
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN/ECP 95-29
11 December 1995

ON-LINE EVENT RECONSTRUCTION USING A

PARALLEL IN-MEMORY DATABASE

E. Argantey;z, P. v.d. Stoky, I. Willersz

yEindhoven University of Technology zCERN

Dept. Mathematics and Computing Science div. ECP

P.O.Box 513, 5600 MB Eindhoven CH-1211 Geneva 23

the Netherlands Switzerland

Abstract

PORS is a system designed for on-line event reconstruction in high energy physics (HEP) experiments. It uses

the CPREAD reconstruction program. Central to the system is a parallel in-memory database which is used as

communication medium between parallel workers. A farming control structure is implemented with PORS in a

natural way. The database provides structured storage of data with a short life time. PORS serves as a case

study for the construction of a methodology on how to apply parallel in-memory databases to HEP software,

providing systematic structuring of HEP data, easier parallelization and consequently a simpler development and

maintenance of code. PORS runs on a SPARCcenter 2000 8-node shared memory computer.

Presented at the First IEEE International Conference on Engineering of Complex Computer

Systems, Ft. Lauderdale, Florida, November 6-10, 1995

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25189607?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


On-line event reconstruction using a parallel in-memory database

E. Argantey;z P. v.d. Stoky I. Willersz

yEindhoven University of Technology zCERN

Dept. Mathematics and Computing Science div. ECP

P.O.Box 513, 5600 MB Eindhoven 1211 Geneva 23

the Netherlands Switzerland

Abstract

PORS is a system designed for on-line event recon-

struction in high energy physics (HEP) experiments.

It uses the CPREAD reconstruction program. Central

to the system is a parallel in-memory database which is

used as communication medium between parallel work-

ers. A farming control structure is implemented with

PORS in a natural way. The database provides struc-

tured storage of data with a short life time. PORS

serves as a case study for the construction of a method-

ology on how to apply parallel in-memory databases

to HEP software, providing systematic structuring of

HEP data, easier parallelization and consequently a

simpler development and maintenance of code. PORS

runs on a SPARCcenter 2000 8-node shared memory

computer.

1 Introduction

Parallel in-memory databases o�er a powerful

means of communication between the parallel workers

of an application, while providing high performance

through parallelization. In addition, they facilitate

the structuring of data, and allow a separation of log-

ical data presentation from physical data representa-

tion. The abstraction from physical data represen-

tation and low-level communication primitives makes

parallel software less platform dependent. This pa-

per shows that the application of database concepts

can lead to logically structured software. It is argued

that parallel in-memory databases are a viable alter-

native to current non-database software development

techniques.

PORS (parallel on-line reconstruction system) is a

case study which is designed to perform on-line event

reconstruction using the CPREAD reconstruction pro-

gram of the CPLEAR experiment at CERN, the Eu-

ropean Laboratory for Particle Physics in Geneva,

Switzerland. This is accomplished using a parallel in-

memory database.

Event reconstruction is the process of converting

raw detector data into interpretable physics results.

Traditionally, event reconstruction is performed o�-

line, i.e. separate from the experiment. PORS is de-

signed to perform on-line event reconstruction, i.e. as

the experiment is running. Former attempts to apply

databases in on-line HEP applications failed due to a

lack of performance.

2 HEP software problems and solu-

tions

Need for high performance. For new HEP appli-

cations and in particular the new Large Hadron Col-

lider (LHC) experiments at CERN, the estimated in-

crease of computing power requirements for the com-

ing ten years is three orders of magnitude [1]. Parallel

processing will become an essential way to tackle this

problem. This especially holds for real-time applica-

tions where computational latency is important.

The scalable performance of PORS permits calcu-

lation and storage of reconstructed HEP data on-line.

No uniform way of structuring data. HEP data

are often stored in an unstructured or not uniformly

structured way. This holds for run-time data as well as

more permanently stored data. Data are often viewed

and treated as binary objects without any de�ned

structure. Permanent data are stored on sequential

media, most commonly magnetic tape.

Data formats can be speci�c to an institute or even

to a HEP experiment. An example is Zebra [2], a

library to extend Fortran with more elaborate data

structure facilities. Also within Zebra, there is a lack

of enforced consistency. There is no general method

on how to model the data.

Databases help to enforce structuring of data ac-

cording to well-de�ned rules. Real-world objects can

be represented by tables. The columns of a table rep-

resent features of the object. Relations between ob-



jects are represented by columns or by separate tables.

The table structuring rules (normalization) lead to a

commonly understood data organization.

Hardware dependence of high performance

parallel programs. A problem in parallel software

is that to obtain good performance, the machine ar-

chitecture has to be taken into account [3], [4], forc-

ing applications to become machine dependent. Cur-

rently available communication paradigms (PVM [5]

or MPI), are still not capable of combining a good ab-

straction level with high performance [4]. Aiming for

the highest performance reduces the software's porta-

bility. Tuple space as de�ned by LINDA [6] abstracts

completely from the underlying communication struc-

ture. However, the broadcasting of tuple space con-

tents to all participants can lead to considerable com-

munication overhead. PORS strikes a balance between

LINDA and PVM by abstracting from the communi-

cation structure of the platform but allowing access to

speci�ed data items via SQL statements.

The PORS structure allows the easy implementa-

tion of rather complex control structures. Example

are:

� Data driven farming. A worker speci�es via SQL

statements that it needs certain data from the

database. At the arrival of the data the worker

continues execution. The provision of data with

a su�cient high rate leads to a high CPU utiliza-

tion.

� Bu�ering. PORS provides exible bu�ering

which is easy to set-up and changeable at run-

time. For example by specifying an appropriate

data distribution on a distributed memory ma-

chine, data can be sent in advance instead of wait-

ing until the data are needed. By using PORS,

this can be accomplished by specifying the loca-

tion of a table.

� Monitoring. Simple queries can be used to mon-

itor the results of the parallel software. Queries

can be used to change parameters in the system

if a de�ciency is monitored.

Parallelizing existing software. Currently, many

companies have sequential software which is not paral-

lelized, since they foresee that the gain does not com-

pensate for the work and di�culties experienced in

parallelization [3]. In HEP, farming of the sequen-

tial program is a solution which may not always be

satisfactory, for example if computational latency is

important.

PORS provides a smooth transition from sequential

to parallel code. In the case study, this is accomplished

by replacing the I/O statements by database state-

ments. For more elaborate ways of coarse grain paral-

lelism, like pipe-lining, the interface routines between

the modules of the sequential program are replaced

by database access routines. Data can be shared be-

tween multiple workers instead of every worker having

its own local copy. Concurrency control mechanisms

of the database take care that data consistency is pre-

served. This o�ers an easy way to obtain data paral-

lelism.

Conforming to industrial standards. The com-

mercial Oracle database can be used to store data with

a long lifetime. By integrating a commercial database

like Oracle into the system, there are a lot of addi-

tional advantages: structured storage of large volumes

of permanent data; conformance to industrial stan-

dards; data representation to the user is platform in-

dependent; network access among di�erent platforms;

it o�ers tools (e.g. graphics or statistics tools) which

are directly applicable to the data

3 Parallel in-memory databases

The purpose of a database is to store and re-

trieve data e�ciently and conveniently. In a relational

database, a collection of tables is used to represent

data and relationships among the data. The SQL

query language o�ers four types of access routines to

retrieve information from a database and to change

its contents: select, delete, insert and update. Indices

are used to decrease search times through database ta-

bles. Logically associated access routines are gathered

in transactions. A transaction is the atomic unit of

database actions.

A parallel database allows concurrent access. Par-

allel transactions should not be allowed to destroy

database consistency. Concurrency control algorithms

preserve database consistency in the context of paral-

lel transactions [7].

An application using the database, like PORS, con-

sists of multiple workers accessing the database, each

performing a task. The order in which data are ac-

cessed by an application is called its data access pat-

tern. By examining this data access pattern of a

worker, a set of transactions is designed to retrieve the

required data. The set of all transactions of all work-

ers of an application is called the transaction scheme.

The transaction scheme determines the lay-out of the

in-memory database, i.e. table de�nitions, data dis-

tribution and worker distribution.



Transactions of di�erent workers may be executed

in parallel, possibly resulting in data conicts. For

best performance, these data conicts are evaluated

and an appropriate e�cient type of concurrency con-

trol is chosen to preserve data consistency, i.e. trans-

action scheme and type of concurrency control are op-

timized looking at the data access pattern of the ap-

plication. This ensures that the overhead of concur-

rency control will be low, since it does not have to deal

with all possible data access patterns. The steps de-

scribed above constitute an important design strategy

to support the high performance of the database. It is

intended to distinguish classes of applications each for

which a suitable type of concurrency control exists.

4 Case study: on-line event recon-

struction for CPLEAR

In the case study (described in detail in [8]),

CPREAD is integrated with the in-memory database

to obtain event reconstruction with on-line perfor-

mance. The case study comprises the design and im-

plementation of the database and the integration of

the application with the database. It should be no-

ticed that the only CPREAD dependent part is the

changeable concurrency control mechanism.

CPLEAR & CPREAD. CPLEAR is a HEP ex-

periment at CERN which investigates the C-P viola-

tion phenomenon. The experiment has run for several

years and about 100 people are involved. CPREAD is

a 260k lines Fortran source code program which is used

to reconstruct events produced by CPLEAR. About

100 GBytes of data have to be reconstructed annu-

ally. At run-time, the program size is 13 MBytes.

CPREAD is often changed and adapted.

Description of the system in operation. Fig-

ure 1 shows the system implemented on an 8-node

shared memory computer. The dotted box com-

prises the database. The database together with the

database library form the reusable part of the system.

The CPLEAR event generator is a source of

CPLEAR event data. It inserts Zebra [2] blocks with

raw (i.e. non-reconstructed) events into a table of the

in-memory database, at a speci�c rate. CPREAD

workers retrieve Zebra blocks with raw events from

this table via database routines. A worker recon-

structs the events and reconstructed valid events to-

gether with reconstruction information are inserted

into another table. Writers retrieve accepted events

from this table to write them to permanent storage.

In the CPLEAR case study the transaction scheme

provides data driven farming (a worker asks for data

when it is ready to process data). There is no cen-

tral master in the system controlling the placement of

data. Transport of data to the right worker is done

via the transaction scheme. Every worker takes its

own decisions. The absence of a master enhances the

system's scalability.

DB library

CPLEAR event generator

DB library

CPREAD

writer

DB library

DB library

CPREAD

DB library

CPREAD

writer

DB library

SQL*load

DB library

writer

SQL*load

DB library

writer

Oracle

in-memory database

DB library

CPREAD

data_dictionary

file system

Figure 1: On-line event reconstruction for CPLEAR

using a parallel in-memory database

Permanent storage can be a �le system on hard

disk or the Oracle 7.1 parallel database. In the case

of the Oracle database, the SQL*loader tool is used to

insert data into Oracle at high rate. Only data with a

long lifetime, i.e. reconstructed events, are stored on

permanent storage.

At run-time, workers can be added or removed from

the system, i.e. the farm size can be changed dynam-

ically. This does not lead to any data inconsistencies

or data loss. It is a standard feature of PORS: PORS

allows workers to connect or disconnect at run-time.

A library (DB library) linked to all worker processes

accessing the in-memory database connects the worker

to the database, and provides database access routines

and concurrency control. A data de�nition language

is used to de�ne the lay-out of the database.

Hardware. The system is implemented on a SPAR-

Ccenter 2000 shared memory computer. It has 512

MBytes memory and eight 40 MHz processors with 2

MBytes cache each.

Performance. Processes concurrently accessing the

same table can introduce waits. Database overhead

consists of executing access routines and maintaining

database structures. Measurement of waiting times

and overhead shows database performance.



The event reconstruction rate as function of

the number of CPREAD workers is measured. 8

CPREAD workers gave the highest rate. A standard

stand-alone CPREAD worker, i.e. without using the

database, can reconstruct events at a rate of 15.5 Hz

on the SPARCcenter computer (in this case it uses

one processor). So assuming that full scalability were

possible, 8 processors would process events at 124 Hz.

The actual system does process events at 117 Hz with

8 processors. So 7 Hz are lost by the overhead caused

by the database. Reasons for the decreased perfor-

mance in comparison to the theoretical case are over-

head generated by the event generator and the mem-

ory bandwidth of the shared memory machine.

Some typical execution times for access routines

during run-time of PORS are provided. Actions are

done on tables containing about 100 rows; the timings

are averages with accuracy of two digits. Data copy-

ing is not included: select: 1 �s; delete: 7 �s; update:

12 �s; insert: 18 �s.

5 Conclusions

The case study showed that data driven farm-

ing with a changing farm size was e�ciently realized

thanks to the database concepts. Performance turned

out to be quite scalable. Database overhead turns out

to be small. Properties of the SPARCcenter machine

turn out to be the predominant performance limiting

factors.

At present, the system is not connected to the

CPLEAR experiment to perform on-line event recon-

struction. Necessary adaptations are the construction

of an interface between experiment and system, and

an increase of the permanent storage size.

6 Future work

The case study left many features of the database

unused. Track �tting, a part of the reconstruction

process, will be parallelized. Communication between

the workers will be done via the database. The in-

creased parallelism should provide a reduced latency

and less memory usage. The reduced memory usage

comes from reduced code replication. It is a heavy test

for the database since the number of communications

increases and the size of the communicated data pack-

ets decreases. It tests whether the database approach

facilitates the parallelization of existing software.

The system will be ported to a Meiko CS-2 dis-

tributed memory computer to investigate the inuence

of di�erent parallel machine architectures on the per-

formance of PORS [9]. Data distribution will become

an important issue.

Acknowledgements

Thanks to Marcel Meesters and Bob Dobinson from

CERN for their help, and CPLEAR for giving access

to the CPREAD program.

References

[1] Proc. of the 8th Conference in the series Comput-

ing in high energy physics, Santa Fe, USA, 1990

[2] Zebra; an overview of the Zebra system, CERN,

Geneva, Switzerland, 1994

[3] W.F. McColl, General purpose computing, Lec. on

parallel computation, proc. 1991, ALCOM spring

school on parallel computation, Cambridge, UK

[4] J.J. Lukkien, The Construction of a Small Com-

munication Library, Comp. science report, Eind-

hoven University of Technology, the Netherlands,

1995

[5] A. Geist et al., PVM 3 User's Guide and reference

manual, Oak Ridge National Laboratory, 1993.

[6] R. Bjornson, N. Carriero, D. Gelernter, and J. Le-

ichter,Linda, the Portable Parallel, Technical Re-

port 520, Yale University Department of Computer

Science, Jan. 1988

[7] Henry F. Korth and Abraham Silberschatz,

Database system concepts, McGraw-Hill, 1991

[8] Erco Argante, Real-time database access on a

MPP, Thesis of the Software Technology Pro-

gramme, Eindhoven University of Technology, the

Netherlands, 1994

[9] E. Argante, M.R.J. Meesters, I. Willers, P. van

der Stok, A database for on-line event analysis on

a distributed memory machine, Eindhoven Univer-

sity of Technology, the Netherlands and CERN,

Geneva, Switzerland, 1995


