
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN/ECP 95-28
11 December 1995

A DATABASE FOR ON-LINE EVENT ANALYSIS ON A

DISTRIBUTED MEMORY MACHINE

E. Argantey;z, M.R.J. Meestersy;z, P. van der Stoky, I. Willersz

yEindhoven University of Technology zCERN

Dept. Mathematics and Computing Science div. ECP

P.O.Box 513, 5600 MB Eindhoven CH-1211 Geneva 23

the Netherlands Switzerland

Abstract

Parallel in-memory databases can enhance the structuring and parallelization of pro-

grams used in High Energy Physics (HEP). E�cient database access routines are

used as communication primitives which hide the communication topology in con-

trast to the more explicit communications like PVM or MPI. A parallel in-memory

database, called SPIDER, has been implemented on a 32 node Meiko CS-2 dis-

tributed memory machine. The SPIDER primitives generate a lower overhead than

the one generated by PVM or MPI. The event reconstruction program, CPREAD,

of the CPLEAR experiment, has been used as a test case. Performance measure-

ments showed that CPREAD interfaced to SPIDER can easily cope with the event

rate generated by CPLEAR.

Presented at Computing in High Energy Physics '95

Rio de Janeiro, Brazil, September 18-22, 1995

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25189529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A DATABASE FOR ON-LINE EVENT ANALYSIS ON A

DISTRIBUTED MEMORY MACHINE

E. Argantey;$, M.R.J. Meestersy;$, P. van der Stok$, I. Willersy

yCERN, div. ECP,

1211 Geneva 23, Switzerland

$Eindhoven University of Technology, Dept. Mathematics and Computing Science,

P.O. Box 513, 5600 MB Eindhoven, the Netherlands

Parallel in-memory databases can enhance the structuring and parallelization of pro-
grams used in High Energy Physics (HEP). E�cient database access routines are used
as communication primitives which hide the communication topology in contrast to the
more explicit communications like PVM or MPI. A parallel in-memory database, called
SPIDER, has been implemented on a 32 node Meiko CS-2 distributed memory machine.
The SPIDER primitives generate a lower overhead than the one generated by PVM or

MPI. The event reconstruction program, CPREAD, of the CPLEAR experiment, has
been used as a test case. Performance measurements showed that CPREAD interfaced

to SPIDER can easily cope with the event rate generated by CPLEAR.

1 Introduction

To meet ever increasing demands for computing capacity |the expected increase is

more than a factor 1000 for the coming ten years| parallel computing will become

the most cost e�ective solution3. Parallel in-memory databases can enhance the pro-

cess of parallelization. Communication is transparent to the user: access routines,

used for storage and retrieval of data, take care of communication implicitly.

Our objective is to investigate how database techniques can be applied to im-

prove High Energy Physics (HEP) software. In particular, we aim to simplify the

process of parallelization of software and to enhance the structuring of data. Also,

we aim to increase the portability of user programs. Furthermore, event reconstruc-

tion programs must be able to run on-line, i.e. event reconstruction must keep up

with the frequency at which events are generated by the experiment.

Farming of the sequential program is the obvious choice to increase the event

reconstruction frequency. Latency reduction of the event reconstruction by paral-

lelizing the program is interesting for other reasons: (1) reduction of data storage

and (2) faster feed back on experiment progress. The decreased latency of a sim-

pli�ed reconstruction program makes it possible to insert these programs into the

triggers to increase their discriminating power. This diminishes the need for the

storage of raw data. A low latency makes it possible to detect changes in the accu-

racy of the measurements su�ciently quickly to adapt the calibration constants of

the reconstruction software on an event to event base.

In addition, a homogeneous structure of the HEP programs composed of rela-

tively independent parts allows us to postpone the decision concerning which com-

puter platform to use to satisfy the real-time performance requirements.

1

The huge volume of data and their complex relations make database concepts

well suited to solve the data structuring problem. However, the low performance of

databases seemed to exclude this approach until now. In this paper it is shown that

a parallel in-memory database can cope very well with the expected event rates.

SPIDER, Scalable, Parallel In-memory Database for Event Reconstruction, has

been designed and implemented to be used for HEP software, in particular for event

reconstruction programs. As a test case, CPREAD was interfaced with SPIDER.

CPREAD is the event reconstruction program of CPLEAR, a CERN experiment.

SPIDER is designed to operate on a distributed memory machine, and implemented

on a MEIKO CS-2, a 32 node machine, each node containing two 100 MHz SPARC

processors.

2 Parallel In-Memory Databases for a Distributed Memory Machine

Databases are designed to manage large bodies of information. A relational database

consists of a collection of tables. Every table has a number of rows and columns.

This allows modeling of real world objects and their relations. Database access is

established via select, insert, and delete operations. The select operation retrieves

rows that satisfy a given predicate. The insert and delete operations store and

remove rows from a table respectively.

In an in-memory database, the data reside in real-memory in contrast with a

disk-based database where the data reside on hard-disks. In-memory storage allows

faster access of data than disk-based access. However, in-memory storage capacity

is more expensive than disk storage capacity. For the CS-2, total in-memory storage

capacity adds up to 128 MBytes � 32 Nodes = 4:1 GBytes.

Parallel databases allow concurrent access, i.e. operations can be executed

in parallel. We distinguish intra and inter access parallelism. The former allows a

single operation to be executed on more than one processor, the latter allows several

operations to be executed concurrently.

Access to data on a distributed memory machine can be characterized as NUMA:

Non Uniform Memory Access. Data accessed in the local memory of a CPU can

be accessed in shorter time than data accessed in memory of another CPU. Typical

times for a select of 23 KBytes on the CS-2 are 3 �s for a local select (no copy

performed and data present in cache), 950 �s on another CPU's memory and 5 ms

when read from disk.

Processes, together comprising a HEP program, can be interfaced to SPIDER.

To obtain high performance, these processes must be balanced over the processors,

such that all processors have an equal load. Due to the NUMA e�ect, processes

should access most frequently accessed data locally. SPIDER permits the distribu-

tion of complete rows of a given table over several nodes. The user can specify the

allocation of processes and rows to nodes via a Data De�nition Language (DDL).

2

3 How can HEP Software Bene�t from SPIDER?

3.1 Enhance Parallelization

Communication in SPIDER is established via data access routines. Their high

abstraction level eases load balancing and the communication deadlock problem.

With communication paradigms like PVM or MPI, communication is established

via message passing. The simplest is node to node communication: via a send

on one node, and a receive on the other. Destination and source nodes must be

speci�ed in the send and receive statements. Therefore, the communication pattern

has to be known. During the design a program is divided into processes which can

be distributed over the processors. Insight is required in the time consumption of

the processes to achieve load balancing. In contrast, SPIDER operations like select

and insert can be used in these processes, instead of communication primitives. In

the SPIDER operations no reference to the location of the data need to be speci�ed.

After all processes have been designed, their communication pattern is determined

by binding the tables and processes to nodes in the DDL �le. Thus, the design of

the processes and the communications between them can be separated, which eases

load balancing. The user does not explicitly address the communication between

the processes. Communication still takes place between processes but is completely

handled by SPIDER. In the implementation of SPIDER, it is assured that every

node contains a process that is always willing to receive data from any other nodes.

Consequently, the user only needs to handle deadlock on the level of his algorithm,

knowing that the database primitives themselves do not deadlock.

Data consistency is also no user worry; via locking mechanisms concurrent

access is controlled. All locking is performed locally: no communication is needed.

3.2 Enhance Structuring of Data

Data formats for structuring HEP data are often institute or experiment speci�c.

An example is Zebra2, a library which o�ers an extension to Fortran data structures.

No uniform method exists on modeling HEP data in Zebra.

Databases allow structuring of HEP data9: physical objects can be represented

by means of tables. The columns in tables are used to represent properties of these

objects. Relations between objects can be represented by extra columns or tables.

Many methods, like the E-R model5, are available to structure data for databases.

SPIDER can be used along with these structuring methods.

3.3 High Performance

SPIDER di�ers from conventional databases in its simplicity: it contains minimal

data security, concurrency control and fault tolerance. Relational database oper-

ations like joins, views and support for transaction processing are kept minimal.

For use in on-line event reconstruction programs these features did not prove to be

necessary. On the other hand, a few database operations are added which speed

up programs considerably. For example, it o�ers the operation select and delete,

which has the same functionality as the sequence of a select and a delete operation.

3

Another di�erence to conventional databases is the choice to store frequently used

data in-memory rather than on disk.

To be e�ectively used for parallel computers, the database must be scalable.

The SPIDER test cases showed that performance increases linearly with the number

of nodes. To ensure this, SPIDER does not have centralized control: the database

is distributed over all nodes. Each node decides where to access data.

3.4 Hardware Independence

HEP software programs normally last for many years, much longer than the com-

puters they run on. Usage of low level communication libraries would increase

performance at the expense of the portability of these programs.

When ported to another computer, only the communication within SPIDER

has to be changed; the user-programs can remain the same. The communication

primitives needed to build SPIDER are the node to node communications send,

receive and a node to node synchronisation primitive signal. Currently, the man-

ufacturer speci�c Elan Widget communication library is used. This results in fast

communications, at the cost of reduced portability of SPIDER.

4 Case Study: On-Line Event Reconstruction

To test how SPIDER performs when interfaced to HEP programs, we interfaced

it with CPREAD, the event reconstruction program of the CPLEAR experiment.

CPLEAR investigates the CP violation phenomenon. CPREAD is a 200k line For-

tran source code program, with which about 100 GBytes of data are reconstructed

annually. At run-time, the program size is 13 MBytes.

A �rst con�guration that we tested was a farm of CPREAD instances (see

left side �gure 1). Every node contained a CPREAD instance. The input of an

instance were "raw" events, the output were the reconstructed events. To measure

performance, we constructed a process (called REG) that inserted raw events into

the database with an adjustable frequency. For permanent storage, interesting

reconstructed events can be written to disk.

This test case uses SPIDER in a simple form: the REG inserts rows in ta-

ble 0, each row containing a raw event. Each CPREAD instance performs a se-

lect and delete on a row from table 0 (a raw event), reconstructs the event and

inserts the reconstructed event as a row in table 1. In the DDL, it is speci�ed that

every node running a CPREAD instance contains a part of table 0 and table 1.

The REG distributes the rows over the di�erent parts of table 0 in a round robin

fashion: rows are distributed in cyclic order (see �gure 1). If the select on the local

part of the table fails (e.g. an empty table), the select is communicated to other

nodes.

The second con�guration is designed to investigate the ease of parallelizing

existing programs when interfaced to SPIDER, see right side of �gure 1. A paral-

lelization of a part of CPREAD on sub-event level was used: track �tting10. Since

every event contains 2 to 6 charged tracks, each of 2 to 6 nodes can calculate one

track. Input and output of the track �tting processes is done via select and delete

4

disk

CPREAD
Tab 0 Tab 1

select insert

CPREAD
Tab 0 Tab 1

select insert

REG

CPREAD
Tab 0 Tab 1

select insert

node 28

node 1

node 0

TRACKFIT
WORKER

select
Tab 2

TRACKFIT
WORKER

select
Tab 2

CPREAD
Tab 0 Tab 1

select insert

node 1

Tab 3

insert

insert

node 0

node 2

MAIN

Figure 1: Select and insert by CPREAD and REG (left) and parallel track �tting (right)

and insert operations. Therefore, two extra tables are speci�ed, table 2 for "raw

tracks" and table 3 for "�tted tracks". Advantages of this type of parallelization are

reduced latency and less memory usage, since each node does not need to contain

all CPREAD code, but only a part. This is especially relevant for large programs

like CPREAD.

4.1 Measurements

Here we describe measurements on the farm of CPREAD instances. We used an

input �le of 3000 raw events, generated by the CPLEAR experiment. For the

CPREAD farm case, the system (operating on 28 nodes) reconstructed events with

a rate of 560 Hz. A sequential version without the database operating on the same

input �le achieved a rate of 23 Hz on one node. This means that the theoretical

limit is 23 � 28 = 644 Hz. Thus, we loose 84 Hz due to communication and database

overhead. Notice that if only one node is used, CPREAD with the database performs

at a rate of 22Hz, giving a limit of 22 � 28 = 616 Hz. This implies that 644 � 616

= 28 Hz is lost due to overhead of the database, and 616 � 560 = 56 Hz is lost due

to communication overhead and memory access contention.

The measured event reconstruction rate of 560 Hz allows this system to run

on-line since the event generation rate of CPLEAR varies between 200 and 500 Hz.

REMARK: At this moment every node can have only one CPREAD instance

(this is a limitation of the current implementation). The reconstruction rate will

increase considerably when two instances per node (one instance for every CPU)

can be scheduled. More results are given in 7.

5

5 Summary and Conclusions

Compared with other communication paradigms, SPIDER communications are

faster than PVM4 and about the same as MPI8 on the CS-2. For example, a select

which retrieves a tuple of 1 KBytes from another node takes 135 �s with SPIDER.

With PVM and MPI, a communication of 1 KBytes takes 170 and 140 �s respec-

tively. The main disadvantage of PVM and MPI is that they o�er less abstraction:

despite their large communication possibilities they are essentially message passing

paradigms.

Compared with other structuring facilities, like Zebra, which are used at CERN,

the structuring methods o�ered by database theory are more standardized and are

more widely used and researched.

Compared with conventional databases, SPIDER has less overhead, due to min-

imized security, concurrency control, and fault tolerance. Furthermore, it is faster

since it is memory based rather than disk based.

Parallel in-memory databases like SPIDER enhance the process of parallelizing

HEP software, which is shown with the parallel track �tting case. SPIDER combines

functionalities normally o�ered by a diversity of tools, such as data structuring tools,

communication paradigms and data retrieval tools.

The above mentioned advantages of SPIDER are o�ered without signi�cant loss

of performance. As our test case has shown, SPIDER even o�ers the opportunity

to perform event reconstruction on-line for experiments like CPLEAR.

We wish to thank the CPLEAR experiment for access to the CPREAD program.

References

1. Proc. of the 8th. Conference in the series Computing in high energy physics,

Santa Fe, USA (1990).

2. CN, ECP and PPE divisions Zebra; an overview of the Zebra system, CERN,

Switzerland (1994).

3. W.F. McColl, General purpose computing, Lectures on parallel computation,

proceedings 1991 ALCOM, Cambridge, UK (1991).

4. A. Geist et al, PVM 3 User's guide and reference manual, Oak Ridge National

Laboratory (1993).

5. H.F. Korth et al, Database system concepts, Mc-Graw-Hill (1991).

6. J.J. Lukkien, The Construction of a Small Communication Library, Comp.

science report, Eindhoven, the Netherlands (1995).

7. M.R.J. Meesters, On-line event reconstruction using a parallel in-memory

database, Thesis of the Softw. Techn. Prog., Eindhoven, the Netherlands

(1995).

8. P.S. Pacheco, A users guide to MPI, Univ. of San Francisco, CA, USA (1995).

9. Programming techniques Group, ECP, ADAMO Entity-

Relationship Programming System, Version 3.3 Cern, Geneva, Switzerland

(http://www1.cern.ch/Adamo/ADAMO ENTRY.html) (1993)

10. R. Schiefer Parallel track �tting in CP-READ, CERN, Geneva, Switzerland

(1995).

6

