect to

the zero-current betatron phase advance ��. The phase advances per turn �coh and �f are those

corresponding to the uncoupled system (Kx=0); then, as the gain is raised up to its nominal

value (given by equation 3), an attractive force is established between the coherent mode m=0

and the oscillator, so that their tunes get closer to each other, until they merge at a value

equal to Q�. This way of representing the feedback operation is quite useful, as it reveals that

the settings calculated according to equations 2 and 3 are just one possible solution, aiming at

a coupled system with current-independent mode frequencies; however, di�erent strategies for

chosing the feedback settings can also be envisaged, which may prove to be more e�ective in

providing the maximum current gain. In fact, it should be noted that the new \oscillator" mode

introduced in the transverse spectrum of the bunch by the feedback system may be responsible

for the onset of instabilities due to its coupling with other coherent modes. Although the

conditions leading to dangerous coupling can be predicted by more sophisticated theoretical

models [1], simulation can be of great help in the de�nition of an optimal strategy for the choice

of the feedback settings, which will be a �rst important task of the present study.

For what concerns the practical layout of the system, in case a pick-up is not available at the

location of the feedback kicker (as for the system presently implemented in LEP), the position

of the bunch at the kicker can be calculated using the measurements taken by two pick-ups

placed upstream:

zkicker = g1zpu1 + g2zpu2 (4)

1Since the gains Kx and Kf only appear as a product in equation 3, it is convenient to set Kf=1 and to

retain Kx as the only independent parameter.
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where g1 and g2 are functions of the betatron phase advances between the pick-ups and the

kicker. The additional time delay in obtaining the input value for the calculation of the kick

which must be applied to the feedback oscillator does not create problems, as the oscillator

can easily catch up with the beam in a fraction of the revolution period. However, it is also

important to ensure that the position of the bunch at the \virtual" pick-up can be computed

with su�cient accuracy. The evaluation of the sensitivity of the feedback performance with

respect to errors in the calculation of the bunch position will be a second important aspect of

the present study.

This work is a continuation of simulation studies carried out in 1993-94, which played an

essential role in the feedback development: although a detail report of those results was not

issued, the main conclusions were reported by D. Brandt in [2], together with the results of

the experiments carried out in the same period. The present report is organized as follows: in

section 2, a brief description of the machine model and of the machine settings which have been

used for the simulations will be given; then the behaviour of the coupled-oscillator feedback

will be analysed in section 3 assuming ideal conditions (that is with no limitations either in the

accuracy of the pick-up system or in the kick strength), in order to study the beam dynamics

in the presence of feedback, and to optimize the settings for the maximum current gain. In

section 4, the e�ect of hardware limitations on the feedback performance will be studied, in

order to estimate the hardware speci�cations which would be required in order to achieve a 25%

increase of the maximum bunch current, with the machine settings which have been selected

for the present study and using a con�guration of the coupled-oscillator feedback in which an
attractive force is established between the coherent mode m=0 and the oscillator. In section 5,

an alternative con�guration in which a repulsive force is established between the coherent mode
m=0 and the oscillator is considered, and it will be shown that in this mode of operation a

relaxation of some hardware constraints is possible. Finally, a synthesis of the results which

have been obtained will be given in section 6.

2 Machine model

The geometry of LEP has been modelled by a ring divided into 8 sectors, each one starting with

a point-like element (labeled as E1 . . . E8), followed by an arc section in which the motion is

assumed linear. This machine representation is illustrated in Fig. 2: the element E1, placed at

the position conventionally indicated as \start LEP" (IP1), represents a pick-up which collects,

at each turn, the relevant bunch data; the elements E2 and E7 represent the LEP RF stations

in IP2 and IP6; each of the elements E2 and E7 also accounts for one fourth of LEP impedance,

while E6 and E8 account for the remaining impedance; the elements E3 and E4 represent the

feedback pick-ups, while the element E5 represents the feedback kicker.

The collective motion of a set of macroparticles in this virtual machine has been simulated,

in a 2D longitudinal-vertical plane, using the multi-particle tracking program TRISIM [3]: the

beam dynamics includes synchrotron radiation loss, radiation damping, quantum excitation,

sinusoidal RF, and chromaticity. The wake�eld e�ects, which depend on the particle distribu-

tion, are represented as kicks, lumped at the elements E2, E6, E7, E8. A detailed discussion

concerning the equations of motion, the wake�eld representation technique, and the e�ciency

of this model in representing the real machine can be found in [4].
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Figure 2: The LEP machine model

For what concerns the impedance model, several elementary structures are considered: one

cell of the copper cavity, a four-cell superconducting cavity, an electrostatic vertical separator,

the di�erent bellows and tapers which connect these structures to the vacuum chamber, and a

shielded bellows for vacuum chamber interconnections in the arcs. For each structure, the wake

potential for a reference (basis function) distribution, having a triangular longitudinal shape

and a multipolar dependence on the azimuth, has been computed using the electromagnetic

mesh code ABCI [5]. The reference wake potentials so-obtained have then been combined in

\e�ective wakes" for the point-like elements, by taking into account the number of structures

in each impedance class, and the average values of the (vertical) � function for each class.

For the present study, the optics functions corresponding to the LEP 90o/60o (1994) lattice

were chosen: the momentum compaction factor is �c=1:86 � 10
�4, while the average values of

the � function at each impedance class are reported in table 1, together with the number of

structures, corresponding to the LEP status during the 1994 run. A vertical � of 56.4 m (equal

to the average � in the ring) has been assumed at both the feedback pick-ups and at the kicker.

More details about the impedance model and the calculation of the reference wakes are pro-

vided in [4], where a discussion concerning the possibility of representing the e�ect of di�erent

structures as an \e�ective wake" lumped at a point-like element can also be found.

For what concerns the other beam parameters, table 2 reports the values of the zero-current

energy spread, of the radiation energy loss, and of the radiation damping time, for nominal

excitation of the wiggler magnets [6]. All the calculations have been carried out assuming zero

chromaticity.

The number of macroparticles has been chosen according to the criteria formulated in [4]:

a few thousands particles have been used in most cases. The simulations have been carried out

for a number of turns corresponding to several damping times, the output data (equilibrium
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Structure N < �y > [m]

Copper cavity cell 600 40.6

Four cell SC cavity 20 51.3

ZL tank & electrodes 36 66.4

Separator tapers & bellows 47 56.1

Straight section bellows (L) 128 40.6

Straight section bellows (S) 160 40.6

SC module taper 5 51.3

Shielded bellows (arc) 2668 84.8

Table 1: Impedance model of LEP: the elementary structures which have been taken into

account, their number, and the average values of the (vertical) � function are reported. The

average � function values at the RF cavities and in the arcs have been computed by A. Verdier.

Wiggler Excitation Radiation Energy Energy

Damping Polarization loss/turn spread damping time

A A MeV MeV s

520 500 14.97 36.4 0.119

Table 2: Beam parameters for nominal wiggler currents [6].

values, mode spectra) were calculated only over the last damping time.

In order to estimate the gain which can be provided by the feedback system with respect to

the maximum bunch currents which can be achieved without feedback, the machine conditions

which have been selected for the present study are those of a typical high-current experiment

at LEP, that is with both damping and polarization wigglers excited, and with a rather high

synchrotron tune (Qs=0.108). First, the TMC limit without feedback has been calculated by

simulating an accumulation process in steps of 20�A, and the last stable bunch current has been

found to be equal to 0.78 mA: �gure 3 reports a summary of the simulation results for Ib=0.8

mA, where the TMC limit is reached. An experiment carried out with similar machine settings

during the 1993 run yielded a maximum bunch current of 0.73 mA. For what concerns the

1994 run, no experimental data taken in the same conditions are available; however, the 1993

data may be regarded as essentially correct, with some possible reduction due to slightly higher

values of the average � function in the 1994 optics, and due to the installation of a few more

elements contributing to the machine impedance (separators, SC cavities). This comparison

indicates that the threshold current obtained by simulation is overestimated by a factor of

about 10-15%: this discrepancy is believed to be a consequence of an underestimation of the

LEP impedance in the model of table 1, due to several contributions which have not been taken

into account [4, 7].
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Figure 3: TMC threshold (feedback o�).
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3 Feedback performance in ideal conditions

This section will be devoted to the study of the behaviour of the coupled-oscillator feedback

system assuming ideal conditions, that is with no limitations either in the accuracy of the

measurement of the bunch position or in the kick strength. It should be noted, however, that

some uctuations in the center-of-charge position are always present in the simulation, due

to a residual e�ect of quantum excitation when a relatively small number of macroparticles is

used. In order to estimate the size of this e�ect, the vertical position of the center of charge at

the feedback kicker has been calculated at each turn by averaging over the vertical positions

of all macroparticles, and compared to the value calculated using equation 4: the maximum

and RMS deviations were checked using several di�erent cases and found to be rather small, so

that the results presented in what follows can still be considered to correspond to \ideal" when

compared to what can be achieved by the hardware: with 500 macroparticles, the RMS error

is already about 10�3 of the amplitude of the center-of charge oscillation, and further decreases

when a higher number of macroparticles is used.

3.1 Compensation of the coherent detuning

In order to verify the capability of the feedback system to compensate the coherent detuning

of mode m=0, a study of the vertical mode spectrum as a function of the feedback gain was

carried out for a �xed bunch current Ib=0.8 mA, slightly above the maximum bunch current

without feedback. The average detuning rate with current, calculated on the basis of the

results obtained with feedback switched o� and Q�=76.24 (�gure 3), is �=-104A
�1. According

to equations 2 and 3 the feedback settings are then �f=2.01 (corresponding to an oscillator

tune Qf=0.32), Kx=-0.0226m
�1.

Figure 4: Transverse mode spectrum with feedback on: Ib=0.8 mA, (Q�=76.24, Qf=0.32,

Kx=-0.015m
�1).

Figure 4 shows the transverse mode spectrum for Kx=-0.015m
�1 (�65% of the nominal

value): as can be seen, the coherent tune (indicated as \m=0") has been shifted back to 0.193

(+0.043 as compared to the case without feedback, �gure 3). The new mode related to the

feedback oscillator is also clearly visible at a tune of 0.288: the detuning of this mode due to the

feedback coupling is then -0.032. The peak labelled as \m=0 (radial)" corresponds to a cluster
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of modes belonging to the m=0 azimuthal number (as the mode indicated as \m=0"), but with

higher-order radial dependence: they have been identi�ed by comparing their behaviour with

that observed for the eigenvalues of the mapping matrix of a beam whose longitudinal phase

space has been divided into rings, each one with a given value of the synchrotron oscillation

amplitude [1]. The smaller peaks which can be observed in the lower part of the spectrum, on

the left of the synchrotron sideband m=-1, will be analyzed in detail in section 3.2 and will be

shown to correspond to the higher-order modes m=-2, m=-3 (reected).

Modes vs feedback gain  forQ f=0.32
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LEP  90/60(1994): DW=520A,  PW=500A, Qs=0.108,  Ib=0.8mA

Figure 5: Compensation of the coherent detuning by the coupled-oscillator feedback system.

Q�=76.24, Qf=0.32.

The curves reported in �gure 5 have been obtained by calculating the tunes of the tranverse

modes for increasing values of the feedback gain Kx: as can be seen, the coherent tune can be

shifted back to a value Qcoh=0.22, obtained with a feedback gain Kx=-0.022 m�1 (97% of the

nominal value). The average detuning of the coherent dipole mode with current is then reduced

from -104A�1 to -25A�1, demonstrating that the feedback system works basically as predicted

by theory; however, a further increase of the feedback gain leads to beam loss. In order to �nd

the optimal strategy for the choice of the feedback settings, the instabilities which can occur

when the feedback system is switched on will be further investigated in section 3.2 keeping a

bunch current of 0.8 mA, before addressing the question of the maximum current gain which

can be achieved. These instabilities can generally be predicted also by theory, although some of

the e�ects have been successfully incorporated in the theoretical model only after having been

observed in simulation [2].

3.2 Transverse instabilities in operation with feedback

In order to identify the instabilities which can occur when the feedback system is on, the machine

and feedback settings have been chosen such as to selectively provide coupling between two
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modes, while all the other modes are kept clear of each other. This condition is not satis�ed

in the case of the beam loss occurring for jKxj > 0:022 in �gure 5, where three modes are

approaching each other at the same time.
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Figure 6: Instability due to coupling between the radial m=0 mode and the oscillator mode.

For �f=2�=0.275, a beam loss is observed, but since the growth rate of the instability is rather

low it is still possible to compute the mode spectrum.
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Figure 7: Interaction between the oscillator mode and the synchrotron sideband m=+1.
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In the �rst calculation (�gure 6), an instability due to coupling between the oscillator mode

and the m=0 radial mode is found by letting the oscillator tune decrease until the two modes

merge. Hence, the feedback settings will have to be chosen such as to keep the tune of the

oscillator mode su�ciently away from that of the radial m=0 mode. However, no instability

arises due to coupling between the oscillator mode and mode m=+1, as predicted by theory

[1] and con�rmed by the simulation results reported in �gure 7, where the two modes can be

observed exchanging their roles without merging their frequencies.

Figure 8 presents the results of a calculation aiming at obtaining the maximum compensation

of the coherent tune shift of mode m=0. For this purpose, a high oscillator tune Qf=0.45 was

chosen, in order to avoid coupling of the oscillator mode with the radial m=0 mode.

Modes vs feedback gain  forQ f=0.45
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Figure 8: Compensation of the coherent detuning with Qf=0.45.

As can be seen, the coherent m=0 mode can be shifted to a higher position with respect to

the case with Qf=0.32, and for Kx=-0.14 reaches a value of 0.231, very close to its zero-current

value of 0.24: the corresponding mode spectrum is shown in �gure 9. However, for higher values

of the feedback gain again an instability occurs, which sets an upper limit to the maximum

tune compensation which can be obtained by the feedback system.
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Figure 9: Transverse mode spectrum with feedback on and high oscillator tune: Ib=0.8 mA,

Qf=0.45, Kx=-0.14m
�1.

The last point in this section is devoted to the study of the instabilities due to coupling

between mode m=0 and higher order (reected) modes [9]. For this purpose, a scan of the

zero-current tune Q� from 0.24 down to 0.2 was carried out; at the same time, the oscillator

tune was decreased from Qf=0.32 to Qf=0.28. The feedback gain Kx was equal to -0.15m�1.

In �gure 10 the transverse mode spectrum for Q�=0.215 is reported: here mode -3 is clearly

shown between mode 0 and mode -1. A second important feature which is worth noting is that

several azimuthal modes are split in clusters due to the di�erent detuning experienced by the

di�erent radial components.

Figure 10: Transverse mode spectrum for Ib=0.8 mA, Q�=76.215, Qf=0.295, Kx=-0.015m
�1,

showing the radial and the reected modes.

By repeating the calculations for di�erent values of Q� and Qf the curves of �gure 11,

representing the mode spectrum as function of the (zero-current) vertical tune, have been

obtained: note the opposite slope of the curves corresponding to the (reected) higher-order

modes, as compared to those corresponding to the low-order modes. When the tune of mode

m=0 becomes equal to that of mode m=-3, an instability occurs: this instability is related
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to the feedback system, because theory predicts that in normal conditions mode m=0 should

only couple with reected modes of the same parity [9]. As a consequence, the machine and

feedback settings will have to be chosen such as to prevent the tune of mode m=0 from getting

too close to that of mode m=-3.

Modes vs (zero-current) vertical tune
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Figure 11: Instability due to coupling of the m=0 mode with the m=-3 (reected) mode. Ib=0.8

mA, Kx=-0.015m
�1.

3.3 Maximum bunch current with feedback on

In this section, the capability of the feedback system to increase the maximum bunch current

above the TMC limit will be studied. Figure 12 shows the results obtained with the oscillator

tune set to Qf=0.32, according to equation 2. For each current, a scan of the feedback gain

has been carried out: since the compensation of the coherent detuning depends on the feedback

gain, as a result of this calculation the stable tune range as function of current is obtained.

The curve \m=0 (minimum)" shows the position of the coherent tune corresponding to the

minimum gain for which a stable beam is obtained; the curve \m=0 (maximum)" is the one

corresponding to the maximum gain. The curve labelled \Oscillator (minimum)" reports the

position of the oscillator mode corresponding to the maximum gain: as the gain is reduced, the

oscillator mode shifts to higher tunes.

As can be seen, the width of the stable tune range becomes smaller as the current is

increased. For what concerns the lower limit, a possible interpretation of this result is the

following: the \e�ective distance" in tune below which mode 0 and mode -1 can couple becomes
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Modes vscurrent for Q f=0.32
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Figure 12: Stable tune range as function of current, and maximum current gain for Qf=0.32.

larger as the current is increased. The positive slope of the \m=0 (minimum)" curve is also

partly due to the positive tune shift with current of mode m=-1.

For what concerns the upper limit of the stable tune range, it is caused by coupling between

the \oscillator" mode and the \m=0 (radial)" mode when their tunes get too close to each

other (�gure 6). In this case, however, it should be possible to overcome the limitation by

shifting the (zero-coupling) oscillator tune Qf to higher values. To check this, the calculation

has been repeated with Qf=0.45: as can be seen in �gure 13, the \m=0 (maximum)" curve

is now shifted up, the stable tune range is wider, and the current can be increased up to a

value of 1.1 mA, corresponding to a current gain of 41% with respect to the TMC limit without

feedback.

Figure 14 reports the simulation results for Ib=1.1 mA in an intermediate value of the

stable tune range (Qcoh=0.206). With the new settings, the bunch current limitation is due

to coupling between the di�erent radial components of mode m=0. The transverse spectrum

of �gure 14 clearly shows the presence of new radial modes which appear for Ib > 1mA and

reduce the stable tune range in its upper part.

In conclusion, with one feedback oscillator used in the standard \attractive" mode of op-

eration, and with the machine conditions which have been selected for the present study (in

which the TMC limit was found to be 0.78 mA in simulation), the maximum gain in current

can be estimated to be about 41%, leading to a maximum bunch current of 1.1 mA. This result,

however, requires a �ne tuning of the machine and feedback settings, and has been obtained in

the hypothesis that no hardware limitations are present.
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Modes vscurrent for Q f=0.45
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Figure 13: Stable tune range as function of current, and maximum current gain for Qf=0.45.
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Figure 14: High bunch current with feedback.
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4 Hardware limitations and damping of the feedback oscillator

The hardware limitations which a�ect the feedback performance are the accuracy of the pick-up

system and the maximum deection which can be delivered by the kicker. For what concerns

the pick-up system, the main problems are the errors a�ecting the measurement of the bunch

position at each pick-up, and the deviations of the pick-up gains g1 and g2 (equation 4) from

a perfect setting, i.e. one corresponding to a zero-degree phase advance between the virtual

pick-up and the kicker. As it was done in section 3, the analysis will be �rst carried out keeping

a �xed bunch current of 0.8 mA, in order to achieve a good understanding of the system, and to

study how to optimize the parameters, before addressing the question of the maximum current

gain which can be achieved when hardware limitations are taken into account.

4.1 Pick-up noise

To study the e�ect of pick-up noise, a random component has been added to each position

measurement. The random component has Gaussian distribution and user-de�ned RMS value.

The calculations have been performed for noise levels between 1 and 10 �m RMS, which can

be considered as typical values for high quality pick-ups. A �rst result of this calculation is

illustrated in �gure 15: as the noise level grows, the amplitude of the center-of-charge oscillation

becomes proportionally larger, and the behaviour of the signal to noise ratio of the system is

inherently stable.
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Figure 15: Dependence of the amplitude of the center-of-charge oscillation on the pick-up noise

level.

A second result of the calculations is that as noise increases, the width of the peaks appearing

in the bunch spectrum increases. This e�ect can be observed by comparing the spectrum of

�gure 16, corresponding to a noise of 5 �m RMS, with the one of �gure 4, obtained with the

same machine and feedback settings but with no pick-up noise.
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Figure 16: Broadening of the transverse mode spectrum due to pick-up noise. The RMS noise

level is 5�m; Ib=0.8 mA, Qf=0.32, Kx=-0.015m
�1.

The broadening of the peaks in the spectrum can further reduce the available tune space,

which has been shown to represent a critical aspect of the feedback system. This potential

problem has been con�rmed by a comparison between the results of calculations performed

with a RMS noise level of 5�m and the ones obtained without noise: in the �rst calculation,

performed with a bunch current of 0.8 mA, the maximum feedback gain allowed before reaching

the instability due to coupling between the oscillator mode and the m=0 radial mode (�gure 5)

was found to be Kx=-0.017m
�1 instead of Kx=-0.022m

�1; in other terms, the instability occurs

when the oscillator mode reaches a tune of 0.282, while with no noise it can shift down to a

tune of 0.262. The second calculation was carried out for a �xed feedback gain of -0.015m�1,

and the current was increased until the onset of the instability due to coupling between mode

0 and mode -1: the instability was reached for a bunch current of 0.85 mA and a coherent tune

of 0.181. A calculation performed in the same conditions but without pick-up noise reached

the instability for a bunch current of 0.88 mA and a coherent tune of 0.176.

4.2 Phase errors

The evaluation of the tolerance to deviations of the settings of the pick-up gains g1 and g2
(equation 4) from those corresponding to a phase advance of exactly zero degrees between the

(virtual) pick-up and the kicker is essential in order to assess the feasibility of the feedback

system: unfortunately, the simulations carried out for increasing values of the betatron phase

advance �� between the virtual pick-up and the kicker (theoretically equal to zero) indicate a

very high sensitivity of the system to this parameter: for a bunch current of 0.8 mA, a deviation

of �0.2 degrees already leads to instability with a growth rate of about 60 ms (the damping

time is ��=119 ms); for a deviation of �0.5 degrees, the growth rate becomes about 30 ms. The

bunch spectrum of �gure 17 shows the anti-damping of mode m=0 for ��=0:20, while �gure

18 shows the anti-damping of the oscillator mode for ��=-0:20: both spectra can be compared

with the one of �gure 4, obtained using the same machine and feedback settings, and with

��=0. For lower bunch currents, smaller growth rates are obtained, but the requirements on

the accuracy and stability of g1 and g2 remain extremely tight: at 0.4 mA, the growth rate of

the instability is about 75 ms for a deviation of �0.5 degrees.
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Figure 17: Anti-damping of mode m=0 for a phase advance of +0.20 between the virtual pick-up

and the kicker. No noise on pick-ups, Ib=800�A, Qf=0.32, Kx=-0.015m
�1.

Figure 18: Anti-damping of the oscillator mode for a phase advance of -0.20 between the virtual

pick-up and the kicker. No noise on pick-ups, Ib=800�A, Qf=0.32, Kx=-0.015m
�1.

4.3 Damping of the feedback oscillator

After simulation studies indicated an unacceptable sensitivity of the feedback system with

respect to phase errors, the original theory was revised by V. Danilov and E. Perevedentsev by

introducing a damping factor d in the oscillator equation:

"
x

x0

#
k+1

=

"
cos�f sin �f

�d sin �f d cos �f

# "
x

x0

#
k

(5)

This results in damping of the oscillator mode, allowing for a stable bunch in a wider

interval of (negative) ��. However, theory also predicted that the damping factor on the

feedback oscillator may cause anti-damping of other modes: for this reason, the damping factor

must remain within a window of values such that none of the relevant modes is anti-damped

to rates higher than the radiation damping rate.

The possibility of decreasing the sensitivity of the feedback system with respect to phase

errors by damping the feedback oscillator is con�rmed by a series of calculations carried out with

Ib=0.8 mA and ��=-50: the results show that the bunch remains stable for 0:85 < d < 0:9. The
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Figure 19: Anti-damping of mode m=-1 for ��=-50 and d = 0:925. Ib=800�A, Qf=0.32,

Kx=-0.015m
�1. No noise on pick-ups.

instability due to anti-damping of mode m=-1 could be clearly observed for d =0.925 (�gure

19), while for d<0.85 it is mode m=0 which becomes unstable.

Since it is di�cult to predict the optimal value for the damping factor d on the basis of

theoretical considerations, the interval of d values which provide a stable bunch has been studied

as function of the phase shift ��, for Ib=0.8 mA. As can be seen in �gure 20, it is possible to

obtain a stable beam for -80< �� <00. The width of the stable area gives an indication of the

stable phase range as function of d: a maximum width of about 20 is obtained for 0.91< d <0.96.
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Figure 20: Stable range for the damping factor d as function of the phase error ��.

Figure 21 reports the results obtained for the stable phase range as function of current, for

d=0.94 and Qf=0.45. The feedback gain for the di�erent currents has been chosen on the basis

of the results reported in �gure 13, keeping the coherent tune in the cental region of the stable

tune range. As can be seen, the damping factor on the feedback oscillator allows for rather

large phase errors at low current; however, the accuracy and stability of the phase becomes

critical as the current is increased: at 1 mA, the stable range for �� was found to be about
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10. It should be noted that the optimal value for the damping factor d has been determined

for a current of 0.8 mA, and has not been optimized as function of current: however, since the

curves of �gure 20 show that the width of the stable phase range is essentially constant for

0.91< d <0.96, it is not expected that such optimization would result in a big improvement of

the results presented in �gure 21.
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Figure 21: Stable phase range as function of current for d=0.94.

4.4 Maximum bunch current with phase errors and noise

The results presented in the previous sections indicate that, with the machine con�guration

and feedback settings which have been considered, the coupled-oscillator feedback system can

achieve a substantial current gain only if the hardware can meet tight speci�cations in both

accuracy and stability: the calculations carried out for Ib=1 mA (corresponding to a 25% gain

in current, and a 50% gain in luminosity) and with d=0.94 show that the phase range allowed is

�1:50 < �� < �0:70 for a pick-up noise of 2 �m RMS. At ��=�10, the maximum pick-up noise

allowed before particles are lost is 3�m RMS. Figure 22 reports the simulation results for a phase

deviation of -10 and a RMS pick-up noise of 2�m. For what concerns the accuracy required on

the feedback settings, it was found that in the conditions of the calculation reported in �gure

22, the stable range for the feedback gain is -0.1775m�1 < Kx <-0.1625m�1, corresponding

to a relative variation of 8%. The corresponding range of variation for the coherent tune of

mode m=0 is 0.199< Qcoh <0.206. For Kx=-0.17m
�1, the stable range for the oscillator tune

is 0.007, from Qf=0.444 to Qf=0.451. For what concerns the constraints on the kicker system,

in the conditions of the calculation reported in �gure 22, the kick strength required would be

3 �rad for a � value of 56.4 m at the kicker2. For �xed machine and feedback settings, the

kick strength required increases rather rapidly with the noise level (see section 5); according to

the design speci�cations, the kicker magnets of the LEP tranverse feedback can deliver angular

deections up to 8�rad [10]; the vertical � function at their location is about 110 m.

2The kick strength required scales as the inverse of the square root of �kicker.
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Figure 22: Simulation results for Ib=1mA.
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5 Feedback operation in \repulsive" mode

The main purpose of a feedback system counteracting the transverse mode coupling instability

is to compensate the coherent detuning of the m=0 mode, in order to prevent its tune from

approaching that of mode m=-1. In the con�gurations which have been studied in the previous

sections, the coupled-oscillator feedback system achieves this goal by producing an attractive

force between mode m=0 and an oscillator placed in the upper part of the spectrum. However

a repulsive force may also be produced: for this, it is su�cient to invert the sign of the gain.

In this con�guration, however, a damping factor on the oscillator is required even if the pick-

up gains provide a phase setting of exactly zero degrees, in order to avoid anti-damping of

mode m=0 (�gure 23); at the same time, a too strong damping of the oscillator results in

anti-damping of mode m=-1 (�gure 24).

Figure 23: Anti-damping of the mode m=0 for ��=00 and d=1. Ib=0.8 mA, Qf=0.11,

Kx=0.003m
�1. Operation in repulsive mode, no noise on pick-ups.

Figure 24: Anti-damping of mode m=-1 for ��=00 and d=0.94. Ib=0.8 mA, Qf=0.11,

Kx=0.003m
�1. Operation in repulsive mode, no noise on pick-ups.

The operation in \repulsive" mode can be expected to improve the stability of the system

as compared to the operation in \attractive" mode: in fact, since the intensity of the coupling

force between the oscillator and the dipole mode increases as their frequencies approach each
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other, when the tune of mode m=0 shifts down due to the coherent force and approaches the

synchrotron sideband m=-1 a higher repulsive force is automatically produced. Unfortunately,

no studies of the properties of the feedback system using a single repulsive oscillator placed

in the lower part of the spectrum have been carried out so far, either in former simulation

studies or during the machine experiments: the results presented in this section indicate that

the con�gurations based on a single oscillator should be further investigated before deciding to

upgrade the feedback system by adding a second oscillator, as it was previously planned [2].

The simulations carried out using the coupled-oscillator feedback in repulsive mode indicate

that several advantages are present. The �rst advantage is an increased tolerance with respect

to pick-up noise: �gure 28 shows the results obtained for a bunch current of 1 mA and a pick-up

noise levels of 5 �m RMS; in fact, the beam was found to remain stable also for higher noise

levels. Up to 10 �m RMS no particles are lost, but the transverse dimension of the bunch

steadily increases with noise, and shows an oscillatory behaviour with bumps of increasing

amplitude. For an RMS noise of 15-20�m RMS, the particles with the largest amplitude of

oscillation are lost when the bump reaches its maximum. Figure 25 shows the oscillatory

behaviour of the vertical bunch width in the same conditions of �gure 28, but with a pick-up

noise of 20�m RMS. In the attractive mode, a similar behaviour is observed (�gure 22), but

particles are lost already for a noise level of 4�m RMS.

Figure 25: Vertical size bumps with a pick-up noise of 20�m RMS.

For what concerns the range of stability with respect to the choice of the feedback parameters,

the following results were obtained: for a bunch current of 1 mA, an oscilator tune Qf=0.11,

and a pick-up noise level of 5 �m RMS, the gain could be varied from 0.012m�1 up to 0.017m�1

(corresponding to a relative variation of 40%), while for a �xed feedback gain of 0.015m�1, the

oscillator tune could be varied from Qf=0.10 (�gure 26) to Qf=0.12 (�gure 27), corresponding

to a tune space of 0.02. In the attractive mode, with a lower noise level of 2�m RMS, the

maximum allowed variation of the gain was 8%, and the tune space for the oscillator was 0.007.

The width of the stable range for the coherent tune of mode m=0 was 0.012 in the repulsive

mode and 0.007 in the attractive mode.

Unfortunately, for what concerns the stability with respect to phase errors, the repulsive

mode of operation showed, so far, limitations similar to those observed with the attractive

mode: with d=0.99 and a noise level of 5 �m RMS, the stable phase range is -0.50< �� <0.250;
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Figure 26: Vertical bunch spectrum for Qf=0.10 and Kx=0.015m
�1. The other settings are

the same as in �gure 28.

Figure 27: Vertical bunch spectrum for Qf=0.12 and Kx=0.015m
�1. The other settings are

the same as in �gure 28.

with stronger damping, the stable phases shift to larger values, but the width of the stable

phase range is not increased.

In the conditions of �gure 28, with a pick-up noise of 5�m RMS, the kick strength required

is 4.4 �rad for a � of 56.4 m at the kicker (it scales as the inverse of the square root of �kicker).

The kick strength required depends on pick-up noise: at 10 �m RMS, deections up to 11

�rad would be required. Since the kicker magnets of the present feedback system for LEP can

deliver angular deections up to 8�rad and are placed at �=110 m [10], they would limit the

performance only for noise levels in excess of 10�m RMS.
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Figure 28: High current with the feedback system operating in repulsive mode.
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6 Conclusions

Some results obtained by simulating the collective motion of a LEP bunch in the presence

of coupled-oscillator feedback systems counteracting TMC have been presented. For bunch

currents comparable to the threshold for tranverse mode coupling, simulation results con�rmed

the theoretical predictions concerning the capability of the feedback system to compensate the

coherent detuning of mode m=0; however, as the current is increased above the TMC limit, the

tune space is progressively reduced and the choice of the feedback parameters becomes more

critical. In the conditions chosen for the present study (damping and polarization wigglers at

nominal settings, Qs=0.108, Q�=76.24), the TMC limit was found to be 0.78 mA in simulation3:

using one feedback oscillator in the attractive mode of operation, after a careful optimization

of the settings the maximum current gain was found to be about 40% (Imax

b
=1.1 mA) if no

hardware limitations are taken into account.

The hardware limitations which a�ect the system performance are pick-up noise, phase

errors, and maximum kick strength. Pick-up noise was shown to cause a broadening of the

peaks in the transverse spectrum, resulting in further reduction of the available tune space;

besides this, the kick strength required increases rather rapidly with pick-up noise. Small phase

errors were shown to result in instabilities already at low currents; however, the possibility

of decreasing this sensitivity by damping the feedback oscillator was also demonstrated. At

low current, the feedback system with damping can tolerate rather large phase errors, but as

the current increases the maximum deviation allowed is progressively reduced. According to

simulation, with the machine conditions which have been selected for the present study, and

with the feedback system used in the attractive mode of operation, in order to reach a 25%

current gain with respect to the TMC limit (50% gain in luminosity) the hardware should meet

the following speci�cations:

� Stable phase range: 0:80.

� Stable tune range for the oscillator: 0.007.

� Maximum (relative) variation for the feedback gain allowed: 8%.

� Pick-up noise: below 3�m RMS.

� Kick strength: angular deections of 3�rad are needed for a noise level of 2�m RMS and

a � of 56.4 m at the kicker4.

The �rst two requirements would be very di�cult to comply with; for what concerns the

other constraints, a position measurement with an accuracy below 3�m RMS can be achieved

with present technology but requires high quality pick-ups, while the necessary kick strength

would be within the speci�cations of the kicker magnets presently installed at LEP.

The �rst machine development session dedicated to the new feedback system was carried

out in 1993 without the support of simulation studies, and was not successful: although some

positive tune shift could be briey observed, the beam became systematically unstable as soon

as the feedback system was switched on. With better insight obtained from simulation studies

performed in 1994 [2] a second experiment was carried out, using improved parameters and

damping on the feedback oscillator: the system behaviour was found to correspond very closely

to what had been observed in simulation [2].

3During a machine experiment carried out in similar conditions, the threshold current was found to be 0.73

mA.
4The kick strength required scales as the inverse of the square root of �kicker.
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The simulations presented in section 3 and 4, and both the experimental tests, were carried

out using the feedback system with a single oscillator used in attractive mode; in section

5, an alternative repulsive mode of operation for the single-oscillator con�guration has been

considered: simulation results indicate that in this mode of operation some relaxation of the

hardware constraints for a 25% current increase is possible:

� Stable tune range for the oscillator: 0.02.

� Pick-up noise: below 10�m RMS.

� Maximum (relative) variation for the feedback gain allowed: 40%.

� Kick strength (for a � value of 56.4 m at the kicker, see also footnote): 4.7�rad for a

pick-up noise of 5�m RMS and 11�rad for a pick-up noise of 10�m RMS.

However, no improvement was observed so far for what concerns the tolerance to phase errors,

which represents the main problem still to be solved. It should be noted, however, that the

analysis reported here is not exhaustive, and that new strategies in the choice of the machine

and feedback settings may result in better tolerances and larger current gains: studies in this

direction are currently under way, and the possibility of obtaining a more e�cient and exible

system by introducing a second feedback oscillator is also considered.
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