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ABSTRACT

We analyze the relation between rigid and local supersymmetric N=2 field theories,
when half of the supersymmetries are spontaneously broken. In particular, we show
that the recently found partial supersymmety breaking induced by electric and mag-
netic Fayet-Iliopoulos terms in rigid theories can be obtained by a suitable flat limit
of previously constructed N=2 supergravity models with partial super-Higgs in the
observable sector.
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Introduction

Recent work on D-brane physics has renewed interest in the analysis of supersymmetry breaking
in N=2 supergravity models that may describe the low-energy effective actions of string theories
that take into account non-perturbative phenomena, such as the role of R-R charged states in
conifold transitions, R-R Fayet-Iliopoulos (F-I) terms, and p-form condensation [1].

The generation of a non-perturbative scalar potential, which could stabilize flat directions
of supersymmetric vacua, opens the way to studying dynamically generated mechanisms of
supersymmetry breaking, and to further explore the possibility of breaking N=2 supersymmetry
to N=1.

In a previous note we focused our attention on a minimal model in which the simultaneous
occurrence of the Higgs and super-Higgs mechanisms was shown to be a necessary condition
for triggering the breaking of N=2 to N=1, and for the lifiting of two of the original six flat
directions of the theory.

The model considered there was a spontaneously broken phase of N=2 supergravity coupled
to a U(1) vector multiplet and a hypermultiplet, charged with respect to the U(1)2 gauge group
of the theory. Prior to gauging, the moduli space of the model was the six-dimensional manifold

SO(4, 1)

SO(4)
×
SU(1, 1)

U(1)
. (1)

After gauging, the theory consisted of an N=1 supergravity theory , with a massive spin-
3/2 multiplet together with two massless chiral multiplets, whose scalars provided the residual
(two complex) flat directions of the theory. In N=2 supergravity, the presence of a charged
hypermultiplet is necessary to Higgs the U(1)2. This Higgsing is needed to give a mass to the
two spin-1 components of the spin-3/2 massive multiplet [2].

On the other hand, very recently, it was observed in ref. [3] that spontaneous breaking of N=2
rigid supersymmetry to N=1 can already occur in a self-interacting (non-renormalizable) U(1)
abelian theory, if F-I terms with simultaneous electric and magnetic components are introduced.

In the minimal theory of such kind, the photino is the goldstino and the broken phase consists
of just a massless spin (1,1/2) multiplet together with a massive chiral multiplet.

This theory is in apparent violation of “common wisdom,” asserting that it is impossible to
break spontaneously N=2 to N=1 in rigid theories. However, Hughes and Polchinski pointed
out in ref. [4] that a generalization of the supersymmetry current algebra can contradict this
wisdom. In fact, two- and four-dimensional counterexamples where provided within string [4]
and membrane [5] theory. Aim of the present paper is, first, to re-analyze more carefully the
general principles of supersymmetry and to show that, in agreement with ref. [4], it is indeed
possible to have partial breaking of N=2 in rigid theories; then, to show that such possibility is
in fact encompassed by the previously studied partial breaking in N=2 supergravity [6, 7], if a
suitable flat limit, which preserves N=2 rigid supersymmetry, is taken.

Section 1 will re-examine rigid extended supersymmetry, while Section 2 will deal with local
N=2 supergravity and its flat limit.
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1 Partial SUSY Breaking in the Rigid Theory

Let us recall the argument that forbids partial braking in rigid supersymmetry. It is a sim-
ple consequence of the current algebra of extended supersymmetry, that implies, among other
things, the following equation:∫

d3~y{JB 0α̇(y
0, ~y), JAµα(x)} = 2σναα̇δ

A
BTµν(x), A,B = 1, ...,N. (2)

This equation means that the variation under the B-supersymmetry of the A-th supercurrent
is diagonal in the extension indices, and equal to the gamma-trace of the stress-energy tensor.
This equation, which makes sense even when supersymmetry is broken, due to the fact that
commutators of fields are local, immediately implies that if a supersymmetry is broken, then all
of them are broken with the same strength. To see this, one takes the VEV of eq. (2) and inserts
a complete basis of states in the commutator. Standard manupulations imply the existence of N
spin-1/2 zero-mass particles (the goldstini), which all couple to the vacuum with equal strength,
F 2
goldstino ∼ 〈0|T

µ
µ |0〉.

The way out to this situation is that eq. (2) is not the most general current algebra con-
sistent with supersymmetry [4]. Indeed, the Jacobi identities of supersymmetry [8] allow for
an additional field-independent, constant term to be added to eq. (2): σµ α̇αC

B
A . This term

does not modify the supersymmetry algebra on the fields [9], since its commutators with any
quantity in the theory is obviously zero. In particular, the commutator of two supersymmetry
transformations on any field is a translation (up to eventual gauge transformations).

The presence of this extra constant term in the supersymmetric current algebra [10] allows
for the breaking of only some of the N supersymmetries. As we are going to see in a moment,
the model of ref. [3] (APT model) precisely realizes this situation. The N=2 supersymmetry is
realized manifestly and linearly on the fields (indeed, the model can be written in terms of N=2
superfields [3]), but the current algebra of the N=2 supersymmetry is not the standard one, but
the one with the additional constant term.

The APT model consists of one (or more) N=2 vector multiplets, AΣ. They can be written
as constrained N=2 chiral multiplets, obeying the constraint:

(εijD
iσµνD

j)2AΣ = −962A∗Σ. (3)

The crucial observation in ref. [3] is that this constraint does not imply that the auxiliary fields

of the vector multiplet, ~Y Σ – which transform as vectors of the extension algebra SU(2) – are

real. A constant imaginary term is also allowed, so that ~Y ∗Σ 6= ~Y Σ. This term is a magnetic
F-I term, while the real part of ~Y Σ is a standard N=2 electric F-I term. The transformation
law of the “gaugino” (i.e. the spin-1/2 field of the vector multiplet) is

δλΣ
A =

i
√

2
XΣ
ABη

B ≡
i
√

2
Y Σ
I εACσ

I C
B ηB + .... . (4)

Here I = 1, 2, 3 and the supersymmetry parameter is ηA, A = 1, 2. The ellipsis denote terms
which vanish on translationally invariant backgrounds. Since XΣ

ACX
Σ
CB = ~Y Σ · ~Y ΣδAB (no sum
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on Σ), we see that when ~Y Σ is real, one unbroken supersymmetry implies ~Y Σ = 0, i.e. that the

two supersymmetries are both unbroken. On the other hand, a complex ~Y 3 may have square
equal to zero without vanishing. In ref. [3], in particular, there is a single vector multiplet, and

at the minimum ~Y = 2mΛ2(0, i,−1), m 6= 0. Here we have explicitly shown the dependence of
~Y on the supersymmetry breaking scale Λ ∼ F

1/2
goldstino. With this choice of ~Y , the matrix XAB

has exactly one zero eigenvalue, i.e. N=2 is broken to N=1.

The lagrangian of the APT model, extended to contain an arbitrary number of vector mul-
tiplets, reads, in N=2 superfield notation [11]:

L =
i

4

∫
d2θ1d

2θ2[F(AΣ)−AD
ΣA

Σ] +
1

2
( ~EΣ · ~Y

Σ + ~MΣ · ~Y D
Σ ) + c.c. , (5)

where AΣ is an unconstrained chiral N=2 multiplet,AD
Σ is a constrained chiral multiplet playing

the role of Lagrange multiplier, ~E, ~M are constant vectors, and ~MΣ is real. The equations of
motion for the auxiliary fields derived from lagrangian (5) read:

~Y Σ = −2τΣ∆
2 (Re ~E∆ + τ1 ∆Γ

~MΓ) + 2i ~MΣ,

τ1σ∆ = Re τΣ∆, τ2Σ∆ = Im τΣ∆, τΣ∆ = FΣ∆, τΣΓ
2 τ2 Γ∆ = δΣ

∆. (6)

In computing the supersymmetric variation of the supercurrent, the only difference with respect
to the standard case ( ~MΣ = 0) arises in terms involving ~Y Σ. In other words, all fermionic and
derivative terms in the variation of the supercurrent are as in the standard case, so that the
variation of the supercurrent reads∫

d3~y{JB 0α̇(y
0, ~y), JAµα(x)} =

1

2
σµαα̇(X

Σ
AC )∗τ2Σ∆X

∆
CB + .... = 2σµ αα̇M

A
B + ...., (7)

where XΣ
AB is as in eq. (4), and the ellipsis denote terms identical with the standard case. Using

eqs. (4,6) one finds

MA
B =

1

4
τ2Σ∆

~Y ∗Σ · ~Y ∆δAB +
i

4
τ2Σ∆~σ

A
B · (~Y

∗Σ × ~Y ∆) =

= τΣ∆
2 (Re ~EΣ + τΣΓ

~MΓ)(Re ~E∆ + τ ∗∆Π
~MΠ)δAB + 2~σAB · (Re ~EΣ × ~MΣ). (8)

The term proportional to δAB is the scalar potential, as in the standard case. Since MA
B is given

by the square of the fermionic shifts in eq. (4), it is positive semidefinite. Its eigenvalues are

λ± =
1

4
τ2 Σ∆

~Y Σ · ~Y ∗∆ ±
1

4
||iτ2Σ∆

~Y Σ × ~Y ∗∆||, ||~V || ≡ (~V · ~V )1/2. (9)

Partial breaking is possible whenever λ− = 0.

By substituting eq. (8) into the variation of the supercurrent we find that the supersymmetry
current algebra receives a field-independent modification, as expected:∫

d3~y{JB 0α̇(y
0, ~y), JAµα(x)} = 2σναα̇δ

A
BTµν(x) + 4σµαα̇~σ

A
B · (Re ~EΣ × ~MΣ). (10)

3Notice that the off-shell algebra still closes, since an imaginary constant does not contribute to δ~Y Σ.
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As we noticed before, this additional constant term in the current algebra does not affect the
form of the supersymmetry transforamtions on fields. Indeed, in the presence of a nonzero ~M ,
the commutator of two supersymmetry transformations still has the standard form on all fields
except on the spin-1 field, where it gets an extra term

[δ1, δ2]A
Σ
µ = 2i(η1

Aσµη̄
2B − η2

Aσµη̄
1B)~σAB · ~M

Σ. (11)

This extra term is a harmless gauge transformation when the supersymmetry parameters are
constant. This is no longer the case when they are given a dependence on space-time coordinate;
in other words, the APT model cannot be coupled naively to supergravity. We shall see in a
moment that in spite of this, it can be recovered as an appropriate flat limit of N=2 supergravity.

2 N=2 Supergravity with Partial Breaking and its Flat

Limit

In this section we show that the APT model arises as a flat limit of a N=2 supergravity. The
limit is MPl →∞, Λ = constant, where, as before, Λ ∼ F

1/2
goldstino is the scale of supersymmetry

breaking. For sake of simplicity we will study the original APT theory, which contains a single
self-interacting abelian vector multiplet.

As we have just seen, the current algebra (i.e. the Ward identity) of rigid supersymmetry
can be modified by adding a constant term to it. In local supersymmetry, this freedom no
longer exists, instead, the algebra is modified because of the presence of the gravitini. When
restricted to translationally invariant backgrounds, the Ward identity becomes to so-called “T-
identity” [12, 13]

δAψ
i
Lδ

BψjRZij − 3M2
PlMACM

∗CB = V δBA , (12)

where δAψi denote the shift, under the A-th supersymmetry, of the spin one-half fermions, while
MAB is the gravitino mass matrix and Zij is the kinetic term of the fermions. We have kept
the dependence on MPl in this formula because we will be interested in studying an appropriate
flat limit MPl →∞. These identities show that even when V = 0, one may still have, say

δ1ψ
i
Lδ

1ψjRZij = 3M1CM
C1 = 0, (13)

but instead
δ2ψ

i
Lδ

2ψjRZij = 3M2CM
C2 6= 0. (14)

In N=2, this corresponds to breaking half of the supersymmetries (N=1 unbroken), at zero
cosmological constant.

We must emphaisze that a field configuration for which at least one supersymmetry is un-
broken gives automatically an absolutely stable local minimum of the potential [12].

A supergravity model with partial breaking of N=2 supersymmetry can be constructed along
the lines of ref. [6]. The matter content of the model is a charged hypermultiplet, whose scalars
parametrize the quaternionic manifold SO(4, 1)/SO(4), coupled to an abelian vector multiplet.
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By denoting the quaternionic coordinates of the hypermultiplet manifold with bu, u =
0, 1, 2, 3, we can write its symplectic vielbein [14] – which determines the coupling to fermions
– as [6]

UαA =
1

2b0
εαβ(db0 − i~σd~b) Aβ . (15)

The special geometry of the vector-multiplet manifold is specified by four holomorphic sec-
tions XΣ(z), Fσ(z), Σ = 0, 1 [15], in terms of which the Kähler potential reads

K = − log i(X∗ΛFΛ −X
ΛF ∗Λ). (16)

Our choice, which slightly generalizes that of ref. [6], is

X0(z) =
1
√

2
, X1(z) =

i
√

2
f ′(z), F0(z) = −

i
√

2
[2f(z)− zf ′(z)], F1(z) =

z
√

2
. (17)

This choice of sections is such that no holomorphic prepotential exists. It has been obtained by
performing the symplectic transformation X1 → −F1, F1 → X1 on the sections obtained from
the prepotential F (X0, X1) = −i(X0)2f(X1/X0) [6, 15].

The gauge group in our case is U(1)2, with one of the U(1) factors coming from the matter
vector multiplet and the other from the graviphoton. The coupling of U(1)2 to the hypermulti-
plet is specified by the covariant derivative Dµb

u = ∂µb
u +AΣ

µk
u
Σ. The Killing vectors kuΣ in our

case are a simple generalization of those of ref. [6]:

ku0 = g1δ
u3 + g2δ

u2, ku1 = g3δ
u2. (18)

g1, g2 and g3 are arbitrary constants. These Killing vectors are derived through standard N=2
formulae from the “D-term” prepotentials [14, 6]

PI0 =
1

b0
(g1δ

I3 + g2δ
I2), PI1 = g3

1

b0
δx2, I = 1, 2, 3, (19)

i.e. ~PΣ = b−1
0
~kΣ.

The formulae for the shifts of the (antichiral) gaugino λz
∗

A , hyperini ζα, and (chiral) gravitini
ψAµ are

δλz
∗

A = −igzz
∗
εBC~σ

C
A · ~PΣe

K/2(∂z + ∂zK)XΣ(z)ηB = W z∗

ABη
B,

δζα = −2εABU
αB
u kuΣe

K/2XΣ(z)ηA ≡ N α
Aη

A,

δψAµ =
i

2
εBC~σ

C
A
~PΣe

K/2XΣ(z)γµη
B ≡ iSABγµη

B. (20)

To recover the APT model, we must expand around an appropriate vacuum, with zero cosmolog-
ical constant at the Planck scale, and perform a suitable flat limitMPl →∞ . It is evident that
the coupling constants gi, as well as the gravitino mass, must vanish in that limit. The reason is
that the APT model does not contain any hypermultiplet, thus, to reconcile its spectrum with
the one of our supergravity theory, the hypermultiplet must decouple from the vector multiplet
in the flat limit. Moreover, a finite, nonzero gravitino mass would imply that the lagrangian
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contains explicit supersymmetry-breaking terms in the MPl → ∞ limit. The crucial property
that allows for a non-trivial result in the flat limit is that the gravitino shifts are proportional
to the supersymmetry breaking scale Λ, while the latter is related to the gravitino mass by
m3/2 ∼ Λ2/MPl. It is therefore possible to find a limit in which the gravitino shifts contribute
to the Ward identity of rigid supersymmetry, while the gravitino mass goes to zero (together
with all explicit supersymmetry-breaking terms).

The limit reproducing the APT model is specified as follows. First of all we set

f(z) =
1

2
+

Λ

MPl

z +
Λ2

M2
Pl

φ(z) +O(Λ3/M3
Pl). (21)

Then we choose

g1 =
Λ2

M2
Pl

ξ, g2 =
Λ2

M2
Pl

e, g3 = 2
Λ

MPl

m. (22)

In the limit MPl →∞, Λ = constant, we find

gzz∗ = ∂z∂z∗K(z, z∗) =
Λ2

M2
Pl

{
1−

1

2
φ′′(z)−

1

2
[φ′′(z)]∗

}
+O(Λ3/M3

Pl),

Kz = −
Λ

MPl

+O(Λ2/M2
Pl). (23)

To recover the APT model we set

F(z) ≡ z2 − i2φ(z), (24)

and we rescale the fermions so that they have a canonically normalized kinetic term:

λz
∗

A → (MPlΛ
2)−1/2λz

∗

A , ζα →M
−3/2
Pl ζα, ψAµ →M

−3/2
Pl ψAµ. (25)

By restoring the proper mass dimension (−1/2) in the supersymmetry breaking parameter,

i.e. rescaling ηA → M
1/2
Pl η

A, and by defining τ (z) = τ1(z) + iτ2(z) = F ′′(z), we find that
gzz∗ = (Λ2/M2

Pl)τ2(z)/2, and that in the flat limit the shifts of the fermions read

δλz
∗

A = iΛ2 2

τ2(z)
εBC

[
1
√

2b0
(ξσ3C

A + eσ2C
A ) +

1
√

2b0
mσ2C

A τ (z)

]
ηB +O(Λ3/MPl),

δζα = iΛ2εBC
1
√

2b0

[
(ξσ3C

A + eσ2C
A ) + 2imσ2C

A

]
ηB +O(Λ3/MPl),

δψAµ =
i

2
Λ2γµεBC

1
√

2b0

[
(ξσ3C

A + eσ2C
A ) + 2imσ2C

A

]
ηB +O(Λ3/MPl). (26)

Notice that in the flat limit, b0 becomes a coupling constant, since the fluctuations in ∂µb0 are
O(M−1

Pl ). Therefore b0 plays a role analogous to the dilaton in the low-energy limit of string
theory. Since the manifold of the hypermultiplet is homogeneous, all values of b0 > 0 give
the same physics. In the flat limit the only effect of a change in b0 is to rescale the coupling
constants ξ, e and m. In particular, at b0 = 1, we recover the APT model with a single vector
multiplet and

Re ~E = Λ2(0, e, ξ), ~M = Λ2(0,m, 0). (27)
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Eq. (26) shows that in the flat limit the shift of the gaugino is identical with the one of the
APT model, whereas the gravitino and hyperino shifts are nonzero, field independent constants.
We are thus guaranteed that the potential of our model agrees with the APT one, up to field
independent terms. This statement can be easily verified by using the T-identitites eq. (12). In
the normalizations of this section these identities read

−12(SAC)∗SCB +
τ2(z)

2
(W z∗

AC)∗W z∗

CB + 2(N α
A )∗N α

B = δABV (z), (28)

where we have used the re-scaled fermion shifts throughout. As expected, the (field independent)
terms that are off-diagonal in the extension indices A, B, and that arise from the square of the
gaugino shifts, are exactly cancelled by the combined shifts of the hyperini and gravitini. The
same shifts also contribute an additional field-independent term to the scalar potential, equal
to −(1/2)Λ4(ξ2 + e2 + 4m2). The complete potential reads

V (z) =
1

b0 2

[
1

τ2(z)
|Re ~E + τ (z) ~M |2 −

1

2
Λ4(ξ2 + e2 + 4m2)

]
. (29)

Some comments are now in order.

1. The potential in eq. (28) differs from the one in [3] or in eq. (8). Since the difference
depends only on b0, it becomes irrelevant in the flat limit, when gravitational interactions
decouple and b0 does not fluctuate. The stationary point τ1(z) = −e/m, τ2(z) = |ξ/m| is
a stable minimum [3] at MPl =∞. At this minimum,

Vmin =
1

2b0 2
Λ4(4|ξm| − ξ2 − e2 − 4m2). (30)

2. Since the hyperino and gravitino shifts depend only on b0, for a generic choice of ξ, e, m,
they break both supersymmetries. On the other hand, since the gaugino shift depends
also on the field z, whenever the “prepotential” F(z) gives rise to non-renormalizable
interactions, one may be able to find a VEV z such that the gaugino-shift matrix has
exactly one zero eigenvalue. In this case N=2 supersymmetry is broken to N=1 in both
the “observable” gaugino sector and the “hidden” hyperino + gravitino sector, while the
residual N=1 is only broken in the hidden sector.

3. The cosmological constant is effectively zero at the Planck scale, whenever Λ � MPl.
Nevertheless, for MPl <∞, and for generic values of the parameters ξ, e, m, the potential
in eq. (29) has no minimum. Indeed, in the full supergravity theory described above, b0

is a dynamical field. Minimization in b0 and z result in a constraint on the parameters of
the theory, which reads, up to terms O(Λ/MPl):

4|ξm| − ξ2 − e2 − 4m2 = 0. (31)

This equation is solved by e = 0, ξ = 2m. These parameters define a supergravity
model undergoing partial super-Higgs from N=2 to N=1: N=1 is unbroken in both the
“observable” sector and the “hidden” sector. A general theorem [12] guarantees that in
this case the stationary point in z and b0 exists and is a stable minimum.
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4. For any other choice of the parameters, only “cosmological” solutions with a time-dependent
runaway b0 VEV exist. The characteristic time of evolution of these solutions, db0/dt, is
κMPl/Λ2, where κ is O(1) for a generic choice of parameters. If we set Λ ∼ 100GeV , this
time is approximately 10−10 sec. Needless to say, this means that a “realistic” supersym-
metry breaking scale does not give rise to a realistic – i.e. almost stationary – perturbative
vacuum.

5. The model of ref. [6] has an accidental flat direction, giving rise to an extra massless N=1
scalar multiplet, due to a special choice of the vector-multiplet metric. In ref. [6], indeed,
the vector multiplet manifold was the homogeneous space SU(1, 1)/U(1), corresponding
to choosing f(z) = (1/2) + (Λ/MPl)z in eq. (21).
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